dram_ctrl.cc revision 10246
19243SN/A/*
210206Sandreas.hansson@arm.com * Copyright (c) 2010-2014 ARM Limited
39243SN/A * All rights reserved
49243SN/A *
59243SN/A * The license below extends only to copyright in the software and shall
69243SN/A * not be construed as granting a license to any other intellectual
79243SN/A * property including but not limited to intellectual property relating
89243SN/A * to a hardware implementation of the functionality of the software
99243SN/A * licensed hereunder.  You may use the software subject to the license
109243SN/A * terms below provided that you ensure that this notice is replicated
119243SN/A * unmodified and in its entirety in all distributions of the software,
129243SN/A * modified or unmodified, in source code or in binary form.
139243SN/A *
149831SN/A * Copyright (c) 2013 Amin Farmahini-Farahani
159831SN/A * All rights reserved.
169831SN/A *
179243SN/A * Redistribution and use in source and binary forms, with or without
189243SN/A * modification, are permitted provided that the following conditions are
199243SN/A * met: redistributions of source code must retain the above copyright
209243SN/A * notice, this list of conditions and the following disclaimer;
219243SN/A * redistributions in binary form must reproduce the above copyright
229243SN/A * notice, this list of conditions and the following disclaimer in the
239243SN/A * documentation and/or other materials provided with the distribution;
249243SN/A * neither the name of the copyright holders nor the names of its
259243SN/A * contributors may be used to endorse or promote products derived from
269243SN/A * this software without specific prior written permission.
279243SN/A *
289243SN/A * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
299243SN/A * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
309243SN/A * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
319243SN/A * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
329243SN/A * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
339243SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
349243SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
359243SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
369243SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
379243SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
389243SN/A * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
399243SN/A *
409243SN/A * Authors: Andreas Hansson
419243SN/A *          Ani Udipi
429967SN/A *          Neha Agarwal
439243SN/A */
449243SN/A
4510146Sandreas.hansson@arm.com#include "base/bitfield.hh"
469356SN/A#include "base/trace.hh"
4710146Sandreas.hansson@arm.com#include "debug/DRAM.hh"
4810208Sandreas.hansson@arm.com#include "debug/DRAMState.hh"
499352SN/A#include "debug/Drain.hh"
5010146Sandreas.hansson@arm.com#include "mem/dram_ctrl.hh"
519814SN/A#include "sim/system.hh"
529243SN/A
539243SN/Ausing namespace std;
549243SN/A
5510146Sandreas.hansson@arm.comDRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
569243SN/A    AbstractMemory(p),
579243SN/A    port(name() + ".port", *this),
589243SN/A    retryRdReq(false), retryWrReq(false),
5910211Sandreas.hansson@arm.com    busState(READ),
6010208Sandreas.hansson@arm.com    nextReqEvent(this), respondEvent(this), activateEvent(this),
6110208Sandreas.hansson@arm.com    prechargeEvent(this), refreshEvent(this), powerEvent(this),
6210208Sandreas.hansson@arm.com    drainManager(NULL),
639831SN/A    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
649831SN/A    deviceRowBufferSize(p->device_rowbuffer_size),
659831SN/A    devicesPerRank(p->devices_per_rank),
669831SN/A    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
679831SN/A    rowBufferSize(devicesPerRank * deviceRowBufferSize),
6810140SN/A    columnsPerRowBuffer(rowBufferSize / burstSize),
699243SN/A    ranksPerChannel(p->ranks_per_channel),
709566SN/A    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
719243SN/A    readBufferSize(p->read_buffer_size),
729243SN/A    writeBufferSize(p->write_buffer_size),
7310140SN/A    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
7410140SN/A    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
7510147Sandreas.hansson@arm.com    minWritesPerSwitch(p->min_writes_per_switch),
7610147Sandreas.hansson@arm.com    writesThisTime(0), readsThisTime(0),
7710216Sandreas.hansson@arm.com    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST),
7810210Sandreas.hansson@arm.com    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), tWR(p->tWR),
7910212Sandreas.hansson@arm.com    tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
809488SN/A    tXAW(p->tXAW), activationLimit(p->activation_limit),
819243SN/A    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
829243SN/A    pageMgmt(p->page_policy),
8310141SN/A    maxAccessesPerRow(p->max_accesses_per_row),
849726SN/A    frontendLatency(p->static_frontend_latency),
859726SN/A    backendLatency(p->static_backend_latency),
8610208Sandreas.hansson@arm.com    busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
8710208Sandreas.hansson@arm.com    pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
8810208Sandreas.hansson@arm.com    nextReqTime(0), pwrStateTick(0), numBanksActive(0)
899243SN/A{
909243SN/A    // create the bank states based on the dimensions of the ranks and
919243SN/A    // banks
929243SN/A    banks.resize(ranksPerChannel);
939969SN/A    actTicks.resize(ranksPerChannel);
949243SN/A    for (size_t c = 0; c < ranksPerChannel; ++c) {
959243SN/A        banks[c].resize(banksPerRank);
969969SN/A        actTicks[c].resize(activationLimit, 0);
979243SN/A    }
989243SN/A
9910246Sandreas.hansson@arm.com    // set the bank indices
10010246Sandreas.hansson@arm.com    for (int r = 0; r < ranksPerChannel; r++) {
10110246Sandreas.hansson@arm.com        for (int b = 0; b < banksPerRank; b++) {
10210246Sandreas.hansson@arm.com            banks[r][b].rank = r;
10310246Sandreas.hansson@arm.com            banks[r][b].bank = b;
10410246Sandreas.hansson@arm.com        }
10510246Sandreas.hansson@arm.com    }
10610246Sandreas.hansson@arm.com
10710140SN/A    // perform a basic check of the write thresholds
10810140SN/A    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
10910140SN/A        fatal("Write buffer low threshold %d must be smaller than the "
11010140SN/A              "high threshold %d\n", p->write_low_thresh_perc,
11110140SN/A              p->write_high_thresh_perc);
1129243SN/A
1139243SN/A    // determine the rows per bank by looking at the total capacity
1149567SN/A    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
1159243SN/A
1169243SN/A    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
1179243SN/A            AbstractMemory::size());
1189831SN/A
1199831SN/A    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
1209831SN/A            rowBufferSize, columnsPerRowBuffer);
1219831SN/A
1229831SN/A    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
1239243SN/A
1249566SN/A    if (range.interleaved()) {
1259566SN/A        if (channels != range.stripes())
12610143SN/A            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
1279566SN/A                  name(), range.stripes(), channels);
1289566SN/A
12910136SN/A        if (addrMapping == Enums::RoRaBaChCo) {
1309831SN/A            if (rowBufferSize != range.granularity()) {
13110143SN/A                fatal("Interleaving of %s doesn't match RoRaBaChCo "
13210136SN/A                      "address map\n", name());
1339566SN/A            }
13410136SN/A        } else if (addrMapping == Enums::RoRaBaCoCh) {
13510136SN/A            if (system()->cacheLineSize() != range.granularity()) {
13610143SN/A                fatal("Interleaving of %s doesn't match RoRaBaCoCh "
13710136SN/A                      "address map\n", name());
1389669SN/A            }
13910136SN/A        } else if (addrMapping == Enums::RoCoRaBaCh) {
14010136SN/A            if (system()->cacheLineSize() != range.granularity())
14110143SN/A                fatal("Interleaving of %s doesn't match RoCoRaBaCh "
14210136SN/A                      "address map\n", name());
1439566SN/A        }
1449566SN/A    }
14510207Sandreas.hansson@arm.com
14610207Sandreas.hansson@arm.com    // some basic sanity checks
14710207Sandreas.hansson@arm.com    if (tREFI <= tRP || tREFI <= tRFC) {
14810207Sandreas.hansson@arm.com        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
14910207Sandreas.hansson@arm.com              tREFI, tRP, tRFC);
15010207Sandreas.hansson@arm.com    }
1519243SN/A}
1529243SN/A
1539243SN/Avoid
15410146Sandreas.hansson@arm.comDRAMCtrl::init()
15510140SN/A{
15610140SN/A    if (!port.isConnected()) {
15710146Sandreas.hansson@arm.com        fatal("DRAMCtrl %s is unconnected!\n", name());
15810140SN/A    } else {
15910140SN/A        port.sendRangeChange();
16010140SN/A    }
16110140SN/A}
16210140SN/A
16310140SN/Avoid
16410146Sandreas.hansson@arm.comDRAMCtrl::startup()
1659243SN/A{
16610143SN/A    // update the start tick for the precharge accounting to the
16710143SN/A    // current tick
16810208Sandreas.hansson@arm.com    pwrStateTick = curTick();
16910143SN/A
17010206Sandreas.hansson@arm.com    // shift the bus busy time sufficiently far ahead that we never
17110206Sandreas.hansson@arm.com    // have to worry about negative values when computing the time for
17210206Sandreas.hansson@arm.com    // the next request, this will add an insignificant bubble at the
17310206Sandreas.hansson@arm.com    // start of simulation
17410206Sandreas.hansson@arm.com    busBusyUntil = curTick() + tRP + tRCD + tCL;
17510206Sandreas.hansson@arm.com
17610207Sandreas.hansson@arm.com    // kick off the refresh, and give ourselves enough time to
17710207Sandreas.hansson@arm.com    // precharge
17810207Sandreas.hansson@arm.com    schedule(refreshEvent, curTick() + tREFI - tRP);
1799243SN/A}
1809243SN/A
1819243SN/ATick
18210146Sandreas.hansson@arm.comDRAMCtrl::recvAtomic(PacketPtr pkt)
1839243SN/A{
1849243SN/A    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
1859243SN/A
1869243SN/A    // do the actual memory access and turn the packet into a response
1879243SN/A    access(pkt);
1889243SN/A
1899243SN/A    Tick latency = 0;
1909243SN/A    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
1919243SN/A        // this value is not supposed to be accurate, just enough to
1929243SN/A        // keep things going, mimic a closed page
1939243SN/A        latency = tRP + tRCD + tCL;
1949243SN/A    }
1959243SN/A    return latency;
1969243SN/A}
1979243SN/A
1989243SN/Abool
19910146Sandreas.hansson@arm.comDRAMCtrl::readQueueFull(unsigned int neededEntries) const
2009243SN/A{
2019831SN/A    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
2029831SN/A            readBufferSize, readQueue.size() + respQueue.size(),
2039831SN/A            neededEntries);
2049243SN/A
2059831SN/A    return
2069831SN/A        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
2079243SN/A}
2089243SN/A
2099243SN/Abool
21010146Sandreas.hansson@arm.comDRAMCtrl::writeQueueFull(unsigned int neededEntries) const
2119243SN/A{
2129831SN/A    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
2139831SN/A            writeBufferSize, writeQueue.size(), neededEntries);
2149831SN/A    return (writeQueue.size() + neededEntries) > writeBufferSize;
2159243SN/A}
2169243SN/A
21710146Sandreas.hansson@arm.comDRAMCtrl::DRAMPacket*
21810146Sandreas.hansson@arm.comDRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
21910143SN/A                       bool isRead)
2209243SN/A{
2219669SN/A    // decode the address based on the address mapping scheme, with
22210136SN/A    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
22310136SN/A    // channel, respectively
2249243SN/A    uint8_t rank;
2259967SN/A    uint8_t bank;
22610245Sandreas.hansson@arm.com    // use a 64-bit unsigned during the computations as the row is
22710245Sandreas.hansson@arm.com    // always the top bits, and check before creating the DRAMPacket
22810245Sandreas.hansson@arm.com    uint64_t row;
2299243SN/A
2309243SN/A    // truncate the address to the access granularity
2319831SN/A    Addr addr = dramPktAddr / burstSize;
2329243SN/A
2339491SN/A    // we have removed the lowest order address bits that denote the
2349831SN/A    // position within the column
23510136SN/A    if (addrMapping == Enums::RoRaBaChCo) {
2369491SN/A        // the lowest order bits denote the column to ensure that
2379491SN/A        // sequential cache lines occupy the same row
2389831SN/A        addr = addr / columnsPerRowBuffer;
2399243SN/A
2409669SN/A        // take out the channel part of the address
2419566SN/A        addr = addr / channels;
2429566SN/A
2439669SN/A        // after the channel bits, get the bank bits to interleave
2449669SN/A        // over the banks
2459669SN/A        bank = addr % banksPerRank;
2469669SN/A        addr = addr / banksPerRank;
2479669SN/A
2489669SN/A        // after the bank, we get the rank bits which thus interleaves
2499669SN/A        // over the ranks
2509669SN/A        rank = addr % ranksPerChannel;
2519669SN/A        addr = addr / ranksPerChannel;
2529669SN/A
2539669SN/A        // lastly, get the row bits
2549669SN/A        row = addr % rowsPerBank;
2559669SN/A        addr = addr / rowsPerBank;
25610136SN/A    } else if (addrMapping == Enums::RoRaBaCoCh) {
2579669SN/A        // take out the channel part of the address
2589669SN/A        addr = addr / channels;
2599669SN/A
2609669SN/A        // next, the column
2619831SN/A        addr = addr / columnsPerRowBuffer;
2629669SN/A
2639669SN/A        // after the column bits, we get the bank bits to interleave
2649491SN/A        // over the banks
2659243SN/A        bank = addr % banksPerRank;
2669243SN/A        addr = addr / banksPerRank;
2679243SN/A
2689491SN/A        // after the bank, we get the rank bits which thus interleaves
2699491SN/A        // over the ranks
2709243SN/A        rank = addr % ranksPerChannel;
2719243SN/A        addr = addr / ranksPerChannel;
2729243SN/A
2739491SN/A        // lastly, get the row bits
2749243SN/A        row = addr % rowsPerBank;
2759243SN/A        addr = addr / rowsPerBank;
27610136SN/A    } else if (addrMapping == Enums::RoCoRaBaCh) {
2779491SN/A        // optimise for closed page mode and utilise maximum
2789491SN/A        // parallelism of the DRAM (at the cost of power)
2799491SN/A
2809566SN/A        // take out the channel part of the address, not that this has
2819566SN/A        // to match with how accesses are interleaved between the
2829566SN/A        // controllers in the address mapping
2839566SN/A        addr = addr / channels;
2849566SN/A
2859491SN/A        // start with the bank bits, as this provides the maximum
2869491SN/A        // opportunity for parallelism between requests
2879243SN/A        bank = addr % banksPerRank;
2889243SN/A        addr = addr / banksPerRank;
2899243SN/A
2909491SN/A        // next get the rank bits
2919243SN/A        rank = addr % ranksPerChannel;
2929243SN/A        addr = addr / ranksPerChannel;
2939243SN/A
2949491SN/A        // next the column bits which we do not need to keep track of
2959491SN/A        // and simply skip past
2969831SN/A        addr = addr / columnsPerRowBuffer;
2979243SN/A
2989491SN/A        // lastly, get the row bits
2999243SN/A        row = addr % rowsPerBank;
3009243SN/A        addr = addr / rowsPerBank;
3019243SN/A    } else
3029243SN/A        panic("Unknown address mapping policy chosen!");
3039243SN/A
3049243SN/A    assert(rank < ranksPerChannel);
3059243SN/A    assert(bank < banksPerRank);
3069243SN/A    assert(row < rowsPerBank);
30710245Sandreas.hansson@arm.com    assert(row < Bank::NO_ROW);
3089243SN/A
3099243SN/A    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
3109831SN/A            dramPktAddr, rank, bank, row);
3119243SN/A
3129243SN/A    // create the corresponding DRAM packet with the entry time and
3139567SN/A    // ready time set to the current tick, the latter will be updated
3149567SN/A    // later
3159967SN/A    uint16_t bank_id = banksPerRank * rank + bank;
3169967SN/A    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
3179967SN/A                          size, banks[rank][bank]);
3189243SN/A}
3199243SN/A
3209243SN/Avoid
32110146Sandreas.hansson@arm.comDRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
3229243SN/A{
3239243SN/A    // only add to the read queue here. whenever the request is
3249243SN/A    // eventually done, set the readyTime, and call schedule()
3259243SN/A    assert(!pkt->isWrite());
3269243SN/A
3279831SN/A    assert(pktCount != 0);
3289831SN/A
3299831SN/A    // if the request size is larger than burst size, the pkt is split into
3309831SN/A    // multiple DRAM packets
3319831SN/A    // Note if the pkt starting address is not aligened to burst size, the
3329831SN/A    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
3339831SN/A    // are aligned to burst size boundaries. This is to ensure we accurately
3349831SN/A    // check read packets against packets in write queue.
3359243SN/A    Addr addr = pkt->getAddr();
3369831SN/A    unsigned pktsServicedByWrQ = 0;
3379831SN/A    BurstHelper* burst_helper = NULL;
3389831SN/A    for (int cnt = 0; cnt < pktCount; ++cnt) {
3399831SN/A        unsigned size = std::min((addr | (burstSize - 1)) + 1,
3409831SN/A                        pkt->getAddr() + pkt->getSize()) - addr;
3419831SN/A        readPktSize[ceilLog2(size)]++;
3429831SN/A        readBursts++;
3439243SN/A
3449831SN/A        // First check write buffer to see if the data is already at
3459831SN/A        // the controller
3469831SN/A        bool foundInWrQ = false;
3479833SN/A        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
3489832SN/A            // check if the read is subsumed in the write entry we are
3499832SN/A            // looking at
3509832SN/A            if ((*i)->addr <= addr &&
3519832SN/A                (addr + size) <= ((*i)->addr + (*i)->size)) {
3529831SN/A                foundInWrQ = true;
3539831SN/A                servicedByWrQ++;
3549831SN/A                pktsServicedByWrQ++;
3559831SN/A                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
3569831SN/A                        "write queue\n", addr, size);
3579975SN/A                bytesReadWrQ += burstSize;
3589831SN/A                break;
3599831SN/A            }
3609243SN/A        }
3619831SN/A
3629831SN/A        // If not found in the write q, make a DRAM packet and
3639831SN/A        // push it onto the read queue
3649831SN/A        if (!foundInWrQ) {
3659831SN/A
3669831SN/A            // Make the burst helper for split packets
3679831SN/A            if (pktCount > 1 && burst_helper == NULL) {
3689831SN/A                DPRINTF(DRAM, "Read to addr %lld translates to %d "
3699831SN/A                        "dram requests\n", pkt->getAddr(), pktCount);
3709831SN/A                burst_helper = new BurstHelper(pktCount);
3719831SN/A            }
3729831SN/A
3739966SN/A            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
3749831SN/A            dram_pkt->burstHelper = burst_helper;
3759831SN/A
3769831SN/A            assert(!readQueueFull(1));
3779831SN/A            rdQLenPdf[readQueue.size() + respQueue.size()]++;
3789831SN/A
3799831SN/A            DPRINTF(DRAM, "Adding to read queue\n");
3809831SN/A
3819831SN/A            readQueue.push_back(dram_pkt);
3829831SN/A
3839831SN/A            // Update stats
3849831SN/A            avgRdQLen = readQueue.size() + respQueue.size();
3859831SN/A        }
3869831SN/A
3879831SN/A        // Starting address of next dram pkt (aligend to burstSize boundary)
3889831SN/A        addr = (addr | (burstSize - 1)) + 1;
3899243SN/A    }
3909243SN/A
3919831SN/A    // If all packets are serviced by write queue, we send the repsonse back
3929831SN/A    if (pktsServicedByWrQ == pktCount) {
3939831SN/A        accessAndRespond(pkt, frontendLatency);
3949831SN/A        return;
3959831SN/A    }
3969243SN/A
3979831SN/A    // Update how many split packets are serviced by write queue
3989831SN/A    if (burst_helper != NULL)
3999831SN/A        burst_helper->burstsServiced = pktsServicedByWrQ;
4009243SN/A
40110206Sandreas.hansson@arm.com    // If we are not already scheduled to get a request out of the
40210206Sandreas.hansson@arm.com    // queue, do so now
40310206Sandreas.hansson@arm.com    if (!nextReqEvent.scheduled()) {
4049567SN/A        DPRINTF(DRAM, "Request scheduled immediately\n");
4059567SN/A        schedule(nextReqEvent, curTick());
4069243SN/A    }
4079243SN/A}
4089243SN/A
4099243SN/Avoid
41010146Sandreas.hansson@arm.comDRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
4119243SN/A{
4129243SN/A    // only add to the write queue here. whenever the request is
4139243SN/A    // eventually done, set the readyTime, and call schedule()
4149243SN/A    assert(pkt->isWrite());
4159243SN/A
4169831SN/A    // if the request size is larger than burst size, the pkt is split into
4179831SN/A    // multiple DRAM packets
4189831SN/A    Addr addr = pkt->getAddr();
4199831SN/A    for (int cnt = 0; cnt < pktCount; ++cnt) {
4209831SN/A        unsigned size = std::min((addr | (burstSize - 1)) + 1,
4219831SN/A                        pkt->getAddr() + pkt->getSize()) - addr;
4229831SN/A        writePktSize[ceilLog2(size)]++;
4239831SN/A        writeBursts++;
4249243SN/A
4259832SN/A        // see if we can merge with an existing item in the write
4269838SN/A        // queue and keep track of whether we have merged or not so we
4279838SN/A        // can stop at that point and also avoid enqueueing a new
4289838SN/A        // request
4299832SN/A        bool merged = false;
4309832SN/A        auto w = writeQueue.begin();
4319243SN/A
4329832SN/A        while(!merged && w != writeQueue.end()) {
4339832SN/A            // either of the two could be first, if they are the same
4349832SN/A            // it does not matter which way we go
4359832SN/A            if ((*w)->addr >= addr) {
4369838SN/A                // the existing one starts after the new one, figure
4379838SN/A                // out where the new one ends with respect to the
4389838SN/A                // existing one
4399832SN/A                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
4409832SN/A                    // check if the existing one is completely
4419832SN/A                    // subsumed in the new one
4429832SN/A                    DPRINTF(DRAM, "Merging write covering existing burst\n");
4439832SN/A                    merged = true;
4449832SN/A                    // update both the address and the size
4459832SN/A                    (*w)->addr = addr;
4469832SN/A                    (*w)->size = size;
4479832SN/A                } else if ((addr + size) >= (*w)->addr &&
4489832SN/A                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
4499832SN/A                    // the new one is just before or partially
4509832SN/A                    // overlapping with the existing one, and together
4519832SN/A                    // they fit within a burst
4529832SN/A                    DPRINTF(DRAM, "Merging write before existing burst\n");
4539832SN/A                    merged = true;
4549832SN/A                    // the existing queue item needs to be adjusted with
4559832SN/A                    // respect to both address and size
45610047SN/A                    (*w)->size = (*w)->addr + (*w)->size - addr;
4579832SN/A                    (*w)->addr = addr;
4589832SN/A                }
4599832SN/A            } else {
4609838SN/A                // the new one starts after the current one, figure
4619838SN/A                // out where the existing one ends with respect to the
4629838SN/A                // new one
4639832SN/A                if (((*w)->addr + (*w)->size) >= (addr + size)) {
4649832SN/A                    // check if the new one is completely subsumed in the
4659832SN/A                    // existing one
4669832SN/A                    DPRINTF(DRAM, "Merging write into existing burst\n");
4679832SN/A                    merged = true;
4689832SN/A                    // no adjustments necessary
4699832SN/A                } else if (((*w)->addr + (*w)->size) >= addr &&
4709832SN/A                           (addr + size - (*w)->addr) <= burstSize) {
4719832SN/A                    // the existing one is just before or partially
4729832SN/A                    // overlapping with the new one, and together
4739832SN/A                    // they fit within a burst
4749832SN/A                    DPRINTF(DRAM, "Merging write after existing burst\n");
4759832SN/A                    merged = true;
4769832SN/A                    // the address is right, and only the size has
4779832SN/A                    // to be adjusted
4789832SN/A                    (*w)->size = addr + size - (*w)->addr;
4799832SN/A                }
4809832SN/A            }
4819832SN/A            ++w;
4829832SN/A        }
4839243SN/A
4849832SN/A        // if the item was not merged we need to create a new write
4859832SN/A        // and enqueue it
4869832SN/A        if (!merged) {
4879966SN/A            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
4889243SN/A
4899832SN/A            assert(writeQueue.size() < writeBufferSize);
4909832SN/A            wrQLenPdf[writeQueue.size()]++;
4919243SN/A
4929832SN/A            DPRINTF(DRAM, "Adding to write queue\n");
4939831SN/A
4949832SN/A            writeQueue.push_back(dram_pkt);
4959831SN/A
4969832SN/A            // Update stats
4979832SN/A            avgWrQLen = writeQueue.size();
4989977SN/A        } else {
4999977SN/A            // keep track of the fact that this burst effectively
5009977SN/A            // disappeared as it was merged with an existing one
5019977SN/A            mergedWrBursts++;
5029832SN/A        }
5039832SN/A
5049831SN/A        // Starting address of next dram pkt (aligend to burstSize boundary)
5059831SN/A        addr = (addr | (burstSize - 1)) + 1;
5069831SN/A    }
5079243SN/A
5089243SN/A    // we do not wait for the writes to be send to the actual memory,
5099243SN/A    // but instead take responsibility for the consistency here and
5109243SN/A    // snoop the write queue for any upcoming reads
5119831SN/A    // @todo, if a pkt size is larger than burst size, we might need a
5129831SN/A    // different front end latency
5139726SN/A    accessAndRespond(pkt, frontendLatency);
5149243SN/A
51510206Sandreas.hansson@arm.com    // If we are not already scheduled to get a request out of the
51610206Sandreas.hansson@arm.com    // queue, do so now
51710206Sandreas.hansson@arm.com    if (!nextReqEvent.scheduled()) {
51810206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Request scheduled immediately\n");
51910206Sandreas.hansson@arm.com        schedule(nextReqEvent, curTick());
5209243SN/A    }
5219243SN/A}
5229243SN/A
5239243SN/Avoid
52410146Sandreas.hansson@arm.comDRAMCtrl::printQs() const {
5259243SN/A    DPRINTF(DRAM, "===READ QUEUE===\n\n");
5269833SN/A    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
5279243SN/A        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
5289243SN/A    }
5299243SN/A    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
5309833SN/A    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
5319243SN/A        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
5329243SN/A    }
5339243SN/A    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
5349833SN/A    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
5359243SN/A        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
5369243SN/A    }
5379243SN/A}
5389243SN/A
5399243SN/Abool
54010146Sandreas.hansson@arm.comDRAMCtrl::recvTimingReq(PacketPtr pkt)
5419243SN/A{
5429349SN/A    /// @todo temporary hack to deal with memory corruption issues until
5439349SN/A    /// 4-phase transactions are complete
5449349SN/A    for (int x = 0; x < pendingDelete.size(); x++)
5459349SN/A        delete pendingDelete[x];
5469349SN/A    pendingDelete.clear();
5479349SN/A
5489243SN/A    // This is where we enter from the outside world
5499567SN/A    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
5509831SN/A            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
5519243SN/A
5529567SN/A    // simply drop inhibited packets for now
5539567SN/A    if (pkt->memInhibitAsserted()) {
55410143SN/A        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
5559567SN/A        pendingDelete.push_back(pkt);
5569567SN/A        return true;
5579567SN/A    }
5589243SN/A
5599243SN/A    // Calc avg gap between requests
5609243SN/A    if (prevArrival != 0) {
5619243SN/A        totGap += curTick() - prevArrival;
5629243SN/A    }
5639243SN/A    prevArrival = curTick();
5649243SN/A
5659831SN/A
5669831SN/A    // Find out how many dram packets a pkt translates to
5679831SN/A    // If the burst size is equal or larger than the pkt size, then a pkt
5689831SN/A    // translates to only one dram packet. Otherwise, a pkt translates to
5699831SN/A    // multiple dram packets
5709243SN/A    unsigned size = pkt->getSize();
5719831SN/A    unsigned offset = pkt->getAddr() & (burstSize - 1);
5729831SN/A    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
5739243SN/A
5749243SN/A    // check local buffers and do not accept if full
5759243SN/A    if (pkt->isRead()) {
5769567SN/A        assert(size != 0);
5779831SN/A        if (readQueueFull(dram_pkt_count)) {
5789567SN/A            DPRINTF(DRAM, "Read queue full, not accepting\n");
5799243SN/A            // remember that we have to retry this port
5809243SN/A            retryRdReq = true;
5819243SN/A            numRdRetry++;
5829243SN/A            return false;
5839243SN/A        } else {
5849831SN/A            addToReadQueue(pkt, dram_pkt_count);
5859243SN/A            readReqs++;
5869977SN/A            bytesReadSys += size;
5879243SN/A        }
5889243SN/A    } else if (pkt->isWrite()) {
5899567SN/A        assert(size != 0);
5909831SN/A        if (writeQueueFull(dram_pkt_count)) {
5919567SN/A            DPRINTF(DRAM, "Write queue full, not accepting\n");
5929243SN/A            // remember that we have to retry this port
5939243SN/A            retryWrReq = true;
5949243SN/A            numWrRetry++;
5959243SN/A            return false;
5969243SN/A        } else {
5979831SN/A            addToWriteQueue(pkt, dram_pkt_count);
5989243SN/A            writeReqs++;
5999977SN/A            bytesWrittenSys += size;
6009243SN/A        }
6019243SN/A    } else {
6029243SN/A        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
6039243SN/A        neitherReadNorWrite++;
6049726SN/A        accessAndRespond(pkt, 1);
6059243SN/A    }
6069243SN/A
6079243SN/A    return true;
6089243SN/A}
6099243SN/A
6109243SN/Avoid
61110146Sandreas.hansson@arm.comDRAMCtrl::processRespondEvent()
6129243SN/A{
6139243SN/A    DPRINTF(DRAM,
6149243SN/A            "processRespondEvent(): Some req has reached its readyTime\n");
6159243SN/A
6169831SN/A    DRAMPacket* dram_pkt = respQueue.front();
6179243SN/A
6189831SN/A    if (dram_pkt->burstHelper) {
6199831SN/A        // it is a split packet
6209831SN/A        dram_pkt->burstHelper->burstsServiced++;
6219831SN/A        if (dram_pkt->burstHelper->burstsServiced ==
62210143SN/A            dram_pkt->burstHelper->burstCount) {
6239831SN/A            // we have now serviced all children packets of a system packet
6249831SN/A            // so we can now respond to the requester
6259831SN/A            // @todo we probably want to have a different front end and back
6269831SN/A            // end latency for split packets
6279831SN/A            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
6289831SN/A            delete dram_pkt->burstHelper;
6299831SN/A            dram_pkt->burstHelper = NULL;
6309831SN/A        }
6319831SN/A    } else {
6329831SN/A        // it is not a split packet
6339831SN/A        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
6349831SN/A    }
6359243SN/A
6369831SN/A    delete respQueue.front();
6379831SN/A    respQueue.pop_front();
6389243SN/A
6399831SN/A    if (!respQueue.empty()) {
6409831SN/A        assert(respQueue.front()->readyTime >= curTick());
6419831SN/A        assert(!respondEvent.scheduled());
6429831SN/A        schedule(respondEvent, respQueue.front()->readyTime);
6439831SN/A    } else {
6449831SN/A        // if there is nothing left in any queue, signal a drain
6459831SN/A        if (writeQueue.empty() && readQueue.empty() &&
6469831SN/A            drainManager) {
6479831SN/A            drainManager->signalDrainDone();
6489831SN/A            drainManager = NULL;
6499831SN/A        }
6509831SN/A    }
6519567SN/A
6529831SN/A    // We have made a location in the queue available at this point,
6539831SN/A    // so if there is a read that was forced to wait, retry now
6549831SN/A    if (retryRdReq) {
6559831SN/A        retryRdReq = false;
6569831SN/A        port.sendRetry();
6579831SN/A    }
6589243SN/A}
6599243SN/A
6609243SN/Avoid
66110206Sandreas.hansson@arm.comDRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue)
6629243SN/A{
66310206Sandreas.hansson@arm.com    // This method does the arbitration between requests. The chosen
66410206Sandreas.hansson@arm.com    // packet is simply moved to the head of the queue. The other
66510206Sandreas.hansson@arm.com    // methods know that this is the place to look. For example, with
66610206Sandreas.hansson@arm.com    // FCFS, this method does nothing
66710206Sandreas.hansson@arm.com    assert(!queue.empty());
6689243SN/A
66910206Sandreas.hansson@arm.com    if (queue.size() == 1) {
67010206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Single request, nothing to do\n");
6719243SN/A        return;
6729243SN/A    }
6739243SN/A
6749243SN/A    if (memSchedPolicy == Enums::fcfs) {
6759243SN/A        // Do nothing, since the correct request is already head
6769243SN/A    } else if (memSchedPolicy == Enums::frfcfs) {
67710206Sandreas.hansson@arm.com        reorderQueue(queue);
6789243SN/A    } else
6799243SN/A        panic("No scheduling policy chosen\n");
6809243SN/A}
6819243SN/A
6829243SN/Avoid
68310146Sandreas.hansson@arm.comDRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue)
6849974SN/A{
6859974SN/A    // Only determine this when needed
6869974SN/A    uint64_t earliest_banks = 0;
6879974SN/A
6889974SN/A    // Search for row hits first, if no row hit is found then schedule the
6899974SN/A    // packet to one of the earliest banks available
6909974SN/A    bool found_earliest_pkt = false;
6919974SN/A    auto selected_pkt_it = queue.begin();
6929974SN/A
6939974SN/A    for (auto i = queue.begin(); i != queue.end() ; ++i) {
6949974SN/A        DRAMPacket* dram_pkt = *i;
6959974SN/A        const Bank& bank = dram_pkt->bankRef;
6969974SN/A        // Check if it is a row hit
6979974SN/A        if (bank.openRow == dram_pkt->row) {
69810211Sandreas.hansson@arm.com            // FCFS within the hits
6999974SN/A            DPRINTF(DRAM, "Row buffer hit\n");
7009974SN/A            selected_pkt_it = i;
7019974SN/A            break;
7029974SN/A        } else if (!found_earliest_pkt) {
7039974SN/A            // No row hit, go for first ready
7049974SN/A            if (earliest_banks == 0)
70510211Sandreas.hansson@arm.com                earliest_banks = minBankActAt(queue);
70610211Sandreas.hansson@arm.com
70710211Sandreas.hansson@arm.com            // simplistic approximation of when the bank can issue an
70810211Sandreas.hansson@arm.com            // activate, this is calculated in minBankActAt and could
70910211Sandreas.hansson@arm.com            // be cached
71010211Sandreas.hansson@arm.com            Tick act_at = bank.openRow == Bank::NO_ROW ?
71110211Sandreas.hansson@arm.com                bank.actAllowedAt :
71210211Sandreas.hansson@arm.com                std::max(bank.preAllowedAt, curTick()) + tRP;
7139974SN/A
7149974SN/A            // Bank is ready or is the first available bank
71510211Sandreas.hansson@arm.com            if (act_at <= curTick() ||
7169974SN/A                bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
7179974SN/A                // Remember the packet to be scheduled to one of the earliest
71810211Sandreas.hansson@arm.com                // banks available, FCFS amongst the earliest banks
7199974SN/A                selected_pkt_it = i;
7209974SN/A                found_earliest_pkt = true;
7219974SN/A            }
7229974SN/A        }
7239974SN/A    }
7249974SN/A
7259974SN/A    DRAMPacket* selected_pkt = *selected_pkt_it;
7269974SN/A    queue.erase(selected_pkt_it);
7279974SN/A    queue.push_front(selected_pkt);
7289974SN/A}
7299974SN/A
7309974SN/Avoid
73110146Sandreas.hansson@arm.comDRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
7329243SN/A{
7339243SN/A    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
7349243SN/A
7359243SN/A    bool needsResponse = pkt->needsResponse();
7369243SN/A    // do the actual memory access which also turns the packet into a
7379243SN/A    // response
7389243SN/A    access(pkt);
7399243SN/A
7409243SN/A    // turn packet around to go back to requester if response expected
7419243SN/A    if (needsResponse) {
7429243SN/A        // access already turned the packet into a response
7439243SN/A        assert(pkt->isResponse());
7449243SN/A
7459549SN/A        // @todo someone should pay for this
7469549SN/A        pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
7479549SN/A
7489726SN/A        // queue the packet in the response queue to be sent out after
7499726SN/A        // the static latency has passed
7509726SN/A        port.schedTimingResp(pkt, curTick() + static_latency);
7519243SN/A    } else {
7529587SN/A        // @todo the packet is going to be deleted, and the DRAMPacket
7539587SN/A        // is still having a pointer to it
7549587SN/A        pendingDelete.push_back(pkt);
7559243SN/A    }
7569243SN/A
7579243SN/A    DPRINTF(DRAM, "Done\n");
7589243SN/A
7599243SN/A    return;
7609243SN/A}
7619243SN/A
7629243SN/Avoid
76310246Sandreas.hansson@arm.comDRAMCtrl::activateBank(Bank& bank, Tick act_tick, uint32_t row)
7649488SN/A{
76510246Sandreas.hansson@arm.com    // get the rank index from the bank
76610246Sandreas.hansson@arm.com    uint8_t rank = bank.rank;
76710246Sandreas.hansson@arm.com
7689969SN/A    assert(actTicks[rank].size() == activationLimit);
7699488SN/A
7709488SN/A    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
7719488SN/A
77210207Sandreas.hansson@arm.com    // update the open row
77310246Sandreas.hansson@arm.com    assert(bank.openRow == Bank::NO_ROW);
77410246Sandreas.hansson@arm.com    bank.openRow = row;
77510207Sandreas.hansson@arm.com
77610207Sandreas.hansson@arm.com    // start counting anew, this covers both the case when we
77710207Sandreas.hansson@arm.com    // auto-precharged, and when this access is forced to
77810207Sandreas.hansson@arm.com    // precharge
77910246Sandreas.hansson@arm.com    bank.bytesAccessed = 0;
78010246Sandreas.hansson@arm.com    bank.rowAccesses = 0;
78110207Sandreas.hansson@arm.com
78210207Sandreas.hansson@arm.com    ++numBanksActive;
78310207Sandreas.hansson@arm.com    assert(numBanksActive <= banksPerRank * ranksPerChannel);
78410207Sandreas.hansson@arm.com
78510207Sandreas.hansson@arm.com    DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n",
78610207Sandreas.hansson@arm.com            act_tick, numBanksActive);
7879975SN/A
78810211Sandreas.hansson@arm.com    // The next access has to respect tRAS for this bank
78910246Sandreas.hansson@arm.com    bank.preAllowedAt = act_tick + tRAS;
79010211Sandreas.hansson@arm.com
79110211Sandreas.hansson@arm.com    // Respect the row-to-column command delay
79210246Sandreas.hansson@arm.com    bank.colAllowedAt = act_tick + tRCD;
79310211Sandreas.hansson@arm.com
7949971SN/A    // start by enforcing tRRD
7959971SN/A    for(int i = 0; i < banksPerRank; i++) {
79610210Sandreas.hansson@arm.com        // next activate to any bank in this rank must not happen
79710210Sandreas.hansson@arm.com        // before tRRD
79810210Sandreas.hansson@arm.com        banks[rank][i].actAllowedAt = std::max(act_tick + tRRD,
79910210Sandreas.hansson@arm.com                                               banks[rank][i].actAllowedAt);
8009971SN/A    }
80110208Sandreas.hansson@arm.com
8029971SN/A    // next, we deal with tXAW, if the activation limit is disabled
8039971SN/A    // then we are done
8049969SN/A    if (actTicks[rank].empty())
8059824SN/A        return;
8069824SN/A
8079488SN/A    // sanity check
8089969SN/A    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
80910210Sandreas.hansson@arm.com        panic("Got %d activates in window %d (%llu - %llu) which is smaller "
81010210Sandreas.hansson@arm.com              "than %llu\n", activationLimit, act_tick - actTicks[rank].back(),
81110210Sandreas.hansson@arm.com              act_tick, actTicks[rank].back(), tXAW);
8129488SN/A    }
8139488SN/A
8149488SN/A    // shift the times used for the book keeping, the last element
8159488SN/A    // (highest index) is the oldest one and hence the lowest value
8169969SN/A    actTicks[rank].pop_back();
8179488SN/A
8189488SN/A    // record an new activation (in the future)
8199969SN/A    actTicks[rank].push_front(act_tick);
8209488SN/A
8219488SN/A    // cannot activate more than X times in time window tXAW, push the
8229488SN/A    // next one (the X + 1'st activate) to be tXAW away from the
8239488SN/A    // oldest in our window of X
8249969SN/A    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
8259488SN/A        DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
82610210Sandreas.hansson@arm.com                "than %llu\n", activationLimit, actTicks[rank].back() + tXAW);
8279488SN/A            for(int j = 0; j < banksPerRank; j++)
8289488SN/A                // next activate must not happen before end of window
82910210Sandreas.hansson@arm.com                banks[rank][j].actAllowedAt =
83010210Sandreas.hansson@arm.com                    std::max(actTicks[rank].back() + tXAW,
83110210Sandreas.hansson@arm.com                             banks[rank][j].actAllowedAt);
8329488SN/A    }
83310208Sandreas.hansson@arm.com
83410208Sandreas.hansson@arm.com    // at the point when this activate takes place, make sure we
83510208Sandreas.hansson@arm.com    // transition to the active power state
83610208Sandreas.hansson@arm.com    if (!activateEvent.scheduled())
83710208Sandreas.hansson@arm.com        schedule(activateEvent, act_tick);
83810208Sandreas.hansson@arm.com    else if (activateEvent.when() > act_tick)
83910208Sandreas.hansson@arm.com        // move it sooner in time
84010208Sandreas.hansson@arm.com        reschedule(activateEvent, act_tick);
84110208Sandreas.hansson@arm.com}
84210208Sandreas.hansson@arm.com
84310208Sandreas.hansson@arm.comvoid
84410208Sandreas.hansson@arm.comDRAMCtrl::processActivateEvent()
84510208Sandreas.hansson@arm.com{
84610208Sandreas.hansson@arm.com    // we should transition to the active state as soon as any bank is active
84710208Sandreas.hansson@arm.com    if (pwrState != PWR_ACT)
84810208Sandreas.hansson@arm.com        // note that at this point numBanksActive could be back at
84910208Sandreas.hansson@arm.com        // zero again due to a precharge scheduled in the future
85010208Sandreas.hansson@arm.com        schedulePowerEvent(PWR_ACT, curTick());
8519488SN/A}
8529488SN/A
8539488SN/Avoid
85410211Sandreas.hansson@arm.comDRAMCtrl::prechargeBank(Bank& bank, Tick pre_at)
85510207Sandreas.hansson@arm.com{
85610207Sandreas.hansson@arm.com    // make sure the bank has an open row
85710207Sandreas.hansson@arm.com    assert(bank.openRow != Bank::NO_ROW);
85810207Sandreas.hansson@arm.com
85910207Sandreas.hansson@arm.com    // sample the bytes per activate here since we are closing
86010207Sandreas.hansson@arm.com    // the page
86110207Sandreas.hansson@arm.com    bytesPerActivate.sample(bank.bytesAccessed);
86210207Sandreas.hansson@arm.com
86310207Sandreas.hansson@arm.com    bank.openRow = Bank::NO_ROW;
86410207Sandreas.hansson@arm.com
86510214Sandreas.hansson@arm.com    // no precharge allowed before this one
86610214Sandreas.hansson@arm.com    bank.preAllowedAt = pre_at;
86710214Sandreas.hansson@arm.com
86810211Sandreas.hansson@arm.com    Tick pre_done_at = pre_at + tRP;
86910211Sandreas.hansson@arm.com
87010211Sandreas.hansson@arm.com    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
87110207Sandreas.hansson@arm.com
87210207Sandreas.hansson@arm.com    assert(numBanksActive != 0);
87310207Sandreas.hansson@arm.com    --numBanksActive;
87410207Sandreas.hansson@arm.com
87510211Sandreas.hansson@arm.com    DPRINTF(DRAM, "Precharging bank at tick %lld, now got %d active\n",
87610211Sandreas.hansson@arm.com            pre_at, numBanksActive);
87710207Sandreas.hansson@arm.com
87810208Sandreas.hansson@arm.com    // if we look at the current number of active banks we might be
87910208Sandreas.hansson@arm.com    // tempted to think the DRAM is now idle, however this can be
88010208Sandreas.hansson@arm.com    // undone by an activate that is scheduled to happen before we
88110208Sandreas.hansson@arm.com    // would have reached the idle state, so schedule an event and
88210208Sandreas.hansson@arm.com    // rather check once we actually make it to the point in time when
88310208Sandreas.hansson@arm.com    // the (last) precharge takes place
88410208Sandreas.hansson@arm.com    if (!prechargeEvent.scheduled())
88510211Sandreas.hansson@arm.com        schedule(prechargeEvent, pre_done_at);
88610211Sandreas.hansson@arm.com    else if (prechargeEvent.when() < pre_done_at)
88710211Sandreas.hansson@arm.com        reschedule(prechargeEvent, pre_done_at);
88810208Sandreas.hansson@arm.com}
88910208Sandreas.hansson@arm.com
89010208Sandreas.hansson@arm.comvoid
89110208Sandreas.hansson@arm.comDRAMCtrl::processPrechargeEvent()
89210208Sandreas.hansson@arm.com{
89310207Sandreas.hansson@arm.com    // if we reached zero, then special conditions apply as we track
89410207Sandreas.hansson@arm.com    // if all banks are precharged for the power models
89510207Sandreas.hansson@arm.com    if (numBanksActive == 0) {
89610208Sandreas.hansson@arm.com        // we should transition to the idle state when the last bank
89710208Sandreas.hansson@arm.com        // is precharged
89810208Sandreas.hansson@arm.com        schedulePowerEvent(PWR_IDLE, curTick());
89910207Sandreas.hansson@arm.com    }
90010207Sandreas.hansson@arm.com}
90110207Sandreas.hansson@arm.com
90210207Sandreas.hansson@arm.comvoid
90310146Sandreas.hansson@arm.comDRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
9049243SN/A{
9059243SN/A    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
9069243SN/A            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
9079243SN/A
90810211Sandreas.hansson@arm.com    // get the bank
9099967SN/A    Bank& bank = dram_pkt->bankRef;
9109243SN/A
91110211Sandreas.hansson@arm.com    // for the state we need to track if it is a row hit or not
91210211Sandreas.hansson@arm.com    bool row_hit = true;
91310211Sandreas.hansson@arm.com
91410211Sandreas.hansson@arm.com    // respect any constraints on the command (e.g. tRCD or tCCD)
91510211Sandreas.hansson@arm.com    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
91610211Sandreas.hansson@arm.com
91710211Sandreas.hansson@arm.com    // Determine the access latency and update the bank state
91810211Sandreas.hansson@arm.com    if (bank.openRow == dram_pkt->row) {
91910211Sandreas.hansson@arm.com        // nothing to do
92010209Sandreas.hansson@arm.com    } else {
92110211Sandreas.hansson@arm.com        row_hit = false;
92210211Sandreas.hansson@arm.com
92310209Sandreas.hansson@arm.com        // If there is a page open, precharge it.
92410209Sandreas.hansson@arm.com        if (bank.openRow != Bank::NO_ROW) {
92510211Sandreas.hansson@arm.com            prechargeBank(bank, std::max(bank.preAllowedAt, curTick()));
9269488SN/A        }
9279973SN/A
92810211Sandreas.hansson@arm.com        // next we need to account for the delay in activating the
92910211Sandreas.hansson@arm.com        // page
93010211Sandreas.hansson@arm.com        Tick act_tick = std::max(bank.actAllowedAt, curTick());
9319973SN/A
93210210Sandreas.hansson@arm.com        // Record the activation and deal with all the global timing
93310210Sandreas.hansson@arm.com        // constraints caused be a new activation (tRRD and tXAW)
93410246Sandreas.hansson@arm.com        activateBank(bank, act_tick, dram_pkt->row);
93510210Sandreas.hansson@arm.com
93610211Sandreas.hansson@arm.com        // issue the command as early as possible
93710211Sandreas.hansson@arm.com        cmd_at = bank.colAllowedAt;
93810209Sandreas.hansson@arm.com    }
93910209Sandreas.hansson@arm.com
94010211Sandreas.hansson@arm.com    // we need to wait until the bus is available before we can issue
94110211Sandreas.hansson@arm.com    // the command
94210211Sandreas.hansson@arm.com    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
94310211Sandreas.hansson@arm.com
94410211Sandreas.hansson@arm.com    // update the packet ready time
94510211Sandreas.hansson@arm.com    dram_pkt->readyTime = cmd_at + tCL + tBURST;
94610211Sandreas.hansson@arm.com
94710211Sandreas.hansson@arm.com    // only one burst can use the bus at any one point in time
94810211Sandreas.hansson@arm.com    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
94910211Sandreas.hansson@arm.com
95010211Sandreas.hansson@arm.com    // not strictly necessary, but update the time for the next
95110211Sandreas.hansson@arm.com    // read/write (add a max with tCCD here)
95210211Sandreas.hansson@arm.com    bank.colAllowedAt = cmd_at + tBURST;
95310211Sandreas.hansson@arm.com
95410212Sandreas.hansson@arm.com    // If this is a write, we also need to respect the write recovery
95510212Sandreas.hansson@arm.com    // time before a precharge, in the case of a read, respect the
95610212Sandreas.hansson@arm.com    // read to precharge constraint
95710212Sandreas.hansson@arm.com    bank.preAllowedAt = std::max(bank.preAllowedAt,
95810212Sandreas.hansson@arm.com                                 dram_pkt->isRead ? cmd_at + tRTP :
95910212Sandreas.hansson@arm.com                                 dram_pkt->readyTime + tWR);
96010210Sandreas.hansson@arm.com
96110209Sandreas.hansson@arm.com    // increment the bytes accessed and the accesses per row
96210209Sandreas.hansson@arm.com    bank.bytesAccessed += burstSize;
96310209Sandreas.hansson@arm.com    ++bank.rowAccesses;
96410209Sandreas.hansson@arm.com
96510209Sandreas.hansson@arm.com    // if we reached the max, then issue with an auto-precharge
96610209Sandreas.hansson@arm.com    bool auto_precharge = pageMgmt == Enums::close ||
96710209Sandreas.hansson@arm.com        bank.rowAccesses == maxAccessesPerRow;
96810209Sandreas.hansson@arm.com
96910209Sandreas.hansson@arm.com    // if we did not hit the limit, we might still want to
97010209Sandreas.hansson@arm.com    // auto-precharge
97110209Sandreas.hansson@arm.com    if (!auto_precharge &&
97210209Sandreas.hansson@arm.com        (pageMgmt == Enums::open_adaptive ||
97310209Sandreas.hansson@arm.com         pageMgmt == Enums::close_adaptive)) {
97410209Sandreas.hansson@arm.com        // a twist on the open and close page policies:
97510209Sandreas.hansson@arm.com        // 1) open_adaptive page policy does not blindly keep the
97610209Sandreas.hansson@arm.com        // page open, but close it if there are no row hits, and there
97710209Sandreas.hansson@arm.com        // are bank conflicts in the queue
97810209Sandreas.hansson@arm.com        // 2) close_adaptive page policy does not blindly close the
97910209Sandreas.hansson@arm.com        // page, but closes it only if there are no row hits in the queue.
98010209Sandreas.hansson@arm.com        // In this case, only force an auto precharge when there
98110209Sandreas.hansson@arm.com        // are no same page hits in the queue
98210209Sandreas.hansson@arm.com        bool got_more_hits = false;
98310209Sandreas.hansson@arm.com        bool got_bank_conflict = false;
98410209Sandreas.hansson@arm.com
98510209Sandreas.hansson@arm.com        // either look at the read queue or write queue
98610209Sandreas.hansson@arm.com        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
98710209Sandreas.hansson@arm.com            writeQueue;
98810209Sandreas.hansson@arm.com        auto p = queue.begin();
98910209Sandreas.hansson@arm.com        // make sure we are not considering the packet that we are
99010209Sandreas.hansson@arm.com        // currently dealing with (which is the head of the queue)
99110209Sandreas.hansson@arm.com        ++p;
99210209Sandreas.hansson@arm.com
99310209Sandreas.hansson@arm.com        // keep on looking until we have found required condition or
99410209Sandreas.hansson@arm.com        // reached the end
99510209Sandreas.hansson@arm.com        while (!(got_more_hits &&
99610209Sandreas.hansson@arm.com                 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
99710209Sandreas.hansson@arm.com               p != queue.end()) {
99810209Sandreas.hansson@arm.com            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
99910209Sandreas.hansson@arm.com                (dram_pkt->bank == (*p)->bank);
100010209Sandreas.hansson@arm.com            bool same_row = dram_pkt->row == (*p)->row;
100110209Sandreas.hansson@arm.com            got_more_hits |= same_rank_bank && same_row;
100210209Sandreas.hansson@arm.com            got_bank_conflict |= same_rank_bank && !same_row;
10039973SN/A            ++p;
100410141SN/A        }
100510141SN/A
100610209Sandreas.hansson@arm.com        // auto pre-charge when either
100710209Sandreas.hansson@arm.com        // 1) open_adaptive policy, we have not got any more hits, and
100810209Sandreas.hansson@arm.com        //    have a bank conflict
100910209Sandreas.hansson@arm.com        // 2) close_adaptive policy and we have not got any more hits
101010209Sandreas.hansson@arm.com        auto_precharge = !got_more_hits &&
101110209Sandreas.hansson@arm.com            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
101210209Sandreas.hansson@arm.com    }
101310142SN/A
101410209Sandreas.hansson@arm.com    // if this access should use auto-precharge, then we are
101510209Sandreas.hansson@arm.com    // closing the row
101610209Sandreas.hansson@arm.com    if (auto_precharge) {
101710211Sandreas.hansson@arm.com        prechargeBank(bank, std::max(curTick(), bank.preAllowedAt));
10189973SN/A
101910209Sandreas.hansson@arm.com        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
102010209Sandreas.hansson@arm.com    }
10219963SN/A
10229243SN/A    // Update bus state
10239243SN/A    busBusyUntil = dram_pkt->readyTime;
10249243SN/A
102510211Sandreas.hansson@arm.com    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
102610211Sandreas.hansson@arm.com            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
10279243SN/A
102810206Sandreas.hansson@arm.com    // Update the minimum timing between the requests, this is a
102910206Sandreas.hansson@arm.com    // conservative estimate of when we have to schedule the next
103010206Sandreas.hansson@arm.com    // request to not introduce any unecessary bubbles. In most cases
103110206Sandreas.hansson@arm.com    // we will wake up sooner than we have to.
103210206Sandreas.hansson@arm.com    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
10339972SN/A
103410206Sandreas.hansson@arm.com    // Update the stats and schedule the next request
10359977SN/A    if (dram_pkt->isRead) {
103610147Sandreas.hansson@arm.com        ++readsThisTime;
103710211Sandreas.hansson@arm.com        if (row_hit)
10389977SN/A            readRowHits++;
10399977SN/A        bytesReadDRAM += burstSize;
10409977SN/A        perBankRdBursts[dram_pkt->bankId]++;
104110206Sandreas.hansson@arm.com
104210206Sandreas.hansson@arm.com        // Update latency stats
104310206Sandreas.hansson@arm.com        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
104410206Sandreas.hansson@arm.com        totBusLat += tBURST;
104510211Sandreas.hansson@arm.com        totQLat += cmd_at - dram_pkt->entryTime;
10469977SN/A    } else {
104710147Sandreas.hansson@arm.com        ++writesThisTime;
104810211Sandreas.hansson@arm.com        if (row_hit)
10499977SN/A            writeRowHits++;
10509977SN/A        bytesWritten += burstSize;
10519977SN/A        perBankWrBursts[dram_pkt->bankId]++;
10529243SN/A    }
10539243SN/A}
10549243SN/A
10559243SN/Avoid
105610206Sandreas.hansson@arm.comDRAMCtrl::processNextReqEvent()
10579243SN/A{
105810206Sandreas.hansson@arm.com    if (busState == READ_TO_WRITE) {
105910206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
106010206Sandreas.hansson@arm.com                "waiting\n", readsThisTime, readQueue.size());
10619243SN/A
106210206Sandreas.hansson@arm.com        // sample and reset the read-related stats as we are now
106310206Sandreas.hansson@arm.com        // transitioning to writes, and all reads are done
106410206Sandreas.hansson@arm.com        rdPerTurnAround.sample(readsThisTime);
106510206Sandreas.hansson@arm.com        readsThisTime = 0;
106610206Sandreas.hansson@arm.com
106710206Sandreas.hansson@arm.com        // now proceed to do the actual writes
106810206Sandreas.hansson@arm.com        busState = WRITE;
106910206Sandreas.hansson@arm.com    } else if (busState == WRITE_TO_READ) {
107010206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
107110206Sandreas.hansson@arm.com                "waiting\n", writesThisTime, writeQueue.size());
107210206Sandreas.hansson@arm.com
107310206Sandreas.hansson@arm.com        wrPerTurnAround.sample(writesThisTime);
107410206Sandreas.hansson@arm.com        writesThisTime = 0;
107510206Sandreas.hansson@arm.com
107610206Sandreas.hansson@arm.com        busState = READ;
107710206Sandreas.hansson@arm.com    }
107810206Sandreas.hansson@arm.com
107910207Sandreas.hansson@arm.com    if (refreshState != REF_IDLE) {
108010207Sandreas.hansson@arm.com        // if a refresh waiting for this event loop to finish, then hand
108110207Sandreas.hansson@arm.com        // over now, and do not schedule a new nextReqEvent
108210207Sandreas.hansson@arm.com        if (refreshState == REF_DRAIN) {
108310207Sandreas.hansson@arm.com            DPRINTF(DRAM, "Refresh drain done, now precharging\n");
108410207Sandreas.hansson@arm.com
108510207Sandreas.hansson@arm.com            refreshState = REF_PRE;
108610207Sandreas.hansson@arm.com
108710207Sandreas.hansson@arm.com            // hand control back to the refresh event loop
108810207Sandreas.hansson@arm.com            schedule(refreshEvent, curTick());
108910207Sandreas.hansson@arm.com        }
109010207Sandreas.hansson@arm.com
109110207Sandreas.hansson@arm.com        // let the refresh finish before issuing any further requests
109210207Sandreas.hansson@arm.com        return;
109310207Sandreas.hansson@arm.com    }
109410207Sandreas.hansson@arm.com
109510206Sandreas.hansson@arm.com    // when we get here it is either a read or a write
109610206Sandreas.hansson@arm.com    if (busState == READ) {
109710206Sandreas.hansson@arm.com
109810206Sandreas.hansson@arm.com        // track if we should switch or not
109910206Sandreas.hansson@arm.com        bool switch_to_writes = false;
110010206Sandreas.hansson@arm.com
110110206Sandreas.hansson@arm.com        if (readQueue.empty()) {
110210206Sandreas.hansson@arm.com            // In the case there is no read request to go next,
110310206Sandreas.hansson@arm.com            // trigger writes if we have passed the low threshold (or
110410206Sandreas.hansson@arm.com            // if we are draining)
110510206Sandreas.hansson@arm.com            if (!writeQueue.empty() &&
110610206Sandreas.hansson@arm.com                (drainManager || writeQueue.size() > writeLowThreshold)) {
110710206Sandreas.hansson@arm.com
110810206Sandreas.hansson@arm.com                switch_to_writes = true;
110910206Sandreas.hansson@arm.com            } else {
111010206Sandreas.hansson@arm.com                // check if we are drained
111110206Sandreas.hansson@arm.com                if (respQueue.empty () && drainManager) {
111210206Sandreas.hansson@arm.com                    drainManager->signalDrainDone();
111310206Sandreas.hansson@arm.com                    drainManager = NULL;
111410206Sandreas.hansson@arm.com                }
111510206Sandreas.hansson@arm.com
111610206Sandreas.hansson@arm.com                // nothing to do, not even any point in scheduling an
111710206Sandreas.hansson@arm.com                // event for the next request
111810206Sandreas.hansson@arm.com                return;
111910206Sandreas.hansson@arm.com            }
112010206Sandreas.hansson@arm.com        } else {
112110206Sandreas.hansson@arm.com            // Figure out which read request goes next, and move it to the
112210206Sandreas.hansson@arm.com            // front of the read queue
112310206Sandreas.hansson@arm.com            chooseNext(readQueue);
112410206Sandreas.hansson@arm.com
112510215Sandreas.hansson@arm.com            DRAMPacket* dram_pkt = readQueue.front();
112610215Sandreas.hansson@arm.com
112710215Sandreas.hansson@arm.com            doDRAMAccess(dram_pkt);
112810206Sandreas.hansson@arm.com
112910206Sandreas.hansson@arm.com            // At this point we're done dealing with the request
113010215Sandreas.hansson@arm.com            readQueue.pop_front();
113110215Sandreas.hansson@arm.com
113210215Sandreas.hansson@arm.com            // sanity check
113310215Sandreas.hansson@arm.com            assert(dram_pkt->size <= burstSize);
113410215Sandreas.hansson@arm.com            assert(dram_pkt->readyTime >= curTick());
113510215Sandreas.hansson@arm.com
113610215Sandreas.hansson@arm.com            // Insert into response queue. It will be sent back to the
113710215Sandreas.hansson@arm.com            // requestor at its readyTime
113810215Sandreas.hansson@arm.com            if (respQueue.empty()) {
113910215Sandreas.hansson@arm.com                assert(!respondEvent.scheduled());
114010215Sandreas.hansson@arm.com                schedule(respondEvent, dram_pkt->readyTime);
114110215Sandreas.hansson@arm.com            } else {
114210215Sandreas.hansson@arm.com                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
114310215Sandreas.hansson@arm.com                assert(respondEvent.scheduled());
114410215Sandreas.hansson@arm.com            }
114510215Sandreas.hansson@arm.com
114610215Sandreas.hansson@arm.com            respQueue.push_back(dram_pkt);
114710206Sandreas.hansson@arm.com
114810206Sandreas.hansson@arm.com            // we have so many writes that we have to transition
114910206Sandreas.hansson@arm.com            if (writeQueue.size() > writeHighThreshold) {
115010206Sandreas.hansson@arm.com                switch_to_writes = true;
115110206Sandreas.hansson@arm.com            }
115210206Sandreas.hansson@arm.com        }
115310206Sandreas.hansson@arm.com
115410206Sandreas.hansson@arm.com        // switching to writes, either because the read queue is empty
115510206Sandreas.hansson@arm.com        // and the writes have passed the low threshold (or we are
115610206Sandreas.hansson@arm.com        // draining), or because the writes hit the hight threshold
115710206Sandreas.hansson@arm.com        if (switch_to_writes) {
115810206Sandreas.hansson@arm.com            // transition to writing
115910206Sandreas.hansson@arm.com            busState = READ_TO_WRITE;
116010206Sandreas.hansson@arm.com
116110206Sandreas.hansson@arm.com            // add a bubble to the data bus, as defined by the
116210206Sandreas.hansson@arm.com            // tRTW parameter
116310206Sandreas.hansson@arm.com            busBusyUntil += tRTW;
116410206Sandreas.hansson@arm.com
116510206Sandreas.hansson@arm.com            // update the minimum timing between the requests,
116610206Sandreas.hansson@arm.com            // this shifts us back in time far enough to do any
116710206Sandreas.hansson@arm.com            // bank preparation
116810206Sandreas.hansson@arm.com            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
116910206Sandreas.hansson@arm.com        }
11709352SN/A    } else {
117110206Sandreas.hansson@arm.com        chooseNext(writeQueue);
117210206Sandreas.hansson@arm.com        DRAMPacket* dram_pkt = writeQueue.front();
117310206Sandreas.hansson@arm.com        // sanity check
117410206Sandreas.hansson@arm.com        assert(dram_pkt->size <= burstSize);
117510206Sandreas.hansson@arm.com        doDRAMAccess(dram_pkt);
117610206Sandreas.hansson@arm.com
117710206Sandreas.hansson@arm.com        writeQueue.pop_front();
117810206Sandreas.hansson@arm.com        delete dram_pkt;
117910206Sandreas.hansson@arm.com
118010206Sandreas.hansson@arm.com        // If we emptied the write queue, or got sufficiently below the
118110206Sandreas.hansson@arm.com        // threshold (using the minWritesPerSwitch as the hysteresis) and
118210206Sandreas.hansson@arm.com        // are not draining, or we have reads waiting and have done enough
118310206Sandreas.hansson@arm.com        // writes, then switch to reads.
118410206Sandreas.hansson@arm.com        if (writeQueue.empty() ||
118510206Sandreas.hansson@arm.com            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
118610206Sandreas.hansson@arm.com             !drainManager) ||
118710206Sandreas.hansson@arm.com            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
118810206Sandreas.hansson@arm.com            // turn the bus back around for reads again
118910206Sandreas.hansson@arm.com            busState = WRITE_TO_READ;
119010206Sandreas.hansson@arm.com
119110206Sandreas.hansson@arm.com            // note that the we switch back to reads also in the idle
119210206Sandreas.hansson@arm.com            // case, which eventually will check for any draining and
119310206Sandreas.hansson@arm.com            // also pause any further scheduling if there is really
119410206Sandreas.hansson@arm.com            // nothing to do
119510206Sandreas.hansson@arm.com
119610206Sandreas.hansson@arm.com            // here we get a bit creative and shift the bus busy time not
119710206Sandreas.hansson@arm.com            // just the tWTR, but also a CAS latency to capture the fact
119810206Sandreas.hansson@arm.com            // that we are allowed to prepare a new bank, but not issue a
119910206Sandreas.hansson@arm.com            // read command until after tWTR, in essence we capture a
120010206Sandreas.hansson@arm.com            // bubble on the data bus that is tWTR + tCL
120110206Sandreas.hansson@arm.com            busBusyUntil += tWTR + tCL;
120210206Sandreas.hansson@arm.com
120310206Sandreas.hansson@arm.com            // update the minimum timing between the requests, this shifts
120410206Sandreas.hansson@arm.com            // us back in time far enough to do any bank preparation
120510206Sandreas.hansson@arm.com            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
120610206Sandreas.hansson@arm.com        }
120710206Sandreas.hansson@arm.com    }
120810206Sandreas.hansson@arm.com
120910206Sandreas.hansson@arm.com    schedule(nextReqEvent, std::max(nextReqTime, curTick()));
121010206Sandreas.hansson@arm.com
121110206Sandreas.hansson@arm.com    // If there is space available and we have writes waiting then let
121210206Sandreas.hansson@arm.com    // them retry. This is done here to ensure that the retry does not
121310206Sandreas.hansson@arm.com    // cause a nextReqEvent to be scheduled before we do so as part of
121410206Sandreas.hansson@arm.com    // the next request processing
121510206Sandreas.hansson@arm.com    if (retryWrReq && writeQueue.size() < writeBufferSize) {
121610206Sandreas.hansson@arm.com        retryWrReq = false;
121710206Sandreas.hansson@arm.com        port.sendRetry();
12189352SN/A    }
12199243SN/A}
12209243SN/A
12219967SN/Auint64_t
122210211Sandreas.hansson@arm.comDRAMCtrl::minBankActAt(const deque<DRAMPacket*>& queue) const
12239967SN/A{
12249967SN/A    uint64_t bank_mask = 0;
122510211Sandreas.hansson@arm.com    Tick min_act_at = MaxTick;
12269967SN/A
122710211Sandreas.hansson@arm.com    // deterimne if we have queued transactions targetting a
12289967SN/A    // bank in question
12299967SN/A    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
12309967SN/A    for (auto p = queue.begin(); p != queue.end(); ++p) {
12319967SN/A        got_waiting[(*p)->bankId] = true;
12329967SN/A    }
12339967SN/A
12349967SN/A    for (int i = 0; i < ranksPerChannel; i++) {
12359967SN/A        for (int j = 0; j < banksPerRank; j++) {
123610211Sandreas.hansson@arm.com            uint8_t bank_id = i * banksPerRank + j;
123710211Sandreas.hansson@arm.com
12389967SN/A            // if we have waiting requests for the bank, and it is
12399967SN/A            // amongst the first available, update the mask
124010211Sandreas.hansson@arm.com            if (got_waiting[bank_id]) {
124110211Sandreas.hansson@arm.com                // simplistic approximation of when the bank can issue
124210211Sandreas.hansson@arm.com                // an activate, ignoring any rank-to-rank switching
124310211Sandreas.hansson@arm.com                // cost
124410211Sandreas.hansson@arm.com                Tick act_at = banks[i][j].openRow == Bank::NO_ROW ?
124510211Sandreas.hansson@arm.com                    banks[i][j].actAllowedAt :
124610211Sandreas.hansson@arm.com                    std::max(banks[i][j].preAllowedAt, curTick()) + tRP;
124710211Sandreas.hansson@arm.com
124810211Sandreas.hansson@arm.com                if (act_at <= min_act_at) {
124910211Sandreas.hansson@arm.com                    // reset bank mask if new minimum is found
125010211Sandreas.hansson@arm.com                    if (act_at < min_act_at)
125110211Sandreas.hansson@arm.com                        bank_mask = 0;
125210211Sandreas.hansson@arm.com                    // set the bit corresponding to the available bank
125310211Sandreas.hansson@arm.com                    replaceBits(bank_mask, bank_id, bank_id, 1);
125410211Sandreas.hansson@arm.com                    min_act_at = act_at;
125510211Sandreas.hansson@arm.com                }
12569967SN/A            }
12579967SN/A        }
12589967SN/A    }
125910211Sandreas.hansson@arm.com
12609967SN/A    return bank_mask;
12619967SN/A}
12629967SN/A
12639243SN/Avoid
126410146Sandreas.hansson@arm.comDRAMCtrl::processRefreshEvent()
12659243SN/A{
126610207Sandreas.hansson@arm.com    // when first preparing the refresh, remember when it was due
126710207Sandreas.hansson@arm.com    if (refreshState == REF_IDLE) {
126810207Sandreas.hansson@arm.com        // remember when the refresh is due
126910207Sandreas.hansson@arm.com        refreshDueAt = curTick();
12709243SN/A
127110207Sandreas.hansson@arm.com        // proceed to drain
127210207Sandreas.hansson@arm.com        refreshState = REF_DRAIN;
12739243SN/A
127410207Sandreas.hansson@arm.com        DPRINTF(DRAM, "Refresh due\n");
127510207Sandreas.hansson@arm.com    }
127610207Sandreas.hansson@arm.com
127710207Sandreas.hansson@arm.com    // let any scheduled read or write go ahead, after which it will
127810207Sandreas.hansson@arm.com    // hand control back to this event loop
127910207Sandreas.hansson@arm.com    if (refreshState == REF_DRAIN) {
128010207Sandreas.hansson@arm.com        if (nextReqEvent.scheduled()) {
128110207Sandreas.hansson@arm.com            // hand control over to the request loop until it is
128210207Sandreas.hansson@arm.com            // evaluated next
128310207Sandreas.hansson@arm.com            DPRINTF(DRAM, "Refresh awaiting draining\n");
128410207Sandreas.hansson@arm.com
128510207Sandreas.hansson@arm.com            return;
128610207Sandreas.hansson@arm.com        } else {
128710207Sandreas.hansson@arm.com            refreshState = REF_PRE;
128810207Sandreas.hansson@arm.com        }
128910207Sandreas.hansson@arm.com    }
129010207Sandreas.hansson@arm.com
129110207Sandreas.hansson@arm.com    // at this point, ensure that all banks are precharged
129210207Sandreas.hansson@arm.com    if (refreshState == REF_PRE) {
129310208Sandreas.hansson@arm.com        // precharge any active bank if we are not already in the idle
129410208Sandreas.hansson@arm.com        // state
129510208Sandreas.hansson@arm.com        if (pwrState != PWR_IDLE) {
129610214Sandreas.hansson@arm.com            // at the moment, we use a precharge all even if there is
129710214Sandreas.hansson@arm.com            // only a single bank open
129810208Sandreas.hansson@arm.com            DPRINTF(DRAM, "Precharging all\n");
129910214Sandreas.hansson@arm.com
130010214Sandreas.hansson@arm.com            // first determine when we can precharge
130110214Sandreas.hansson@arm.com            Tick pre_at = curTick();
130210214Sandreas.hansson@arm.com            for (int i = 0; i < ranksPerChannel; i++) {
130310214Sandreas.hansson@arm.com                for (int j = 0; j < banksPerRank; j++) {
130410214Sandreas.hansson@arm.com                    // respect both causality and any existing bank
130510214Sandreas.hansson@arm.com                    // constraints, some banks could already have a
130610214Sandreas.hansson@arm.com                    // (auto) precharge scheduled
130710214Sandreas.hansson@arm.com                    pre_at = std::max(banks[i][j].preAllowedAt, pre_at);
130810214Sandreas.hansson@arm.com                }
130910214Sandreas.hansson@arm.com            }
131010214Sandreas.hansson@arm.com
131110214Sandreas.hansson@arm.com            // make sure all banks are precharged, and for those that
131210214Sandreas.hansson@arm.com            // already are, update their availability
131310214Sandreas.hansson@arm.com            Tick act_allowed_at = pre_at + tRP;
131410214Sandreas.hansson@arm.com
131510208Sandreas.hansson@arm.com            for (int i = 0; i < ranksPerChannel; i++) {
131610208Sandreas.hansson@arm.com                for (int j = 0; j < banksPerRank; j++) {
131710208Sandreas.hansson@arm.com                    if (banks[i][j].openRow != Bank::NO_ROW) {
131810211Sandreas.hansson@arm.com                        prechargeBank(banks[i][j], pre_at);
131910214Sandreas.hansson@arm.com                    } else {
132010214Sandreas.hansson@arm.com                        banks[i][j].actAllowedAt =
132110214Sandreas.hansson@arm.com                            std::max(banks[i][j].actAllowedAt, act_allowed_at);
132210214Sandreas.hansson@arm.com                        banks[i][j].preAllowedAt =
132310214Sandreas.hansson@arm.com                            std::max(banks[i][j].preAllowedAt, pre_at);
132410208Sandreas.hansson@arm.com                    }
132510207Sandreas.hansson@arm.com                }
132610207Sandreas.hansson@arm.com            }
132710208Sandreas.hansson@arm.com        } else {
132810208Sandreas.hansson@arm.com            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
132910208Sandreas.hansson@arm.com
133010208Sandreas.hansson@arm.com            // go ahead and kick the power state machine into gear if
133110208Sandreas.hansson@arm.com            // we are already idle
133210208Sandreas.hansson@arm.com            schedulePowerEvent(PWR_REF, curTick());
13339975SN/A        }
13349975SN/A
133510208Sandreas.hansson@arm.com        refreshState = REF_RUN;
133610208Sandreas.hansson@arm.com        assert(numBanksActive == 0);
13379243SN/A
133810208Sandreas.hansson@arm.com        // wait for all banks to be precharged, at which point the
133910208Sandreas.hansson@arm.com        // power state machine will transition to the idle state, and
134010208Sandreas.hansson@arm.com        // automatically move to a refresh, at that point it will also
134110208Sandreas.hansson@arm.com        // call this method to get the refresh event loop going again
134210207Sandreas.hansson@arm.com        return;
134310207Sandreas.hansson@arm.com    }
134410207Sandreas.hansson@arm.com
134510207Sandreas.hansson@arm.com    // last but not least we perform the actual refresh
134610207Sandreas.hansson@arm.com    if (refreshState == REF_RUN) {
134710207Sandreas.hansson@arm.com        // should never get here with any banks active
134810207Sandreas.hansson@arm.com        assert(numBanksActive == 0);
134910208Sandreas.hansson@arm.com        assert(pwrState == PWR_REF);
135010207Sandreas.hansson@arm.com
135110211Sandreas.hansson@arm.com        Tick ref_done_at = curTick() + tRFC;
135210207Sandreas.hansson@arm.com
135310207Sandreas.hansson@arm.com        for (int i = 0; i < ranksPerChannel; i++) {
135410207Sandreas.hansson@arm.com            for (int j = 0; j < banksPerRank; j++) {
135510211Sandreas.hansson@arm.com                banks[i][j].actAllowedAt = ref_done_at;
135610207Sandreas.hansson@arm.com            }
135710207Sandreas.hansson@arm.com        }
135810207Sandreas.hansson@arm.com
135910207Sandreas.hansson@arm.com        // make sure we did not wait so long that we cannot make up
136010207Sandreas.hansson@arm.com        // for it
136110211Sandreas.hansson@arm.com        if (refreshDueAt + tREFI < ref_done_at) {
136210207Sandreas.hansson@arm.com            fatal("Refresh was delayed so long we cannot catch up\n");
136310207Sandreas.hansson@arm.com        }
136410207Sandreas.hansson@arm.com
136510207Sandreas.hansson@arm.com        // compensate for the delay in actually performing the refresh
136610207Sandreas.hansson@arm.com        // when scheduling the next one
136710207Sandreas.hansson@arm.com        schedule(refreshEvent, refreshDueAt + tREFI - tRP);
136810207Sandreas.hansson@arm.com
136910208Sandreas.hansson@arm.com        assert(!powerEvent.scheduled());
137010207Sandreas.hansson@arm.com
137110208Sandreas.hansson@arm.com        // move to the idle power state once the refresh is done, this
137210208Sandreas.hansson@arm.com        // will also move the refresh state machine to the refresh
137310208Sandreas.hansson@arm.com        // idle state
137410211Sandreas.hansson@arm.com        schedulePowerEvent(PWR_IDLE, ref_done_at);
137510207Sandreas.hansson@arm.com
137610208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
137710211Sandreas.hansson@arm.com                ref_done_at, refreshDueAt + tREFI);
137810208Sandreas.hansson@arm.com    }
137910208Sandreas.hansson@arm.com}
138010208Sandreas.hansson@arm.com
138110208Sandreas.hansson@arm.comvoid
138210208Sandreas.hansson@arm.comDRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
138310208Sandreas.hansson@arm.com{
138410208Sandreas.hansson@arm.com    // respect causality
138510208Sandreas.hansson@arm.com    assert(tick >= curTick());
138610208Sandreas.hansson@arm.com
138710208Sandreas.hansson@arm.com    if (!powerEvent.scheduled()) {
138810208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
138910208Sandreas.hansson@arm.com                tick, pwr_state);
139010208Sandreas.hansson@arm.com
139110208Sandreas.hansson@arm.com        // insert the new transition
139210208Sandreas.hansson@arm.com        pwrStateTrans = pwr_state;
139310208Sandreas.hansson@arm.com
139410208Sandreas.hansson@arm.com        schedule(powerEvent, tick);
139510208Sandreas.hansson@arm.com    } else {
139610208Sandreas.hansson@arm.com        panic("Scheduled power event at %llu to state %d, "
139710208Sandreas.hansson@arm.com              "with scheduled event at %llu to %d\n", tick, pwr_state,
139810208Sandreas.hansson@arm.com              powerEvent.when(), pwrStateTrans);
139910208Sandreas.hansson@arm.com    }
140010208Sandreas.hansson@arm.com}
140110208Sandreas.hansson@arm.com
140210208Sandreas.hansson@arm.comvoid
140310208Sandreas.hansson@arm.comDRAMCtrl::processPowerEvent()
140410208Sandreas.hansson@arm.com{
140510208Sandreas.hansson@arm.com    // remember where we were, and for how long
140610208Sandreas.hansson@arm.com    Tick duration = curTick() - pwrStateTick;
140710208Sandreas.hansson@arm.com    PowerState prev_state = pwrState;
140810208Sandreas.hansson@arm.com
140910208Sandreas.hansson@arm.com    // update the accounting
141010208Sandreas.hansson@arm.com    pwrStateTime[prev_state] += duration;
141110208Sandreas.hansson@arm.com
141210208Sandreas.hansson@arm.com    pwrState = pwrStateTrans;
141310208Sandreas.hansson@arm.com    pwrStateTick = curTick();
141410208Sandreas.hansson@arm.com
141510208Sandreas.hansson@arm.com    if (pwrState == PWR_IDLE) {
141610208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "All banks precharged\n");
141710208Sandreas.hansson@arm.com
141810208Sandreas.hansson@arm.com        // if we were refreshing, make sure we start scheduling requests again
141910208Sandreas.hansson@arm.com        if (prev_state == PWR_REF) {
142010208Sandreas.hansson@arm.com            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
142110208Sandreas.hansson@arm.com            assert(pwrState == PWR_IDLE);
142210208Sandreas.hansson@arm.com
142310208Sandreas.hansson@arm.com            // kick things into action again
142410208Sandreas.hansson@arm.com            refreshState = REF_IDLE;
142510208Sandreas.hansson@arm.com            assert(!nextReqEvent.scheduled());
142610208Sandreas.hansson@arm.com            schedule(nextReqEvent, curTick());
142710208Sandreas.hansson@arm.com        } else {
142810208Sandreas.hansson@arm.com            assert(prev_state == PWR_ACT);
142910208Sandreas.hansson@arm.com
143010208Sandreas.hansson@arm.com            // if we have a pending refresh, and are now moving to
143110208Sandreas.hansson@arm.com            // the idle state, direclty transition to a refresh
143210208Sandreas.hansson@arm.com            if (refreshState == REF_RUN) {
143310208Sandreas.hansson@arm.com                // there should be nothing waiting at this point
143410208Sandreas.hansson@arm.com                assert(!powerEvent.scheduled());
143510208Sandreas.hansson@arm.com
143610208Sandreas.hansson@arm.com                // update the state in zero time and proceed below
143710208Sandreas.hansson@arm.com                pwrState = PWR_REF;
143810208Sandreas.hansson@arm.com            }
143910208Sandreas.hansson@arm.com        }
144010208Sandreas.hansson@arm.com    }
144110208Sandreas.hansson@arm.com
144210208Sandreas.hansson@arm.com    // we transition to the refresh state, let the refresh state
144310208Sandreas.hansson@arm.com    // machine know of this state update and let it deal with the
144410208Sandreas.hansson@arm.com    // scheduling of the next power state transition as well as the
144510208Sandreas.hansson@arm.com    // following refresh
144610208Sandreas.hansson@arm.com    if (pwrState == PWR_REF) {
144710208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "Refreshing\n");
144810208Sandreas.hansson@arm.com        // kick the refresh event loop into action again, and that
144910208Sandreas.hansson@arm.com        // in turn will schedule a transition to the idle power
145010208Sandreas.hansson@arm.com        // state once the refresh is done
145110208Sandreas.hansson@arm.com        assert(refreshState == REF_RUN);
145210208Sandreas.hansson@arm.com        processRefreshEvent();
145310207Sandreas.hansson@arm.com    }
14549243SN/A}
14559243SN/A
14569243SN/Avoid
145710146Sandreas.hansson@arm.comDRAMCtrl::regStats()
14589243SN/A{
14599243SN/A    using namespace Stats;
14609243SN/A
14619243SN/A    AbstractMemory::regStats();
14629243SN/A
14639243SN/A    readReqs
14649243SN/A        .name(name() + ".readReqs")
14659977SN/A        .desc("Number of read requests accepted");
14669243SN/A
14679243SN/A    writeReqs
14689243SN/A        .name(name() + ".writeReqs")
14699977SN/A        .desc("Number of write requests accepted");
14709831SN/A
14719831SN/A    readBursts
14729831SN/A        .name(name() + ".readBursts")
14739977SN/A        .desc("Number of DRAM read bursts, "
14749977SN/A              "including those serviced by the write queue");
14759831SN/A
14769831SN/A    writeBursts
14779831SN/A        .name(name() + ".writeBursts")
14789977SN/A        .desc("Number of DRAM write bursts, "
14799977SN/A              "including those merged in the write queue");
14809243SN/A
14819243SN/A    servicedByWrQ
14829243SN/A        .name(name() + ".servicedByWrQ")
14839977SN/A        .desc("Number of DRAM read bursts serviced by the write queue");
14849977SN/A
14859977SN/A    mergedWrBursts
14869977SN/A        .name(name() + ".mergedWrBursts")
14879977SN/A        .desc("Number of DRAM write bursts merged with an existing one");
14889243SN/A
14899243SN/A    neitherReadNorWrite
14909977SN/A        .name(name() + ".neitherReadNorWriteReqs")
14919977SN/A        .desc("Number of requests that are neither read nor write");
14929243SN/A
14939977SN/A    perBankRdBursts
14949243SN/A        .init(banksPerRank * ranksPerChannel)
14959977SN/A        .name(name() + ".perBankRdBursts")
14969977SN/A        .desc("Per bank write bursts");
14979243SN/A
14989977SN/A    perBankWrBursts
14999243SN/A        .init(banksPerRank * ranksPerChannel)
15009977SN/A        .name(name() + ".perBankWrBursts")
15019977SN/A        .desc("Per bank write bursts");
15029243SN/A
15039243SN/A    avgRdQLen
15049243SN/A        .name(name() + ".avgRdQLen")
15059977SN/A        .desc("Average read queue length when enqueuing")
15069243SN/A        .precision(2);
15079243SN/A
15089243SN/A    avgWrQLen
15099243SN/A        .name(name() + ".avgWrQLen")
15109977SN/A        .desc("Average write queue length when enqueuing")
15119243SN/A        .precision(2);
15129243SN/A
15139243SN/A    totQLat
15149243SN/A        .name(name() + ".totQLat")
15159977SN/A        .desc("Total ticks spent queuing");
15169243SN/A
15179243SN/A    totBusLat
15189243SN/A        .name(name() + ".totBusLat")
15199977SN/A        .desc("Total ticks spent in databus transfers");
15209243SN/A
15219243SN/A    totMemAccLat
15229243SN/A        .name(name() + ".totMemAccLat")
15239977SN/A        .desc("Total ticks spent from burst creation until serviced "
15249977SN/A              "by the DRAM");
15259243SN/A
15269243SN/A    avgQLat
15279243SN/A        .name(name() + ".avgQLat")
15289977SN/A        .desc("Average queueing delay per DRAM burst")
15299243SN/A        .precision(2);
15309243SN/A
15319831SN/A    avgQLat = totQLat / (readBursts - servicedByWrQ);
15329243SN/A
15339243SN/A    avgBusLat
15349243SN/A        .name(name() + ".avgBusLat")
15359977SN/A        .desc("Average bus latency per DRAM burst")
15369243SN/A        .precision(2);
15379243SN/A
15389831SN/A    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
15399243SN/A
15409243SN/A    avgMemAccLat
15419243SN/A        .name(name() + ".avgMemAccLat")
15429977SN/A        .desc("Average memory access latency per DRAM burst")
15439243SN/A        .precision(2);
15449243SN/A
15459831SN/A    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
15469243SN/A
15479243SN/A    numRdRetry
15489243SN/A        .name(name() + ".numRdRetry")
15499977SN/A        .desc("Number of times read queue was full causing retry");
15509243SN/A
15519243SN/A    numWrRetry
15529243SN/A        .name(name() + ".numWrRetry")
15539977SN/A        .desc("Number of times write queue was full causing retry");
15549243SN/A
15559243SN/A    readRowHits
15569243SN/A        .name(name() + ".readRowHits")
15579243SN/A        .desc("Number of row buffer hits during reads");
15589243SN/A
15599243SN/A    writeRowHits
15609243SN/A        .name(name() + ".writeRowHits")
15619243SN/A        .desc("Number of row buffer hits during writes");
15629243SN/A
15639243SN/A    readRowHitRate
15649243SN/A        .name(name() + ".readRowHitRate")
15659243SN/A        .desc("Row buffer hit rate for reads")
15669243SN/A        .precision(2);
15679243SN/A
15689831SN/A    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
15699243SN/A
15709243SN/A    writeRowHitRate
15719243SN/A        .name(name() + ".writeRowHitRate")
15729243SN/A        .desc("Row buffer hit rate for writes")
15739243SN/A        .precision(2);
15749243SN/A
15759977SN/A    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
15769243SN/A
15779243SN/A    readPktSize
15789831SN/A        .init(ceilLog2(burstSize) + 1)
15799243SN/A        .name(name() + ".readPktSize")
15809977SN/A        .desc("Read request sizes (log2)");
15819243SN/A
15829243SN/A     writePktSize
15839831SN/A        .init(ceilLog2(burstSize) + 1)
15849243SN/A        .name(name() + ".writePktSize")
15859977SN/A        .desc("Write request sizes (log2)");
15869243SN/A
15879243SN/A     rdQLenPdf
15889567SN/A        .init(readBufferSize)
15899243SN/A        .name(name() + ".rdQLenPdf")
15909243SN/A        .desc("What read queue length does an incoming req see");
15919243SN/A
15929243SN/A     wrQLenPdf
15939567SN/A        .init(writeBufferSize)
15949243SN/A        .name(name() + ".wrQLenPdf")
15959243SN/A        .desc("What write queue length does an incoming req see");
15969243SN/A
15979727SN/A     bytesPerActivate
159810141SN/A         .init(maxAccessesPerRow)
15999727SN/A         .name(name() + ".bytesPerActivate")
16009727SN/A         .desc("Bytes accessed per row activation")
16019727SN/A         .flags(nozero);
16029243SN/A
160310147Sandreas.hansson@arm.com     rdPerTurnAround
160410147Sandreas.hansson@arm.com         .init(readBufferSize)
160510147Sandreas.hansson@arm.com         .name(name() + ".rdPerTurnAround")
160610147Sandreas.hansson@arm.com         .desc("Reads before turning the bus around for writes")
160710147Sandreas.hansson@arm.com         .flags(nozero);
160810147Sandreas.hansson@arm.com
160910147Sandreas.hansson@arm.com     wrPerTurnAround
161010147Sandreas.hansson@arm.com         .init(writeBufferSize)
161110147Sandreas.hansson@arm.com         .name(name() + ".wrPerTurnAround")
161210147Sandreas.hansson@arm.com         .desc("Writes before turning the bus around for reads")
161310147Sandreas.hansson@arm.com         .flags(nozero);
161410147Sandreas.hansson@arm.com
16159975SN/A    bytesReadDRAM
16169975SN/A        .name(name() + ".bytesReadDRAM")
16179975SN/A        .desc("Total number of bytes read from DRAM");
16189975SN/A
16199975SN/A    bytesReadWrQ
16209975SN/A        .name(name() + ".bytesReadWrQ")
16219975SN/A        .desc("Total number of bytes read from write queue");
16229243SN/A
16239243SN/A    bytesWritten
16249243SN/A        .name(name() + ".bytesWritten")
16259977SN/A        .desc("Total number of bytes written to DRAM");
16269243SN/A
16279977SN/A    bytesReadSys
16289977SN/A        .name(name() + ".bytesReadSys")
16299977SN/A        .desc("Total read bytes from the system interface side");
16309243SN/A
16319977SN/A    bytesWrittenSys
16329977SN/A        .name(name() + ".bytesWrittenSys")
16339977SN/A        .desc("Total written bytes from the system interface side");
16349243SN/A
16359243SN/A    avgRdBW
16369243SN/A        .name(name() + ".avgRdBW")
16379977SN/A        .desc("Average DRAM read bandwidth in MiByte/s")
16389243SN/A        .precision(2);
16399243SN/A
16409977SN/A    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
16419243SN/A
16429243SN/A    avgWrBW
16439243SN/A        .name(name() + ".avgWrBW")
16449977SN/A        .desc("Average achieved write bandwidth in MiByte/s")
16459243SN/A        .precision(2);
16469243SN/A
16479243SN/A    avgWrBW = (bytesWritten / 1000000) / simSeconds;
16489243SN/A
16499977SN/A    avgRdBWSys
16509977SN/A        .name(name() + ".avgRdBWSys")
16519977SN/A        .desc("Average system read bandwidth in MiByte/s")
16529243SN/A        .precision(2);
16539243SN/A
16549977SN/A    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
16559243SN/A
16569977SN/A    avgWrBWSys
16579977SN/A        .name(name() + ".avgWrBWSys")
16589977SN/A        .desc("Average system write bandwidth in MiByte/s")
16599243SN/A        .precision(2);
16609243SN/A
16619977SN/A    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
16629243SN/A
16639243SN/A    peakBW
16649243SN/A        .name(name() + ".peakBW")
16659977SN/A        .desc("Theoretical peak bandwidth in MiByte/s")
16669243SN/A        .precision(2);
16679243SN/A
16689831SN/A    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
16699243SN/A
16709243SN/A    busUtil
16719243SN/A        .name(name() + ".busUtil")
16729243SN/A        .desc("Data bus utilization in percentage")
16739243SN/A        .precision(2);
16749243SN/A
16759243SN/A    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
16769243SN/A
16779243SN/A    totGap
16789243SN/A        .name(name() + ".totGap")
16799243SN/A        .desc("Total gap between requests");
16809243SN/A
16819243SN/A    avgGap
16829243SN/A        .name(name() + ".avgGap")
16839243SN/A        .desc("Average gap between requests")
16849243SN/A        .precision(2);
16859243SN/A
16869243SN/A    avgGap = totGap / (readReqs + writeReqs);
16879975SN/A
16889975SN/A    // Stats for DRAM Power calculation based on Micron datasheet
16899975SN/A    busUtilRead
16909975SN/A        .name(name() + ".busUtilRead")
16919975SN/A        .desc("Data bus utilization in percentage for reads")
16929975SN/A        .precision(2);
16939975SN/A
16949975SN/A    busUtilRead = avgRdBW / peakBW * 100;
16959975SN/A
16969975SN/A    busUtilWrite
16979975SN/A        .name(name() + ".busUtilWrite")
16989975SN/A        .desc("Data bus utilization in percentage for writes")
16999975SN/A        .precision(2);
17009975SN/A
17019975SN/A    busUtilWrite = avgWrBW / peakBW * 100;
17029975SN/A
17039975SN/A    pageHitRate
17049975SN/A        .name(name() + ".pageHitRate")
17059975SN/A        .desc("Row buffer hit rate, read and write combined")
17069975SN/A        .precision(2);
17079975SN/A
17089977SN/A    pageHitRate = (writeRowHits + readRowHits) /
17099977SN/A        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
17109975SN/A
171110208Sandreas.hansson@arm.com    pwrStateTime
171210208Sandreas.hansson@arm.com        .init(5)
171310208Sandreas.hansson@arm.com        .name(name() + ".memoryStateTime")
171410208Sandreas.hansson@arm.com        .desc("Time in different power states");
171510208Sandreas.hansson@arm.com    pwrStateTime.subname(0, "IDLE");
171610208Sandreas.hansson@arm.com    pwrStateTime.subname(1, "REF");
171710208Sandreas.hansson@arm.com    pwrStateTime.subname(2, "PRE_PDN");
171810208Sandreas.hansson@arm.com    pwrStateTime.subname(3, "ACT");
171910208Sandreas.hansson@arm.com    pwrStateTime.subname(4, "ACT_PDN");
17209243SN/A}
17219243SN/A
17229243SN/Avoid
172310146Sandreas.hansson@arm.comDRAMCtrl::recvFunctional(PacketPtr pkt)
17249243SN/A{
17259243SN/A    // rely on the abstract memory
17269243SN/A    functionalAccess(pkt);
17279243SN/A}
17289243SN/A
17299294SN/ABaseSlavePort&
173010146Sandreas.hansson@arm.comDRAMCtrl::getSlavePort(const string &if_name, PortID idx)
17319243SN/A{
17329243SN/A    if (if_name != "port") {
17339243SN/A        return MemObject::getSlavePort(if_name, idx);
17349243SN/A    } else {
17359243SN/A        return port;
17369243SN/A    }
17379243SN/A}
17389243SN/A
17399243SN/Aunsigned int
174010146Sandreas.hansson@arm.comDRAMCtrl::drain(DrainManager *dm)
17419243SN/A{
17429342SN/A    unsigned int count = port.drain(dm);
17439243SN/A
17449243SN/A    // if there is anything in any of our internal queues, keep track
17459243SN/A    // of that as well
17469567SN/A    if (!(writeQueue.empty() && readQueue.empty() &&
17479567SN/A          respQueue.empty())) {
17489352SN/A        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
17499567SN/A                " resp: %d\n", writeQueue.size(), readQueue.size(),
17509567SN/A                respQueue.size());
17519243SN/A        ++count;
17529342SN/A        drainManager = dm;
175310206Sandreas.hansson@arm.com
17549352SN/A        // the only part that is not drained automatically over time
175510206Sandreas.hansson@arm.com        // is the write queue, thus kick things into action if needed
175610206Sandreas.hansson@arm.com        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
175710206Sandreas.hansson@arm.com            schedule(nextReqEvent, curTick());
175810206Sandreas.hansson@arm.com        }
17599243SN/A    }
17609243SN/A
17619243SN/A    if (count)
17629342SN/A        setDrainState(Drainable::Draining);
17639243SN/A    else
17649342SN/A        setDrainState(Drainable::Drained);
17659243SN/A    return count;
17669243SN/A}
17679243SN/A
176810146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
17699243SN/A    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
17709243SN/A      memory(_memory)
17719243SN/A{ }
17729243SN/A
17739243SN/AAddrRangeList
177410146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::getAddrRanges() const
17759243SN/A{
17769243SN/A    AddrRangeList ranges;
17779243SN/A    ranges.push_back(memory.getAddrRange());
17789243SN/A    return ranges;
17799243SN/A}
17809243SN/A
17819243SN/Avoid
178210146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
17839243SN/A{
17849243SN/A    pkt->pushLabel(memory.name());
17859243SN/A
17869243SN/A    if (!queue.checkFunctional(pkt)) {
17879243SN/A        // Default implementation of SimpleTimingPort::recvFunctional()
17889243SN/A        // calls recvAtomic() and throws away the latency; we can save a
17899243SN/A        // little here by just not calculating the latency.
17909243SN/A        memory.recvFunctional(pkt);
17919243SN/A    }
17929243SN/A
17939243SN/A    pkt->popLabel();
17949243SN/A}
17959243SN/A
17969243SN/ATick
179710146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
17989243SN/A{
17999243SN/A    return memory.recvAtomic(pkt);
18009243SN/A}
18019243SN/A
18029243SN/Abool
180310146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
18049243SN/A{
18059243SN/A    // pass it to the memory controller
18069243SN/A    return memory.recvTimingReq(pkt);
18079243SN/A}
18089243SN/A
180910146Sandreas.hansson@arm.comDRAMCtrl*
181010146Sandreas.hansson@arm.comDRAMCtrlParams::create()
18119243SN/A{
181210146Sandreas.hansson@arm.com    return new DRAMCtrl(this);
18139243SN/A}
1814