coherent_xbar.cc revision 14006:5258c91ede20
1/* 2 * Copyright (c) 2011-2019 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Ali Saidi 41 * Andreas Hansson 42 * William Wang 43 * Nikos Nikoleris 44 */ 45 46/** 47 * @file 48 * Definition of a crossbar object. 49 */ 50 51#include "mem/coherent_xbar.hh" 52 53#include "base/logging.hh" 54#include "base/trace.hh" 55#include "debug/AddrRanges.hh" 56#include "debug/CoherentXBar.hh" 57#include "sim/system.hh" 58 59CoherentXBar::CoherentXBar(const CoherentXBarParams *p) 60 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter), 61 snoopResponseLatency(p->snoop_response_latency), 62 maxOutstandingSnoopCheck(p->max_outstanding_snoops), 63 maxRoutingTableSizeCheck(p->max_routing_table_size), 64 pointOfCoherency(p->point_of_coherency), 65 pointOfUnification(p->point_of_unification) 66{ 67 // create the ports based on the size of the master and slave 68 // vector ports, and the presence of the default port, the ports 69 // are enumerated starting from zero 70 for (int i = 0; i < p->port_master_connection_count; ++i) { 71 std::string portName = csprintf("%s.master[%d]", name(), i); 72 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i); 73 masterPorts.push_back(bp); 74 reqLayers.push_back(new ReqLayer(*bp, *this, 75 csprintf(".reqLayer%d", i))); 76 snoopLayers.push_back( 77 new SnoopRespLayer(*bp, *this, csprintf(".snoopLayer%d", i))); 78 } 79 80 // see if we have a default slave device connected and if so add 81 // our corresponding master port 82 if (p->port_default_connection_count) { 83 defaultPortID = masterPorts.size(); 84 std::string portName = name() + ".default"; 85 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, 86 defaultPortID); 87 masterPorts.push_back(bp); 88 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d", 89 defaultPortID))); 90 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 91 csprintf(".snoopLayer%d", 92 defaultPortID))); 93 } 94 95 // create the slave ports, once again starting at zero 96 for (int i = 0; i < p->port_slave_connection_count; ++i) { 97 std::string portName = csprintf("%s.slave[%d]", name(), i); 98 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i); 99 slavePorts.push_back(bp); 100 respLayers.push_back(new RespLayer(*bp, *this, 101 csprintf(".respLayer%d", i))); 102 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this)); 103 } 104} 105 106CoherentXBar::~CoherentXBar() 107{ 108 for (auto l: reqLayers) 109 delete l; 110 for (auto l: respLayers) 111 delete l; 112 for (auto l: snoopLayers) 113 delete l; 114 for (auto p: snoopRespPorts) 115 delete p; 116} 117 118void 119CoherentXBar::init() 120{ 121 BaseXBar::init(); 122 123 // iterate over our slave ports and determine which of our 124 // neighbouring master ports are snooping and add them as snoopers 125 for (const auto& p: slavePorts) { 126 // check if the connected master port is snooping 127 if (p->isSnooping()) { 128 DPRINTF(AddrRanges, "Adding snooping master %s\n", 129 p->getMasterPort().name()); 130 snoopPorts.push_back(p); 131 } 132 } 133 134 if (snoopPorts.empty()) 135 warn("CoherentXBar %s has no snooping ports attached!\n", name()); 136 137 // inform the snoop filter about the slave ports so it can create 138 // its own internal representation 139 if (snoopFilter) 140 snoopFilter->setSlavePorts(slavePorts); 141} 142 143bool 144CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id) 145{ 146 // determine the source port based on the id 147 SlavePort *src_port = slavePorts[slave_port_id]; 148 149 // remember if the packet is an express snoop 150 bool is_express_snoop = pkt->isExpressSnoop(); 151 bool cache_responding = pkt->cacheResponding(); 152 // for normal requests, going downstream, the express snoop flag 153 // and the cache responding flag should always be the same 154 assert(is_express_snoop == cache_responding); 155 156 // determine the destination based on the destination address range 157 PortID master_port_id = findPort(pkt->getAddrRange()); 158 159 // test if the crossbar should be considered occupied for the current 160 // port, and exclude express snoops from the check 161 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) { 162 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 163 src_port->name(), pkt->print()); 164 return false; 165 } 166 167 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 168 src_port->name(), pkt->print()); 169 170 // store size and command as they might be modified when 171 // forwarding the packet 172 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 173 unsigned int pkt_cmd = pkt->cmdToIndex(); 174 175 // store the old header delay so we can restore it if needed 176 Tick old_header_delay = pkt->headerDelay; 177 178 // a request sees the frontend and forward latency 179 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod(); 180 181 // set the packet header and payload delay 182 calcPacketTiming(pkt, xbar_delay); 183 184 // determine how long to be crossbar layer is busy 185 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 186 187 // is this the destination point for this packet? (e.g. true if 188 // this xbar is the PoC for a cache maintenance operation to the 189 // PoC) otherwise the destination is any cache that can satisfy 190 // the request 191 const bool is_destination = isDestination(pkt); 192 193 const bool snoop_caches = !system->bypassCaches() && 194 pkt->cmd != MemCmd::WriteClean; 195 if (snoop_caches) { 196 assert(pkt->snoopDelay == 0); 197 198 if (pkt->isClean() && !is_destination) { 199 // before snooping we need to make sure that the memory 200 // below is not busy and the cache clean request can be 201 // forwarded to it 202 if (!masterPorts[master_port_id]->tryTiming(pkt)) { 203 DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__, 204 src_port->name(), pkt->print()); 205 206 // update the layer state and schedule an idle event 207 reqLayers[master_port_id]->failedTiming(src_port, 208 clockEdge(Cycles(1))); 209 return false; 210 } 211 } 212 213 214 // the packet is a memory-mapped request and should be 215 // broadcasted to our snoopers but the source 216 if (snoopFilter) { 217 // check with the snoop filter where to forward this packet 218 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port); 219 // the time required by a packet to be delivered through 220 // the xbar has to be charged also with to lookup latency 221 // of the snoop filter 222 pkt->headerDelay += sf_res.second * clockPeriod(); 223 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 224 __func__, src_port->name(), pkt->print(), 225 sf_res.first.size(), sf_res.second); 226 227 if (pkt->isEviction()) { 228 // for block-evicting packets, i.e. writebacks and 229 // clean evictions, there is no need to snoop up, as 230 // all we do is determine if the block is cached or 231 // not, instead just set it here based on the snoop 232 // filter result 233 if (!sf_res.first.empty()) 234 pkt->setBlockCached(); 235 } else { 236 forwardTiming(pkt, slave_port_id, sf_res.first); 237 } 238 } else { 239 forwardTiming(pkt, slave_port_id); 240 } 241 242 // add the snoop delay to our header delay, and then reset it 243 pkt->headerDelay += pkt->snoopDelay; 244 pkt->snoopDelay = 0; 245 } 246 247 // set up a sensible starting point 248 bool success = true; 249 250 // remember if the packet will generate a snoop response by 251 // checking if a cache set the cacheResponding flag during the 252 // snooping above 253 const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding(); 254 bool expect_response = pkt->needsResponse() && !pkt->cacheResponding(); 255 256 const bool sink_packet = sinkPacket(pkt); 257 258 // in certain cases the crossbar is responsible for responding 259 bool respond_directly = false; 260 // store the original address as an address mapper could possibly 261 // modify the address upon a sendTimingRequest 262 const Addr addr(pkt->getAddr()); 263 if (sink_packet) { 264 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__, 265 pkt->print()); 266 } else { 267 // determine if we are forwarding the packet, or responding to 268 // it 269 if (forwardPacket(pkt)) { 270 // if we are passing on, rather than sinking, a packet to 271 // which an upstream cache has committed to responding, 272 // the line was needs writable, and the responding only 273 // had an Owned copy, so we need to immidiately let the 274 // downstream caches know, bypass any flow control 275 if (pkt->cacheResponding()) { 276 pkt->setExpressSnoop(); 277 } 278 279 // make sure that the write request (e.g., WriteClean) 280 // will stop at the memory below if this crossbar is its 281 // destination 282 if (pkt->isWrite() && is_destination) { 283 pkt->clearWriteThrough(); 284 } 285 286 // since it is a normal request, attempt to send the packet 287 success = masterPorts[master_port_id]->sendTimingReq(pkt); 288 } else { 289 // no need to forward, turn this packet around and respond 290 // directly 291 assert(pkt->needsResponse()); 292 293 respond_directly = true; 294 assert(!expect_snoop_resp); 295 expect_response = false; 296 } 297 } 298 299 if (snoopFilter && snoop_caches) { 300 // Let the snoop filter know about the success of the send operation 301 snoopFilter->finishRequest(!success, addr, pkt->isSecure()); 302 } 303 304 // check if we were successful in sending the packet onwards 305 if (!success) { 306 // express snoops should never be forced to retry 307 assert(!is_express_snoop); 308 309 // restore the header delay 310 pkt->headerDelay = old_header_delay; 311 312 DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__, 313 src_port->name(), pkt->print()); 314 315 // update the layer state and schedule an idle event 316 reqLayers[master_port_id]->failedTiming(src_port, 317 clockEdge(Cycles(1))); 318 } else { 319 // express snoops currently bypass the crossbar state entirely 320 if (!is_express_snoop) { 321 // if this particular request will generate a snoop 322 // response 323 if (expect_snoop_resp) { 324 // we should never have an exsiting request outstanding 325 assert(outstandingSnoop.find(pkt->req) == 326 outstandingSnoop.end()); 327 outstandingSnoop.insert(pkt->req); 328 329 // basic sanity check on the outstanding snoops 330 panic_if(outstandingSnoop.size() > maxOutstandingSnoopCheck, 331 "%s: Outstanding snoop requests exceeded %d\n", 332 name(), maxOutstandingSnoopCheck); 333 } 334 335 // remember where to route the normal response to 336 if (expect_response || expect_snoop_resp) { 337 assert(routeTo.find(pkt->req) == routeTo.end()); 338 routeTo[pkt->req] = slave_port_id; 339 340 panic_if(routeTo.size() > maxRoutingTableSizeCheck, 341 "%s: Routing table exceeds %d packets\n", 342 name(), maxRoutingTableSizeCheck); 343 } 344 345 // update the layer state and schedule an idle event 346 reqLayers[master_port_id]->succeededTiming(packetFinishTime); 347 } 348 349 // stats updates only consider packets that were successfully sent 350 pktCount[slave_port_id][master_port_id]++; 351 pktSize[slave_port_id][master_port_id] += pkt_size; 352 transDist[pkt_cmd]++; 353 354 if (is_express_snoop) { 355 snoops++; 356 snoopTraffic += pkt_size; 357 } 358 } 359 360 if (sink_packet) 361 // queue the packet for deletion 362 pendingDelete.reset(pkt); 363 364 // normally we respond to the packet we just received if we need to 365 PacketPtr rsp_pkt = pkt; 366 PortID rsp_port_id = slave_port_id; 367 368 // If this is the destination of the cache clean operation the 369 // crossbar is responsible for responding. This crossbar will 370 // respond when the cache clean is complete. A cache clean 371 // is complete either: 372 // * direcly, if no cache above had a dirty copy of the block 373 // as indicated by the satisfied flag of the packet, or 374 // * when the crossbar has seen both the cache clean request 375 // (CleanSharedReq, CleanInvalidReq) and the corresponding 376 // write (WriteClean) which updates the block in the memory 377 // below. 378 if (success && 379 ((pkt->isClean() && pkt->satisfied()) || 380 pkt->cmd == MemCmd::WriteClean) && 381 is_destination) { 382 PacketPtr deferred_rsp = pkt->isWrite() ? nullptr : pkt; 383 auto cmo_lookup = outstandingCMO.find(pkt->id); 384 if (cmo_lookup != outstandingCMO.end()) { 385 // the cache clean request has already reached this xbar 386 respond_directly = true; 387 if (pkt->isWrite()) { 388 rsp_pkt = cmo_lookup->second; 389 assert(rsp_pkt); 390 391 // determine the destination 392 const auto route_lookup = routeTo.find(rsp_pkt->req); 393 assert(route_lookup != routeTo.end()); 394 rsp_port_id = route_lookup->second; 395 assert(rsp_port_id != InvalidPortID); 396 assert(rsp_port_id < respLayers.size()); 397 // remove the request from the routing table 398 routeTo.erase(route_lookup); 399 } 400 outstandingCMO.erase(cmo_lookup); 401 } else { 402 respond_directly = false; 403 outstandingCMO.emplace(pkt->id, deferred_rsp); 404 if (!pkt->isWrite()) { 405 assert(routeTo.find(pkt->req) == routeTo.end()); 406 routeTo[pkt->req] = slave_port_id; 407 408 panic_if(routeTo.size() > maxRoutingTableSizeCheck, 409 "%s: Routing table exceeds %d packets\n", 410 name(), maxRoutingTableSizeCheck); 411 } 412 } 413 } 414 415 416 if (respond_directly) { 417 assert(rsp_pkt->needsResponse()); 418 assert(success); 419 420 rsp_pkt->makeResponse(); 421 422 if (snoopFilter && !system->bypassCaches()) { 423 // let the snoop filter inspect the response and update its state 424 snoopFilter->updateResponse(rsp_pkt, *slavePorts[rsp_port_id]); 425 } 426 427 // we send the response after the current packet, even if the 428 // response is not for this packet (e.g. cache clean operation 429 // where both the request and the write packet have to cross 430 // the destination xbar before the response is sent.) 431 Tick response_time = clockEdge() + pkt->headerDelay; 432 rsp_pkt->headerDelay = 0; 433 434 slavePorts[rsp_port_id]->schedTimingResp(rsp_pkt, response_time); 435 } 436 437 return success; 438} 439 440bool 441CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id) 442{ 443 // determine the source port based on the id 444 MasterPort *src_port = masterPorts[master_port_id]; 445 446 // determine the destination 447 const auto route_lookup = routeTo.find(pkt->req); 448 assert(route_lookup != routeTo.end()); 449 const PortID slave_port_id = route_lookup->second; 450 assert(slave_port_id != InvalidPortID); 451 assert(slave_port_id < respLayers.size()); 452 453 // test if the crossbar should be considered occupied for the 454 // current port 455 if (!respLayers[slave_port_id]->tryTiming(src_port)) { 456 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 457 src_port->name(), pkt->print()); 458 return false; 459 } 460 461 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 462 src_port->name(), pkt->print()); 463 464 // store size and command as they might be modified when 465 // forwarding the packet 466 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 467 unsigned int pkt_cmd = pkt->cmdToIndex(); 468 469 // a response sees the response latency 470 Tick xbar_delay = responseLatency * clockPeriod(); 471 472 // set the packet header and payload delay 473 calcPacketTiming(pkt, xbar_delay); 474 475 // determine how long to be crossbar layer is busy 476 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 477 478 if (snoopFilter && !system->bypassCaches()) { 479 // let the snoop filter inspect the response and update its state 480 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 481 } 482 483 // send the packet through the destination slave port and pay for 484 // any outstanding header delay 485 Tick latency = pkt->headerDelay; 486 pkt->headerDelay = 0; 487 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency); 488 489 // remove the request from the routing table 490 routeTo.erase(route_lookup); 491 492 respLayers[slave_port_id]->succeededTiming(packetFinishTime); 493 494 // stats updates 495 pktCount[slave_port_id][master_port_id]++; 496 pktSize[slave_port_id][master_port_id] += pkt_size; 497 transDist[pkt_cmd]++; 498 499 return true; 500} 501 502void 503CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id) 504{ 505 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 506 masterPorts[master_port_id]->name(), pkt->print()); 507 508 // update stats here as we know the forwarding will succeed 509 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 510 transDist[pkt->cmdToIndex()]++; 511 snoops++; 512 snoopTraffic += pkt_size; 513 514 // we should only see express snoops from caches 515 assert(pkt->isExpressSnoop()); 516 517 // set the packet header and payload delay, for now use forward latency 518 // @todo Assess the choice of latency further 519 calcPacketTiming(pkt, forwardLatency * clockPeriod()); 520 521 // remember if a cache has already committed to responding so we 522 // can see if it changes during the snooping 523 const bool cache_responding = pkt->cacheResponding(); 524 525 assert(pkt->snoopDelay == 0); 526 527 if (snoopFilter) { 528 // let the Snoop Filter work its magic and guide probing 529 auto sf_res = snoopFilter->lookupSnoop(pkt); 530 // the time required by a packet to be delivered through 531 // the xbar has to be charged also with to lookup latency 532 // of the snoop filter 533 pkt->headerDelay += sf_res.second * clockPeriod(); 534 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 535 __func__, masterPorts[master_port_id]->name(), pkt->print(), 536 sf_res.first.size(), sf_res.second); 537 538 // forward to all snoopers 539 forwardTiming(pkt, InvalidPortID, sf_res.first); 540 } else { 541 forwardTiming(pkt, InvalidPortID); 542 } 543 544 // add the snoop delay to our header delay, and then reset it 545 pkt->headerDelay += pkt->snoopDelay; 546 pkt->snoopDelay = 0; 547 548 // if we can expect a response, remember how to route it 549 if (!cache_responding && pkt->cacheResponding()) { 550 assert(routeTo.find(pkt->req) == routeTo.end()); 551 routeTo[pkt->req] = master_port_id; 552 } 553 554 // a snoop request came from a connected slave device (one of 555 // our master ports), and if it is not coming from the slave 556 // device responsible for the address range something is 557 // wrong, hence there is nothing further to do as the packet 558 // would be going back to where it came from 559 assert(findPort(pkt->getAddrRange()) == master_port_id); 560} 561 562bool 563CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id) 564{ 565 // determine the source port based on the id 566 SlavePort* src_port = slavePorts[slave_port_id]; 567 568 // get the destination 569 const auto route_lookup = routeTo.find(pkt->req); 570 assert(route_lookup != routeTo.end()); 571 const PortID dest_port_id = route_lookup->second; 572 assert(dest_port_id != InvalidPortID); 573 574 // determine if the response is from a snoop request we 575 // created as the result of a normal request (in which case it 576 // should be in the outstandingSnoop), or if we merely forwarded 577 // someone else's snoop request 578 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 579 outstandingSnoop.end(); 580 581 // test if the crossbar should be considered occupied for the 582 // current port, note that the check is bypassed if the response 583 // is being passed on as a normal response since this is occupying 584 // the response layer rather than the snoop response layer 585 if (forwardAsSnoop) { 586 assert(dest_port_id < snoopLayers.size()); 587 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) { 588 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 589 src_port->name(), pkt->print()); 590 return false; 591 } 592 } else { 593 // get the master port that mirrors this slave port internally 594 MasterPort* snoop_port = snoopRespPorts[slave_port_id]; 595 assert(dest_port_id < respLayers.size()); 596 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) { 597 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 598 snoop_port->name(), pkt->print()); 599 return false; 600 } 601 } 602 603 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 604 src_port->name(), pkt->print()); 605 606 // store size and command as they might be modified when 607 // forwarding the packet 608 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 609 unsigned int pkt_cmd = pkt->cmdToIndex(); 610 611 // responses are never express snoops 612 assert(!pkt->isExpressSnoop()); 613 614 // a snoop response sees the snoop response latency, and if it is 615 // forwarded as a normal response, the response latency 616 Tick xbar_delay = 617 (forwardAsSnoop ? snoopResponseLatency : responseLatency) * 618 clockPeriod(); 619 620 // set the packet header and payload delay 621 calcPacketTiming(pkt, xbar_delay); 622 623 // determine how long to be crossbar layer is busy 624 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 625 626 // forward it either as a snoop response or a normal response 627 if (forwardAsSnoop) { 628 // this is a snoop response to a snoop request we forwarded, 629 // e.g. coming from the L1 and going to the L2, and it should 630 // be forwarded as a snoop response 631 632 if (snoopFilter) { 633 // update the probe filter so that it can properly track the line 634 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id], 635 *masterPorts[dest_port_id]); 636 } 637 638 bool success M5_VAR_USED = 639 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt); 640 pktCount[slave_port_id][dest_port_id]++; 641 pktSize[slave_port_id][dest_port_id] += pkt_size; 642 assert(success); 643 644 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime); 645 } else { 646 // we got a snoop response on one of our slave ports, 647 // i.e. from a coherent master connected to the crossbar, and 648 // since we created the snoop request as part of recvTiming, 649 // this should now be a normal response again 650 outstandingSnoop.erase(pkt->req); 651 652 // this is a snoop response from a coherent master, hence it 653 // should never go back to where the snoop response came from, 654 // but instead to where the original request came from 655 assert(slave_port_id != dest_port_id); 656 657 if (snoopFilter) { 658 // update the probe filter so that it can properly track the line 659 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id], 660 *slavePorts[dest_port_id]); 661 } 662 663 DPRINTF(CoherentXBar, "%s: src %s packet %s FWD RESP\n", __func__, 664 src_port->name(), pkt->print()); 665 666 // as a normal response, it should go back to a master through 667 // one of our slave ports, we also pay for any outstanding 668 // header latency 669 Tick latency = pkt->headerDelay; 670 pkt->headerDelay = 0; 671 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency); 672 673 respLayers[dest_port_id]->succeededTiming(packetFinishTime); 674 } 675 676 // remove the request from the routing table 677 routeTo.erase(route_lookup); 678 679 // stats updates 680 transDist[pkt_cmd]++; 681 snoops++; 682 snoopTraffic += pkt_size; 683 684 return true; 685} 686 687 688void 689CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id, 690 const std::vector<QueuedSlavePort*>& dests) 691{ 692 DPRINTF(CoherentXBar, "%s for %s\n", __func__, pkt->print()); 693 694 // snoops should only happen if the system isn't bypassing caches 695 assert(!system->bypassCaches()); 696 697 unsigned fanout = 0; 698 699 for (const auto& p: dests) { 700 // we could have gotten this request from a snooping master 701 // (corresponding to our own slave port that is also in 702 // snoopPorts) and should not send it back to where it came 703 // from 704 if (exclude_slave_port_id == InvalidPortID || 705 p->getId() != exclude_slave_port_id) { 706 // cache is not allowed to refuse snoop 707 p->sendTimingSnoopReq(pkt); 708 fanout++; 709 } 710 } 711 712 // Stats for fanout of this forward operation 713 snoopFanout.sample(fanout); 714} 715 716void 717CoherentXBar::recvReqRetry(PortID master_port_id) 718{ 719 // responses and snoop responses never block on forwarding them, 720 // so the retry will always be coming from a port to which we 721 // tried to forward a request 722 reqLayers[master_port_id]->recvRetry(); 723} 724 725Tick 726CoherentXBar::recvAtomicBackdoor(PacketPtr pkt, PortID slave_port_id, 727 MemBackdoorPtr *backdoor) 728{ 729 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 730 slavePorts[slave_port_id]->name(), pkt->print()); 731 732 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 733 unsigned int pkt_cmd = pkt->cmdToIndex(); 734 735 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 736 Tick snoop_response_latency = 0; 737 738 // is this the destination point for this packet? (e.g. true if 739 // this xbar is the PoC for a cache maintenance operation to the 740 // PoC) otherwise the destination is any cache that can satisfy 741 // the request 742 const bool is_destination = isDestination(pkt); 743 744 const bool snoop_caches = !system->bypassCaches() && 745 pkt->cmd != MemCmd::WriteClean; 746 if (snoop_caches) { 747 // forward to all snoopers but the source 748 std::pair<MemCmd, Tick> snoop_result; 749 if (snoopFilter) { 750 // check with the snoop filter where to forward this packet 751 auto sf_res = 752 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]); 753 snoop_response_latency += sf_res.second * clockPeriod(); 754 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 755 __func__, slavePorts[slave_port_id]->name(), pkt->print(), 756 sf_res.first.size(), sf_res.second); 757 758 // let the snoop filter know about the success of the send 759 // operation, and do it even before sending it onwards to 760 // avoid situations where atomic upward snoops sneak in 761 // between and change the filter state 762 snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure()); 763 764 if (pkt->isEviction()) { 765 // for block-evicting packets, i.e. writebacks and 766 // clean evictions, there is no need to snoop up, as 767 // all we do is determine if the block is cached or 768 // not, instead just set it here based on the snoop 769 // filter result 770 if (!sf_res.first.empty()) 771 pkt->setBlockCached(); 772 } else { 773 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID, 774 sf_res.first); 775 } 776 } else { 777 snoop_result = forwardAtomic(pkt, slave_port_id); 778 } 779 snoop_response_cmd = snoop_result.first; 780 snoop_response_latency += snoop_result.second; 781 } 782 783 // set up a sensible default value 784 Tick response_latency = 0; 785 786 const bool sink_packet = sinkPacket(pkt); 787 788 // even if we had a snoop response, we must continue and also 789 // perform the actual request at the destination 790 PortID master_port_id = findPort(pkt->getAddrRange()); 791 792 if (sink_packet) { 793 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__, 794 pkt->print()); 795 } else { 796 if (forwardPacket(pkt)) { 797 // make sure that the write request (e.g., WriteClean) 798 // will stop at the memory below if this crossbar is its 799 // destination 800 if (pkt->isWrite() && is_destination) { 801 pkt->clearWriteThrough(); 802 } 803 804 // forward the request to the appropriate destination 805 auto master = masterPorts[master_port_id]; 806 response_latency = backdoor ? 807 master->sendAtomicBackdoor(pkt, *backdoor) : 808 master->sendAtomic(pkt); 809 } else { 810 // if it does not need a response we sink the packet above 811 assert(pkt->needsResponse()); 812 813 pkt->makeResponse(); 814 } 815 } 816 817 // stats updates for the request 818 pktCount[slave_port_id][master_port_id]++; 819 pktSize[slave_port_id][master_port_id] += pkt_size; 820 transDist[pkt_cmd]++; 821 822 823 // if lower levels have replied, tell the snoop filter 824 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) { 825 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 826 } 827 828 // if we got a response from a snooper, restore it here 829 if (snoop_response_cmd != MemCmd::InvalidCmd) { 830 // no one else should have responded 831 assert(!pkt->isResponse()); 832 pkt->cmd = snoop_response_cmd; 833 response_latency = snoop_response_latency; 834 } 835 836 // If this is the destination of the cache clean operation the 837 // crossbar is responsible for responding. This crossbar will 838 // respond when the cache clean is complete. An atomic cache clean 839 // is complete when the crossbars receives the cache clean 840 // request (CleanSharedReq, CleanInvalidReq), as either: 841 // * no cache above had a dirty copy of the block as indicated by 842 // the satisfied flag of the packet, or 843 // * the crossbar has already seen the corresponding write 844 // (WriteClean) which updates the block in the memory below. 845 if (pkt->isClean() && isDestination(pkt) && pkt->satisfied()) { 846 auto it = outstandingCMO.find(pkt->id); 847 assert(it != outstandingCMO.end()); 848 // we are responding right away 849 outstandingCMO.erase(it); 850 } else if (pkt->cmd == MemCmd::WriteClean && isDestination(pkt)) { 851 // if this is the destination of the operation, the xbar 852 // sends the responce to the cache clean operation only 853 // after having encountered the cache clean request 854 auto M5_VAR_USED ret = outstandingCMO.emplace(pkt->id, nullptr); 855 // in atomic mode we know that the WriteClean packet should 856 // precede the clean request 857 assert(ret.second); 858 } 859 860 // add the response data 861 if (pkt->isResponse()) { 862 pkt_size = pkt->hasData() ? pkt->getSize() : 0; 863 pkt_cmd = pkt->cmdToIndex(); 864 865 // stats updates 866 pktCount[slave_port_id][master_port_id]++; 867 pktSize[slave_port_id][master_port_id] += pkt_size; 868 transDist[pkt_cmd]++; 869 } 870 871 // @todo: Not setting header time 872 pkt->payloadDelay = response_latency; 873 return response_latency; 874} 875 876Tick 877CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id) 878{ 879 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 880 masterPorts[master_port_id]->name(), pkt->print()); 881 882 // add the request snoop data 883 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 884 snoops++; 885 snoopTraffic += pkt_size; 886 887 // forward to all snoopers 888 std::pair<MemCmd, Tick> snoop_result; 889 Tick snoop_response_latency = 0; 890 if (snoopFilter) { 891 auto sf_res = snoopFilter->lookupSnoop(pkt); 892 snoop_response_latency += sf_res.second * clockPeriod(); 893 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 894 __func__, masterPorts[master_port_id]->name(), pkt->print(), 895 sf_res.first.size(), sf_res.second); 896 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id, 897 sf_res.first); 898 } else { 899 snoop_result = forwardAtomic(pkt, InvalidPortID); 900 } 901 MemCmd snoop_response_cmd = snoop_result.first; 902 snoop_response_latency += snoop_result.second; 903 904 if (snoop_response_cmd != MemCmd::InvalidCmd) 905 pkt->cmd = snoop_response_cmd; 906 907 // add the response snoop data 908 if (pkt->isResponse()) { 909 snoops++; 910 } 911 912 // @todo: Not setting header time 913 pkt->payloadDelay = snoop_response_latency; 914 return snoop_response_latency; 915} 916 917std::pair<MemCmd, Tick> 918CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id, 919 PortID source_master_port_id, 920 const std::vector<QueuedSlavePort*>& dests) 921{ 922 // the packet may be changed on snoops, record the original 923 // command to enable us to restore it between snoops so that 924 // additional snoops can take place properly 925 MemCmd orig_cmd = pkt->cmd; 926 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 927 Tick snoop_response_latency = 0; 928 929 // snoops should only happen if the system isn't bypassing caches 930 assert(!system->bypassCaches()); 931 932 unsigned fanout = 0; 933 934 for (const auto& p: dests) { 935 // we could have gotten this request from a snooping master 936 // (corresponding to our own slave port that is also in 937 // snoopPorts) and should not send it back to where it came 938 // from 939 if (exclude_slave_port_id != InvalidPortID && 940 p->getId() == exclude_slave_port_id) 941 continue; 942 943 Tick latency = p->sendAtomicSnoop(pkt); 944 fanout++; 945 946 // in contrast to a functional access, we have to keep on 947 // going as all snoopers must be updated even if we get a 948 // response 949 if (!pkt->isResponse()) 950 continue; 951 952 // response from snoop agent 953 assert(pkt->cmd != orig_cmd); 954 assert(pkt->cacheResponding()); 955 // should only happen once 956 assert(snoop_response_cmd == MemCmd::InvalidCmd); 957 // save response state 958 snoop_response_cmd = pkt->cmd; 959 snoop_response_latency = latency; 960 961 if (snoopFilter) { 962 // Handle responses by the snoopers and differentiate between 963 // responses to requests from above and snoops from below 964 if (source_master_port_id != InvalidPortID) { 965 // Getting a response for a snoop from below 966 assert(exclude_slave_port_id == InvalidPortID); 967 snoopFilter->updateSnoopForward(pkt, *p, 968 *masterPorts[source_master_port_id]); 969 } else { 970 // Getting a response for a request from above 971 assert(source_master_port_id == InvalidPortID); 972 snoopFilter->updateSnoopResponse(pkt, *p, 973 *slavePorts[exclude_slave_port_id]); 974 } 975 } 976 // restore original packet state for remaining snoopers 977 pkt->cmd = orig_cmd; 978 } 979 980 // Stats for fanout 981 snoopFanout.sample(fanout); 982 983 // the packet is restored as part of the loop and any potential 984 // snoop response is part of the returned pair 985 return std::make_pair(snoop_response_cmd, snoop_response_latency); 986} 987 988void 989CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id) 990{ 991 if (!pkt->isPrint()) { 992 // don't do DPRINTFs on PrintReq as it clutters up the output 993 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 994 slavePorts[slave_port_id]->name(), pkt->print()); 995 } 996 997 if (!system->bypassCaches()) { 998 // forward to all snoopers but the source 999 forwardFunctional(pkt, slave_port_id); 1000 } 1001 1002 // there is no need to continue if the snooping has found what we 1003 // were looking for and the packet is already a response 1004 if (!pkt->isResponse()) { 1005 // since our slave ports are queued ports we need to check them as well 1006 for (const auto& p : slavePorts) { 1007 // if we find a response that has the data, then the 1008 // downstream caches/memories may be out of date, so simply stop 1009 // here 1010 if (p->trySatisfyFunctional(pkt)) { 1011 if (pkt->needsResponse()) 1012 pkt->makeResponse(); 1013 return; 1014 } 1015 } 1016 1017 PortID dest_id = findPort(pkt->getAddrRange()); 1018 1019 masterPorts[dest_id]->sendFunctional(pkt); 1020 } 1021} 1022 1023void 1024CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id) 1025{ 1026 if (!pkt->isPrint()) { 1027 // don't do DPRINTFs on PrintReq as it clutters up the output 1028 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 1029 masterPorts[master_port_id]->name(), pkt->print()); 1030 } 1031 1032 for (const auto& p : slavePorts) { 1033 if (p->trySatisfyFunctional(pkt)) { 1034 if (pkt->needsResponse()) 1035 pkt->makeResponse(); 1036 return; 1037 } 1038 } 1039 1040 // forward to all snoopers 1041 forwardFunctional(pkt, InvalidPortID); 1042} 1043 1044void 1045CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id) 1046{ 1047 // snoops should only happen if the system isn't bypassing caches 1048 assert(!system->bypassCaches()); 1049 1050 for (const auto& p: snoopPorts) { 1051 // we could have gotten this request from a snooping master 1052 // (corresponding to our own slave port that is also in 1053 // snoopPorts) and should not send it back to where it came 1054 // from 1055 if (exclude_slave_port_id == InvalidPortID || 1056 p->getId() != exclude_slave_port_id) 1057 p->sendFunctionalSnoop(pkt); 1058 1059 // if we get a response we are done 1060 if (pkt->isResponse()) { 1061 break; 1062 } 1063 } 1064} 1065 1066bool 1067CoherentXBar::sinkPacket(const PacketPtr pkt) const 1068{ 1069 // we can sink the packet if: 1070 // 1) the crossbar is the point of coherency, and a cache is 1071 // responding after being snooped 1072 // 2) the crossbar is the point of coherency, and the packet is a 1073 // coherency packet (not a read or a write) that does not 1074 // require a response 1075 // 3) this is a clean evict or clean writeback, but the packet is 1076 // found in a cache above this crossbar 1077 // 4) a cache is responding after being snooped, and the packet 1078 // either does not need the block to be writable, or the cache 1079 // that has promised to respond (setting the cache responding 1080 // flag) is providing writable and thus had a Modified block, 1081 // and no further action is needed 1082 return (pointOfCoherency && pkt->cacheResponding()) || 1083 (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) && 1084 !pkt->needsResponse()) || 1085 (pkt->isCleanEviction() && pkt->isBlockCached()) || 1086 (pkt->cacheResponding() && 1087 (!pkt->needsWritable() || pkt->responderHadWritable())); 1088} 1089 1090bool 1091CoherentXBar::forwardPacket(const PacketPtr pkt) 1092{ 1093 // we are forwarding the packet if: 1094 // 1) this is a cache clean request to the PoU/PoC and this 1095 // crossbar is above the PoU/PoC 1096 // 2) this is a read or a write 1097 // 3) this crossbar is above the point of coherency 1098 if (pkt->isClean()) { 1099 return !isDestination(pkt); 1100 } 1101 return pkt->isRead() || pkt->isWrite() || !pointOfCoherency; 1102} 1103 1104 1105void 1106CoherentXBar::regStats() 1107{ 1108 // register the stats of the base class and our layers 1109 BaseXBar::regStats(); 1110 for (auto l: reqLayers) 1111 l->regStats(); 1112 for (auto l: respLayers) 1113 l->regStats(); 1114 for (auto l: snoopLayers) 1115 l->regStats(); 1116 1117 snoops 1118 .name(name() + ".snoops") 1119 .desc("Total snoops (count)") 1120 ; 1121 1122 snoopTraffic 1123 .name(name() + ".snoopTraffic") 1124 .desc("Total snoop traffic (bytes)") 1125 ; 1126 1127 snoopFanout 1128 .init(0, snoopPorts.size(), 1) 1129 .name(name() + ".snoop_fanout") 1130 .desc("Request fanout histogram") 1131 ; 1132} 1133 1134CoherentXBar * 1135CoherentXBarParams::create() 1136{ 1137 return new CoherentXBar(this); 1138} 1139