dram_ctrl.cc revision 10209
19243SN/A/*
210206Sandreas.hansson@arm.com * Copyright (c) 2010-2014 ARM Limited
39243SN/A * All rights reserved
49243SN/A *
59243SN/A * The license below extends only to copyright in the software and shall
69243SN/A * not be construed as granting a license to any other intellectual
79243SN/A * property including but not limited to intellectual property relating
89243SN/A * to a hardware implementation of the functionality of the software
99243SN/A * licensed hereunder.  You may use the software subject to the license
109243SN/A * terms below provided that you ensure that this notice is replicated
119243SN/A * unmodified and in its entirety in all distributions of the software,
129243SN/A * modified or unmodified, in source code or in binary form.
139243SN/A *
149831SN/A * Copyright (c) 2013 Amin Farmahini-Farahani
159831SN/A * All rights reserved.
169831SN/A *
179243SN/A * Redistribution and use in source and binary forms, with or without
189243SN/A * modification, are permitted provided that the following conditions are
199243SN/A * met: redistributions of source code must retain the above copyright
209243SN/A * notice, this list of conditions and the following disclaimer;
219243SN/A * redistributions in binary form must reproduce the above copyright
229243SN/A * notice, this list of conditions and the following disclaimer in the
239243SN/A * documentation and/or other materials provided with the distribution;
249243SN/A * neither the name of the copyright holders nor the names of its
259243SN/A * contributors may be used to endorse or promote products derived from
269243SN/A * this software without specific prior written permission.
279243SN/A *
289243SN/A * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
299243SN/A * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
309243SN/A * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
319243SN/A * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
329243SN/A * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
339243SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
349243SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
359243SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
369243SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
379243SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
389243SN/A * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
399243SN/A *
409243SN/A * Authors: Andreas Hansson
419243SN/A *          Ani Udipi
429967SN/A *          Neha Agarwal
439243SN/A */
449243SN/A
4510146Sandreas.hansson@arm.com#include "base/bitfield.hh"
469356SN/A#include "base/trace.hh"
4710146Sandreas.hansson@arm.com#include "debug/DRAM.hh"
4810208Sandreas.hansson@arm.com#include "debug/DRAMState.hh"
499352SN/A#include "debug/Drain.hh"
5010146Sandreas.hansson@arm.com#include "mem/dram_ctrl.hh"
519814SN/A#include "sim/system.hh"
529243SN/A
539243SN/Ausing namespace std;
549243SN/A
5510146Sandreas.hansson@arm.comDRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
569243SN/A    AbstractMemory(p),
579243SN/A    port(name() + ".port", *this),
589243SN/A    retryRdReq(false), retryWrReq(false),
5910206Sandreas.hansson@arm.com    rowHitFlag(false), busState(READ),
6010208Sandreas.hansson@arm.com    nextReqEvent(this), respondEvent(this), activateEvent(this),
6110208Sandreas.hansson@arm.com    prechargeEvent(this), refreshEvent(this), powerEvent(this),
6210208Sandreas.hansson@arm.com    drainManager(NULL),
639831SN/A    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
649831SN/A    deviceRowBufferSize(p->device_rowbuffer_size),
659831SN/A    devicesPerRank(p->devices_per_rank),
669831SN/A    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
679831SN/A    rowBufferSize(devicesPerRank * deviceRowBufferSize),
6810140SN/A    columnsPerRowBuffer(rowBufferSize / burstSize),
699243SN/A    ranksPerChannel(p->ranks_per_channel),
709566SN/A    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
719243SN/A    readBufferSize(p->read_buffer_size),
729243SN/A    writeBufferSize(p->write_buffer_size),
7310140SN/A    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
7410140SN/A    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
7510147Sandreas.hansson@arm.com    minWritesPerSwitch(p->min_writes_per_switch),
7610147Sandreas.hansson@arm.com    writesThisTime(0), readsThisTime(0),
7710206Sandreas.hansson@arm.com    tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST),
789963SN/A    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
799971SN/A    tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
809488SN/A    tXAW(p->tXAW), activationLimit(p->activation_limit),
819243SN/A    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
829243SN/A    pageMgmt(p->page_policy),
8310141SN/A    maxAccessesPerRow(p->max_accesses_per_row),
849726SN/A    frontendLatency(p->static_frontend_latency),
859726SN/A    backendLatency(p->static_backend_latency),
8610208Sandreas.hansson@arm.com    busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
8710208Sandreas.hansson@arm.com    pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
8810208Sandreas.hansson@arm.com    nextReqTime(0), pwrStateTick(0), numBanksActive(0)
899243SN/A{
909243SN/A    // create the bank states based on the dimensions of the ranks and
919243SN/A    // banks
929243SN/A    banks.resize(ranksPerChannel);
939969SN/A    actTicks.resize(ranksPerChannel);
949243SN/A    for (size_t c = 0; c < ranksPerChannel; ++c) {
959243SN/A        banks[c].resize(banksPerRank);
969969SN/A        actTicks[c].resize(activationLimit, 0);
979243SN/A    }
989243SN/A
9910140SN/A    // perform a basic check of the write thresholds
10010140SN/A    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
10110140SN/A        fatal("Write buffer low threshold %d must be smaller than the "
10210140SN/A              "high threshold %d\n", p->write_low_thresh_perc,
10310140SN/A              p->write_high_thresh_perc);
1049243SN/A
1059243SN/A    // determine the rows per bank by looking at the total capacity
1069567SN/A    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
1079243SN/A
1089243SN/A    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
1099243SN/A            AbstractMemory::size());
1109831SN/A
1119831SN/A    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
1129831SN/A            rowBufferSize, columnsPerRowBuffer);
1139831SN/A
1149831SN/A    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
1159243SN/A
1169566SN/A    if (range.interleaved()) {
1179566SN/A        if (channels != range.stripes())
11810143SN/A            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
1199566SN/A                  name(), range.stripes(), channels);
1209566SN/A
12110136SN/A        if (addrMapping == Enums::RoRaBaChCo) {
1229831SN/A            if (rowBufferSize != range.granularity()) {
12310143SN/A                fatal("Interleaving of %s doesn't match RoRaBaChCo "
12410136SN/A                      "address map\n", name());
1259566SN/A            }
12610136SN/A        } else if (addrMapping == Enums::RoRaBaCoCh) {
12710136SN/A            if (system()->cacheLineSize() != range.granularity()) {
12810143SN/A                fatal("Interleaving of %s doesn't match RoRaBaCoCh "
12910136SN/A                      "address map\n", name());
1309669SN/A            }
13110136SN/A        } else if (addrMapping == Enums::RoCoRaBaCh) {
13210136SN/A            if (system()->cacheLineSize() != range.granularity())
13310143SN/A                fatal("Interleaving of %s doesn't match RoCoRaBaCh "
13410136SN/A                      "address map\n", name());
1359566SN/A        }
1369566SN/A    }
13710207Sandreas.hansson@arm.com
13810207Sandreas.hansson@arm.com    // some basic sanity checks
13910207Sandreas.hansson@arm.com    if (tREFI <= tRP || tREFI <= tRFC) {
14010207Sandreas.hansson@arm.com        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
14110207Sandreas.hansson@arm.com              tREFI, tRP, tRFC);
14210207Sandreas.hansson@arm.com    }
1439243SN/A}
1449243SN/A
1459243SN/Avoid
14610146Sandreas.hansson@arm.comDRAMCtrl::init()
14710140SN/A{
14810140SN/A    if (!port.isConnected()) {
14910146Sandreas.hansson@arm.com        fatal("DRAMCtrl %s is unconnected!\n", name());
15010140SN/A    } else {
15110140SN/A        port.sendRangeChange();
15210140SN/A    }
15310140SN/A}
15410140SN/A
15510140SN/Avoid
15610146Sandreas.hansson@arm.comDRAMCtrl::startup()
1579243SN/A{
15810143SN/A    // update the start tick for the precharge accounting to the
15910143SN/A    // current tick
16010208Sandreas.hansson@arm.com    pwrStateTick = curTick();
16110143SN/A
16210206Sandreas.hansson@arm.com    // shift the bus busy time sufficiently far ahead that we never
16310206Sandreas.hansson@arm.com    // have to worry about negative values when computing the time for
16410206Sandreas.hansson@arm.com    // the next request, this will add an insignificant bubble at the
16510206Sandreas.hansson@arm.com    // start of simulation
16610206Sandreas.hansson@arm.com    busBusyUntil = curTick() + tRP + tRCD + tCL;
16710206Sandreas.hansson@arm.com
1689243SN/A    // print the configuration of the controller
1699243SN/A    printParams();
1709243SN/A
17110207Sandreas.hansson@arm.com    // kick off the refresh, and give ourselves enough time to
17210207Sandreas.hansson@arm.com    // precharge
17310207Sandreas.hansson@arm.com    schedule(refreshEvent, curTick() + tREFI - tRP);
1749243SN/A}
1759243SN/A
1769243SN/ATick
17710146Sandreas.hansson@arm.comDRAMCtrl::recvAtomic(PacketPtr pkt)
1789243SN/A{
1799243SN/A    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
1809243SN/A
1819243SN/A    // do the actual memory access and turn the packet into a response
1829243SN/A    access(pkt);
1839243SN/A
1849243SN/A    Tick latency = 0;
1859243SN/A    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
1869243SN/A        // this value is not supposed to be accurate, just enough to
1879243SN/A        // keep things going, mimic a closed page
1889243SN/A        latency = tRP + tRCD + tCL;
1899243SN/A    }
1909243SN/A    return latency;
1919243SN/A}
1929243SN/A
1939243SN/Abool
19410146Sandreas.hansson@arm.comDRAMCtrl::readQueueFull(unsigned int neededEntries) const
1959243SN/A{
1969831SN/A    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
1979831SN/A            readBufferSize, readQueue.size() + respQueue.size(),
1989831SN/A            neededEntries);
1999243SN/A
2009831SN/A    return
2019831SN/A        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
2029243SN/A}
2039243SN/A
2049243SN/Abool
20510146Sandreas.hansson@arm.comDRAMCtrl::writeQueueFull(unsigned int neededEntries) const
2069243SN/A{
2079831SN/A    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
2089831SN/A            writeBufferSize, writeQueue.size(), neededEntries);
2099831SN/A    return (writeQueue.size() + neededEntries) > writeBufferSize;
2109243SN/A}
2119243SN/A
21210146Sandreas.hansson@arm.comDRAMCtrl::DRAMPacket*
21310146Sandreas.hansson@arm.comDRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
21410143SN/A                       bool isRead)
2159243SN/A{
2169669SN/A    // decode the address based on the address mapping scheme, with
21710136SN/A    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
21810136SN/A    // channel, respectively
2199243SN/A    uint8_t rank;
2209967SN/A    uint8_t bank;
2219243SN/A    uint16_t row;
2229243SN/A
2239243SN/A    // truncate the address to the access granularity
2249831SN/A    Addr addr = dramPktAddr / burstSize;
2259243SN/A
2269491SN/A    // we have removed the lowest order address bits that denote the
2279831SN/A    // position within the column
22810136SN/A    if (addrMapping == Enums::RoRaBaChCo) {
2299491SN/A        // the lowest order bits denote the column to ensure that
2309491SN/A        // sequential cache lines occupy the same row
2319831SN/A        addr = addr / columnsPerRowBuffer;
2329243SN/A
2339669SN/A        // take out the channel part of the address
2349566SN/A        addr = addr / channels;
2359566SN/A
2369669SN/A        // after the channel bits, get the bank bits to interleave
2379669SN/A        // over the banks
2389669SN/A        bank = addr % banksPerRank;
2399669SN/A        addr = addr / banksPerRank;
2409669SN/A
2419669SN/A        // after the bank, we get the rank bits which thus interleaves
2429669SN/A        // over the ranks
2439669SN/A        rank = addr % ranksPerChannel;
2449669SN/A        addr = addr / ranksPerChannel;
2459669SN/A
2469669SN/A        // lastly, get the row bits
2479669SN/A        row = addr % rowsPerBank;
2489669SN/A        addr = addr / rowsPerBank;
24910136SN/A    } else if (addrMapping == Enums::RoRaBaCoCh) {
2509669SN/A        // take out the channel part of the address
2519669SN/A        addr = addr / channels;
2529669SN/A
2539669SN/A        // next, the column
2549831SN/A        addr = addr / columnsPerRowBuffer;
2559669SN/A
2569669SN/A        // after the column bits, we get the bank bits to interleave
2579491SN/A        // over the banks
2589243SN/A        bank = addr % banksPerRank;
2599243SN/A        addr = addr / banksPerRank;
2609243SN/A
2619491SN/A        // after the bank, we get the rank bits which thus interleaves
2629491SN/A        // over the ranks
2639243SN/A        rank = addr % ranksPerChannel;
2649243SN/A        addr = addr / ranksPerChannel;
2659243SN/A
2669491SN/A        // lastly, get the row bits
2679243SN/A        row = addr % rowsPerBank;
2689243SN/A        addr = addr / rowsPerBank;
26910136SN/A    } else if (addrMapping == Enums::RoCoRaBaCh) {
2709491SN/A        // optimise for closed page mode and utilise maximum
2719491SN/A        // parallelism of the DRAM (at the cost of power)
2729491SN/A
2739566SN/A        // take out the channel part of the address, not that this has
2749566SN/A        // to match with how accesses are interleaved between the
2759566SN/A        // controllers in the address mapping
2769566SN/A        addr = addr / channels;
2779566SN/A
2789491SN/A        // start with the bank bits, as this provides the maximum
2799491SN/A        // opportunity for parallelism between requests
2809243SN/A        bank = addr % banksPerRank;
2819243SN/A        addr = addr / banksPerRank;
2829243SN/A
2839491SN/A        // next get the rank bits
2849243SN/A        rank = addr % ranksPerChannel;
2859243SN/A        addr = addr / ranksPerChannel;
2869243SN/A
2879491SN/A        // next the column bits which we do not need to keep track of
2889491SN/A        // and simply skip past
2899831SN/A        addr = addr / columnsPerRowBuffer;
2909243SN/A
2919491SN/A        // lastly, get the row bits
2929243SN/A        row = addr % rowsPerBank;
2939243SN/A        addr = addr / rowsPerBank;
2949243SN/A    } else
2959243SN/A        panic("Unknown address mapping policy chosen!");
2969243SN/A
2979243SN/A    assert(rank < ranksPerChannel);
2989243SN/A    assert(bank < banksPerRank);
2999243SN/A    assert(row < rowsPerBank);
3009243SN/A
3019243SN/A    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
3029831SN/A            dramPktAddr, rank, bank, row);
3039243SN/A
3049243SN/A    // create the corresponding DRAM packet with the entry time and
3059567SN/A    // ready time set to the current tick, the latter will be updated
3069567SN/A    // later
3079967SN/A    uint16_t bank_id = banksPerRank * rank + bank;
3089967SN/A    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
3099967SN/A                          size, banks[rank][bank]);
3109243SN/A}
3119243SN/A
3129243SN/Avoid
31310146Sandreas.hansson@arm.comDRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
3149243SN/A{
3159243SN/A    // only add to the read queue here. whenever the request is
3169243SN/A    // eventually done, set the readyTime, and call schedule()
3179243SN/A    assert(!pkt->isWrite());
3189243SN/A
3199831SN/A    assert(pktCount != 0);
3209831SN/A
3219831SN/A    // if the request size is larger than burst size, the pkt is split into
3229831SN/A    // multiple DRAM packets
3239831SN/A    // Note if the pkt starting address is not aligened to burst size, the
3249831SN/A    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
3259831SN/A    // are aligned to burst size boundaries. This is to ensure we accurately
3269831SN/A    // check read packets against packets in write queue.
3279243SN/A    Addr addr = pkt->getAddr();
3289831SN/A    unsigned pktsServicedByWrQ = 0;
3299831SN/A    BurstHelper* burst_helper = NULL;
3309831SN/A    for (int cnt = 0; cnt < pktCount; ++cnt) {
3319831SN/A        unsigned size = std::min((addr | (burstSize - 1)) + 1,
3329831SN/A                        pkt->getAddr() + pkt->getSize()) - addr;
3339831SN/A        readPktSize[ceilLog2(size)]++;
3349831SN/A        readBursts++;
3359243SN/A
3369831SN/A        // First check write buffer to see if the data is already at
3379831SN/A        // the controller
3389831SN/A        bool foundInWrQ = false;
3399833SN/A        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
3409832SN/A            // check if the read is subsumed in the write entry we are
3419832SN/A            // looking at
3429832SN/A            if ((*i)->addr <= addr &&
3439832SN/A                (addr + size) <= ((*i)->addr + (*i)->size)) {
3449831SN/A                foundInWrQ = true;
3459831SN/A                servicedByWrQ++;
3469831SN/A                pktsServicedByWrQ++;
3479831SN/A                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
3489831SN/A                        "write queue\n", addr, size);
3499975SN/A                bytesReadWrQ += burstSize;
3509831SN/A                break;
3519831SN/A            }
3529243SN/A        }
3539831SN/A
3549831SN/A        // If not found in the write q, make a DRAM packet and
3559831SN/A        // push it onto the read queue
3569831SN/A        if (!foundInWrQ) {
3579831SN/A
3589831SN/A            // Make the burst helper for split packets
3599831SN/A            if (pktCount > 1 && burst_helper == NULL) {
3609831SN/A                DPRINTF(DRAM, "Read to addr %lld translates to %d "
3619831SN/A                        "dram requests\n", pkt->getAddr(), pktCount);
3629831SN/A                burst_helper = new BurstHelper(pktCount);
3639831SN/A            }
3649831SN/A
3659966SN/A            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
3669831SN/A            dram_pkt->burstHelper = burst_helper;
3679831SN/A
3689831SN/A            assert(!readQueueFull(1));
3699831SN/A            rdQLenPdf[readQueue.size() + respQueue.size()]++;
3709831SN/A
3719831SN/A            DPRINTF(DRAM, "Adding to read queue\n");
3729831SN/A
3739831SN/A            readQueue.push_back(dram_pkt);
3749831SN/A
3759831SN/A            // Update stats
3769831SN/A            avgRdQLen = readQueue.size() + respQueue.size();
3779831SN/A        }
3789831SN/A
3799831SN/A        // Starting address of next dram pkt (aligend to burstSize boundary)
3809831SN/A        addr = (addr | (burstSize - 1)) + 1;
3819243SN/A    }
3829243SN/A
3839831SN/A    // If all packets are serviced by write queue, we send the repsonse back
3849831SN/A    if (pktsServicedByWrQ == pktCount) {
3859831SN/A        accessAndRespond(pkt, frontendLatency);
3869831SN/A        return;
3879831SN/A    }
3889243SN/A
3899831SN/A    // Update how many split packets are serviced by write queue
3909831SN/A    if (burst_helper != NULL)
3919831SN/A        burst_helper->burstsServiced = pktsServicedByWrQ;
3929243SN/A
39310206Sandreas.hansson@arm.com    // If we are not already scheduled to get a request out of the
39410206Sandreas.hansson@arm.com    // queue, do so now
39510206Sandreas.hansson@arm.com    if (!nextReqEvent.scheduled()) {
3969567SN/A        DPRINTF(DRAM, "Request scheduled immediately\n");
3979567SN/A        schedule(nextReqEvent, curTick());
3989243SN/A    }
3999243SN/A}
4009243SN/A
4019243SN/Avoid
40210146Sandreas.hansson@arm.comDRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
4039243SN/A{
4049243SN/A    // only add to the write queue here. whenever the request is
4059243SN/A    // eventually done, set the readyTime, and call schedule()
4069243SN/A    assert(pkt->isWrite());
4079243SN/A
4089831SN/A    // if the request size is larger than burst size, the pkt is split into
4099831SN/A    // multiple DRAM packets
4109831SN/A    Addr addr = pkt->getAddr();
4119831SN/A    for (int cnt = 0; cnt < pktCount; ++cnt) {
4129831SN/A        unsigned size = std::min((addr | (burstSize - 1)) + 1,
4139831SN/A                        pkt->getAddr() + pkt->getSize()) - addr;
4149831SN/A        writePktSize[ceilLog2(size)]++;
4159831SN/A        writeBursts++;
4169243SN/A
4179832SN/A        // see if we can merge with an existing item in the write
4189838SN/A        // queue and keep track of whether we have merged or not so we
4199838SN/A        // can stop at that point and also avoid enqueueing a new
4209838SN/A        // request
4219832SN/A        bool merged = false;
4229832SN/A        auto w = writeQueue.begin();
4239243SN/A
4249832SN/A        while(!merged && w != writeQueue.end()) {
4259832SN/A            // either of the two could be first, if they are the same
4269832SN/A            // it does not matter which way we go
4279832SN/A            if ((*w)->addr >= addr) {
4289838SN/A                // the existing one starts after the new one, figure
4299838SN/A                // out where the new one ends with respect to the
4309838SN/A                // existing one
4319832SN/A                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
4329832SN/A                    // check if the existing one is completely
4339832SN/A                    // subsumed in the new one
4349832SN/A                    DPRINTF(DRAM, "Merging write covering existing burst\n");
4359832SN/A                    merged = true;
4369832SN/A                    // update both the address and the size
4379832SN/A                    (*w)->addr = addr;
4389832SN/A                    (*w)->size = size;
4399832SN/A                } else if ((addr + size) >= (*w)->addr &&
4409832SN/A                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
4419832SN/A                    // the new one is just before or partially
4429832SN/A                    // overlapping with the existing one, and together
4439832SN/A                    // they fit within a burst
4449832SN/A                    DPRINTF(DRAM, "Merging write before existing burst\n");
4459832SN/A                    merged = true;
4469832SN/A                    // the existing queue item needs to be adjusted with
4479832SN/A                    // respect to both address and size
44810047SN/A                    (*w)->size = (*w)->addr + (*w)->size - addr;
4499832SN/A                    (*w)->addr = addr;
4509832SN/A                }
4519832SN/A            } else {
4529838SN/A                // the new one starts after the current one, figure
4539838SN/A                // out where the existing one ends with respect to the
4549838SN/A                // new one
4559832SN/A                if (((*w)->addr + (*w)->size) >= (addr + size)) {
4569832SN/A                    // check if the new one is completely subsumed in the
4579832SN/A                    // existing one
4589832SN/A                    DPRINTF(DRAM, "Merging write into existing burst\n");
4599832SN/A                    merged = true;
4609832SN/A                    // no adjustments necessary
4619832SN/A                } else if (((*w)->addr + (*w)->size) >= addr &&
4629832SN/A                           (addr + size - (*w)->addr) <= burstSize) {
4639832SN/A                    // the existing one is just before or partially
4649832SN/A                    // overlapping with the new one, and together
4659832SN/A                    // they fit within a burst
4669832SN/A                    DPRINTF(DRAM, "Merging write after existing burst\n");
4679832SN/A                    merged = true;
4689832SN/A                    // the address is right, and only the size has
4699832SN/A                    // to be adjusted
4709832SN/A                    (*w)->size = addr + size - (*w)->addr;
4719832SN/A                }
4729832SN/A            }
4739832SN/A            ++w;
4749832SN/A        }
4759243SN/A
4769832SN/A        // if the item was not merged we need to create a new write
4779832SN/A        // and enqueue it
4789832SN/A        if (!merged) {
4799966SN/A            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
4809243SN/A
4819832SN/A            assert(writeQueue.size() < writeBufferSize);
4829832SN/A            wrQLenPdf[writeQueue.size()]++;
4839243SN/A
4849832SN/A            DPRINTF(DRAM, "Adding to write queue\n");
4859831SN/A
4869832SN/A            writeQueue.push_back(dram_pkt);
4879831SN/A
4889832SN/A            // Update stats
4899832SN/A            avgWrQLen = writeQueue.size();
4909977SN/A        } else {
4919977SN/A            // keep track of the fact that this burst effectively
4929977SN/A            // disappeared as it was merged with an existing one
4939977SN/A            mergedWrBursts++;
4949832SN/A        }
4959832SN/A
4969831SN/A        // Starting address of next dram pkt (aligend to burstSize boundary)
4979831SN/A        addr = (addr | (burstSize - 1)) + 1;
4989831SN/A    }
4999243SN/A
5009243SN/A    // we do not wait for the writes to be send to the actual memory,
5019243SN/A    // but instead take responsibility for the consistency here and
5029243SN/A    // snoop the write queue for any upcoming reads
5039831SN/A    // @todo, if a pkt size is larger than burst size, we might need a
5049831SN/A    // different front end latency
5059726SN/A    accessAndRespond(pkt, frontendLatency);
5069243SN/A
50710206Sandreas.hansson@arm.com    // If we are not already scheduled to get a request out of the
50810206Sandreas.hansson@arm.com    // queue, do so now
50910206Sandreas.hansson@arm.com    if (!nextReqEvent.scheduled()) {
51010206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Request scheduled immediately\n");
51110206Sandreas.hansson@arm.com        schedule(nextReqEvent, curTick());
5129243SN/A    }
5139243SN/A}
5149243SN/A
5159243SN/Avoid
51610146Sandreas.hansson@arm.comDRAMCtrl::printParams() const
5179243SN/A{
5189243SN/A    // Sanity check print of important parameters
5199243SN/A    DPRINTF(DRAM,
5209243SN/A            "Memory controller %s physical organization\n"      \
5219831SN/A            "Number of devices per rank   %d\n"                 \
5229831SN/A            "Device bus width (in bits)   %d\n"                 \
52310143SN/A            "DRAM data bus burst (bytes)  %d\n"                 \
52410143SN/A            "Row buffer size (bytes)      %d\n"                 \
5259831SN/A            "Columns per row buffer       %d\n"                 \
5269831SN/A            "Rows    per bank             %d\n"                 \
5279831SN/A            "Banks   per rank             %d\n"                 \
5289831SN/A            "Ranks   per channel          %d\n"                 \
52910143SN/A            "Total mem capacity (bytes)   %u\n",
5309831SN/A            name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize,
5319831SN/A            columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel,
5329831SN/A            rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel);
5339243SN/A
5349243SN/A    string scheduler =  memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
53510136SN/A    string address_mapping = addrMapping == Enums::RoRaBaChCo ? "RoRaBaChCo" :
53610136SN/A        (addrMapping == Enums::RoRaBaCoCh ? "RoRaBaCoCh" : "RoCoRaBaCh");
5379973SN/A    string page_policy = pageMgmt == Enums::open ? "OPEN" :
53810144SN/A        (pageMgmt == Enums::open_adaptive ? "OPEN (adaptive)" :
53910144SN/A        (pageMgmt == Enums::close_adaptive ? "CLOSE (adaptive)" : "CLOSE"));
5409243SN/A
5419243SN/A    DPRINTF(DRAM,
5429243SN/A            "Memory controller %s characteristics\n"    \
5439243SN/A            "Read buffer size     %d\n"                 \
5449243SN/A            "Write buffer size    %d\n"                 \
54510140SN/A            "Write high thresh    %d\n"                 \
54610140SN/A            "Write low thresh     %d\n"                 \
5479243SN/A            "Scheduler            %s\n"                 \
5489243SN/A            "Address mapping      %s\n"                 \
5499243SN/A            "Page policy          %s\n",
5509972SN/A            name(), readBufferSize, writeBufferSize, writeHighThreshold,
55110140SN/A            writeLowThreshold, scheduler, address_mapping, page_policy);
5529243SN/A
5539243SN/A    DPRINTF(DRAM, "Memory controller %s timing specs\n" \
5549567SN/A            "tRCD      %d ticks\n"                        \
5559567SN/A            "tCL       %d ticks\n"                        \
5569567SN/A            "tRP       %d ticks\n"                        \
5579567SN/A            "tBURST    %d ticks\n"                        \
5589567SN/A            "tRFC      %d ticks\n"                        \
5599567SN/A            "tREFI     %d ticks\n"                        \
5609567SN/A            "tWTR      %d ticks\n"                        \
56110206Sandreas.hansson@arm.com            "tRTW      %d ticks\n"                        \
5629567SN/A            "tXAW (%d) %d ticks\n",
5639567SN/A            name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR,
56410206Sandreas.hansson@arm.com            tRTW, activationLimit, tXAW);
5659243SN/A}
5669243SN/A
5679243SN/Avoid
56810146Sandreas.hansson@arm.comDRAMCtrl::printQs() const {
5699243SN/A    DPRINTF(DRAM, "===READ QUEUE===\n\n");
5709833SN/A    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
5719243SN/A        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
5729243SN/A    }
5739243SN/A    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
5749833SN/A    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
5759243SN/A        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
5769243SN/A    }
5779243SN/A    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
5789833SN/A    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
5799243SN/A        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
5809243SN/A    }
5819243SN/A}
5829243SN/A
5839243SN/Abool
58410146Sandreas.hansson@arm.comDRAMCtrl::recvTimingReq(PacketPtr pkt)
5859243SN/A{
5869349SN/A    /// @todo temporary hack to deal with memory corruption issues until
5879349SN/A    /// 4-phase transactions are complete
5889349SN/A    for (int x = 0; x < pendingDelete.size(); x++)
5899349SN/A        delete pendingDelete[x];
5909349SN/A    pendingDelete.clear();
5919349SN/A
5929243SN/A    // This is where we enter from the outside world
5939567SN/A    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
5949831SN/A            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
5959243SN/A
5969567SN/A    // simply drop inhibited packets for now
5979567SN/A    if (pkt->memInhibitAsserted()) {
59810143SN/A        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
5999567SN/A        pendingDelete.push_back(pkt);
6009567SN/A        return true;
6019567SN/A    }
6029243SN/A
6039243SN/A    // Calc avg gap between requests
6049243SN/A    if (prevArrival != 0) {
6059243SN/A        totGap += curTick() - prevArrival;
6069243SN/A    }
6079243SN/A    prevArrival = curTick();
6089243SN/A
6099831SN/A
6109831SN/A    // Find out how many dram packets a pkt translates to
6119831SN/A    // If the burst size is equal or larger than the pkt size, then a pkt
6129831SN/A    // translates to only one dram packet. Otherwise, a pkt translates to
6139831SN/A    // multiple dram packets
6149243SN/A    unsigned size = pkt->getSize();
6159831SN/A    unsigned offset = pkt->getAddr() & (burstSize - 1);
6169831SN/A    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
6179243SN/A
6189243SN/A    // check local buffers and do not accept if full
6199243SN/A    if (pkt->isRead()) {
6209567SN/A        assert(size != 0);
6219831SN/A        if (readQueueFull(dram_pkt_count)) {
6229567SN/A            DPRINTF(DRAM, "Read queue full, not accepting\n");
6239243SN/A            // remember that we have to retry this port
6249243SN/A            retryRdReq = true;
6259243SN/A            numRdRetry++;
6269243SN/A            return false;
6279243SN/A        } else {
6289831SN/A            addToReadQueue(pkt, dram_pkt_count);
6299243SN/A            readReqs++;
6309977SN/A            bytesReadSys += size;
6319243SN/A        }
6329243SN/A    } else if (pkt->isWrite()) {
6339567SN/A        assert(size != 0);
6349831SN/A        if (writeQueueFull(dram_pkt_count)) {
6359567SN/A            DPRINTF(DRAM, "Write queue full, not accepting\n");
6369243SN/A            // remember that we have to retry this port
6379243SN/A            retryWrReq = true;
6389243SN/A            numWrRetry++;
6399243SN/A            return false;
6409243SN/A        } else {
6419831SN/A            addToWriteQueue(pkt, dram_pkt_count);
6429243SN/A            writeReqs++;
6439977SN/A            bytesWrittenSys += size;
6449243SN/A        }
6459243SN/A    } else {
6469243SN/A        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
6479243SN/A        neitherReadNorWrite++;
6489726SN/A        accessAndRespond(pkt, 1);
6499243SN/A    }
6509243SN/A
6519243SN/A    return true;
6529243SN/A}
6539243SN/A
6549243SN/Avoid
65510146Sandreas.hansson@arm.comDRAMCtrl::processRespondEvent()
6569243SN/A{
6579243SN/A    DPRINTF(DRAM,
6589243SN/A            "processRespondEvent(): Some req has reached its readyTime\n");
6599243SN/A
6609831SN/A    DRAMPacket* dram_pkt = respQueue.front();
6619243SN/A
6629831SN/A    if (dram_pkt->burstHelper) {
6639831SN/A        // it is a split packet
6649831SN/A        dram_pkt->burstHelper->burstsServiced++;
6659831SN/A        if (dram_pkt->burstHelper->burstsServiced ==
66610143SN/A            dram_pkt->burstHelper->burstCount) {
6679831SN/A            // we have now serviced all children packets of a system packet
6689831SN/A            // so we can now respond to the requester
6699831SN/A            // @todo we probably want to have a different front end and back
6709831SN/A            // end latency for split packets
6719831SN/A            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
6729831SN/A            delete dram_pkt->burstHelper;
6739831SN/A            dram_pkt->burstHelper = NULL;
6749831SN/A        }
6759831SN/A    } else {
6769831SN/A        // it is not a split packet
6779831SN/A        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
6789831SN/A    }
6799243SN/A
6809831SN/A    delete respQueue.front();
6819831SN/A    respQueue.pop_front();
6829243SN/A
6839831SN/A    if (!respQueue.empty()) {
6849831SN/A        assert(respQueue.front()->readyTime >= curTick());
6859831SN/A        assert(!respondEvent.scheduled());
6869831SN/A        schedule(respondEvent, respQueue.front()->readyTime);
6879831SN/A    } else {
6889831SN/A        // if there is nothing left in any queue, signal a drain
6899831SN/A        if (writeQueue.empty() && readQueue.empty() &&
6909831SN/A            drainManager) {
6919831SN/A            drainManager->signalDrainDone();
6929831SN/A            drainManager = NULL;
6939831SN/A        }
6949831SN/A    }
6959567SN/A
6969831SN/A    // We have made a location in the queue available at this point,
6979831SN/A    // so if there is a read that was forced to wait, retry now
6989831SN/A    if (retryRdReq) {
6999831SN/A        retryRdReq = false;
7009831SN/A        port.sendRetry();
7019831SN/A    }
7029243SN/A}
7039243SN/A
7049243SN/Avoid
70510206Sandreas.hansson@arm.comDRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue)
7069243SN/A{
70710206Sandreas.hansson@arm.com    // This method does the arbitration between requests. The chosen
70810206Sandreas.hansson@arm.com    // packet is simply moved to the head of the queue. The other
70910206Sandreas.hansson@arm.com    // methods know that this is the place to look. For example, with
71010206Sandreas.hansson@arm.com    // FCFS, this method does nothing
71110206Sandreas.hansson@arm.com    assert(!queue.empty());
7129243SN/A
71310206Sandreas.hansson@arm.com    if (queue.size() == 1) {
71410206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Single request, nothing to do\n");
7159243SN/A        return;
7169243SN/A    }
7179243SN/A
7189243SN/A    if (memSchedPolicy == Enums::fcfs) {
7199243SN/A        // Do nothing, since the correct request is already head
7209243SN/A    } else if (memSchedPolicy == Enums::frfcfs) {
72110206Sandreas.hansson@arm.com        reorderQueue(queue);
7229243SN/A    } else
7239243SN/A        panic("No scheduling policy chosen\n");
7249243SN/A}
7259243SN/A
7269243SN/Avoid
72710146Sandreas.hansson@arm.comDRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue)
7289974SN/A{
7299974SN/A    // Only determine this when needed
7309974SN/A    uint64_t earliest_banks = 0;
7319974SN/A
7329974SN/A    // Search for row hits first, if no row hit is found then schedule the
7339974SN/A    // packet to one of the earliest banks available
7349974SN/A    bool found_earliest_pkt = false;
7359974SN/A    auto selected_pkt_it = queue.begin();
7369974SN/A
7379974SN/A    for (auto i = queue.begin(); i != queue.end() ; ++i) {
7389974SN/A        DRAMPacket* dram_pkt = *i;
7399974SN/A        const Bank& bank = dram_pkt->bankRef;
7409974SN/A        // Check if it is a row hit
7419974SN/A        if (bank.openRow == dram_pkt->row) {
7429974SN/A            DPRINTF(DRAM, "Row buffer hit\n");
7439974SN/A            selected_pkt_it = i;
7449974SN/A            break;
7459974SN/A        } else if (!found_earliest_pkt) {
7469974SN/A            // No row hit, go for first ready
7479974SN/A            if (earliest_banks == 0)
7489974SN/A                earliest_banks = minBankFreeAt(queue);
7499974SN/A
7509974SN/A            // Bank is ready or is the first available bank
7519974SN/A            if (bank.freeAt <= curTick() ||
7529974SN/A                bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
7539974SN/A                // Remember the packet to be scheduled to one of the earliest
7549974SN/A                // banks available
7559974SN/A                selected_pkt_it = i;
7569974SN/A                found_earliest_pkt = true;
7579974SN/A            }
7589974SN/A        }
7599974SN/A    }
7609974SN/A
7619974SN/A    DRAMPacket* selected_pkt = *selected_pkt_it;
7629974SN/A    queue.erase(selected_pkt_it);
7639974SN/A    queue.push_front(selected_pkt);
7649974SN/A}
7659974SN/A
7669974SN/Avoid
76710146Sandreas.hansson@arm.comDRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
7689243SN/A{
7699243SN/A    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
7709243SN/A
7719243SN/A    bool needsResponse = pkt->needsResponse();
7729243SN/A    // do the actual memory access which also turns the packet into a
7739243SN/A    // response
7749243SN/A    access(pkt);
7759243SN/A
7769243SN/A    // turn packet around to go back to requester if response expected
7779243SN/A    if (needsResponse) {
7789243SN/A        // access already turned the packet into a response
7799243SN/A        assert(pkt->isResponse());
7809243SN/A
7819549SN/A        // @todo someone should pay for this
7829549SN/A        pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
7839549SN/A
7849726SN/A        // queue the packet in the response queue to be sent out after
7859726SN/A        // the static latency has passed
7869726SN/A        port.schedTimingResp(pkt, curTick() + static_latency);
7879243SN/A    } else {
7889587SN/A        // @todo the packet is going to be deleted, and the DRAMPacket
7899587SN/A        // is still having a pointer to it
7909587SN/A        pendingDelete.push_back(pkt);
7919243SN/A    }
7929243SN/A
7939243SN/A    DPRINTF(DRAM, "Done\n");
7949243SN/A
7959243SN/A    return;
7969243SN/A}
7979243SN/A
7989243SN/Apair<Tick, Tick>
79910146Sandreas.hansson@arm.comDRAMCtrl::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
8009243SN/A{
8019243SN/A    // If a request reaches a bank at tick 'inTime', how much time
8029243SN/A    // *after* that does it take to finish the request, depending
8039243SN/A    // on bank status and page open policy. Note that this method
8049243SN/A    // considers only the time taken for the actual read or write
8059243SN/A    // to complete, NOT any additional time thereafter for tRAS or
8069243SN/A    // tRP.
8079243SN/A    Tick accLat = 0;
8089243SN/A    Tick bankLat = 0;
8099243SN/A    rowHitFlag = false;
8109969SN/A    Tick potentialActTick;
8119243SN/A
8129967SN/A    const Bank& bank = dram_pkt->bankRef;
8139243SN/A
81410209Sandreas.hansson@arm.com    if (bank.openRow == dram_pkt->row) {
81510209Sandreas.hansson@arm.com        // When we have a row-buffer hit,
81610209Sandreas.hansson@arm.com        // we don't care about tRAS having expired or not,
81710209Sandreas.hansson@arm.com        // but do care about bank being free for access
81810209Sandreas.hansson@arm.com        rowHitFlag = true;
8199243SN/A
82010209Sandreas.hansson@arm.com        // When a series of requests arrive to the same row,
82110209Sandreas.hansson@arm.com        // DDR systems are capable of streaming data continuously
82210209Sandreas.hansson@arm.com        // at maximum bandwidth (subject to tCCD). Here, we approximate
82310209Sandreas.hansson@arm.com        // this condition, and assume that if whenever a bank is already
82410209Sandreas.hansson@arm.com        // busy and a new request comes in, it can be completed with no
82510209Sandreas.hansson@arm.com        // penalty beyond waiting for the existing read to complete.
82610209Sandreas.hansson@arm.com        if (bank.freeAt > inTime) {
82710209Sandreas.hansson@arm.com            accLat += bank.freeAt - inTime;
82810209Sandreas.hansson@arm.com            bankLat += 0;
8299243SN/A        } else {
83010209Sandreas.hansson@arm.com            // CAS latency only
83110209Sandreas.hansson@arm.com            accLat += tCL;
83210209Sandreas.hansson@arm.com            bankLat += tCL;
83310209Sandreas.hansson@arm.com        }
83410209Sandreas.hansson@arm.com    } else {
83510209Sandreas.hansson@arm.com        // Row-buffer miss, need to close existing row
83610209Sandreas.hansson@arm.com        // once tRAS has expired, then open the new one,
83710209Sandreas.hansson@arm.com        // then add cas latency.
83810209Sandreas.hansson@arm.com        Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
8399243SN/A
84010209Sandreas.hansson@arm.com        if (freeTime > inTime)
84110209Sandreas.hansson@arm.com            accLat += freeTime - inTime;
8429243SN/A
84310209Sandreas.hansson@arm.com        // If the there is no open row, then there is no precharge
84410209Sandreas.hansson@arm.com        // delay, otherwise go with tRP
84510209Sandreas.hansson@arm.com        Tick precharge_delay = bank.openRow == Bank::NO_ROW ? 0 : tRP;
8469243SN/A
8479969SN/A        //The bank is free, and you may be able to activate
84810209Sandreas.hansson@arm.com        potentialActTick = inTime + accLat + precharge_delay;
8499969SN/A        if (potentialActTick < bank.actAllowedAt)
8509969SN/A            accLat += bank.actAllowedAt - potentialActTick;
8519969SN/A
85210209Sandreas.hansson@arm.com        accLat += precharge_delay + tRCD + tCL;
85310209Sandreas.hansson@arm.com        bankLat += precharge_delay + tRCD + tCL;
85410209Sandreas.hansson@arm.com    }
8559243SN/A
8569487SN/A    DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n",
8579487SN/A            bankLat, accLat);
8589243SN/A
8599243SN/A    return make_pair(bankLat, accLat);
8609243SN/A}
8619243SN/A
8629243SN/Avoid
86310207Sandreas.hansson@arm.comDRAMCtrl::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank,
86410207Sandreas.hansson@arm.com                         uint16_t row)
8659488SN/A{
8669969SN/A    assert(0 <= rank && rank < ranksPerChannel);
8679969SN/A    assert(actTicks[rank].size() == activationLimit);
8689488SN/A
8699488SN/A    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
8709488SN/A
87110207Sandreas.hansson@arm.com    // update the open row
87210207Sandreas.hansson@arm.com    assert(banks[rank][bank].openRow == Bank::NO_ROW);
87310207Sandreas.hansson@arm.com    banks[rank][bank].openRow = row;
87410207Sandreas.hansson@arm.com
87510207Sandreas.hansson@arm.com    // start counting anew, this covers both the case when we
87610207Sandreas.hansson@arm.com    // auto-precharged, and when this access is forced to
87710207Sandreas.hansson@arm.com    // precharge
87810207Sandreas.hansson@arm.com    banks[rank][bank].bytesAccessed = 0;
87910207Sandreas.hansson@arm.com    banks[rank][bank].rowAccesses = 0;
88010207Sandreas.hansson@arm.com
88110207Sandreas.hansson@arm.com    ++numBanksActive;
88210207Sandreas.hansson@arm.com    assert(numBanksActive <= banksPerRank * ranksPerChannel);
88310207Sandreas.hansson@arm.com
88410207Sandreas.hansson@arm.com    DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n",
88510207Sandreas.hansson@arm.com            act_tick, numBanksActive);
8869975SN/A
8879971SN/A    // start by enforcing tRRD
8889971SN/A    for(int i = 0; i < banksPerRank; i++) {
8899971SN/A        // next activate must not happen before tRRD
8909971SN/A        banks[rank][i].actAllowedAt = act_tick + tRRD;
8919971SN/A    }
89210208Sandreas.hansson@arm.com
8939971SN/A    // tRC should be added to activation tick of the bank currently accessed,
8949971SN/A    // where tRC = tRAS + tRP, this is just for a check as actAllowedAt for same
8959971SN/A    // bank is already captured by bank.freeAt and bank.tRASDoneAt
8969971SN/A    banks[rank][bank].actAllowedAt = act_tick + tRAS + tRP;
8979971SN/A
8989971SN/A    // next, we deal with tXAW, if the activation limit is disabled
8999971SN/A    // then we are done
9009969SN/A    if (actTicks[rank].empty())
9019824SN/A        return;
9029824SN/A
9039488SN/A    // sanity check
9049969SN/A    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
9059825SN/A        // @todo For now, stick with a warning
9069825SN/A        warn("Got %d activates in window %d (%d - %d) which is smaller "
9079969SN/A             "than %d\n", activationLimit, act_tick - actTicks[rank].back(),
9089969SN/A             act_tick, actTicks[rank].back(), tXAW);
9099488SN/A    }
9109488SN/A
9119488SN/A    // shift the times used for the book keeping, the last element
9129488SN/A    // (highest index) is the oldest one and hence the lowest value
9139969SN/A    actTicks[rank].pop_back();
9149488SN/A
9159488SN/A    // record an new activation (in the future)
9169969SN/A    actTicks[rank].push_front(act_tick);
9179488SN/A
9189488SN/A    // cannot activate more than X times in time window tXAW, push the
9199488SN/A    // next one (the X + 1'st activate) to be tXAW away from the
9209488SN/A    // oldest in our window of X
9219969SN/A    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
9229488SN/A        DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
9239969SN/A                "than %d\n", activationLimit, actTicks[rank].back() + tXAW);
9249488SN/A            for(int j = 0; j < banksPerRank; j++)
9259488SN/A                // next activate must not happen before end of window
9269969SN/A                banks[rank][j].actAllowedAt = actTicks[rank].back() + tXAW;
9279488SN/A    }
92810208Sandreas.hansson@arm.com
92910208Sandreas.hansson@arm.com    // at the point when this activate takes place, make sure we
93010208Sandreas.hansson@arm.com    // transition to the active power state
93110208Sandreas.hansson@arm.com    if (!activateEvent.scheduled())
93210208Sandreas.hansson@arm.com        schedule(activateEvent, act_tick);
93310208Sandreas.hansson@arm.com    else if (activateEvent.when() > act_tick)
93410208Sandreas.hansson@arm.com        // move it sooner in time
93510208Sandreas.hansson@arm.com        reschedule(activateEvent, act_tick);
93610208Sandreas.hansson@arm.com}
93710208Sandreas.hansson@arm.com
93810208Sandreas.hansson@arm.comvoid
93910208Sandreas.hansson@arm.comDRAMCtrl::processActivateEvent()
94010208Sandreas.hansson@arm.com{
94110208Sandreas.hansson@arm.com    // we should transition to the active state as soon as any bank is active
94210208Sandreas.hansson@arm.com    if (pwrState != PWR_ACT)
94310208Sandreas.hansson@arm.com        // note that at this point numBanksActive could be back at
94410208Sandreas.hansson@arm.com        // zero again due to a precharge scheduled in the future
94510208Sandreas.hansson@arm.com        schedulePowerEvent(PWR_ACT, curTick());
9469488SN/A}
9479488SN/A
9489488SN/Avoid
94910207Sandreas.hansson@arm.comDRAMCtrl::prechargeBank(Bank& bank, Tick free_at)
95010207Sandreas.hansson@arm.com{
95110207Sandreas.hansson@arm.com    // make sure the bank has an open row
95210207Sandreas.hansson@arm.com    assert(bank.openRow != Bank::NO_ROW);
95310207Sandreas.hansson@arm.com
95410207Sandreas.hansson@arm.com    // sample the bytes per activate here since we are closing
95510207Sandreas.hansson@arm.com    // the page
95610207Sandreas.hansson@arm.com    bytesPerActivate.sample(bank.bytesAccessed);
95710207Sandreas.hansson@arm.com
95810207Sandreas.hansson@arm.com    bank.openRow = Bank::NO_ROW;
95910207Sandreas.hansson@arm.com
96010207Sandreas.hansson@arm.com    bank.freeAt = free_at;
96110207Sandreas.hansson@arm.com
96210207Sandreas.hansson@arm.com    assert(numBanksActive != 0);
96310207Sandreas.hansson@arm.com    --numBanksActive;
96410207Sandreas.hansson@arm.com
96510207Sandreas.hansson@arm.com    DPRINTF(DRAM, "Precharged bank, done at tick %lld, now got %d active\n",
96610207Sandreas.hansson@arm.com            bank.freeAt, numBanksActive);
96710207Sandreas.hansson@arm.com
96810208Sandreas.hansson@arm.com    // if we look at the current number of active banks we might be
96910208Sandreas.hansson@arm.com    // tempted to think the DRAM is now idle, however this can be
97010208Sandreas.hansson@arm.com    // undone by an activate that is scheduled to happen before we
97110208Sandreas.hansson@arm.com    // would have reached the idle state, so schedule an event and
97210208Sandreas.hansson@arm.com    // rather check once we actually make it to the point in time when
97310208Sandreas.hansson@arm.com    // the (last) precharge takes place
97410208Sandreas.hansson@arm.com    if (!prechargeEvent.scheduled())
97510208Sandreas.hansson@arm.com        schedule(prechargeEvent, free_at);
97610208Sandreas.hansson@arm.com    else if (prechargeEvent.when() < free_at)
97710208Sandreas.hansson@arm.com        reschedule(prechargeEvent, free_at);
97810208Sandreas.hansson@arm.com}
97910208Sandreas.hansson@arm.com
98010208Sandreas.hansson@arm.comvoid
98110208Sandreas.hansson@arm.comDRAMCtrl::processPrechargeEvent()
98210208Sandreas.hansson@arm.com{
98310207Sandreas.hansson@arm.com    // if we reached zero, then special conditions apply as we track
98410207Sandreas.hansson@arm.com    // if all banks are precharged for the power models
98510207Sandreas.hansson@arm.com    if (numBanksActive == 0) {
98610208Sandreas.hansson@arm.com        // we should transition to the idle state when the last bank
98710208Sandreas.hansson@arm.com        // is precharged
98810208Sandreas.hansson@arm.com        schedulePowerEvent(PWR_IDLE, curTick());
98910207Sandreas.hansson@arm.com    }
99010207Sandreas.hansson@arm.com}
99110207Sandreas.hansson@arm.com
99210207Sandreas.hansson@arm.comvoid
99310146Sandreas.hansson@arm.comDRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
9949243SN/A{
9959243SN/A
9969243SN/A    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
9979243SN/A            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
9989243SN/A
9999243SN/A    // estimate the bank and access latency
10009243SN/A    pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
10019243SN/A    Tick bankLat = lat.first;
10029243SN/A    Tick accessLat = lat.second;
10039963SN/A    Tick actTick;
10049243SN/A
10059243SN/A    // This request was woken up at this time based on a prior call
10069243SN/A    // to estimateLatency(). However, between then and now, both the
10079243SN/A    // accessLatency and/or busBusyUntil may have changed. We need
10089243SN/A    // to correct for that.
10099243SN/A
10109243SN/A    Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
10119243SN/A        busBusyUntil - (curTick() + accessLat) : 0;
10129243SN/A
10139967SN/A    Bank& bank = dram_pkt->bankRef;
10149243SN/A
10159243SN/A    // Update bank state
101610209Sandreas.hansson@arm.com    if (rowHitFlag) {
101710209Sandreas.hansson@arm.com        bank.freeAt = curTick() + addDelay + accessLat;
101810209Sandreas.hansson@arm.com    } else {
101910209Sandreas.hansson@arm.com        // If there is a page open, precharge it.
102010209Sandreas.hansson@arm.com        if (bank.openRow != Bank::NO_ROW) {
102110209Sandreas.hansson@arm.com            prechargeBank(bank, std::max(std::max(bank.freeAt,
102210209Sandreas.hansson@arm.com                                                  bank.tRASDoneAt),
102310209Sandreas.hansson@arm.com                                         curTick()) + tRP);
10249488SN/A        }
10259973SN/A
102610209Sandreas.hansson@arm.com        // Any precharge is already part of the latency
102710209Sandreas.hansson@arm.com        // estimation, so update the bank free time
102810209Sandreas.hansson@arm.com        bank.freeAt = curTick() + addDelay + accessLat;
102910141SN/A
103010209Sandreas.hansson@arm.com        // any waiting for banks account for in freeAt
103110209Sandreas.hansson@arm.com        actTick = bank.freeAt - tCL - tRCD;
103210141SN/A
103310209Sandreas.hansson@arm.com        // If you activated a new row do to this access, the next access
103410209Sandreas.hansson@arm.com        // will have to respect tRAS for this bank
103510209Sandreas.hansson@arm.com        bank.tRASDoneAt = actTick + tRAS;
10369973SN/A
103710209Sandreas.hansson@arm.com        recordActivate(actTick, dram_pkt->rank, dram_pkt->bank,
103810209Sandreas.hansson@arm.com                       dram_pkt->row);
103910209Sandreas.hansson@arm.com    }
104010209Sandreas.hansson@arm.com
104110209Sandreas.hansson@arm.com    // increment the bytes accessed and the accesses per row
104210209Sandreas.hansson@arm.com    bank.bytesAccessed += burstSize;
104310209Sandreas.hansson@arm.com    ++bank.rowAccesses;
104410209Sandreas.hansson@arm.com
104510209Sandreas.hansson@arm.com    // if we reached the max, then issue with an auto-precharge
104610209Sandreas.hansson@arm.com    bool auto_precharge = pageMgmt == Enums::close ||
104710209Sandreas.hansson@arm.com        bank.rowAccesses == maxAccessesPerRow;
104810209Sandreas.hansson@arm.com
104910209Sandreas.hansson@arm.com    // if we did not hit the limit, we might still want to
105010209Sandreas.hansson@arm.com    // auto-precharge
105110209Sandreas.hansson@arm.com    if (!auto_precharge &&
105210209Sandreas.hansson@arm.com        (pageMgmt == Enums::open_adaptive ||
105310209Sandreas.hansson@arm.com         pageMgmt == Enums::close_adaptive)) {
105410209Sandreas.hansson@arm.com        // a twist on the open and close page policies:
105510209Sandreas.hansson@arm.com        // 1) open_adaptive page policy does not blindly keep the
105610209Sandreas.hansson@arm.com        // page open, but close it if there are no row hits, and there
105710209Sandreas.hansson@arm.com        // are bank conflicts in the queue
105810209Sandreas.hansson@arm.com        // 2) close_adaptive page policy does not blindly close the
105910209Sandreas.hansson@arm.com        // page, but closes it only if there are no row hits in the queue.
106010209Sandreas.hansson@arm.com        // In this case, only force an auto precharge when there
106110209Sandreas.hansson@arm.com        // are no same page hits in the queue
106210209Sandreas.hansson@arm.com        bool got_more_hits = false;
106310209Sandreas.hansson@arm.com        bool got_bank_conflict = false;
106410209Sandreas.hansson@arm.com
106510209Sandreas.hansson@arm.com        // either look at the read queue or write queue
106610209Sandreas.hansson@arm.com        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
106710209Sandreas.hansson@arm.com            writeQueue;
106810209Sandreas.hansson@arm.com        auto p = queue.begin();
106910209Sandreas.hansson@arm.com        // make sure we are not considering the packet that we are
107010209Sandreas.hansson@arm.com        // currently dealing with (which is the head of the queue)
107110209Sandreas.hansson@arm.com        ++p;
107210209Sandreas.hansson@arm.com
107310209Sandreas.hansson@arm.com        // keep on looking until we have found required condition or
107410209Sandreas.hansson@arm.com        // reached the end
107510209Sandreas.hansson@arm.com        while (!(got_more_hits &&
107610209Sandreas.hansson@arm.com                 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
107710209Sandreas.hansson@arm.com               p != queue.end()) {
107810209Sandreas.hansson@arm.com            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
107910209Sandreas.hansson@arm.com                (dram_pkt->bank == (*p)->bank);
108010209Sandreas.hansson@arm.com            bool same_row = dram_pkt->row == (*p)->row;
108110209Sandreas.hansson@arm.com            got_more_hits |= same_rank_bank && same_row;
108210209Sandreas.hansson@arm.com            got_bank_conflict |= same_rank_bank && !same_row;
10839973SN/A            ++p;
108410141SN/A        }
108510141SN/A
108610209Sandreas.hansson@arm.com        // auto pre-charge when either
108710209Sandreas.hansson@arm.com        // 1) open_adaptive policy, we have not got any more hits, and
108810209Sandreas.hansson@arm.com        //    have a bank conflict
108910209Sandreas.hansson@arm.com        // 2) close_adaptive policy and we have not got any more hits
109010209Sandreas.hansson@arm.com        auto_precharge = !got_more_hits &&
109110209Sandreas.hansson@arm.com            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
109210209Sandreas.hansson@arm.com    }
109310142SN/A
109410209Sandreas.hansson@arm.com    // if this access should use auto-precharge, then we are
109510209Sandreas.hansson@arm.com    // closing the row
109610209Sandreas.hansson@arm.com    if (auto_precharge) {
109710209Sandreas.hansson@arm.com        prechargeBank(bank, std::max(bank.freeAt, bank.tRASDoneAt) + tRP);
10989973SN/A
109910209Sandreas.hansson@arm.com        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
110010209Sandreas.hansson@arm.com    }
11019963SN/A
110210209Sandreas.hansson@arm.com    DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
11039243SN/A
11049243SN/A    // Update request parameters
11059243SN/A    dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
11069243SN/A
11079243SN/A    DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
11089243SN/A                  "readytime is %lld busbusyuntil is %lld. " \
11099243SN/A                  "Scheduling at readyTime\n", dram_pkt->addr,
11109243SN/A                   curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
11119243SN/A
11129243SN/A    // Make sure requests are not overlapping on the databus
111310206Sandreas.hansson@arm.com    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
11149243SN/A
11159243SN/A    // Update bus state
11169243SN/A    busBusyUntil = dram_pkt->readyTime;
11179243SN/A
11189243SN/A    DPRINTF(DRAM,"Access time is %lld\n",
11199243SN/A            dram_pkt->readyTime - dram_pkt->entryTime);
11209243SN/A
112110206Sandreas.hansson@arm.com    // Update the minimum timing between the requests, this is a
112210206Sandreas.hansson@arm.com    // conservative estimate of when we have to schedule the next
112310206Sandreas.hansson@arm.com    // request to not introduce any unecessary bubbles. In most cases
112410206Sandreas.hansson@arm.com    // we will wake up sooner than we have to.
112510206Sandreas.hansson@arm.com    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
11269972SN/A
112710206Sandreas.hansson@arm.com    // Update the stats and schedule the next request
11289977SN/A    if (dram_pkt->isRead) {
112910147Sandreas.hansson@arm.com        ++readsThisTime;
11309977SN/A        if (rowHitFlag)
11319977SN/A            readRowHits++;
11329977SN/A        bytesReadDRAM += burstSize;
11339977SN/A        perBankRdBursts[dram_pkt->bankId]++;
113410206Sandreas.hansson@arm.com
113510206Sandreas.hansson@arm.com        // Update latency stats
113610206Sandreas.hansson@arm.com        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
113710206Sandreas.hansson@arm.com        totBankLat += bankLat;
113810206Sandreas.hansson@arm.com        totBusLat += tBURST;
113910206Sandreas.hansson@arm.com        totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat -
114010206Sandreas.hansson@arm.com            tBURST;
11419977SN/A    } else {
114210147Sandreas.hansson@arm.com        ++writesThisTime;
11439977SN/A        if (rowHitFlag)
11449977SN/A            writeRowHits++;
11459977SN/A        bytesWritten += burstSize;
11469977SN/A        perBankWrBursts[dram_pkt->bankId]++;
11479243SN/A    }
11489243SN/A}
11499243SN/A
11509243SN/Avoid
115110146Sandreas.hansson@arm.comDRAMCtrl::moveToRespQ()
11529243SN/A{
11539243SN/A    // Remove from read queue
11549567SN/A    DRAMPacket* dram_pkt = readQueue.front();
11559567SN/A    readQueue.pop_front();
11569243SN/A
11579832SN/A    // sanity check
11589832SN/A    assert(dram_pkt->size <= burstSize);
11599832SN/A
11609243SN/A    // Insert into response queue sorted by readyTime
11619243SN/A    // It will be sent back to the requestor at its
11629243SN/A    // readyTime
11639567SN/A    if (respQueue.empty()) {
11649567SN/A        respQueue.push_front(dram_pkt);
11659243SN/A        assert(!respondEvent.scheduled());
11669243SN/A        assert(dram_pkt->readyTime >= curTick());
11679567SN/A        schedule(respondEvent, dram_pkt->readyTime);
11689243SN/A    } else {
11699243SN/A        bool done = false;
11709833SN/A        auto i = respQueue.begin();
11719567SN/A        while (!done && i != respQueue.end()) {
11729243SN/A            if ((*i)->readyTime > dram_pkt->readyTime) {
11739567SN/A                respQueue.insert(i, dram_pkt);
11749243SN/A                done = true;
11759243SN/A            }
11769243SN/A            ++i;
11779243SN/A        }
11789243SN/A
11799243SN/A        if (!done)
11809567SN/A            respQueue.push_back(dram_pkt);
11819243SN/A
11829243SN/A        assert(respondEvent.scheduled());
11839243SN/A
11849567SN/A        if (respQueue.front()->readyTime < respondEvent.when()) {
11859567SN/A            assert(respQueue.front()->readyTime >= curTick());
11869567SN/A            reschedule(respondEvent, respQueue.front()->readyTime);
11879243SN/A        }
11889243SN/A    }
11899243SN/A}
11909243SN/A
11919243SN/Avoid
119210206Sandreas.hansson@arm.comDRAMCtrl::processNextReqEvent()
11939243SN/A{
119410206Sandreas.hansson@arm.com    if (busState == READ_TO_WRITE) {
119510206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
119610206Sandreas.hansson@arm.com                "waiting\n", readsThisTime, readQueue.size());
11979243SN/A
119810206Sandreas.hansson@arm.com        // sample and reset the read-related stats as we are now
119910206Sandreas.hansson@arm.com        // transitioning to writes, and all reads are done
120010206Sandreas.hansson@arm.com        rdPerTurnAround.sample(readsThisTime);
120110206Sandreas.hansson@arm.com        readsThisTime = 0;
120210206Sandreas.hansson@arm.com
120310206Sandreas.hansson@arm.com        // now proceed to do the actual writes
120410206Sandreas.hansson@arm.com        busState = WRITE;
120510206Sandreas.hansson@arm.com    } else if (busState == WRITE_TO_READ) {
120610206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
120710206Sandreas.hansson@arm.com                "waiting\n", writesThisTime, writeQueue.size());
120810206Sandreas.hansson@arm.com
120910206Sandreas.hansson@arm.com        wrPerTurnAround.sample(writesThisTime);
121010206Sandreas.hansson@arm.com        writesThisTime = 0;
121110206Sandreas.hansson@arm.com
121210206Sandreas.hansson@arm.com        busState = READ;
121310206Sandreas.hansson@arm.com    }
121410206Sandreas.hansson@arm.com
121510207Sandreas.hansson@arm.com    if (refreshState != REF_IDLE) {
121610207Sandreas.hansson@arm.com        // if a refresh waiting for this event loop to finish, then hand
121710207Sandreas.hansson@arm.com        // over now, and do not schedule a new nextReqEvent
121810207Sandreas.hansson@arm.com        if (refreshState == REF_DRAIN) {
121910207Sandreas.hansson@arm.com            DPRINTF(DRAM, "Refresh drain done, now precharging\n");
122010207Sandreas.hansson@arm.com
122110207Sandreas.hansson@arm.com            refreshState = REF_PRE;
122210207Sandreas.hansson@arm.com
122310207Sandreas.hansson@arm.com            // hand control back to the refresh event loop
122410207Sandreas.hansson@arm.com            schedule(refreshEvent, curTick());
122510207Sandreas.hansson@arm.com        }
122610207Sandreas.hansson@arm.com
122710207Sandreas.hansson@arm.com        // let the refresh finish before issuing any further requests
122810207Sandreas.hansson@arm.com        return;
122910207Sandreas.hansson@arm.com    }
123010207Sandreas.hansson@arm.com
123110206Sandreas.hansson@arm.com    // when we get here it is either a read or a write
123210206Sandreas.hansson@arm.com    if (busState == READ) {
123310206Sandreas.hansson@arm.com
123410206Sandreas.hansson@arm.com        // track if we should switch or not
123510206Sandreas.hansson@arm.com        bool switch_to_writes = false;
123610206Sandreas.hansson@arm.com
123710206Sandreas.hansson@arm.com        if (readQueue.empty()) {
123810206Sandreas.hansson@arm.com            // In the case there is no read request to go next,
123910206Sandreas.hansson@arm.com            // trigger writes if we have passed the low threshold (or
124010206Sandreas.hansson@arm.com            // if we are draining)
124110206Sandreas.hansson@arm.com            if (!writeQueue.empty() &&
124210206Sandreas.hansson@arm.com                (drainManager || writeQueue.size() > writeLowThreshold)) {
124310206Sandreas.hansson@arm.com
124410206Sandreas.hansson@arm.com                switch_to_writes = true;
124510206Sandreas.hansson@arm.com            } else {
124610206Sandreas.hansson@arm.com                // check if we are drained
124710206Sandreas.hansson@arm.com                if (respQueue.empty () && drainManager) {
124810206Sandreas.hansson@arm.com                    drainManager->signalDrainDone();
124910206Sandreas.hansson@arm.com                    drainManager = NULL;
125010206Sandreas.hansson@arm.com                }
125110206Sandreas.hansson@arm.com
125210206Sandreas.hansson@arm.com                // nothing to do, not even any point in scheduling an
125310206Sandreas.hansson@arm.com                // event for the next request
125410206Sandreas.hansson@arm.com                return;
125510206Sandreas.hansson@arm.com            }
125610206Sandreas.hansson@arm.com        } else {
125710206Sandreas.hansson@arm.com            // Figure out which read request goes next, and move it to the
125810206Sandreas.hansson@arm.com            // front of the read queue
125910206Sandreas.hansson@arm.com            chooseNext(readQueue);
126010206Sandreas.hansson@arm.com
126110206Sandreas.hansson@arm.com            doDRAMAccess(readQueue.front());
126210206Sandreas.hansson@arm.com
126310206Sandreas.hansson@arm.com            // At this point we're done dealing with the request
126410206Sandreas.hansson@arm.com            // It will be moved to a separate response queue with a
126510206Sandreas.hansson@arm.com            // correct readyTime, and eventually be sent back at that
126610206Sandreas.hansson@arm.com            // time
126710206Sandreas.hansson@arm.com            moveToRespQ();
126810206Sandreas.hansson@arm.com
126910206Sandreas.hansson@arm.com            // we have so many writes that we have to transition
127010206Sandreas.hansson@arm.com            if (writeQueue.size() > writeHighThreshold) {
127110206Sandreas.hansson@arm.com                switch_to_writes = true;
127210206Sandreas.hansson@arm.com            }
127310206Sandreas.hansson@arm.com        }
127410206Sandreas.hansson@arm.com
127510206Sandreas.hansson@arm.com        // switching to writes, either because the read queue is empty
127610206Sandreas.hansson@arm.com        // and the writes have passed the low threshold (or we are
127710206Sandreas.hansson@arm.com        // draining), or because the writes hit the hight threshold
127810206Sandreas.hansson@arm.com        if (switch_to_writes) {
127910206Sandreas.hansson@arm.com            // transition to writing
128010206Sandreas.hansson@arm.com            busState = READ_TO_WRITE;
128110206Sandreas.hansson@arm.com
128210206Sandreas.hansson@arm.com            // add a bubble to the data bus, as defined by the
128310206Sandreas.hansson@arm.com            // tRTW parameter
128410206Sandreas.hansson@arm.com            busBusyUntil += tRTW;
128510206Sandreas.hansson@arm.com
128610206Sandreas.hansson@arm.com            // update the minimum timing between the requests,
128710206Sandreas.hansson@arm.com            // this shifts us back in time far enough to do any
128810206Sandreas.hansson@arm.com            // bank preparation
128910206Sandreas.hansson@arm.com            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
129010206Sandreas.hansson@arm.com        }
12919352SN/A    } else {
129210206Sandreas.hansson@arm.com        chooseNext(writeQueue);
129310206Sandreas.hansson@arm.com        DRAMPacket* dram_pkt = writeQueue.front();
129410206Sandreas.hansson@arm.com        // sanity check
129510206Sandreas.hansson@arm.com        assert(dram_pkt->size <= burstSize);
129610206Sandreas.hansson@arm.com        doDRAMAccess(dram_pkt);
129710206Sandreas.hansson@arm.com
129810206Sandreas.hansson@arm.com        writeQueue.pop_front();
129910206Sandreas.hansson@arm.com        delete dram_pkt;
130010206Sandreas.hansson@arm.com
130110206Sandreas.hansson@arm.com        // If we emptied the write queue, or got sufficiently below the
130210206Sandreas.hansson@arm.com        // threshold (using the minWritesPerSwitch as the hysteresis) and
130310206Sandreas.hansson@arm.com        // are not draining, or we have reads waiting and have done enough
130410206Sandreas.hansson@arm.com        // writes, then switch to reads.
130510206Sandreas.hansson@arm.com        if (writeQueue.empty() ||
130610206Sandreas.hansson@arm.com            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
130710206Sandreas.hansson@arm.com             !drainManager) ||
130810206Sandreas.hansson@arm.com            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
130910206Sandreas.hansson@arm.com            // turn the bus back around for reads again
131010206Sandreas.hansson@arm.com            busState = WRITE_TO_READ;
131110206Sandreas.hansson@arm.com
131210206Sandreas.hansson@arm.com            // note that the we switch back to reads also in the idle
131310206Sandreas.hansson@arm.com            // case, which eventually will check for any draining and
131410206Sandreas.hansson@arm.com            // also pause any further scheduling if there is really
131510206Sandreas.hansson@arm.com            // nothing to do
131610206Sandreas.hansson@arm.com
131710206Sandreas.hansson@arm.com            // here we get a bit creative and shift the bus busy time not
131810206Sandreas.hansson@arm.com            // just the tWTR, but also a CAS latency to capture the fact
131910206Sandreas.hansson@arm.com            // that we are allowed to prepare a new bank, but not issue a
132010206Sandreas.hansson@arm.com            // read command until after tWTR, in essence we capture a
132110206Sandreas.hansson@arm.com            // bubble on the data bus that is tWTR + tCL
132210206Sandreas.hansson@arm.com            busBusyUntil += tWTR + tCL;
132310206Sandreas.hansson@arm.com
132410206Sandreas.hansson@arm.com            // update the minimum timing between the requests, this shifts
132510206Sandreas.hansson@arm.com            // us back in time far enough to do any bank preparation
132610206Sandreas.hansson@arm.com            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
132710206Sandreas.hansson@arm.com        }
132810206Sandreas.hansson@arm.com    }
132910206Sandreas.hansson@arm.com
133010206Sandreas.hansson@arm.com    schedule(nextReqEvent, std::max(nextReqTime, curTick()));
133110206Sandreas.hansson@arm.com
133210206Sandreas.hansson@arm.com    // If there is space available and we have writes waiting then let
133310206Sandreas.hansson@arm.com    // them retry. This is done here to ensure that the retry does not
133410206Sandreas.hansson@arm.com    // cause a nextReqEvent to be scheduled before we do so as part of
133510206Sandreas.hansson@arm.com    // the next request processing
133610206Sandreas.hansson@arm.com    if (retryWrReq && writeQueue.size() < writeBufferSize) {
133710206Sandreas.hansson@arm.com        retryWrReq = false;
133810206Sandreas.hansson@arm.com        port.sendRetry();
13399352SN/A    }
13409243SN/A}
13419243SN/A
13429967SN/Auint64_t
134310146Sandreas.hansson@arm.comDRAMCtrl::minBankFreeAt(const deque<DRAMPacket*>& queue) const
13449967SN/A{
13459967SN/A    uint64_t bank_mask = 0;
13469967SN/A    Tick freeAt = MaxTick;
13479967SN/A
13489967SN/A    // detemrine if we have queued transactions targetting the
13499967SN/A    // bank in question
13509967SN/A    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
13519967SN/A    for (auto p = queue.begin(); p != queue.end(); ++p) {
13529967SN/A        got_waiting[(*p)->bankId] = true;
13539967SN/A    }
13549967SN/A
13559967SN/A    for (int i = 0; i < ranksPerChannel; i++) {
13569967SN/A        for (int j = 0; j < banksPerRank; j++) {
13579967SN/A            // if we have waiting requests for the bank, and it is
13589967SN/A            // amongst the first available, update the mask
13599967SN/A            if (got_waiting[i * banksPerRank + j] &&
13609967SN/A                banks[i][j].freeAt <= freeAt) {
13619967SN/A                // reset bank mask if new minimum is found
13629967SN/A                if (banks[i][j].freeAt < freeAt)
13639967SN/A                    bank_mask = 0;
13649967SN/A                // set the bit corresponding to the available bank
13659967SN/A                uint8_t bit_index = i * ranksPerChannel + j;
13669967SN/A                replaceBits(bank_mask, bit_index, bit_index, 1);
13679967SN/A                freeAt = banks[i][j].freeAt;
13689967SN/A            }
13699967SN/A        }
13709967SN/A    }
13719967SN/A    return bank_mask;
13729967SN/A}
13739967SN/A
13749243SN/Avoid
137510146Sandreas.hansson@arm.comDRAMCtrl::processRefreshEvent()
13769243SN/A{
137710207Sandreas.hansson@arm.com    // when first preparing the refresh, remember when it was due
137810207Sandreas.hansson@arm.com    if (refreshState == REF_IDLE) {
137910207Sandreas.hansson@arm.com        // remember when the refresh is due
138010207Sandreas.hansson@arm.com        refreshDueAt = curTick();
13819243SN/A
138210207Sandreas.hansson@arm.com        // proceed to drain
138310207Sandreas.hansson@arm.com        refreshState = REF_DRAIN;
13849243SN/A
138510207Sandreas.hansson@arm.com        DPRINTF(DRAM, "Refresh due\n");
138610207Sandreas.hansson@arm.com    }
138710207Sandreas.hansson@arm.com
138810207Sandreas.hansson@arm.com    // let any scheduled read or write go ahead, after which it will
138910207Sandreas.hansson@arm.com    // hand control back to this event loop
139010207Sandreas.hansson@arm.com    if (refreshState == REF_DRAIN) {
139110207Sandreas.hansson@arm.com        if (nextReqEvent.scheduled()) {
139210207Sandreas.hansson@arm.com            // hand control over to the request loop until it is
139310207Sandreas.hansson@arm.com            // evaluated next
139410207Sandreas.hansson@arm.com            DPRINTF(DRAM, "Refresh awaiting draining\n");
139510207Sandreas.hansson@arm.com
139610207Sandreas.hansson@arm.com            return;
139710207Sandreas.hansson@arm.com        } else {
139810207Sandreas.hansson@arm.com            refreshState = REF_PRE;
139910207Sandreas.hansson@arm.com        }
140010207Sandreas.hansson@arm.com    }
140110207Sandreas.hansson@arm.com
140210207Sandreas.hansson@arm.com    // at this point, ensure that all banks are precharged
140310207Sandreas.hansson@arm.com    if (refreshState == REF_PRE) {
140410208Sandreas.hansson@arm.com        // precharge any active bank if we are not already in the idle
140510208Sandreas.hansson@arm.com        // state
140610208Sandreas.hansson@arm.com        if (pwrState != PWR_IDLE) {
140710208Sandreas.hansson@arm.com            DPRINTF(DRAM, "Precharging all\n");
140810208Sandreas.hansson@arm.com            for (int i = 0; i < ranksPerChannel; i++) {
140910208Sandreas.hansson@arm.com                for (int j = 0; j < banksPerRank; j++) {
141010208Sandreas.hansson@arm.com                    if (banks[i][j].openRow != Bank::NO_ROW) {
141110208Sandreas.hansson@arm.com                        // respect both causality and any existing bank
141210208Sandreas.hansson@arm.com                        // constraints
141310208Sandreas.hansson@arm.com                        Tick free_at =
141410208Sandreas.hansson@arm.com                            std::max(std::max(banks[i][j].freeAt,
141510208Sandreas.hansson@arm.com                                              banks[i][j].tRASDoneAt),
141610208Sandreas.hansson@arm.com                                     curTick()) + tRP;
141710207Sandreas.hansson@arm.com
141810208Sandreas.hansson@arm.com                        prechargeBank(banks[i][j], free_at);
141910208Sandreas.hansson@arm.com                    }
142010207Sandreas.hansson@arm.com                }
142110207Sandreas.hansson@arm.com            }
142210208Sandreas.hansson@arm.com        } else {
142310208Sandreas.hansson@arm.com            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
142410208Sandreas.hansson@arm.com
142510208Sandreas.hansson@arm.com            // go ahead and kick the power state machine into gear if
142610208Sandreas.hansson@arm.com            // we are already idle
142710208Sandreas.hansson@arm.com            schedulePowerEvent(PWR_REF, curTick());
14289975SN/A        }
14299975SN/A
143010208Sandreas.hansson@arm.com        refreshState = REF_RUN;
143110208Sandreas.hansson@arm.com        assert(numBanksActive == 0);
14329243SN/A
143310208Sandreas.hansson@arm.com        // wait for all banks to be precharged, at which point the
143410208Sandreas.hansson@arm.com        // power state machine will transition to the idle state, and
143510208Sandreas.hansson@arm.com        // automatically move to a refresh, at that point it will also
143610208Sandreas.hansson@arm.com        // call this method to get the refresh event loop going again
143710207Sandreas.hansson@arm.com        return;
143810207Sandreas.hansson@arm.com    }
143910207Sandreas.hansson@arm.com
144010207Sandreas.hansson@arm.com    // last but not least we perform the actual refresh
144110207Sandreas.hansson@arm.com    if (refreshState == REF_RUN) {
144210207Sandreas.hansson@arm.com        // should never get here with any banks active
144310207Sandreas.hansson@arm.com        assert(numBanksActive == 0);
144410208Sandreas.hansson@arm.com        assert(pwrState == PWR_REF);
144510207Sandreas.hansson@arm.com
144610207Sandreas.hansson@arm.com        Tick banksFree = curTick() + tRFC;
144710207Sandreas.hansson@arm.com
144810207Sandreas.hansson@arm.com        for (int i = 0; i < ranksPerChannel; i++) {
144910207Sandreas.hansson@arm.com            for (int j = 0; j < banksPerRank; j++) {
145010207Sandreas.hansson@arm.com                banks[i][j].freeAt = banksFree;
145110207Sandreas.hansson@arm.com            }
145210207Sandreas.hansson@arm.com        }
145310207Sandreas.hansson@arm.com
145410207Sandreas.hansson@arm.com        // make sure we did not wait so long that we cannot make up
145510207Sandreas.hansson@arm.com        // for it
145610207Sandreas.hansson@arm.com        if (refreshDueAt + tREFI < banksFree) {
145710207Sandreas.hansson@arm.com            fatal("Refresh was delayed so long we cannot catch up\n");
145810207Sandreas.hansson@arm.com        }
145910207Sandreas.hansson@arm.com
146010207Sandreas.hansson@arm.com        // compensate for the delay in actually performing the refresh
146110207Sandreas.hansson@arm.com        // when scheduling the next one
146210207Sandreas.hansson@arm.com        schedule(refreshEvent, refreshDueAt + tREFI - tRP);
146310207Sandreas.hansson@arm.com
146410208Sandreas.hansson@arm.com        assert(!powerEvent.scheduled());
146510207Sandreas.hansson@arm.com
146610208Sandreas.hansson@arm.com        // move to the idle power state once the refresh is done, this
146710208Sandreas.hansson@arm.com        // will also move the refresh state machine to the refresh
146810208Sandreas.hansson@arm.com        // idle state
146910208Sandreas.hansson@arm.com        schedulePowerEvent(PWR_IDLE, banksFree);
147010207Sandreas.hansson@arm.com
147110208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
147210208Sandreas.hansson@arm.com                banksFree, refreshDueAt + tREFI);
147310208Sandreas.hansson@arm.com    }
147410208Sandreas.hansson@arm.com}
147510208Sandreas.hansson@arm.com
147610208Sandreas.hansson@arm.comvoid
147710208Sandreas.hansson@arm.comDRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
147810208Sandreas.hansson@arm.com{
147910208Sandreas.hansson@arm.com    // respect causality
148010208Sandreas.hansson@arm.com    assert(tick >= curTick());
148110208Sandreas.hansson@arm.com
148210208Sandreas.hansson@arm.com    if (!powerEvent.scheduled()) {
148310208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
148410208Sandreas.hansson@arm.com                tick, pwr_state);
148510208Sandreas.hansson@arm.com
148610208Sandreas.hansson@arm.com        // insert the new transition
148710208Sandreas.hansson@arm.com        pwrStateTrans = pwr_state;
148810208Sandreas.hansson@arm.com
148910208Sandreas.hansson@arm.com        schedule(powerEvent, tick);
149010208Sandreas.hansson@arm.com    } else {
149110208Sandreas.hansson@arm.com        panic("Scheduled power event at %llu to state %d, "
149210208Sandreas.hansson@arm.com              "with scheduled event at %llu to %d\n", tick, pwr_state,
149310208Sandreas.hansson@arm.com              powerEvent.when(), pwrStateTrans);
149410208Sandreas.hansson@arm.com    }
149510208Sandreas.hansson@arm.com}
149610208Sandreas.hansson@arm.com
149710208Sandreas.hansson@arm.comvoid
149810208Sandreas.hansson@arm.comDRAMCtrl::processPowerEvent()
149910208Sandreas.hansson@arm.com{
150010208Sandreas.hansson@arm.com    // remember where we were, and for how long
150110208Sandreas.hansson@arm.com    Tick duration = curTick() - pwrStateTick;
150210208Sandreas.hansson@arm.com    PowerState prev_state = pwrState;
150310208Sandreas.hansson@arm.com
150410208Sandreas.hansson@arm.com    // update the accounting
150510208Sandreas.hansson@arm.com    pwrStateTime[prev_state] += duration;
150610208Sandreas.hansson@arm.com
150710208Sandreas.hansson@arm.com    pwrState = pwrStateTrans;
150810208Sandreas.hansson@arm.com    pwrStateTick = curTick();
150910208Sandreas.hansson@arm.com
151010208Sandreas.hansson@arm.com    if (pwrState == PWR_IDLE) {
151110208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "All banks precharged\n");
151210208Sandreas.hansson@arm.com
151310208Sandreas.hansson@arm.com        // if we were refreshing, make sure we start scheduling requests again
151410208Sandreas.hansson@arm.com        if (prev_state == PWR_REF) {
151510208Sandreas.hansson@arm.com            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
151610208Sandreas.hansson@arm.com            assert(pwrState == PWR_IDLE);
151710208Sandreas.hansson@arm.com
151810208Sandreas.hansson@arm.com            // kick things into action again
151910208Sandreas.hansson@arm.com            refreshState = REF_IDLE;
152010208Sandreas.hansson@arm.com            assert(!nextReqEvent.scheduled());
152110208Sandreas.hansson@arm.com            schedule(nextReqEvent, curTick());
152210208Sandreas.hansson@arm.com        } else {
152310208Sandreas.hansson@arm.com            assert(prev_state == PWR_ACT);
152410208Sandreas.hansson@arm.com
152510208Sandreas.hansson@arm.com            // if we have a pending refresh, and are now moving to
152610208Sandreas.hansson@arm.com            // the idle state, direclty transition to a refresh
152710208Sandreas.hansson@arm.com            if (refreshState == REF_RUN) {
152810208Sandreas.hansson@arm.com                // there should be nothing waiting at this point
152910208Sandreas.hansson@arm.com                assert(!powerEvent.scheduled());
153010208Sandreas.hansson@arm.com
153110208Sandreas.hansson@arm.com                // update the state in zero time and proceed below
153210208Sandreas.hansson@arm.com                pwrState = PWR_REF;
153310208Sandreas.hansson@arm.com            }
153410208Sandreas.hansson@arm.com        }
153510208Sandreas.hansson@arm.com    }
153610208Sandreas.hansson@arm.com
153710208Sandreas.hansson@arm.com    // we transition to the refresh state, let the refresh state
153810208Sandreas.hansson@arm.com    // machine know of this state update and let it deal with the
153910208Sandreas.hansson@arm.com    // scheduling of the next power state transition as well as the
154010208Sandreas.hansson@arm.com    // following refresh
154110208Sandreas.hansson@arm.com    if (pwrState == PWR_REF) {
154210208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "Refreshing\n");
154310208Sandreas.hansson@arm.com        // kick the refresh event loop into action again, and that
154410208Sandreas.hansson@arm.com        // in turn will schedule a transition to the idle power
154510208Sandreas.hansson@arm.com        // state once the refresh is done
154610208Sandreas.hansson@arm.com        assert(refreshState == REF_RUN);
154710208Sandreas.hansson@arm.com        processRefreshEvent();
154810207Sandreas.hansson@arm.com    }
15499243SN/A}
15509243SN/A
15519243SN/Avoid
155210146Sandreas.hansson@arm.comDRAMCtrl::regStats()
15539243SN/A{
15549243SN/A    using namespace Stats;
15559243SN/A
15569243SN/A    AbstractMemory::regStats();
15579243SN/A
15589243SN/A    readReqs
15599243SN/A        .name(name() + ".readReqs")
15609977SN/A        .desc("Number of read requests accepted");
15619243SN/A
15629243SN/A    writeReqs
15639243SN/A        .name(name() + ".writeReqs")
15649977SN/A        .desc("Number of write requests accepted");
15659831SN/A
15669831SN/A    readBursts
15679831SN/A        .name(name() + ".readBursts")
15689977SN/A        .desc("Number of DRAM read bursts, "
15699977SN/A              "including those serviced by the write queue");
15709831SN/A
15719831SN/A    writeBursts
15729831SN/A        .name(name() + ".writeBursts")
15739977SN/A        .desc("Number of DRAM write bursts, "
15749977SN/A              "including those merged in the write queue");
15759243SN/A
15769243SN/A    servicedByWrQ
15779243SN/A        .name(name() + ".servicedByWrQ")
15789977SN/A        .desc("Number of DRAM read bursts serviced by the write queue");
15799977SN/A
15809977SN/A    mergedWrBursts
15819977SN/A        .name(name() + ".mergedWrBursts")
15829977SN/A        .desc("Number of DRAM write bursts merged with an existing one");
15839243SN/A
15849243SN/A    neitherReadNorWrite
15859977SN/A        .name(name() + ".neitherReadNorWriteReqs")
15869977SN/A        .desc("Number of requests that are neither read nor write");
15879243SN/A
15889977SN/A    perBankRdBursts
15899243SN/A        .init(banksPerRank * ranksPerChannel)
15909977SN/A        .name(name() + ".perBankRdBursts")
15919977SN/A        .desc("Per bank write bursts");
15929243SN/A
15939977SN/A    perBankWrBursts
15949243SN/A        .init(banksPerRank * ranksPerChannel)
15959977SN/A        .name(name() + ".perBankWrBursts")
15969977SN/A        .desc("Per bank write bursts");
15979243SN/A
15989243SN/A    avgRdQLen
15999243SN/A        .name(name() + ".avgRdQLen")
16009977SN/A        .desc("Average read queue length when enqueuing")
16019243SN/A        .precision(2);
16029243SN/A
16039243SN/A    avgWrQLen
16049243SN/A        .name(name() + ".avgWrQLen")
16059977SN/A        .desc("Average write queue length when enqueuing")
16069243SN/A        .precision(2);
16079243SN/A
16089243SN/A    totQLat
16099243SN/A        .name(name() + ".totQLat")
16109977SN/A        .desc("Total ticks spent queuing");
16119243SN/A
16129243SN/A    totBankLat
16139243SN/A        .name(name() + ".totBankLat")
16149977SN/A        .desc("Total ticks spent accessing banks");
16159243SN/A
16169243SN/A    totBusLat
16179243SN/A        .name(name() + ".totBusLat")
16189977SN/A        .desc("Total ticks spent in databus transfers");
16199243SN/A
16209243SN/A    totMemAccLat
16219243SN/A        .name(name() + ".totMemAccLat")
16229977SN/A        .desc("Total ticks spent from burst creation until serviced "
16239977SN/A              "by the DRAM");
16249243SN/A
16259243SN/A    avgQLat
16269243SN/A        .name(name() + ".avgQLat")
16279977SN/A        .desc("Average queueing delay per DRAM burst")
16289243SN/A        .precision(2);
16299243SN/A
16309831SN/A    avgQLat = totQLat / (readBursts - servicedByWrQ);
16319243SN/A
16329243SN/A    avgBankLat
16339243SN/A        .name(name() + ".avgBankLat")
16349977SN/A        .desc("Average bank access latency per DRAM burst")
16359243SN/A        .precision(2);
16369243SN/A
16379831SN/A    avgBankLat = totBankLat / (readBursts - servicedByWrQ);
16389243SN/A
16399243SN/A    avgBusLat
16409243SN/A        .name(name() + ".avgBusLat")
16419977SN/A        .desc("Average bus latency per DRAM burst")
16429243SN/A        .precision(2);
16439243SN/A
16449831SN/A    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
16459243SN/A
16469243SN/A    avgMemAccLat
16479243SN/A        .name(name() + ".avgMemAccLat")
16489977SN/A        .desc("Average memory access latency per DRAM burst")
16499243SN/A        .precision(2);
16509243SN/A
16519831SN/A    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
16529243SN/A
16539243SN/A    numRdRetry
16549243SN/A        .name(name() + ".numRdRetry")
16559977SN/A        .desc("Number of times read queue was full causing retry");
16569243SN/A
16579243SN/A    numWrRetry
16589243SN/A        .name(name() + ".numWrRetry")
16599977SN/A        .desc("Number of times write queue was full causing retry");
16609243SN/A
16619243SN/A    readRowHits
16629243SN/A        .name(name() + ".readRowHits")
16639243SN/A        .desc("Number of row buffer hits during reads");
16649243SN/A
16659243SN/A    writeRowHits
16669243SN/A        .name(name() + ".writeRowHits")
16679243SN/A        .desc("Number of row buffer hits during writes");
16689243SN/A
16699243SN/A    readRowHitRate
16709243SN/A        .name(name() + ".readRowHitRate")
16719243SN/A        .desc("Row buffer hit rate for reads")
16729243SN/A        .precision(2);
16739243SN/A
16749831SN/A    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
16759243SN/A
16769243SN/A    writeRowHitRate
16779243SN/A        .name(name() + ".writeRowHitRate")
16789243SN/A        .desc("Row buffer hit rate for writes")
16799243SN/A        .precision(2);
16809243SN/A
16819977SN/A    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
16829243SN/A
16839243SN/A    readPktSize
16849831SN/A        .init(ceilLog2(burstSize) + 1)
16859243SN/A        .name(name() + ".readPktSize")
16869977SN/A        .desc("Read request sizes (log2)");
16879243SN/A
16889243SN/A     writePktSize
16899831SN/A        .init(ceilLog2(burstSize) + 1)
16909243SN/A        .name(name() + ".writePktSize")
16919977SN/A        .desc("Write request sizes (log2)");
16929243SN/A
16939243SN/A     rdQLenPdf
16949567SN/A        .init(readBufferSize)
16959243SN/A        .name(name() + ".rdQLenPdf")
16969243SN/A        .desc("What read queue length does an incoming req see");
16979243SN/A
16989243SN/A     wrQLenPdf
16999567SN/A        .init(writeBufferSize)
17009243SN/A        .name(name() + ".wrQLenPdf")
17019243SN/A        .desc("What write queue length does an incoming req see");
17029243SN/A
17039727SN/A     bytesPerActivate
170410141SN/A         .init(maxAccessesPerRow)
17059727SN/A         .name(name() + ".bytesPerActivate")
17069727SN/A         .desc("Bytes accessed per row activation")
17079727SN/A         .flags(nozero);
17089243SN/A
170910147Sandreas.hansson@arm.com     rdPerTurnAround
171010147Sandreas.hansson@arm.com         .init(readBufferSize)
171110147Sandreas.hansson@arm.com         .name(name() + ".rdPerTurnAround")
171210147Sandreas.hansson@arm.com         .desc("Reads before turning the bus around for writes")
171310147Sandreas.hansson@arm.com         .flags(nozero);
171410147Sandreas.hansson@arm.com
171510147Sandreas.hansson@arm.com     wrPerTurnAround
171610147Sandreas.hansson@arm.com         .init(writeBufferSize)
171710147Sandreas.hansson@arm.com         .name(name() + ".wrPerTurnAround")
171810147Sandreas.hansson@arm.com         .desc("Writes before turning the bus around for reads")
171910147Sandreas.hansson@arm.com         .flags(nozero);
172010147Sandreas.hansson@arm.com
17219975SN/A    bytesReadDRAM
17229975SN/A        .name(name() + ".bytesReadDRAM")
17239975SN/A        .desc("Total number of bytes read from DRAM");
17249975SN/A
17259975SN/A    bytesReadWrQ
17269975SN/A        .name(name() + ".bytesReadWrQ")
17279975SN/A        .desc("Total number of bytes read from write queue");
17289243SN/A
17299243SN/A    bytesWritten
17309243SN/A        .name(name() + ".bytesWritten")
17319977SN/A        .desc("Total number of bytes written to DRAM");
17329243SN/A
17339977SN/A    bytesReadSys
17349977SN/A        .name(name() + ".bytesReadSys")
17359977SN/A        .desc("Total read bytes from the system interface side");
17369243SN/A
17379977SN/A    bytesWrittenSys
17389977SN/A        .name(name() + ".bytesWrittenSys")
17399977SN/A        .desc("Total written bytes from the system interface side");
17409243SN/A
17419243SN/A    avgRdBW
17429243SN/A        .name(name() + ".avgRdBW")
17439977SN/A        .desc("Average DRAM read bandwidth in MiByte/s")
17449243SN/A        .precision(2);
17459243SN/A
17469977SN/A    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
17479243SN/A
17489243SN/A    avgWrBW
17499243SN/A        .name(name() + ".avgWrBW")
17509977SN/A        .desc("Average achieved write bandwidth in MiByte/s")
17519243SN/A        .precision(2);
17529243SN/A
17539243SN/A    avgWrBW = (bytesWritten / 1000000) / simSeconds;
17549243SN/A
17559977SN/A    avgRdBWSys
17569977SN/A        .name(name() + ".avgRdBWSys")
17579977SN/A        .desc("Average system read bandwidth in MiByte/s")
17589243SN/A        .precision(2);
17599243SN/A
17609977SN/A    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
17619243SN/A
17629977SN/A    avgWrBWSys
17639977SN/A        .name(name() + ".avgWrBWSys")
17649977SN/A        .desc("Average system write bandwidth in MiByte/s")
17659243SN/A        .precision(2);
17669243SN/A
17679977SN/A    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
17689243SN/A
17699243SN/A    peakBW
17709243SN/A        .name(name() + ".peakBW")
17719977SN/A        .desc("Theoretical peak bandwidth in MiByte/s")
17729243SN/A        .precision(2);
17739243SN/A
17749831SN/A    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
17759243SN/A
17769243SN/A    busUtil
17779243SN/A        .name(name() + ".busUtil")
17789243SN/A        .desc("Data bus utilization in percentage")
17799243SN/A        .precision(2);
17809243SN/A
17819243SN/A    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
17829243SN/A
17839243SN/A    totGap
17849243SN/A        .name(name() + ".totGap")
17859243SN/A        .desc("Total gap between requests");
17869243SN/A
17879243SN/A    avgGap
17889243SN/A        .name(name() + ".avgGap")
17899243SN/A        .desc("Average gap between requests")
17909243SN/A        .precision(2);
17919243SN/A
17929243SN/A    avgGap = totGap / (readReqs + writeReqs);
17939975SN/A
17949975SN/A    // Stats for DRAM Power calculation based on Micron datasheet
17959975SN/A    busUtilRead
17969975SN/A        .name(name() + ".busUtilRead")
17979975SN/A        .desc("Data bus utilization in percentage for reads")
17989975SN/A        .precision(2);
17999975SN/A
18009975SN/A    busUtilRead = avgRdBW / peakBW * 100;
18019975SN/A
18029975SN/A    busUtilWrite
18039975SN/A        .name(name() + ".busUtilWrite")
18049975SN/A        .desc("Data bus utilization in percentage for writes")
18059975SN/A        .precision(2);
18069975SN/A
18079975SN/A    busUtilWrite = avgWrBW / peakBW * 100;
18089975SN/A
18099975SN/A    pageHitRate
18109975SN/A        .name(name() + ".pageHitRate")
18119975SN/A        .desc("Row buffer hit rate, read and write combined")
18129975SN/A        .precision(2);
18139975SN/A
18149977SN/A    pageHitRate = (writeRowHits + readRowHits) /
18159977SN/A        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
18169975SN/A
181710208Sandreas.hansson@arm.com    pwrStateTime
181810208Sandreas.hansson@arm.com        .init(5)
181910208Sandreas.hansson@arm.com        .name(name() + ".memoryStateTime")
182010208Sandreas.hansson@arm.com        .desc("Time in different power states");
182110208Sandreas.hansson@arm.com    pwrStateTime.subname(0, "IDLE");
182210208Sandreas.hansson@arm.com    pwrStateTime.subname(1, "REF");
182310208Sandreas.hansson@arm.com    pwrStateTime.subname(2, "PRE_PDN");
182410208Sandreas.hansson@arm.com    pwrStateTime.subname(3, "ACT");
182510208Sandreas.hansson@arm.com    pwrStateTime.subname(4, "ACT_PDN");
18269243SN/A}
18279243SN/A
18289243SN/Avoid
182910146Sandreas.hansson@arm.comDRAMCtrl::recvFunctional(PacketPtr pkt)
18309243SN/A{
18319243SN/A    // rely on the abstract memory
18329243SN/A    functionalAccess(pkt);
18339243SN/A}
18349243SN/A
18359294SN/ABaseSlavePort&
183610146Sandreas.hansson@arm.comDRAMCtrl::getSlavePort(const string &if_name, PortID idx)
18379243SN/A{
18389243SN/A    if (if_name != "port") {
18399243SN/A        return MemObject::getSlavePort(if_name, idx);
18409243SN/A    } else {
18419243SN/A        return port;
18429243SN/A    }
18439243SN/A}
18449243SN/A
18459243SN/Aunsigned int
184610146Sandreas.hansson@arm.comDRAMCtrl::drain(DrainManager *dm)
18479243SN/A{
18489342SN/A    unsigned int count = port.drain(dm);
18499243SN/A
18509243SN/A    // if there is anything in any of our internal queues, keep track
18519243SN/A    // of that as well
18529567SN/A    if (!(writeQueue.empty() && readQueue.empty() &&
18539567SN/A          respQueue.empty())) {
18549352SN/A        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
18559567SN/A                " resp: %d\n", writeQueue.size(), readQueue.size(),
18569567SN/A                respQueue.size());
18579243SN/A        ++count;
18589342SN/A        drainManager = dm;
185910206Sandreas.hansson@arm.com
18609352SN/A        // the only part that is not drained automatically over time
186110206Sandreas.hansson@arm.com        // is the write queue, thus kick things into action if needed
186210206Sandreas.hansson@arm.com        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
186310206Sandreas.hansson@arm.com            schedule(nextReqEvent, curTick());
186410206Sandreas.hansson@arm.com        }
18659243SN/A    }
18669243SN/A
18679243SN/A    if (count)
18689342SN/A        setDrainState(Drainable::Draining);
18699243SN/A    else
18709342SN/A        setDrainState(Drainable::Drained);
18719243SN/A    return count;
18729243SN/A}
18739243SN/A
187410146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
18759243SN/A    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
18769243SN/A      memory(_memory)
18779243SN/A{ }
18789243SN/A
18799243SN/AAddrRangeList
188010146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::getAddrRanges() const
18819243SN/A{
18829243SN/A    AddrRangeList ranges;
18839243SN/A    ranges.push_back(memory.getAddrRange());
18849243SN/A    return ranges;
18859243SN/A}
18869243SN/A
18879243SN/Avoid
188810146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
18899243SN/A{
18909243SN/A    pkt->pushLabel(memory.name());
18919243SN/A
18929243SN/A    if (!queue.checkFunctional(pkt)) {
18939243SN/A        // Default implementation of SimpleTimingPort::recvFunctional()
18949243SN/A        // calls recvAtomic() and throws away the latency; we can save a
18959243SN/A        // little here by just not calculating the latency.
18969243SN/A        memory.recvFunctional(pkt);
18979243SN/A    }
18989243SN/A
18999243SN/A    pkt->popLabel();
19009243SN/A}
19019243SN/A
19029243SN/ATick
190310146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
19049243SN/A{
19059243SN/A    return memory.recvAtomic(pkt);
19069243SN/A}
19079243SN/A
19089243SN/Abool
190910146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
19109243SN/A{
19119243SN/A    // pass it to the memory controller
19129243SN/A    return memory.recvTimingReq(pkt);
19139243SN/A}
19149243SN/A
191510146Sandreas.hansson@arm.comDRAMCtrl*
191610146Sandreas.hansson@arm.comDRAMCtrlParams::create()
19179243SN/A{
191810146Sandreas.hansson@arm.com    return new DRAMCtrl(this);
19199243SN/A}
1920