dram_ctrl.cc revision 10144
1/* 2 * Copyright (c) 2010-2013 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 */ 44 45#include "base/trace.hh" 46#include "base/bitfield.hh" 47#include "debug/Drain.hh" 48#include "debug/DRAM.hh" 49#include "mem/simple_dram.hh" 50#include "sim/system.hh" 51 52using namespace std; 53 54SimpleDRAM::SimpleDRAM(const SimpleDRAMParams* p) : 55 AbstractMemory(p), 56 port(name() + ".port", *this), 57 retryRdReq(false), retryWrReq(false), 58 rowHitFlag(false), stopReads(false), 59 writeEvent(this), respondEvent(this), 60 refreshEvent(this), nextReqEvent(this), drainManager(NULL), 61 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 62 deviceRowBufferSize(p->device_rowbuffer_size), 63 devicesPerRank(p->devices_per_rank), 64 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 65 rowBufferSize(devicesPerRank * deviceRowBufferSize), 66 columnsPerRowBuffer(rowBufferSize / burstSize), 67 ranksPerChannel(p->ranks_per_channel), 68 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 69 readBufferSize(p->read_buffer_size), 70 writeBufferSize(p->write_buffer_size), 71 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 72 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 73 minWritesPerSwitch(p->min_writes_per_switch), writesThisTime(0), 74 tWTR(p->tWTR), tBURST(p->tBURST), 75 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 76 tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 77 tXAW(p->tXAW), activationLimit(p->activation_limit), 78 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 79 pageMgmt(p->page_policy), 80 maxAccessesPerRow(p->max_accesses_per_row), 81 frontendLatency(p->static_frontend_latency), 82 backendLatency(p->static_backend_latency), 83 busBusyUntil(0), prevArrival(0), 84 newTime(0), startTickPrechargeAll(0), numBanksActive(0) 85{ 86 // create the bank states based on the dimensions of the ranks and 87 // banks 88 banks.resize(ranksPerChannel); 89 actTicks.resize(ranksPerChannel); 90 for (size_t c = 0; c < ranksPerChannel; ++c) { 91 banks[c].resize(banksPerRank); 92 actTicks[c].resize(activationLimit, 0); 93 } 94 95 // perform a basic check of the write thresholds 96 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 97 fatal("Write buffer low threshold %d must be smaller than the " 98 "high threshold %d\n", p->write_low_thresh_perc, 99 p->write_high_thresh_perc); 100 101 // determine the rows per bank by looking at the total capacity 102 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 103 104 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 105 AbstractMemory::size()); 106 107 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 108 rowBufferSize, columnsPerRowBuffer); 109 110 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 111 112 if (range.interleaved()) { 113 if (channels != range.stripes()) 114 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 115 name(), range.stripes(), channels); 116 117 if (addrMapping == Enums::RoRaBaChCo) { 118 if (rowBufferSize != range.granularity()) { 119 fatal("Interleaving of %s doesn't match RoRaBaChCo " 120 "address map\n", name()); 121 } 122 } else if (addrMapping == Enums::RoRaBaCoCh) { 123 if (system()->cacheLineSize() != range.granularity()) { 124 fatal("Interleaving of %s doesn't match RoRaBaCoCh " 125 "address map\n", name()); 126 } 127 } else if (addrMapping == Enums::RoCoRaBaCh) { 128 if (system()->cacheLineSize() != range.granularity()) 129 fatal("Interleaving of %s doesn't match RoCoRaBaCh " 130 "address map\n", name()); 131 } 132 } 133} 134 135void 136SimpleDRAM::init() 137{ 138 if (!port.isConnected()) { 139 fatal("SimpleDRAM %s is unconnected!\n", name()); 140 } else { 141 port.sendRangeChange(); 142 } 143} 144 145void 146SimpleDRAM::startup() 147{ 148 // update the start tick for the precharge accounting to the 149 // current tick 150 startTickPrechargeAll = curTick(); 151 152 // print the configuration of the controller 153 printParams(); 154 155 // kick off the refresh 156 schedule(refreshEvent, curTick() + tREFI); 157} 158 159Tick 160SimpleDRAM::recvAtomic(PacketPtr pkt) 161{ 162 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 163 164 // do the actual memory access and turn the packet into a response 165 access(pkt); 166 167 Tick latency = 0; 168 if (!pkt->memInhibitAsserted() && pkt->hasData()) { 169 // this value is not supposed to be accurate, just enough to 170 // keep things going, mimic a closed page 171 latency = tRP + tRCD + tCL; 172 } 173 return latency; 174} 175 176bool 177SimpleDRAM::readQueueFull(unsigned int neededEntries) const 178{ 179 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 180 readBufferSize, readQueue.size() + respQueue.size(), 181 neededEntries); 182 183 return 184 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 185} 186 187bool 188SimpleDRAM::writeQueueFull(unsigned int neededEntries) const 189{ 190 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 191 writeBufferSize, writeQueue.size(), neededEntries); 192 return (writeQueue.size() + neededEntries) > writeBufferSize; 193} 194 195SimpleDRAM::DRAMPacket* 196SimpleDRAM::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 197 bool isRead) 198{ 199 // decode the address based on the address mapping scheme, with 200 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 201 // channel, respectively 202 uint8_t rank; 203 uint8_t bank; 204 uint16_t row; 205 206 // truncate the address to the access granularity 207 Addr addr = dramPktAddr / burstSize; 208 209 // we have removed the lowest order address bits that denote the 210 // position within the column 211 if (addrMapping == Enums::RoRaBaChCo) { 212 // the lowest order bits denote the column to ensure that 213 // sequential cache lines occupy the same row 214 addr = addr / columnsPerRowBuffer; 215 216 // take out the channel part of the address 217 addr = addr / channels; 218 219 // after the channel bits, get the bank bits to interleave 220 // over the banks 221 bank = addr % banksPerRank; 222 addr = addr / banksPerRank; 223 224 // after the bank, we get the rank bits which thus interleaves 225 // over the ranks 226 rank = addr % ranksPerChannel; 227 addr = addr / ranksPerChannel; 228 229 // lastly, get the row bits 230 row = addr % rowsPerBank; 231 addr = addr / rowsPerBank; 232 } else if (addrMapping == Enums::RoRaBaCoCh) { 233 // take out the channel part of the address 234 addr = addr / channels; 235 236 // next, the column 237 addr = addr / columnsPerRowBuffer; 238 239 // after the column bits, we get the bank bits to interleave 240 // over the banks 241 bank = addr % banksPerRank; 242 addr = addr / banksPerRank; 243 244 // after the bank, we get the rank bits which thus interleaves 245 // over the ranks 246 rank = addr % ranksPerChannel; 247 addr = addr / ranksPerChannel; 248 249 // lastly, get the row bits 250 row = addr % rowsPerBank; 251 addr = addr / rowsPerBank; 252 } else if (addrMapping == Enums::RoCoRaBaCh) { 253 // optimise for closed page mode and utilise maximum 254 // parallelism of the DRAM (at the cost of power) 255 256 // take out the channel part of the address, not that this has 257 // to match with how accesses are interleaved between the 258 // controllers in the address mapping 259 addr = addr / channels; 260 261 // start with the bank bits, as this provides the maximum 262 // opportunity for parallelism between requests 263 bank = addr % banksPerRank; 264 addr = addr / banksPerRank; 265 266 // next get the rank bits 267 rank = addr % ranksPerChannel; 268 addr = addr / ranksPerChannel; 269 270 // next the column bits which we do not need to keep track of 271 // and simply skip past 272 addr = addr / columnsPerRowBuffer; 273 274 // lastly, get the row bits 275 row = addr % rowsPerBank; 276 addr = addr / rowsPerBank; 277 } else 278 panic("Unknown address mapping policy chosen!"); 279 280 assert(rank < ranksPerChannel); 281 assert(bank < banksPerRank); 282 assert(row < rowsPerBank); 283 284 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 285 dramPktAddr, rank, bank, row); 286 287 // create the corresponding DRAM packet with the entry time and 288 // ready time set to the current tick, the latter will be updated 289 // later 290 uint16_t bank_id = banksPerRank * rank + bank; 291 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 292 size, banks[rank][bank]); 293} 294 295void 296SimpleDRAM::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 297{ 298 // only add to the read queue here. whenever the request is 299 // eventually done, set the readyTime, and call schedule() 300 assert(!pkt->isWrite()); 301 302 assert(pktCount != 0); 303 304 // if the request size is larger than burst size, the pkt is split into 305 // multiple DRAM packets 306 // Note if the pkt starting address is not aligened to burst size, the 307 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 308 // are aligned to burst size boundaries. This is to ensure we accurately 309 // check read packets against packets in write queue. 310 Addr addr = pkt->getAddr(); 311 unsigned pktsServicedByWrQ = 0; 312 BurstHelper* burst_helper = NULL; 313 for (int cnt = 0; cnt < pktCount; ++cnt) { 314 unsigned size = std::min((addr | (burstSize - 1)) + 1, 315 pkt->getAddr() + pkt->getSize()) - addr; 316 readPktSize[ceilLog2(size)]++; 317 readBursts++; 318 319 // First check write buffer to see if the data is already at 320 // the controller 321 bool foundInWrQ = false; 322 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) { 323 // check if the read is subsumed in the write entry we are 324 // looking at 325 if ((*i)->addr <= addr && 326 (addr + size) <= ((*i)->addr + (*i)->size)) { 327 foundInWrQ = true; 328 servicedByWrQ++; 329 pktsServicedByWrQ++; 330 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 331 "write queue\n", addr, size); 332 bytesReadWrQ += burstSize; 333 break; 334 } 335 } 336 337 // If not found in the write q, make a DRAM packet and 338 // push it onto the read queue 339 if (!foundInWrQ) { 340 341 // Make the burst helper for split packets 342 if (pktCount > 1 && burst_helper == NULL) { 343 DPRINTF(DRAM, "Read to addr %lld translates to %d " 344 "dram requests\n", pkt->getAddr(), pktCount); 345 burst_helper = new BurstHelper(pktCount); 346 } 347 348 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 349 dram_pkt->burstHelper = burst_helper; 350 351 assert(!readQueueFull(1)); 352 rdQLenPdf[readQueue.size() + respQueue.size()]++; 353 354 DPRINTF(DRAM, "Adding to read queue\n"); 355 356 readQueue.push_back(dram_pkt); 357 358 // Update stats 359 avgRdQLen = readQueue.size() + respQueue.size(); 360 } 361 362 // Starting address of next dram pkt (aligend to burstSize boundary) 363 addr = (addr | (burstSize - 1)) + 1; 364 } 365 366 // If all packets are serviced by write queue, we send the repsonse back 367 if (pktsServicedByWrQ == pktCount) { 368 accessAndRespond(pkt, frontendLatency); 369 return; 370 } 371 372 // Update how many split packets are serviced by write queue 373 if (burst_helper != NULL) 374 burst_helper->burstsServiced = pktsServicedByWrQ; 375 376 // If we are not already scheduled to get the read request out of 377 // the queue, do so now 378 if (!nextReqEvent.scheduled() && !stopReads) { 379 DPRINTF(DRAM, "Request scheduled immediately\n"); 380 schedule(nextReqEvent, curTick()); 381 } 382} 383 384void 385SimpleDRAM::processWriteEvent() 386{ 387 assert(!writeQueue.empty()); 388 389 DPRINTF(DRAM, "Beginning DRAM Write\n"); 390 Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil); 391 Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt()); 392 393 chooseNextWrite(); 394 DRAMPacket* dram_pkt = writeQueue.front(); 395 // sanity check 396 assert(dram_pkt->size <= burstSize); 397 doDRAMAccess(dram_pkt); 398 399 writeQueue.pop_front(); 400 delete dram_pkt; 401 402 ++writesThisTime; 403 404 DPRINTF(DRAM, "Writing, bus busy for %lld ticks, banks busy " 405 "for %lld ticks\n", busBusyUntil - temp1, maxBankFreeAt() - temp2); 406 407 // If we emptied the write queue, or got below the threshold and 408 // are not draining, or we have reads waiting and have done enough 409 // writes, then switch to reads. The retry above could already 410 // have caused it to be scheduled, so first check 411 if (writeQueue.empty() || 412 (writeQueue.size() < writeLowThreshold && !drainManager) || 413 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 414 // turn the bus back around for reads again 415 busBusyUntil += tWTR; 416 stopReads = false; 417 writesThisTime = 0; 418 419 if (!nextReqEvent.scheduled()) 420 schedule(nextReqEvent, busBusyUntil); 421 } else { 422 assert(!writeEvent.scheduled()); 423 DPRINTF(DRAM, "Next write scheduled at %lld\n", newTime); 424 schedule(writeEvent, newTime); 425 } 426 427 if (retryWrReq) { 428 retryWrReq = false; 429 port.sendRetry(); 430 } 431 432 // if there is nothing left in any queue, signal a drain 433 if (writeQueue.empty() && readQueue.empty() && 434 respQueue.empty () && drainManager) { 435 drainManager->signalDrainDone(); 436 drainManager = NULL; 437 } 438} 439 440 441void 442SimpleDRAM::triggerWrites() 443{ 444 DPRINTF(DRAM, "Writes triggered at %lld\n", curTick()); 445 // Flag variable to stop any more read scheduling 446 stopReads = true; 447 448 Tick write_start_time = std::max(busBusyUntil, curTick()) + tWTR; 449 450 DPRINTF(DRAM, "Writes scheduled at %lld\n", write_start_time); 451 452 assert(write_start_time >= curTick()); 453 assert(!writeEvent.scheduled()); 454 schedule(writeEvent, write_start_time); 455} 456 457void 458SimpleDRAM::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 459{ 460 // only add to the write queue here. whenever the request is 461 // eventually done, set the readyTime, and call schedule() 462 assert(pkt->isWrite()); 463 464 // if the request size is larger than burst size, the pkt is split into 465 // multiple DRAM packets 466 Addr addr = pkt->getAddr(); 467 for (int cnt = 0; cnt < pktCount; ++cnt) { 468 unsigned size = std::min((addr | (burstSize - 1)) + 1, 469 pkt->getAddr() + pkt->getSize()) - addr; 470 writePktSize[ceilLog2(size)]++; 471 writeBursts++; 472 473 // see if we can merge with an existing item in the write 474 // queue and keep track of whether we have merged or not so we 475 // can stop at that point and also avoid enqueueing a new 476 // request 477 bool merged = false; 478 auto w = writeQueue.begin(); 479 480 while(!merged && w != writeQueue.end()) { 481 // either of the two could be first, if they are the same 482 // it does not matter which way we go 483 if ((*w)->addr >= addr) { 484 // the existing one starts after the new one, figure 485 // out where the new one ends with respect to the 486 // existing one 487 if ((addr + size) >= ((*w)->addr + (*w)->size)) { 488 // check if the existing one is completely 489 // subsumed in the new one 490 DPRINTF(DRAM, "Merging write covering existing burst\n"); 491 merged = true; 492 // update both the address and the size 493 (*w)->addr = addr; 494 (*w)->size = size; 495 } else if ((addr + size) >= (*w)->addr && 496 ((*w)->addr + (*w)->size - addr) <= burstSize) { 497 // the new one is just before or partially 498 // overlapping with the existing one, and together 499 // they fit within a burst 500 DPRINTF(DRAM, "Merging write before existing burst\n"); 501 merged = true; 502 // the existing queue item needs to be adjusted with 503 // respect to both address and size 504 (*w)->size = (*w)->addr + (*w)->size - addr; 505 (*w)->addr = addr; 506 } 507 } else { 508 // the new one starts after the current one, figure 509 // out where the existing one ends with respect to the 510 // new one 511 if (((*w)->addr + (*w)->size) >= (addr + size)) { 512 // check if the new one is completely subsumed in the 513 // existing one 514 DPRINTF(DRAM, "Merging write into existing burst\n"); 515 merged = true; 516 // no adjustments necessary 517 } else if (((*w)->addr + (*w)->size) >= addr && 518 (addr + size - (*w)->addr) <= burstSize) { 519 // the existing one is just before or partially 520 // overlapping with the new one, and together 521 // they fit within a burst 522 DPRINTF(DRAM, "Merging write after existing burst\n"); 523 merged = true; 524 // the address is right, and only the size has 525 // to be adjusted 526 (*w)->size = addr + size - (*w)->addr; 527 } 528 } 529 ++w; 530 } 531 532 // if the item was not merged we need to create a new write 533 // and enqueue it 534 if (!merged) { 535 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 536 537 assert(writeQueue.size() < writeBufferSize); 538 wrQLenPdf[writeQueue.size()]++; 539 540 DPRINTF(DRAM, "Adding to write queue\n"); 541 542 writeQueue.push_back(dram_pkt); 543 544 // Update stats 545 avgWrQLen = writeQueue.size(); 546 } else { 547 // keep track of the fact that this burst effectively 548 // disappeared as it was merged with an existing one 549 mergedWrBursts++; 550 } 551 552 // Starting address of next dram pkt (aligend to burstSize boundary) 553 addr = (addr | (burstSize - 1)) + 1; 554 } 555 556 // we do not wait for the writes to be send to the actual memory, 557 // but instead take responsibility for the consistency here and 558 // snoop the write queue for any upcoming reads 559 // @todo, if a pkt size is larger than burst size, we might need a 560 // different front end latency 561 accessAndRespond(pkt, frontendLatency); 562 563 // If your write buffer is starting to fill up, drain it! 564 if (writeQueue.size() >= writeHighThreshold && !stopReads){ 565 triggerWrites(); 566 } 567} 568 569void 570SimpleDRAM::printParams() const 571{ 572 // Sanity check print of important parameters 573 DPRINTF(DRAM, 574 "Memory controller %s physical organization\n" \ 575 "Number of devices per rank %d\n" \ 576 "Device bus width (in bits) %d\n" \ 577 "DRAM data bus burst (bytes) %d\n" \ 578 "Row buffer size (bytes) %d\n" \ 579 "Columns per row buffer %d\n" \ 580 "Rows per bank %d\n" \ 581 "Banks per rank %d\n" \ 582 "Ranks per channel %d\n" \ 583 "Total mem capacity (bytes) %u\n", 584 name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize, 585 columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel, 586 rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel); 587 588 string scheduler = memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS"; 589 string address_mapping = addrMapping == Enums::RoRaBaChCo ? "RoRaBaChCo" : 590 (addrMapping == Enums::RoRaBaCoCh ? "RoRaBaCoCh" : "RoCoRaBaCh"); 591 string page_policy = pageMgmt == Enums::open ? "OPEN" : 592 (pageMgmt == Enums::open_adaptive ? "OPEN (adaptive)" : 593 (pageMgmt == Enums::close_adaptive ? "CLOSE (adaptive)" : "CLOSE")); 594 595 DPRINTF(DRAM, 596 "Memory controller %s characteristics\n" \ 597 "Read buffer size %d\n" \ 598 "Write buffer size %d\n" \ 599 "Write high thresh %d\n" \ 600 "Write low thresh %d\n" \ 601 "Scheduler %s\n" \ 602 "Address mapping %s\n" \ 603 "Page policy %s\n", 604 name(), readBufferSize, writeBufferSize, writeHighThreshold, 605 writeLowThreshold, scheduler, address_mapping, page_policy); 606 607 DPRINTF(DRAM, "Memory controller %s timing specs\n" \ 608 "tRCD %d ticks\n" \ 609 "tCL %d ticks\n" \ 610 "tRP %d ticks\n" \ 611 "tBURST %d ticks\n" \ 612 "tRFC %d ticks\n" \ 613 "tREFI %d ticks\n" \ 614 "tWTR %d ticks\n" \ 615 "tXAW (%d) %d ticks\n", 616 name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR, 617 activationLimit, tXAW); 618} 619 620void 621SimpleDRAM::printQs() const { 622 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 623 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 624 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 625 } 626 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 627 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 628 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 629 } 630 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 631 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 632 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 633 } 634} 635 636bool 637SimpleDRAM::recvTimingReq(PacketPtr pkt) 638{ 639 /// @todo temporary hack to deal with memory corruption issues until 640 /// 4-phase transactions are complete 641 for (int x = 0; x < pendingDelete.size(); x++) 642 delete pendingDelete[x]; 643 pendingDelete.clear(); 644 645 // This is where we enter from the outside world 646 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 647 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 648 649 // simply drop inhibited packets for now 650 if (pkt->memInhibitAsserted()) { 651 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n"); 652 pendingDelete.push_back(pkt); 653 return true; 654 } 655 656 // Calc avg gap between requests 657 if (prevArrival != 0) { 658 totGap += curTick() - prevArrival; 659 } 660 prevArrival = curTick(); 661 662 663 // Find out how many dram packets a pkt translates to 664 // If the burst size is equal or larger than the pkt size, then a pkt 665 // translates to only one dram packet. Otherwise, a pkt translates to 666 // multiple dram packets 667 unsigned size = pkt->getSize(); 668 unsigned offset = pkt->getAddr() & (burstSize - 1); 669 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 670 671 // check local buffers and do not accept if full 672 if (pkt->isRead()) { 673 assert(size != 0); 674 if (readQueueFull(dram_pkt_count)) { 675 DPRINTF(DRAM, "Read queue full, not accepting\n"); 676 // remember that we have to retry this port 677 retryRdReq = true; 678 numRdRetry++; 679 return false; 680 } else { 681 addToReadQueue(pkt, dram_pkt_count); 682 readReqs++; 683 bytesReadSys += size; 684 } 685 } else if (pkt->isWrite()) { 686 assert(size != 0); 687 if (writeQueueFull(dram_pkt_count)) { 688 DPRINTF(DRAM, "Write queue full, not accepting\n"); 689 // remember that we have to retry this port 690 retryWrReq = true; 691 numWrRetry++; 692 return false; 693 } else { 694 addToWriteQueue(pkt, dram_pkt_count); 695 writeReqs++; 696 bytesWrittenSys += size; 697 } 698 } else { 699 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 700 neitherReadNorWrite++; 701 accessAndRespond(pkt, 1); 702 } 703 704 return true; 705} 706 707void 708SimpleDRAM::processRespondEvent() 709{ 710 DPRINTF(DRAM, 711 "processRespondEvent(): Some req has reached its readyTime\n"); 712 713 DRAMPacket* dram_pkt = respQueue.front(); 714 715 if (dram_pkt->burstHelper) { 716 // it is a split packet 717 dram_pkt->burstHelper->burstsServiced++; 718 if (dram_pkt->burstHelper->burstsServiced == 719 dram_pkt->burstHelper->burstCount) { 720 // we have now serviced all children packets of a system packet 721 // so we can now respond to the requester 722 // @todo we probably want to have a different front end and back 723 // end latency for split packets 724 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 725 delete dram_pkt->burstHelper; 726 dram_pkt->burstHelper = NULL; 727 } 728 } else { 729 // it is not a split packet 730 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 731 } 732 733 delete respQueue.front(); 734 respQueue.pop_front(); 735 736 if (!respQueue.empty()) { 737 assert(respQueue.front()->readyTime >= curTick()); 738 assert(!respondEvent.scheduled()); 739 schedule(respondEvent, respQueue.front()->readyTime); 740 } else { 741 // if there is nothing left in any queue, signal a drain 742 if (writeQueue.empty() && readQueue.empty() && 743 drainManager) { 744 drainManager->signalDrainDone(); 745 drainManager = NULL; 746 } 747 } 748 749 // We have made a location in the queue available at this point, 750 // so if there is a read that was forced to wait, retry now 751 if (retryRdReq) { 752 retryRdReq = false; 753 port.sendRetry(); 754 } 755} 756 757void 758SimpleDRAM::chooseNextWrite() 759{ 760 // This method does the arbitration between write requests. The 761 // chosen packet is simply moved to the head of the write 762 // queue. The other methods know that this is the place to 763 // look. For example, with FCFS, this method does nothing 764 assert(!writeQueue.empty()); 765 766 if (writeQueue.size() == 1) { 767 DPRINTF(DRAM, "Single write request, nothing to do\n"); 768 return; 769 } 770 771 if (memSchedPolicy == Enums::fcfs) { 772 // Do nothing, since the correct request is already head 773 } else if (memSchedPolicy == Enums::frfcfs) { 774 reorderQueue(writeQueue); 775 } else 776 panic("No scheduling policy chosen\n"); 777 778 DPRINTF(DRAM, "Selected next write request\n"); 779} 780 781bool 782SimpleDRAM::chooseNextRead() 783{ 784 // This method does the arbitration between read requests. The 785 // chosen packet is simply moved to the head of the queue. The 786 // other methods know that this is the place to look. For example, 787 // with FCFS, this method does nothing 788 if (readQueue.empty()) { 789 DPRINTF(DRAM, "No read request to select\n"); 790 return false; 791 } 792 793 // If there is only one request then there is nothing left to do 794 if (readQueue.size() == 1) 795 return true; 796 797 if (memSchedPolicy == Enums::fcfs) { 798 // Do nothing, since the request to serve is already the first 799 // one in the read queue 800 } else if (memSchedPolicy == Enums::frfcfs) { 801 reorderQueue(readQueue); 802 } else 803 panic("No scheduling policy chosen!\n"); 804 805 DPRINTF(DRAM, "Selected next read request\n"); 806 return true; 807} 808 809void 810SimpleDRAM::reorderQueue(std::deque<DRAMPacket*>& queue) 811{ 812 // Only determine this when needed 813 uint64_t earliest_banks = 0; 814 815 // Search for row hits first, if no row hit is found then schedule the 816 // packet to one of the earliest banks available 817 bool found_earliest_pkt = false; 818 auto selected_pkt_it = queue.begin(); 819 820 for (auto i = queue.begin(); i != queue.end() ; ++i) { 821 DRAMPacket* dram_pkt = *i; 822 const Bank& bank = dram_pkt->bankRef; 823 // Check if it is a row hit 824 if (bank.openRow == dram_pkt->row) { 825 DPRINTF(DRAM, "Row buffer hit\n"); 826 selected_pkt_it = i; 827 break; 828 } else if (!found_earliest_pkt) { 829 // No row hit, go for first ready 830 if (earliest_banks == 0) 831 earliest_banks = minBankFreeAt(queue); 832 833 // Bank is ready or is the first available bank 834 if (bank.freeAt <= curTick() || 835 bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 836 // Remember the packet to be scheduled to one of the earliest 837 // banks available 838 selected_pkt_it = i; 839 found_earliest_pkt = true; 840 } 841 } 842 } 843 844 DRAMPacket* selected_pkt = *selected_pkt_it; 845 queue.erase(selected_pkt_it); 846 queue.push_front(selected_pkt); 847} 848 849void 850SimpleDRAM::accessAndRespond(PacketPtr pkt, Tick static_latency) 851{ 852 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 853 854 bool needsResponse = pkt->needsResponse(); 855 // do the actual memory access which also turns the packet into a 856 // response 857 access(pkt); 858 859 // turn packet around to go back to requester if response expected 860 if (needsResponse) { 861 // access already turned the packet into a response 862 assert(pkt->isResponse()); 863 864 // @todo someone should pay for this 865 pkt->busFirstWordDelay = pkt->busLastWordDelay = 0; 866 867 // queue the packet in the response queue to be sent out after 868 // the static latency has passed 869 port.schedTimingResp(pkt, curTick() + static_latency); 870 } else { 871 // @todo the packet is going to be deleted, and the DRAMPacket 872 // is still having a pointer to it 873 pendingDelete.push_back(pkt); 874 } 875 876 DPRINTF(DRAM, "Done\n"); 877 878 return; 879} 880 881pair<Tick, Tick> 882SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime) 883{ 884 // If a request reaches a bank at tick 'inTime', how much time 885 // *after* that does it take to finish the request, depending 886 // on bank status and page open policy. Note that this method 887 // considers only the time taken for the actual read or write 888 // to complete, NOT any additional time thereafter for tRAS or 889 // tRP. 890 Tick accLat = 0; 891 Tick bankLat = 0; 892 rowHitFlag = false; 893 Tick potentialActTick; 894 895 const Bank& bank = dram_pkt->bankRef; 896 // open-page policy or close_adaptive policy 897 if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive || 898 pageMgmt == Enums::close_adaptive) { 899 if (bank.openRow == dram_pkt->row) { 900 // When we have a row-buffer hit, 901 // we don't care about tRAS having expired or not, 902 // but do care about bank being free for access 903 rowHitFlag = true; 904 905 // When a series of requests arrive to the same row, 906 // DDR systems are capable of streaming data continuously 907 // at maximum bandwidth (subject to tCCD). Here, we approximate 908 // this condition, and assume that if whenever a bank is already 909 // busy and a new request comes in, it can be completed with no 910 // penalty beyond waiting for the existing read to complete. 911 if (bank.freeAt > inTime) { 912 accLat += bank.freeAt - inTime; 913 bankLat += 0; 914 } else { 915 // CAS latency only 916 accLat += tCL; 917 bankLat += tCL; 918 } 919 920 } else { 921 // Row-buffer miss, need to close existing row 922 // once tRAS has expired, then open the new one, 923 // then add cas latency. 924 Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt); 925 926 if (freeTime > inTime) 927 accLat += freeTime - inTime; 928 929 // If the there is no open row (open adaptive), then there 930 // is no precharge delay, otherwise go with tRP 931 Tick precharge_delay = bank.openRow == -1 ? 0 : tRP; 932 933 //The bank is free, and you may be able to activate 934 potentialActTick = inTime + accLat + precharge_delay; 935 if (potentialActTick < bank.actAllowedAt) 936 accLat += bank.actAllowedAt - potentialActTick; 937 938 accLat += precharge_delay + tRCD + tCL; 939 bankLat += precharge_delay + tRCD + tCL; 940 } 941 } else if (pageMgmt == Enums::close) { 942 // With a close page policy, no notion of 943 // bank.tRASDoneAt 944 if (bank.freeAt > inTime) 945 accLat += bank.freeAt - inTime; 946 947 //The bank is free, and you may be able to activate 948 potentialActTick = inTime + accLat; 949 if (potentialActTick < bank.actAllowedAt) 950 accLat += bank.actAllowedAt - potentialActTick; 951 952 // page already closed, simply open the row, and 953 // add cas latency 954 accLat += tRCD + tCL; 955 bankLat += tRCD + tCL; 956 } else 957 panic("No page management policy chosen\n"); 958 959 DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n", 960 bankLat, accLat); 961 962 return make_pair(bankLat, accLat); 963} 964 965void 966SimpleDRAM::processNextReqEvent() 967{ 968 scheduleNextReq(); 969} 970 971void 972SimpleDRAM::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank) 973{ 974 assert(0 <= rank && rank < ranksPerChannel); 975 assert(actTicks[rank].size() == activationLimit); 976 977 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 978 979 // Tracking accesses after all banks are precharged. 980 // startTickPrechargeAll: is the tick when all the banks were again 981 // precharged. The difference between act_tick and startTickPrechargeAll 982 // gives the time for which DRAM doesn't get any accesses after refreshing 983 // or after a page is closed in closed-page or open-adaptive-page policy. 984 if ((numBanksActive == 0) && (act_tick > startTickPrechargeAll)) { 985 prechargeAllTime += act_tick - startTickPrechargeAll; 986 } 987 988 // No need to update number of active banks for closed-page policy as only 1 989 // bank will be activated at any given point, which will be instatntly 990 // precharged 991 if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive || 992 pageMgmt == Enums::close_adaptive) 993 ++numBanksActive; 994 995 // start by enforcing tRRD 996 for(int i = 0; i < banksPerRank; i++) { 997 // next activate must not happen before tRRD 998 banks[rank][i].actAllowedAt = act_tick + tRRD; 999 } 1000 // tRC should be added to activation tick of the bank currently accessed, 1001 // where tRC = tRAS + tRP, this is just for a check as actAllowedAt for same 1002 // bank is already captured by bank.freeAt and bank.tRASDoneAt 1003 banks[rank][bank].actAllowedAt = act_tick + tRAS + tRP; 1004 1005 // next, we deal with tXAW, if the activation limit is disabled 1006 // then we are done 1007 if (actTicks[rank].empty()) 1008 return; 1009 1010 // sanity check 1011 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 1012 // @todo For now, stick with a warning 1013 warn("Got %d activates in window %d (%d - %d) which is smaller " 1014 "than %d\n", activationLimit, act_tick - actTicks[rank].back(), 1015 act_tick, actTicks[rank].back(), tXAW); 1016 } 1017 1018 // shift the times used for the book keeping, the last element 1019 // (highest index) is the oldest one and hence the lowest value 1020 actTicks[rank].pop_back(); 1021 1022 // record an new activation (in the future) 1023 actTicks[rank].push_front(act_tick); 1024 1025 // cannot activate more than X times in time window tXAW, push the 1026 // next one (the X + 1'st activate) to be tXAW away from the 1027 // oldest in our window of X 1028 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 1029 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier " 1030 "than %d\n", activationLimit, actTicks[rank].back() + tXAW); 1031 for(int j = 0; j < banksPerRank; j++) 1032 // next activate must not happen before end of window 1033 banks[rank][j].actAllowedAt = actTicks[rank].back() + tXAW; 1034 } 1035} 1036 1037void 1038SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt) 1039{ 1040 1041 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 1042 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 1043 1044 // estimate the bank and access latency 1045 pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick()); 1046 Tick bankLat = lat.first; 1047 Tick accessLat = lat.second; 1048 Tick actTick; 1049 1050 // This request was woken up at this time based on a prior call 1051 // to estimateLatency(). However, between then and now, both the 1052 // accessLatency and/or busBusyUntil may have changed. We need 1053 // to correct for that. 1054 1055 Tick addDelay = (curTick() + accessLat < busBusyUntil) ? 1056 busBusyUntil - (curTick() + accessLat) : 0; 1057 1058 Bank& bank = dram_pkt->bankRef; 1059 1060 // Update bank state 1061 if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive || 1062 pageMgmt == Enums::close_adaptive) { 1063 bank.freeAt = curTick() + addDelay + accessLat; 1064 1065 // If you activated a new row do to this access, the next access 1066 // will have to respect tRAS for this bank. 1067 if (!rowHitFlag) { 1068 // any waiting for banks account for in freeAt 1069 actTick = bank.freeAt - tCL - tRCD; 1070 bank.tRASDoneAt = actTick + tRAS; 1071 recordActivate(actTick, dram_pkt->rank, dram_pkt->bank); 1072 1073 // if we closed an open row as a result of this access, 1074 // then sample the number of bytes accessed before 1075 // resetting it 1076 if (bank.openRow != -1) 1077 bytesPerActivate.sample(bank.bytesAccessed); 1078 1079 // update the open row 1080 bank.openRow = dram_pkt->row; 1081 1082 // start counting anew, this covers both the case when we 1083 // auto-precharged, and when this access is forced to 1084 // precharge 1085 bank.bytesAccessed = 0; 1086 bank.rowAccesses = 0; 1087 } 1088 1089 // increment the bytes accessed and the accesses per row 1090 bank.bytesAccessed += burstSize; 1091 ++bank.rowAccesses; 1092 1093 // if we reached the max, then issue with an auto-precharge 1094 bool auto_precharge = bank.rowAccesses == maxAccessesPerRow; 1095 1096 // if we did not hit the limit, we might still want to 1097 // auto-precharge 1098 if (!auto_precharge && 1099 (pageMgmt == Enums::open_adaptive || 1100 pageMgmt == Enums::close_adaptive)) { 1101 // a twist on the open and close page policies: 1102 // 1) open_adaptive page policy does not blindly keep the 1103 // page open, but close it if there are no row hits, and there 1104 // are bank conflicts in the queue 1105 // 2) close_adaptive page policy does not blindly close the 1106 // page, but closes it only if there are no row hits in the queue. 1107 // In this case, only force an auto precharge when there 1108 // are no same page hits in the queue 1109 bool got_more_hits = false; 1110 bool got_bank_conflict = false; 1111 1112 // either look at the read queue or write queue 1113 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1114 writeQueue; 1115 auto p = queue.begin(); 1116 // make sure we are not considering the packet that we are 1117 // currently dealing with (which is the head of the queue) 1118 ++p; 1119 1120 // keep on looking until we have found required condition or 1121 // reached the end 1122 while (!(got_more_hits && 1123 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) && 1124 p != queue.end()) { 1125 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1126 (dram_pkt->bank == (*p)->bank); 1127 bool same_row = dram_pkt->row == (*p)->row; 1128 got_more_hits |= same_rank_bank && same_row; 1129 got_bank_conflict |= same_rank_bank && !same_row; 1130 ++p; 1131 } 1132 1133 // auto pre-charge when either 1134 // 1) open_adaptive policy, we have not got any more hits, and 1135 // have a bank conflict 1136 // 2) close_adaptive policy and we have not got any more hits 1137 auto_precharge = !got_more_hits && 1138 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1139 } 1140 1141 // if this access should use auto-precharge, then we are 1142 // closing the row 1143 if (auto_precharge) { 1144 bank.openRow = -1; 1145 bank.freeAt = std::max(bank.freeAt, bank.tRASDoneAt) + tRP; 1146 --numBanksActive; 1147 if (numBanksActive == 0) { 1148 startTickPrechargeAll = std::max(startTickPrechargeAll, 1149 bank.freeAt); 1150 DPRINTF(DRAM, "All banks precharged at tick: %ld\n", 1151 startTickPrechargeAll); 1152 } 1153 1154 // sample the bytes per activate here since we are closing 1155 // the page 1156 bytesPerActivate.sample(bank.bytesAccessed); 1157 1158 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1159 } 1160 1161 DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt); 1162 } else if (pageMgmt == Enums::close) { 1163 actTick = curTick() + addDelay + accessLat - tRCD - tCL; 1164 recordActivate(actTick, dram_pkt->rank, dram_pkt->bank); 1165 1166 // If the DRAM has a very quick tRAS, bank can be made free 1167 // after consecutive tCL,tRCD,tRP times. In general, however, 1168 // an additional wait is required to respect tRAS. 1169 bank.freeAt = std::max(actTick + tRAS + tRP, 1170 actTick + tRCD + tCL + tRP); 1171 DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt); 1172 bytesPerActivate.sample(burstSize); 1173 startTickPrechargeAll = std::max(startTickPrechargeAll, bank.freeAt); 1174 } else 1175 panic("No page management policy chosen\n"); 1176 1177 // Update request parameters 1178 dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST; 1179 1180 1181 DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \ 1182 "readytime is %lld busbusyuntil is %lld. " \ 1183 "Scheduling at readyTime\n", dram_pkt->addr, 1184 curTick(), accessLat, dram_pkt->readyTime, busBusyUntil); 1185 1186 // Make sure requests are not overlapping on the databus 1187 assert (dram_pkt->readyTime - busBusyUntil >= tBURST); 1188 1189 // Update bus state 1190 busBusyUntil = dram_pkt->readyTime; 1191 1192 DPRINTF(DRAM,"Access time is %lld\n", 1193 dram_pkt->readyTime - dram_pkt->entryTime); 1194 1195 // Update the minimum timing between the requests 1196 newTime = (busBusyUntil > tRP + tRCD + tCL) ? 1197 std::max(busBusyUntil - (tRP + tRCD + tCL), curTick()) : curTick(); 1198 1199 // Update the access related stats 1200 if (dram_pkt->isRead) { 1201 if (rowHitFlag) 1202 readRowHits++; 1203 bytesReadDRAM += burstSize; 1204 perBankRdBursts[dram_pkt->bankId]++; 1205 } else { 1206 if (rowHitFlag) 1207 writeRowHits++; 1208 bytesWritten += burstSize; 1209 perBankWrBursts[dram_pkt->bankId]++; 1210 1211 // At this point, commonality between reads and writes ends. 1212 // For writes, we are done since we long ago responded to the 1213 // requestor. 1214 return; 1215 } 1216 1217 // Update latency stats 1218 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1219 totBankLat += bankLat; 1220 totBusLat += tBURST; 1221 totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST; 1222 1223 1224 // At this point we're done dealing with the request 1225 // It will be moved to a separate response queue with a 1226 // correct readyTime, and eventually be sent back at that 1227 //time 1228 moveToRespQ(); 1229 1230 // Schedule the next read event 1231 if (!nextReqEvent.scheduled() && !stopReads) { 1232 schedule(nextReqEvent, newTime); 1233 } else { 1234 if (newTime < nextReqEvent.when()) 1235 reschedule(nextReqEvent, newTime); 1236 } 1237} 1238 1239void 1240SimpleDRAM::moveToRespQ() 1241{ 1242 // Remove from read queue 1243 DRAMPacket* dram_pkt = readQueue.front(); 1244 readQueue.pop_front(); 1245 1246 // sanity check 1247 assert(dram_pkt->size <= burstSize); 1248 1249 // Insert into response queue sorted by readyTime 1250 // It will be sent back to the requestor at its 1251 // readyTime 1252 if (respQueue.empty()) { 1253 respQueue.push_front(dram_pkt); 1254 assert(!respondEvent.scheduled()); 1255 assert(dram_pkt->readyTime >= curTick()); 1256 schedule(respondEvent, dram_pkt->readyTime); 1257 } else { 1258 bool done = false; 1259 auto i = respQueue.begin(); 1260 while (!done && i != respQueue.end()) { 1261 if ((*i)->readyTime > dram_pkt->readyTime) { 1262 respQueue.insert(i, dram_pkt); 1263 done = true; 1264 } 1265 ++i; 1266 } 1267 1268 if (!done) 1269 respQueue.push_back(dram_pkt); 1270 1271 assert(respondEvent.scheduled()); 1272 1273 if (respQueue.front()->readyTime < respondEvent.when()) { 1274 assert(respQueue.front()->readyTime >= curTick()); 1275 reschedule(respondEvent, respQueue.front()->readyTime); 1276 } 1277 } 1278} 1279 1280void 1281SimpleDRAM::scheduleNextReq() 1282{ 1283 DPRINTF(DRAM, "Reached scheduleNextReq()\n"); 1284 1285 // Figure out which read request goes next, and move it to the 1286 // front of the read queue 1287 if (!chooseNextRead()) { 1288 // In the case there is no read request to go next, trigger 1289 // writes if we have passed the low threshold (or if we are 1290 // draining) 1291 if (!writeQueue.empty() && !writeEvent.scheduled() && 1292 (writeQueue.size() > writeLowThreshold || drainManager)) 1293 triggerWrites(); 1294 } else { 1295 doDRAMAccess(readQueue.front()); 1296 } 1297} 1298 1299Tick 1300SimpleDRAM::maxBankFreeAt() const 1301{ 1302 Tick banksFree = 0; 1303 1304 for(int i = 0; i < ranksPerChannel; i++) 1305 for(int j = 0; j < banksPerRank; j++) 1306 banksFree = std::max(banks[i][j].freeAt, banksFree); 1307 1308 return banksFree; 1309} 1310 1311uint64_t 1312SimpleDRAM::minBankFreeAt(const deque<DRAMPacket*>& queue) const 1313{ 1314 uint64_t bank_mask = 0; 1315 Tick freeAt = MaxTick; 1316 1317 // detemrine if we have queued transactions targetting the 1318 // bank in question 1319 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1320 for (auto p = queue.begin(); p != queue.end(); ++p) { 1321 got_waiting[(*p)->bankId] = true; 1322 } 1323 1324 for (int i = 0; i < ranksPerChannel; i++) { 1325 for (int j = 0; j < banksPerRank; j++) { 1326 // if we have waiting requests for the bank, and it is 1327 // amongst the first available, update the mask 1328 if (got_waiting[i * banksPerRank + j] && 1329 banks[i][j].freeAt <= freeAt) { 1330 // reset bank mask if new minimum is found 1331 if (banks[i][j].freeAt < freeAt) 1332 bank_mask = 0; 1333 // set the bit corresponding to the available bank 1334 uint8_t bit_index = i * ranksPerChannel + j; 1335 replaceBits(bank_mask, bit_index, bit_index, 1); 1336 freeAt = banks[i][j].freeAt; 1337 } 1338 } 1339 } 1340 return bank_mask; 1341} 1342 1343void 1344SimpleDRAM::processRefreshEvent() 1345{ 1346 DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick()); 1347 1348 Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC; 1349 1350 for(int i = 0; i < ranksPerChannel; i++) 1351 for(int j = 0; j < banksPerRank; j++) { 1352 banks[i][j].freeAt = banksFree; 1353 banks[i][j].openRow = -1; 1354 } 1355 1356 // updating startTickPrechargeAll, isprechargeAll 1357 numBanksActive = 0; 1358 startTickPrechargeAll = banksFree; 1359 1360 schedule(refreshEvent, curTick() + tREFI); 1361} 1362 1363void 1364SimpleDRAM::regStats() 1365{ 1366 using namespace Stats; 1367 1368 AbstractMemory::regStats(); 1369 1370 readReqs 1371 .name(name() + ".readReqs") 1372 .desc("Number of read requests accepted"); 1373 1374 writeReqs 1375 .name(name() + ".writeReqs") 1376 .desc("Number of write requests accepted"); 1377 1378 readBursts 1379 .name(name() + ".readBursts") 1380 .desc("Number of DRAM read bursts, " 1381 "including those serviced by the write queue"); 1382 1383 writeBursts 1384 .name(name() + ".writeBursts") 1385 .desc("Number of DRAM write bursts, " 1386 "including those merged in the write queue"); 1387 1388 servicedByWrQ 1389 .name(name() + ".servicedByWrQ") 1390 .desc("Number of DRAM read bursts serviced by the write queue"); 1391 1392 mergedWrBursts 1393 .name(name() + ".mergedWrBursts") 1394 .desc("Number of DRAM write bursts merged with an existing one"); 1395 1396 neitherReadNorWrite 1397 .name(name() + ".neitherReadNorWriteReqs") 1398 .desc("Number of requests that are neither read nor write"); 1399 1400 perBankRdBursts 1401 .init(banksPerRank * ranksPerChannel) 1402 .name(name() + ".perBankRdBursts") 1403 .desc("Per bank write bursts"); 1404 1405 perBankWrBursts 1406 .init(banksPerRank * ranksPerChannel) 1407 .name(name() + ".perBankWrBursts") 1408 .desc("Per bank write bursts"); 1409 1410 avgRdQLen 1411 .name(name() + ".avgRdQLen") 1412 .desc("Average read queue length when enqueuing") 1413 .precision(2); 1414 1415 avgWrQLen 1416 .name(name() + ".avgWrQLen") 1417 .desc("Average write queue length when enqueuing") 1418 .precision(2); 1419 1420 totQLat 1421 .name(name() + ".totQLat") 1422 .desc("Total ticks spent queuing"); 1423 1424 totBankLat 1425 .name(name() + ".totBankLat") 1426 .desc("Total ticks spent accessing banks"); 1427 1428 totBusLat 1429 .name(name() + ".totBusLat") 1430 .desc("Total ticks spent in databus transfers"); 1431 1432 totMemAccLat 1433 .name(name() + ".totMemAccLat") 1434 .desc("Total ticks spent from burst creation until serviced " 1435 "by the DRAM"); 1436 1437 avgQLat 1438 .name(name() + ".avgQLat") 1439 .desc("Average queueing delay per DRAM burst") 1440 .precision(2); 1441 1442 avgQLat = totQLat / (readBursts - servicedByWrQ); 1443 1444 avgBankLat 1445 .name(name() + ".avgBankLat") 1446 .desc("Average bank access latency per DRAM burst") 1447 .precision(2); 1448 1449 avgBankLat = totBankLat / (readBursts - servicedByWrQ); 1450 1451 avgBusLat 1452 .name(name() + ".avgBusLat") 1453 .desc("Average bus latency per DRAM burst") 1454 .precision(2); 1455 1456 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1457 1458 avgMemAccLat 1459 .name(name() + ".avgMemAccLat") 1460 .desc("Average memory access latency per DRAM burst") 1461 .precision(2); 1462 1463 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1464 1465 numRdRetry 1466 .name(name() + ".numRdRetry") 1467 .desc("Number of times read queue was full causing retry"); 1468 1469 numWrRetry 1470 .name(name() + ".numWrRetry") 1471 .desc("Number of times write queue was full causing retry"); 1472 1473 readRowHits 1474 .name(name() + ".readRowHits") 1475 .desc("Number of row buffer hits during reads"); 1476 1477 writeRowHits 1478 .name(name() + ".writeRowHits") 1479 .desc("Number of row buffer hits during writes"); 1480 1481 readRowHitRate 1482 .name(name() + ".readRowHitRate") 1483 .desc("Row buffer hit rate for reads") 1484 .precision(2); 1485 1486 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 1487 1488 writeRowHitRate 1489 .name(name() + ".writeRowHitRate") 1490 .desc("Row buffer hit rate for writes") 1491 .precision(2); 1492 1493 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 1494 1495 readPktSize 1496 .init(ceilLog2(burstSize) + 1) 1497 .name(name() + ".readPktSize") 1498 .desc("Read request sizes (log2)"); 1499 1500 writePktSize 1501 .init(ceilLog2(burstSize) + 1) 1502 .name(name() + ".writePktSize") 1503 .desc("Write request sizes (log2)"); 1504 1505 rdQLenPdf 1506 .init(readBufferSize) 1507 .name(name() + ".rdQLenPdf") 1508 .desc("What read queue length does an incoming req see"); 1509 1510 wrQLenPdf 1511 .init(writeBufferSize) 1512 .name(name() + ".wrQLenPdf") 1513 .desc("What write queue length does an incoming req see"); 1514 1515 bytesPerActivate 1516 .init(maxAccessesPerRow) 1517 .name(name() + ".bytesPerActivate") 1518 .desc("Bytes accessed per row activation") 1519 .flags(nozero); 1520 1521 bytesReadDRAM 1522 .name(name() + ".bytesReadDRAM") 1523 .desc("Total number of bytes read from DRAM"); 1524 1525 bytesReadWrQ 1526 .name(name() + ".bytesReadWrQ") 1527 .desc("Total number of bytes read from write queue"); 1528 1529 bytesWritten 1530 .name(name() + ".bytesWritten") 1531 .desc("Total number of bytes written to DRAM"); 1532 1533 bytesReadSys 1534 .name(name() + ".bytesReadSys") 1535 .desc("Total read bytes from the system interface side"); 1536 1537 bytesWrittenSys 1538 .name(name() + ".bytesWrittenSys") 1539 .desc("Total written bytes from the system interface side"); 1540 1541 avgRdBW 1542 .name(name() + ".avgRdBW") 1543 .desc("Average DRAM read bandwidth in MiByte/s") 1544 .precision(2); 1545 1546 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 1547 1548 avgWrBW 1549 .name(name() + ".avgWrBW") 1550 .desc("Average achieved write bandwidth in MiByte/s") 1551 .precision(2); 1552 1553 avgWrBW = (bytesWritten / 1000000) / simSeconds; 1554 1555 avgRdBWSys 1556 .name(name() + ".avgRdBWSys") 1557 .desc("Average system read bandwidth in MiByte/s") 1558 .precision(2); 1559 1560 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 1561 1562 avgWrBWSys 1563 .name(name() + ".avgWrBWSys") 1564 .desc("Average system write bandwidth in MiByte/s") 1565 .precision(2); 1566 1567 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 1568 1569 peakBW 1570 .name(name() + ".peakBW") 1571 .desc("Theoretical peak bandwidth in MiByte/s") 1572 .precision(2); 1573 1574 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 1575 1576 busUtil 1577 .name(name() + ".busUtil") 1578 .desc("Data bus utilization in percentage") 1579 .precision(2); 1580 1581 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 1582 1583 totGap 1584 .name(name() + ".totGap") 1585 .desc("Total gap between requests"); 1586 1587 avgGap 1588 .name(name() + ".avgGap") 1589 .desc("Average gap between requests") 1590 .precision(2); 1591 1592 avgGap = totGap / (readReqs + writeReqs); 1593 1594 // Stats for DRAM Power calculation based on Micron datasheet 1595 busUtilRead 1596 .name(name() + ".busUtilRead") 1597 .desc("Data bus utilization in percentage for reads") 1598 .precision(2); 1599 1600 busUtilRead = avgRdBW / peakBW * 100; 1601 1602 busUtilWrite 1603 .name(name() + ".busUtilWrite") 1604 .desc("Data bus utilization in percentage for writes") 1605 .precision(2); 1606 1607 busUtilWrite = avgWrBW / peakBW * 100; 1608 1609 pageHitRate 1610 .name(name() + ".pageHitRate") 1611 .desc("Row buffer hit rate, read and write combined") 1612 .precision(2); 1613 1614 pageHitRate = (writeRowHits + readRowHits) / 1615 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 1616 1617 prechargeAllPercent 1618 .name(name() + ".prechargeAllPercent") 1619 .desc("Percentage of time for which DRAM has all the banks in " 1620 "precharge state") 1621 .precision(2); 1622 1623 prechargeAllPercent = prechargeAllTime / simTicks * 100; 1624} 1625 1626void 1627SimpleDRAM::recvFunctional(PacketPtr pkt) 1628{ 1629 // rely on the abstract memory 1630 functionalAccess(pkt); 1631} 1632 1633BaseSlavePort& 1634SimpleDRAM::getSlavePort(const string &if_name, PortID idx) 1635{ 1636 if (if_name != "port") { 1637 return MemObject::getSlavePort(if_name, idx); 1638 } else { 1639 return port; 1640 } 1641} 1642 1643unsigned int 1644SimpleDRAM::drain(DrainManager *dm) 1645{ 1646 unsigned int count = port.drain(dm); 1647 1648 // if there is anything in any of our internal queues, keep track 1649 // of that as well 1650 if (!(writeQueue.empty() && readQueue.empty() && 1651 respQueue.empty())) { 1652 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 1653 " resp: %d\n", writeQueue.size(), readQueue.size(), 1654 respQueue.size()); 1655 ++count; 1656 drainManager = dm; 1657 // the only part that is not drained automatically over time 1658 // is the write queue, thus trigger writes if there are any 1659 // waiting and no reads waiting, otherwise wait until the 1660 // reads are done 1661 if (readQueue.empty() && !writeQueue.empty() && 1662 !writeEvent.scheduled()) 1663 triggerWrites(); 1664 } 1665 1666 if (count) 1667 setDrainState(Drainable::Draining); 1668 else 1669 setDrainState(Drainable::Drained); 1670 return count; 1671} 1672 1673SimpleDRAM::MemoryPort::MemoryPort(const std::string& name, SimpleDRAM& _memory) 1674 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 1675 memory(_memory) 1676{ } 1677 1678AddrRangeList 1679SimpleDRAM::MemoryPort::getAddrRanges() const 1680{ 1681 AddrRangeList ranges; 1682 ranges.push_back(memory.getAddrRange()); 1683 return ranges; 1684} 1685 1686void 1687SimpleDRAM::MemoryPort::recvFunctional(PacketPtr pkt) 1688{ 1689 pkt->pushLabel(memory.name()); 1690 1691 if (!queue.checkFunctional(pkt)) { 1692 // Default implementation of SimpleTimingPort::recvFunctional() 1693 // calls recvAtomic() and throws away the latency; we can save a 1694 // little here by just not calculating the latency. 1695 memory.recvFunctional(pkt); 1696 } 1697 1698 pkt->popLabel(); 1699} 1700 1701Tick 1702SimpleDRAM::MemoryPort::recvAtomic(PacketPtr pkt) 1703{ 1704 return memory.recvAtomic(pkt); 1705} 1706 1707bool 1708SimpleDRAM::MemoryPort::recvTimingReq(PacketPtr pkt) 1709{ 1710 // pass it to the memory controller 1711 return memory.recvTimingReq(pkt); 1712} 1713 1714SimpleDRAM* 1715SimpleDRAMParams::create() 1716{ 1717 return new SimpleDRAM(this); 1718} 1719