coherent_xbar.cc revision 12823:ba630bc7a36d
1/* 2 * Copyright (c) 2011-2018 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Ali Saidi 41 * Andreas Hansson 42 * William Wang 43 * Nikos Nikoleris 44 */ 45 46/** 47 * @file 48 * Definition of a crossbar object. 49 */ 50 51#include "mem/coherent_xbar.hh" 52 53#include "base/logging.hh" 54#include "base/trace.hh" 55#include "debug/AddrRanges.hh" 56#include "debug/CoherentXBar.hh" 57#include "sim/system.hh" 58 59CoherentXBar::CoherentXBar(const CoherentXBarParams *p) 60 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter), 61 snoopResponseLatency(p->snoop_response_latency), 62 pointOfCoherency(p->point_of_coherency), 63 pointOfUnification(p->point_of_unification) 64{ 65 // create the ports based on the size of the master and slave 66 // vector ports, and the presence of the default port, the ports 67 // are enumerated starting from zero 68 for (int i = 0; i < p->port_master_connection_count; ++i) { 69 std::string portName = csprintf("%s.master[%d]", name(), i); 70 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i); 71 masterPorts.push_back(bp); 72 reqLayers.push_back(new ReqLayer(*bp, *this, 73 csprintf(".reqLayer%d", i))); 74 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 75 csprintf(".snoopLayer%d", i))); 76 } 77 78 // see if we have a default slave device connected and if so add 79 // our corresponding master port 80 if (p->port_default_connection_count) { 81 defaultPortID = masterPorts.size(); 82 std::string portName = name() + ".default"; 83 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, 84 defaultPortID); 85 masterPorts.push_back(bp); 86 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d", 87 defaultPortID))); 88 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 89 csprintf(".snoopLayer%d", 90 defaultPortID))); 91 } 92 93 // create the slave ports, once again starting at zero 94 for (int i = 0; i < p->port_slave_connection_count; ++i) { 95 std::string portName = csprintf("%s.slave[%d]", name(), i); 96 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i); 97 slavePorts.push_back(bp); 98 respLayers.push_back(new RespLayer(*bp, *this, 99 csprintf(".respLayer%d", i))); 100 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this)); 101 } 102} 103 104CoherentXBar::~CoherentXBar() 105{ 106 for (auto l: reqLayers) 107 delete l; 108 for (auto l: respLayers) 109 delete l; 110 for (auto l: snoopLayers) 111 delete l; 112 for (auto p: snoopRespPorts) 113 delete p; 114} 115 116void 117CoherentXBar::init() 118{ 119 BaseXBar::init(); 120 121 // iterate over our slave ports and determine which of our 122 // neighbouring master ports are snooping and add them as snoopers 123 for (const auto& p: slavePorts) { 124 // check if the connected master port is snooping 125 if (p->isSnooping()) { 126 DPRINTF(AddrRanges, "Adding snooping master %s\n", 127 p->getMasterPort().name()); 128 snoopPorts.push_back(p); 129 } 130 } 131 132 if (snoopPorts.empty()) 133 warn("CoherentXBar %s has no snooping ports attached!\n", name()); 134 135 // inform the snoop filter about the slave ports so it can create 136 // its own internal representation 137 if (snoopFilter) 138 snoopFilter->setSlavePorts(slavePorts); 139} 140 141bool 142CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id) 143{ 144 // determine the source port based on the id 145 SlavePort *src_port = slavePorts[slave_port_id]; 146 147 // remember if the packet is an express snoop 148 bool is_express_snoop = pkt->isExpressSnoop(); 149 bool cache_responding = pkt->cacheResponding(); 150 // for normal requests, going downstream, the express snoop flag 151 // and the cache responding flag should always be the same 152 assert(is_express_snoop == cache_responding); 153 154 // determine the destination based on the destination address range 155 AddrRange addr_range = RangeSize(pkt->getAddr(), pkt->getSize()); 156 PortID master_port_id = findPort(addr_range); 157 158 // test if the crossbar should be considered occupied for the current 159 // port, and exclude express snoops from the check 160 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) { 161 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 162 src_port->name(), pkt->print()); 163 return false; 164 } 165 166 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 167 src_port->name(), pkt->print()); 168 169 // store size and command as they might be modified when 170 // forwarding the packet 171 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 172 unsigned int pkt_cmd = pkt->cmdToIndex(); 173 174 // store the old header delay so we can restore it if needed 175 Tick old_header_delay = pkt->headerDelay; 176 177 // a request sees the frontend and forward latency 178 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod(); 179 180 // set the packet header and payload delay 181 calcPacketTiming(pkt, xbar_delay); 182 183 // determine how long to be crossbar layer is busy 184 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 185 186 // is this the destination point for this packet? (e.g. true if 187 // this xbar is the PoC for a cache maintenance operation to the 188 // PoC) otherwise the destination is any cache that can satisfy 189 // the request 190 const bool is_destination = isDestination(pkt); 191 192 const bool snoop_caches = !system->bypassCaches() && 193 pkt->cmd != MemCmd::WriteClean; 194 if (snoop_caches) { 195 assert(pkt->snoopDelay == 0); 196 197 if (pkt->isClean() && !is_destination) { 198 // before snooping we need to make sure that the memory 199 // below is not busy and the cache clean request can be 200 // forwarded to it 201 if (!masterPorts[master_port_id]->tryTiming(pkt)) { 202 DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__, 203 src_port->name(), pkt->print()); 204 205 // update the layer state and schedule an idle event 206 reqLayers[master_port_id]->failedTiming(src_port, 207 clockEdge(Cycles(1))); 208 return false; 209 } 210 } 211 212 213 // the packet is a memory-mapped request and should be 214 // broadcasted to our snoopers but the source 215 if (snoopFilter) { 216 // check with the snoop filter where to forward this packet 217 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port); 218 // the time required by a packet to be delivered through 219 // the xbar has to be charged also with to lookup latency 220 // of the snoop filter 221 pkt->headerDelay += sf_res.second * clockPeriod(); 222 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 223 __func__, src_port->name(), pkt->print(), 224 sf_res.first.size(), sf_res.second); 225 226 if (pkt->isEviction()) { 227 // for block-evicting packets, i.e. writebacks and 228 // clean evictions, there is no need to snoop up, as 229 // all we do is determine if the block is cached or 230 // not, instead just set it here based on the snoop 231 // filter result 232 if (!sf_res.first.empty()) 233 pkt->setBlockCached(); 234 } else { 235 forwardTiming(pkt, slave_port_id, sf_res.first); 236 } 237 } else { 238 forwardTiming(pkt, slave_port_id); 239 } 240 241 // add the snoop delay to our header delay, and then reset it 242 pkt->headerDelay += pkt->snoopDelay; 243 pkt->snoopDelay = 0; 244 } 245 246 // set up a sensible starting point 247 bool success = true; 248 249 // remember if the packet will generate a snoop response by 250 // checking if a cache set the cacheResponding flag during the 251 // snooping above 252 const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding(); 253 bool expect_response = pkt->needsResponse() && !pkt->cacheResponding(); 254 255 const bool sink_packet = sinkPacket(pkt); 256 257 // in certain cases the crossbar is responsible for responding 258 bool respond_directly = false; 259 // store the original address as an address mapper could possibly 260 // modify the address upon a sendTimingRequest 261 const Addr addr(pkt->getAddr()); 262 if (sink_packet) { 263 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__, 264 pkt->print()); 265 } else { 266 // determine if we are forwarding the packet, or responding to 267 // it 268 if (forwardPacket(pkt)) { 269 // if we are passing on, rather than sinking, a packet to 270 // which an upstream cache has committed to responding, 271 // the line was needs writable, and the responding only 272 // had an Owned copy, so we need to immidiately let the 273 // downstream caches know, bypass any flow control 274 if (pkt->cacheResponding()) { 275 pkt->setExpressSnoop(); 276 } 277 278 // make sure that the write request (e.g., WriteClean) 279 // will stop at the memory below if this crossbar is its 280 // destination 281 if (pkt->isWrite() && is_destination) { 282 pkt->clearWriteThrough(); 283 } 284 285 // since it is a normal request, attempt to send the packet 286 success = masterPorts[master_port_id]->sendTimingReq(pkt); 287 } else { 288 // no need to forward, turn this packet around and respond 289 // directly 290 assert(pkt->needsResponse()); 291 292 respond_directly = true; 293 assert(!expect_snoop_resp); 294 expect_response = false; 295 } 296 } 297 298 if (snoopFilter && snoop_caches) { 299 // Let the snoop filter know about the success of the send operation 300 snoopFilter->finishRequest(!success, addr, pkt->isSecure()); 301 } 302 303 // check if we were successful in sending the packet onwards 304 if (!success) { 305 // express snoops should never be forced to retry 306 assert(!is_express_snoop); 307 308 // restore the header delay 309 pkt->headerDelay = old_header_delay; 310 311 DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__, 312 src_port->name(), pkt->print()); 313 314 // update the layer state and schedule an idle event 315 reqLayers[master_port_id]->failedTiming(src_port, 316 clockEdge(Cycles(1))); 317 } else { 318 // express snoops currently bypass the crossbar state entirely 319 if (!is_express_snoop) { 320 // if this particular request will generate a snoop 321 // response 322 if (expect_snoop_resp) { 323 // we should never have an exsiting request outstanding 324 assert(outstandingSnoop.find(pkt->req) == 325 outstandingSnoop.end()); 326 outstandingSnoop.insert(pkt->req); 327 328 // basic sanity check on the outstanding snoops 329 panic_if(outstandingSnoop.size() > 512, 330 "Outstanding snoop requests exceeded 512\n"); 331 } 332 333 // remember where to route the normal response to 334 if (expect_response || expect_snoop_resp) { 335 assert(routeTo.find(pkt->req) == routeTo.end()); 336 routeTo[pkt->req] = slave_port_id; 337 338 panic_if(routeTo.size() > 512, 339 "Routing table exceeds 512 packets\n"); 340 } 341 342 // update the layer state and schedule an idle event 343 reqLayers[master_port_id]->succeededTiming(packetFinishTime); 344 } 345 346 // stats updates only consider packets that were successfully sent 347 pktCount[slave_port_id][master_port_id]++; 348 pktSize[slave_port_id][master_port_id] += pkt_size; 349 transDist[pkt_cmd]++; 350 351 if (is_express_snoop) { 352 snoops++; 353 snoopTraffic += pkt_size; 354 } 355 } 356 357 if (sink_packet) 358 // queue the packet for deletion 359 pendingDelete.reset(pkt); 360 361 // normally we respond to the packet we just received if we need to 362 PacketPtr rsp_pkt = pkt; 363 PortID rsp_port_id = slave_port_id; 364 365 // If this is the destination of the cache clean operation the 366 // crossbar is responsible for responding. This crossbar will 367 // respond when the cache clean is complete. A cache clean 368 // is complete either: 369 // * direcly, if no cache above had a dirty copy of the block 370 // as indicated by the satisfied flag of the packet, or 371 // * when the crossbar has seen both the cache clean request 372 // (CleanSharedReq, CleanInvalidReq) and the corresponding 373 // write (WriteClean) which updates the block in the memory 374 // below. 375 if (success && 376 ((pkt->isClean() && pkt->satisfied()) || 377 pkt->cmd == MemCmd::WriteClean) && 378 is_destination) { 379 PacketPtr deferred_rsp = pkt->isWrite() ? nullptr : pkt; 380 auto cmo_lookup = outstandingCMO.find(pkt->id); 381 if (cmo_lookup != outstandingCMO.end()) { 382 // the cache clean request has already reached this xbar 383 respond_directly = true; 384 if (pkt->isWrite()) { 385 rsp_pkt = cmo_lookup->second; 386 assert(rsp_pkt); 387 388 // determine the destination 389 const auto route_lookup = routeTo.find(rsp_pkt->req); 390 assert(route_lookup != routeTo.end()); 391 rsp_port_id = route_lookup->second; 392 assert(rsp_port_id != InvalidPortID); 393 assert(rsp_port_id < respLayers.size()); 394 // remove the request from the routing table 395 routeTo.erase(route_lookup); 396 } 397 outstandingCMO.erase(cmo_lookup); 398 } else { 399 respond_directly = false; 400 outstandingCMO.emplace(pkt->id, deferred_rsp); 401 if (!pkt->isWrite()) { 402 assert(routeTo.find(pkt->req) == routeTo.end()); 403 routeTo[pkt->req] = slave_port_id; 404 405 panic_if(routeTo.size() > 512, 406 "Routing table exceeds 512 packets\n"); 407 } 408 } 409 } 410 411 412 if (respond_directly) { 413 assert(rsp_pkt->needsResponse()); 414 assert(success); 415 416 rsp_pkt->makeResponse(); 417 418 if (snoopFilter && !system->bypassCaches()) { 419 // let the snoop filter inspect the response and update its state 420 snoopFilter->updateResponse(rsp_pkt, *slavePorts[rsp_port_id]); 421 } 422 423 // we send the response after the current packet, even if the 424 // response is not for this packet (e.g. cache clean operation 425 // where both the request and the write packet have to cross 426 // the destination xbar before the response is sent.) 427 Tick response_time = clockEdge() + pkt->headerDelay; 428 rsp_pkt->headerDelay = 0; 429 430 slavePorts[rsp_port_id]->schedTimingResp(rsp_pkt, response_time); 431 } 432 433 return success; 434} 435 436bool 437CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id) 438{ 439 // determine the source port based on the id 440 MasterPort *src_port = masterPorts[master_port_id]; 441 442 // determine the destination 443 const auto route_lookup = routeTo.find(pkt->req); 444 assert(route_lookup != routeTo.end()); 445 const PortID slave_port_id = route_lookup->second; 446 assert(slave_port_id != InvalidPortID); 447 assert(slave_port_id < respLayers.size()); 448 449 // test if the crossbar should be considered occupied for the 450 // current port 451 if (!respLayers[slave_port_id]->tryTiming(src_port)) { 452 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 453 src_port->name(), pkt->print()); 454 return false; 455 } 456 457 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 458 src_port->name(), pkt->print()); 459 460 // store size and command as they might be modified when 461 // forwarding the packet 462 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 463 unsigned int pkt_cmd = pkt->cmdToIndex(); 464 465 // a response sees the response latency 466 Tick xbar_delay = responseLatency * clockPeriod(); 467 468 // set the packet header and payload delay 469 calcPacketTiming(pkt, xbar_delay); 470 471 // determine how long to be crossbar layer is busy 472 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 473 474 if (snoopFilter && !system->bypassCaches()) { 475 // let the snoop filter inspect the response and update its state 476 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 477 } 478 479 // send the packet through the destination slave port and pay for 480 // any outstanding header delay 481 Tick latency = pkt->headerDelay; 482 pkt->headerDelay = 0; 483 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency); 484 485 // remove the request from the routing table 486 routeTo.erase(route_lookup); 487 488 respLayers[slave_port_id]->succeededTiming(packetFinishTime); 489 490 // stats updates 491 pktCount[slave_port_id][master_port_id]++; 492 pktSize[slave_port_id][master_port_id] += pkt_size; 493 transDist[pkt_cmd]++; 494 495 return true; 496} 497 498void 499CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id) 500{ 501 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 502 masterPorts[master_port_id]->name(), pkt->print()); 503 504 // update stats here as we know the forwarding will succeed 505 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 506 transDist[pkt->cmdToIndex()]++; 507 snoops++; 508 snoopTraffic += pkt_size; 509 510 // we should only see express snoops from caches 511 assert(pkt->isExpressSnoop()); 512 513 // set the packet header and payload delay, for now use forward latency 514 // @todo Assess the choice of latency further 515 calcPacketTiming(pkt, forwardLatency * clockPeriod()); 516 517 // remember if a cache has already committed to responding so we 518 // can see if it changes during the snooping 519 const bool cache_responding = pkt->cacheResponding(); 520 521 assert(pkt->snoopDelay == 0); 522 523 if (snoopFilter) { 524 // let the Snoop Filter work its magic and guide probing 525 auto sf_res = snoopFilter->lookupSnoop(pkt); 526 // the time required by a packet to be delivered through 527 // the xbar has to be charged also with to lookup latency 528 // of the snoop filter 529 pkt->headerDelay += sf_res.second * clockPeriod(); 530 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 531 __func__, masterPorts[master_port_id]->name(), pkt->print(), 532 sf_res.first.size(), sf_res.second); 533 534 // forward to all snoopers 535 forwardTiming(pkt, InvalidPortID, sf_res.first); 536 } else { 537 forwardTiming(pkt, InvalidPortID); 538 } 539 540 // add the snoop delay to our header delay, and then reset it 541 pkt->headerDelay += pkt->snoopDelay; 542 pkt->snoopDelay = 0; 543 544 // if we can expect a response, remember how to route it 545 if (!cache_responding && pkt->cacheResponding()) { 546 assert(routeTo.find(pkt->req) == routeTo.end()); 547 routeTo[pkt->req] = master_port_id; 548 } 549 550 // a snoop request came from a connected slave device (one of 551 // our master ports), and if it is not coming from the slave 552 // device responsible for the address range something is 553 // wrong, hence there is nothing further to do as the packet 554 // would be going back to where it came from 555 AddrRange addr_range M5_VAR_USED = 556 RangeSize(pkt->getAddr(), pkt->getSize()); 557 assert(findPort(addr_range) == master_port_id); 558} 559 560bool 561CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id) 562{ 563 // determine the source port based on the id 564 SlavePort* src_port = slavePorts[slave_port_id]; 565 566 // get the destination 567 const auto route_lookup = routeTo.find(pkt->req); 568 assert(route_lookup != routeTo.end()); 569 const PortID dest_port_id = route_lookup->second; 570 assert(dest_port_id != InvalidPortID); 571 572 // determine if the response is from a snoop request we 573 // created as the result of a normal request (in which case it 574 // should be in the outstandingSnoop), or if we merely forwarded 575 // someone else's snoop request 576 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 577 outstandingSnoop.end(); 578 579 // test if the crossbar should be considered occupied for the 580 // current port, note that the check is bypassed if the response 581 // is being passed on as a normal response since this is occupying 582 // the response layer rather than the snoop response layer 583 if (forwardAsSnoop) { 584 assert(dest_port_id < snoopLayers.size()); 585 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) { 586 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 587 src_port->name(), pkt->print()); 588 return false; 589 } 590 } else { 591 // get the master port that mirrors this slave port internally 592 MasterPort* snoop_port = snoopRespPorts[slave_port_id]; 593 assert(dest_port_id < respLayers.size()); 594 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) { 595 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 596 snoop_port->name(), pkt->print()); 597 return false; 598 } 599 } 600 601 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 602 src_port->name(), pkt->print()); 603 604 // store size and command as they might be modified when 605 // forwarding the packet 606 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 607 unsigned int pkt_cmd = pkt->cmdToIndex(); 608 609 // responses are never express snoops 610 assert(!pkt->isExpressSnoop()); 611 612 // a snoop response sees the snoop response latency, and if it is 613 // forwarded as a normal response, the response latency 614 Tick xbar_delay = 615 (forwardAsSnoop ? snoopResponseLatency : responseLatency) * 616 clockPeriod(); 617 618 // set the packet header and payload delay 619 calcPacketTiming(pkt, xbar_delay); 620 621 // determine how long to be crossbar layer is busy 622 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 623 624 // forward it either as a snoop response or a normal response 625 if (forwardAsSnoop) { 626 // this is a snoop response to a snoop request we forwarded, 627 // e.g. coming from the L1 and going to the L2, and it should 628 // be forwarded as a snoop response 629 630 if (snoopFilter) { 631 // update the probe filter so that it can properly track the line 632 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id], 633 *masterPorts[dest_port_id]); 634 } 635 636 bool success M5_VAR_USED = 637 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt); 638 pktCount[slave_port_id][dest_port_id]++; 639 pktSize[slave_port_id][dest_port_id] += pkt_size; 640 assert(success); 641 642 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime); 643 } else { 644 // we got a snoop response on one of our slave ports, 645 // i.e. from a coherent master connected to the crossbar, and 646 // since we created the snoop request as part of recvTiming, 647 // this should now be a normal response again 648 outstandingSnoop.erase(pkt->req); 649 650 // this is a snoop response from a coherent master, hence it 651 // should never go back to where the snoop response came from, 652 // but instead to where the original request came from 653 assert(slave_port_id != dest_port_id); 654 655 if (snoopFilter) { 656 // update the probe filter so that it can properly track the line 657 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id], 658 *slavePorts[dest_port_id]); 659 } 660 661 DPRINTF(CoherentXBar, "%s: src %s packet %s FWD RESP\n", __func__, 662 src_port->name(), pkt->print()); 663 664 // as a normal response, it should go back to a master through 665 // one of our slave ports, we also pay for any outstanding 666 // header latency 667 Tick latency = pkt->headerDelay; 668 pkt->headerDelay = 0; 669 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency); 670 671 respLayers[dest_port_id]->succeededTiming(packetFinishTime); 672 } 673 674 // remove the request from the routing table 675 routeTo.erase(route_lookup); 676 677 // stats updates 678 transDist[pkt_cmd]++; 679 snoops++; 680 snoopTraffic += pkt_size; 681 682 return true; 683} 684 685 686void 687CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id, 688 const std::vector<QueuedSlavePort*>& dests) 689{ 690 DPRINTF(CoherentXBar, "%s for %s\n", __func__, pkt->print()); 691 692 // snoops should only happen if the system isn't bypassing caches 693 assert(!system->bypassCaches()); 694 695 unsigned fanout = 0; 696 697 for (const auto& p: dests) { 698 // we could have gotten this request from a snooping master 699 // (corresponding to our own slave port that is also in 700 // snoopPorts) and should not send it back to where it came 701 // from 702 if (exclude_slave_port_id == InvalidPortID || 703 p->getId() != exclude_slave_port_id) { 704 // cache is not allowed to refuse snoop 705 p->sendTimingSnoopReq(pkt); 706 fanout++; 707 } 708 } 709 710 // Stats for fanout of this forward operation 711 snoopFanout.sample(fanout); 712} 713 714void 715CoherentXBar::recvReqRetry(PortID master_port_id) 716{ 717 // responses and snoop responses never block on forwarding them, 718 // so the retry will always be coming from a port to which we 719 // tried to forward a request 720 reqLayers[master_port_id]->recvRetry(); 721} 722 723Tick 724CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id) 725{ 726 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 727 slavePorts[slave_port_id]->name(), pkt->print()); 728 729 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 730 unsigned int pkt_cmd = pkt->cmdToIndex(); 731 732 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 733 Tick snoop_response_latency = 0; 734 735 // is this the destination point for this packet? (e.g. true if 736 // this xbar is the PoC for a cache maintenance operation to the 737 // PoC) otherwise the destination is any cache that can satisfy 738 // the request 739 const bool is_destination = isDestination(pkt); 740 741 const bool snoop_caches = !system->bypassCaches() && 742 pkt->cmd != MemCmd::WriteClean; 743 if (snoop_caches) { 744 // forward to all snoopers but the source 745 std::pair<MemCmd, Tick> snoop_result; 746 if (snoopFilter) { 747 // check with the snoop filter where to forward this packet 748 auto sf_res = 749 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]); 750 snoop_response_latency += sf_res.second * clockPeriod(); 751 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 752 __func__, slavePorts[slave_port_id]->name(), pkt->print(), 753 sf_res.first.size(), sf_res.second); 754 755 // let the snoop filter know about the success of the send 756 // operation, and do it even before sending it onwards to 757 // avoid situations where atomic upward snoops sneak in 758 // between and change the filter state 759 snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure()); 760 761 if (pkt->isEviction()) { 762 // for block-evicting packets, i.e. writebacks and 763 // clean evictions, there is no need to snoop up, as 764 // all we do is determine if the block is cached or 765 // not, instead just set it here based on the snoop 766 // filter result 767 if (!sf_res.first.empty()) 768 pkt->setBlockCached(); 769 } else { 770 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID, 771 sf_res.first); 772 } 773 } else { 774 snoop_result = forwardAtomic(pkt, slave_port_id); 775 } 776 snoop_response_cmd = snoop_result.first; 777 snoop_response_latency += snoop_result.second; 778 } 779 780 // set up a sensible default value 781 Tick response_latency = 0; 782 783 const bool sink_packet = sinkPacket(pkt); 784 785 // even if we had a snoop response, we must continue and also 786 // perform the actual request at the destination 787 AddrRange addr_range = RangeSize(pkt->getAddr(), pkt->getSize()); 788 PortID master_port_id = findPort(addr_range); 789 790 if (sink_packet) { 791 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__, 792 pkt->print()); 793 } else { 794 if (forwardPacket(pkt)) { 795 // make sure that the write request (e.g., WriteClean) 796 // will stop at the memory below if this crossbar is its 797 // destination 798 if (pkt->isWrite() && is_destination) { 799 pkt->clearWriteThrough(); 800 } 801 802 // forward the request to the appropriate destination 803 response_latency = masterPorts[master_port_id]->sendAtomic(pkt); 804 } else { 805 // if it does not need a response we sink the packet above 806 assert(pkt->needsResponse()); 807 808 pkt->makeResponse(); 809 } 810 } 811 812 // stats updates for the request 813 pktCount[slave_port_id][master_port_id]++; 814 pktSize[slave_port_id][master_port_id] += pkt_size; 815 transDist[pkt_cmd]++; 816 817 818 // if lower levels have replied, tell the snoop filter 819 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) { 820 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 821 } 822 823 // if we got a response from a snooper, restore it here 824 if (snoop_response_cmd != MemCmd::InvalidCmd) { 825 // no one else should have responded 826 assert(!pkt->isResponse()); 827 pkt->cmd = snoop_response_cmd; 828 response_latency = snoop_response_latency; 829 } 830 831 // If this is the destination of the cache clean operation the 832 // crossbar is responsible for responding. This crossbar will 833 // respond when the cache clean is complete. An atomic cache clean 834 // is complete when the crossbars receives the cache clean 835 // request (CleanSharedReq, CleanInvalidReq), as either: 836 // * no cache above had a dirty copy of the block as indicated by 837 // the satisfied flag of the packet, or 838 // * the crossbar has already seen the corresponding write 839 // (WriteClean) which updates the block in the memory below. 840 if (pkt->isClean() && isDestination(pkt) && pkt->satisfied()) { 841 auto it = outstandingCMO.find(pkt->id); 842 assert(it != outstandingCMO.end()); 843 // we are responding right away 844 outstandingCMO.erase(it); 845 } else if (pkt->cmd == MemCmd::WriteClean && isDestination(pkt)) { 846 // if this is the destination of the operation, the xbar 847 // sends the responce to the cache clean operation only 848 // after having encountered the cache clean request 849 auto M5_VAR_USED ret = outstandingCMO.emplace(pkt->id, nullptr); 850 // in atomic mode we know that the WriteClean packet should 851 // precede the clean request 852 assert(ret.second); 853 } 854 855 // add the response data 856 if (pkt->isResponse()) { 857 pkt_size = pkt->hasData() ? pkt->getSize() : 0; 858 pkt_cmd = pkt->cmdToIndex(); 859 860 // stats updates 861 pktCount[slave_port_id][master_port_id]++; 862 pktSize[slave_port_id][master_port_id] += pkt_size; 863 transDist[pkt_cmd]++; 864 } 865 866 // @todo: Not setting header time 867 pkt->payloadDelay = response_latency; 868 return response_latency; 869} 870 871Tick 872CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id) 873{ 874 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 875 masterPorts[master_port_id]->name(), pkt->print()); 876 877 // add the request snoop data 878 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 879 snoops++; 880 snoopTraffic += pkt_size; 881 882 // forward to all snoopers 883 std::pair<MemCmd, Tick> snoop_result; 884 Tick snoop_response_latency = 0; 885 if (snoopFilter) { 886 auto sf_res = snoopFilter->lookupSnoop(pkt); 887 snoop_response_latency += sf_res.second * clockPeriod(); 888 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 889 __func__, masterPorts[master_port_id]->name(), pkt->print(), 890 sf_res.first.size(), sf_res.second); 891 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id, 892 sf_res.first); 893 } else { 894 snoop_result = forwardAtomic(pkt, InvalidPortID); 895 } 896 MemCmd snoop_response_cmd = snoop_result.first; 897 snoop_response_latency += snoop_result.second; 898 899 if (snoop_response_cmd != MemCmd::InvalidCmd) 900 pkt->cmd = snoop_response_cmd; 901 902 // add the response snoop data 903 if (pkt->isResponse()) { 904 snoops++; 905 } 906 907 // @todo: Not setting header time 908 pkt->payloadDelay = snoop_response_latency; 909 return snoop_response_latency; 910} 911 912std::pair<MemCmd, Tick> 913CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id, 914 PortID source_master_port_id, 915 const std::vector<QueuedSlavePort*>& dests) 916{ 917 // the packet may be changed on snoops, record the original 918 // command to enable us to restore it between snoops so that 919 // additional snoops can take place properly 920 MemCmd orig_cmd = pkt->cmd; 921 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 922 Tick snoop_response_latency = 0; 923 924 // snoops should only happen if the system isn't bypassing caches 925 assert(!system->bypassCaches()); 926 927 unsigned fanout = 0; 928 929 for (const auto& p: dests) { 930 // we could have gotten this request from a snooping master 931 // (corresponding to our own slave port that is also in 932 // snoopPorts) and should not send it back to where it came 933 // from 934 if (exclude_slave_port_id != InvalidPortID && 935 p->getId() == exclude_slave_port_id) 936 continue; 937 938 Tick latency = p->sendAtomicSnoop(pkt); 939 fanout++; 940 941 // in contrast to a functional access, we have to keep on 942 // going as all snoopers must be updated even if we get a 943 // response 944 if (!pkt->isResponse()) 945 continue; 946 947 // response from snoop agent 948 assert(pkt->cmd != orig_cmd); 949 assert(pkt->cacheResponding()); 950 // should only happen once 951 assert(snoop_response_cmd == MemCmd::InvalidCmd); 952 // save response state 953 snoop_response_cmd = pkt->cmd; 954 snoop_response_latency = latency; 955 956 if (snoopFilter) { 957 // Handle responses by the snoopers and differentiate between 958 // responses to requests from above and snoops from below 959 if (source_master_port_id != InvalidPortID) { 960 // Getting a response for a snoop from below 961 assert(exclude_slave_port_id == InvalidPortID); 962 snoopFilter->updateSnoopForward(pkt, *p, 963 *masterPorts[source_master_port_id]); 964 } else { 965 // Getting a response for a request from above 966 assert(source_master_port_id == InvalidPortID); 967 snoopFilter->updateSnoopResponse(pkt, *p, 968 *slavePorts[exclude_slave_port_id]); 969 } 970 } 971 // restore original packet state for remaining snoopers 972 pkt->cmd = orig_cmd; 973 } 974 975 // Stats for fanout 976 snoopFanout.sample(fanout); 977 978 // the packet is restored as part of the loop and any potential 979 // snoop response is part of the returned pair 980 return std::make_pair(snoop_response_cmd, snoop_response_latency); 981} 982 983void 984CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id) 985{ 986 if (!pkt->isPrint()) { 987 // don't do DPRINTFs on PrintReq as it clutters up the output 988 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 989 slavePorts[slave_port_id]->name(), pkt->print()); 990 } 991 992 if (!system->bypassCaches()) { 993 // forward to all snoopers but the source 994 forwardFunctional(pkt, slave_port_id); 995 } 996 997 // there is no need to continue if the snooping has found what we 998 // were looking for and the packet is already a response 999 if (!pkt->isResponse()) { 1000 // since our slave ports are queued ports we need to check them as well 1001 for (const auto& p : slavePorts) { 1002 // if we find a response that has the data, then the 1003 // downstream caches/memories may be out of date, so simply stop 1004 // here 1005 if (p->trySatisfyFunctional(pkt)) { 1006 if (pkt->needsResponse()) 1007 pkt->makeResponse(); 1008 return; 1009 } 1010 } 1011 1012 PortID dest_id = findPort(RangeSize(pkt->getAddr(), pkt->getSize())); 1013 1014 masterPorts[dest_id]->sendFunctional(pkt); 1015 } 1016} 1017 1018void 1019CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id) 1020{ 1021 if (!pkt->isPrint()) { 1022 // don't do DPRINTFs on PrintReq as it clutters up the output 1023 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 1024 masterPorts[master_port_id]->name(), pkt->print()); 1025 } 1026 1027 for (const auto& p : slavePorts) { 1028 if (p->trySatisfyFunctional(pkt)) { 1029 if (pkt->needsResponse()) 1030 pkt->makeResponse(); 1031 return; 1032 } 1033 } 1034 1035 // forward to all snoopers 1036 forwardFunctional(pkt, InvalidPortID); 1037} 1038 1039void 1040CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id) 1041{ 1042 // snoops should only happen if the system isn't bypassing caches 1043 assert(!system->bypassCaches()); 1044 1045 for (const auto& p: snoopPorts) { 1046 // we could have gotten this request from a snooping master 1047 // (corresponding to our own slave port that is also in 1048 // snoopPorts) and should not send it back to where it came 1049 // from 1050 if (exclude_slave_port_id == InvalidPortID || 1051 p->getId() != exclude_slave_port_id) 1052 p->sendFunctionalSnoop(pkt); 1053 1054 // if we get a response we are done 1055 if (pkt->isResponse()) { 1056 break; 1057 } 1058 } 1059} 1060 1061bool 1062CoherentXBar::sinkPacket(const PacketPtr pkt) const 1063{ 1064 // we can sink the packet if: 1065 // 1) the crossbar is the point of coherency, and a cache is 1066 // responding after being snooped 1067 // 2) the crossbar is the point of coherency, and the packet is a 1068 // coherency packet (not a read or a write) that does not 1069 // require a response 1070 // 3) this is a clean evict or clean writeback, but the packet is 1071 // found in a cache above this crossbar 1072 // 4) a cache is responding after being snooped, and the packet 1073 // either does not need the block to be writable, or the cache 1074 // that has promised to respond (setting the cache responding 1075 // flag) is providing writable and thus had a Modified block, 1076 // and no further action is needed 1077 return (pointOfCoherency && pkt->cacheResponding()) || 1078 (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) && 1079 !pkt->needsResponse()) || 1080 (pkt->isCleanEviction() && pkt->isBlockCached()) || 1081 (pkt->cacheResponding() && 1082 (!pkt->needsWritable() || pkt->responderHadWritable())); 1083} 1084 1085bool 1086CoherentXBar::forwardPacket(const PacketPtr pkt) 1087{ 1088 // we are forwarding the packet if: 1089 // 1) this is a cache clean request to the PoU/PoC and this 1090 // crossbar is above the PoU/PoC 1091 // 2) this is a read or a write 1092 // 3) this crossbar is above the point of coherency 1093 if (pkt->isClean()) { 1094 return !isDestination(pkt); 1095 } 1096 return pkt->isRead() || pkt->isWrite() || !pointOfCoherency; 1097} 1098 1099 1100void 1101CoherentXBar::regStats() 1102{ 1103 // register the stats of the base class and our layers 1104 BaseXBar::regStats(); 1105 for (auto l: reqLayers) 1106 l->regStats(); 1107 for (auto l: respLayers) 1108 l->regStats(); 1109 for (auto l: snoopLayers) 1110 l->regStats(); 1111 1112 snoops 1113 .name(name() + ".snoops") 1114 .desc("Total snoops (count)") 1115 ; 1116 1117 snoopTraffic 1118 .name(name() + ".snoopTraffic") 1119 .desc("Total snoop traffic (bytes)") 1120 ; 1121 1122 snoopFanout 1123 .init(0, snoopPorts.size(), 1) 1124 .name(name() + ".snoop_fanout") 1125 .desc("Request fanout histogram") 1126 ; 1127} 1128 1129CoherentXBar * 1130CoherentXBarParams::create() 1131{ 1132 return new CoherentXBar(this); 1133} 1134