coherent_xbar.cc revision 12351:17eaa27bef22
1/* 2 * Copyright (c) 2011-2017 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Ali Saidi 41 * Andreas Hansson 42 * William Wang 43 * Nikos Nikoleris 44 */ 45 46/** 47 * @file 48 * Definition of a crossbar object. 49 */ 50 51#include "mem/coherent_xbar.hh" 52 53#include "base/logging.hh" 54#include "base/trace.hh" 55#include "debug/AddrRanges.hh" 56#include "debug/CoherentXBar.hh" 57#include "sim/system.hh" 58 59CoherentXBar::CoherentXBar(const CoherentXBarParams *p) 60 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter), 61 snoopResponseLatency(p->snoop_response_latency), 62 pointOfCoherency(p->point_of_coherency), 63 pointOfUnification(p->point_of_unification) 64{ 65 // create the ports based on the size of the master and slave 66 // vector ports, and the presence of the default port, the ports 67 // are enumerated starting from zero 68 for (int i = 0; i < p->port_master_connection_count; ++i) { 69 std::string portName = csprintf("%s.master[%d]", name(), i); 70 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i); 71 masterPorts.push_back(bp); 72 reqLayers.push_back(new ReqLayer(*bp, *this, 73 csprintf(".reqLayer%d", i))); 74 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 75 csprintf(".snoopLayer%d", i))); 76 } 77 78 // see if we have a default slave device connected and if so add 79 // our corresponding master port 80 if (p->port_default_connection_count) { 81 defaultPortID = masterPorts.size(); 82 std::string portName = name() + ".default"; 83 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, 84 defaultPortID); 85 masterPorts.push_back(bp); 86 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d", 87 defaultPortID))); 88 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 89 csprintf(".snoopLayer%d", 90 defaultPortID))); 91 } 92 93 // create the slave ports, once again starting at zero 94 for (int i = 0; i < p->port_slave_connection_count; ++i) { 95 std::string portName = csprintf("%s.slave[%d]", name(), i); 96 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i); 97 slavePorts.push_back(bp); 98 respLayers.push_back(new RespLayer(*bp, *this, 99 csprintf(".respLayer%d", i))); 100 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this)); 101 } 102 103 clearPortCache(); 104} 105 106CoherentXBar::~CoherentXBar() 107{ 108 for (auto l: reqLayers) 109 delete l; 110 for (auto l: respLayers) 111 delete l; 112 for (auto l: snoopLayers) 113 delete l; 114 for (auto p: snoopRespPorts) 115 delete p; 116} 117 118void 119CoherentXBar::init() 120{ 121 BaseXBar::init(); 122 123 // iterate over our slave ports and determine which of our 124 // neighbouring master ports are snooping and add them as snoopers 125 for (const auto& p: slavePorts) { 126 // check if the connected master port is snooping 127 if (p->isSnooping()) { 128 DPRINTF(AddrRanges, "Adding snooping master %s\n", 129 p->getMasterPort().name()); 130 snoopPorts.push_back(p); 131 } 132 } 133 134 if (snoopPorts.empty()) 135 warn("CoherentXBar %s has no snooping ports attached!\n", name()); 136 137 // inform the snoop filter about the slave ports so it can create 138 // its own internal representation 139 if (snoopFilter) 140 snoopFilter->setSlavePorts(slavePorts); 141} 142 143bool 144CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id) 145{ 146 // determine the source port based on the id 147 SlavePort *src_port = slavePorts[slave_port_id]; 148 149 // remember if the packet is an express snoop 150 bool is_express_snoop = pkt->isExpressSnoop(); 151 bool cache_responding = pkt->cacheResponding(); 152 // for normal requests, going downstream, the express snoop flag 153 // and the cache responding flag should always be the same 154 assert(is_express_snoop == cache_responding); 155 156 // determine the destination based on the address 157 PortID master_port_id = findPort(pkt->getAddr()); 158 159 // test if the crossbar should be considered occupied for the current 160 // port, and exclude express snoops from the check 161 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) { 162 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 163 src_port->name(), pkt->print()); 164 return false; 165 } 166 167 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 168 src_port->name(), pkt->print()); 169 170 // store size and command as they might be modified when 171 // forwarding the packet 172 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 173 unsigned int pkt_cmd = pkt->cmdToIndex(); 174 175 // store the old header delay so we can restore it if needed 176 Tick old_header_delay = pkt->headerDelay; 177 178 // a request sees the frontend and forward latency 179 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod(); 180 181 // set the packet header and payload delay 182 calcPacketTiming(pkt, xbar_delay); 183 184 // determine how long to be crossbar layer is busy 185 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 186 187 // is this the destination point for this packet? (e.g. true if 188 // this xbar is the PoC for a cache maintenance operation to the 189 // PoC) otherwise the destination is any cache that can satisfy 190 // the request 191 const bool is_destination = isDestination(pkt); 192 193 const bool snoop_caches = !system->bypassCaches() && 194 pkt->cmd != MemCmd::WriteClean; 195 if (snoop_caches) { 196 assert(pkt->snoopDelay == 0); 197 198 if (pkt->isClean() && !is_destination) { 199 // before snooping we need to make sure that the memory 200 // below is not busy and the cache clean request can be 201 // forwarded to it 202 if (!masterPorts[master_port_id]->tryTiming(pkt)) { 203 DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__, 204 src_port->name(), pkt->print()); 205 206 // update the layer state and schedule an idle event 207 reqLayers[master_port_id]->failedTiming(src_port, 208 clockEdge(Cycles(1))); 209 return false; 210 } 211 } 212 213 214 // the packet is a memory-mapped request and should be 215 // broadcasted to our snoopers but the source 216 if (snoopFilter) { 217 // check with the snoop filter where to forward this packet 218 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port); 219 // the time required by a packet to be delivered through 220 // the xbar has to be charged also with to lookup latency 221 // of the snoop filter 222 pkt->headerDelay += sf_res.second * clockPeriod(); 223 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 224 __func__, src_port->name(), pkt->print(), 225 sf_res.first.size(), sf_res.second); 226 227 if (pkt->isEviction()) { 228 // for block-evicting packets, i.e. writebacks and 229 // clean evictions, there is no need to snoop up, as 230 // all we do is determine if the block is cached or 231 // not, instead just set it here based on the snoop 232 // filter result 233 if (!sf_res.first.empty()) 234 pkt->setBlockCached(); 235 } else { 236 forwardTiming(pkt, slave_port_id, sf_res.first); 237 } 238 } else { 239 forwardTiming(pkt, slave_port_id); 240 } 241 242 // add the snoop delay to our header delay, and then reset it 243 pkt->headerDelay += pkt->snoopDelay; 244 pkt->snoopDelay = 0; 245 } 246 247 // set up a sensible starting point 248 bool success = true; 249 250 // remember if the packet will generate a snoop response by 251 // checking if a cache set the cacheResponding flag during the 252 // snooping above 253 const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding(); 254 bool expect_response = pkt->needsResponse() && !pkt->cacheResponding(); 255 256 const bool sink_packet = sinkPacket(pkt); 257 258 // in certain cases the crossbar is responsible for responding 259 bool respond_directly = false; 260 // store the original address as an address mapper could possibly 261 // modify the address upon a sendTimingRequest 262 const Addr addr(pkt->getAddr()); 263 if (sink_packet) { 264 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__, 265 pkt->print()); 266 } else { 267 // determine if we are forwarding the packet, or responding to 268 // it 269 if (forwardPacket(pkt)) { 270 // if we are passing on, rather than sinking, a packet to 271 // which an upstream cache has committed to responding, 272 // the line was needs writable, and the responding only 273 // had an Owned copy, so we need to immidiately let the 274 // downstream caches know, bypass any flow control 275 if (pkt->cacheResponding()) { 276 pkt->setExpressSnoop(); 277 } 278 279 // make sure that the write request (e.g., WriteClean) 280 // will stop at the memory below if this crossbar is its 281 // destination 282 if (pkt->isWrite() && is_destination) { 283 pkt->clearWriteThrough(); 284 } 285 286 // since it is a normal request, attempt to send the packet 287 success = masterPorts[master_port_id]->sendTimingReq(pkt); 288 } else { 289 // no need to forward, turn this packet around and respond 290 // directly 291 assert(pkt->needsResponse()); 292 293 respond_directly = true; 294 assert(!expect_snoop_resp); 295 expect_response = false; 296 } 297 } 298 299 if (snoopFilter && snoop_caches) { 300 // Let the snoop filter know about the success of the send operation 301 snoopFilter->finishRequest(!success, addr, pkt->isSecure()); 302 } 303 304 // check if we were successful in sending the packet onwards 305 if (!success) { 306 // express snoops should never be forced to retry 307 assert(!is_express_snoop); 308 309 // restore the header delay 310 pkt->headerDelay = old_header_delay; 311 312 DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__, 313 src_port->name(), pkt->print()); 314 315 // update the layer state and schedule an idle event 316 reqLayers[master_port_id]->failedTiming(src_port, 317 clockEdge(Cycles(1))); 318 } else { 319 // express snoops currently bypass the crossbar state entirely 320 if (!is_express_snoop) { 321 // if this particular request will generate a snoop 322 // response 323 if (expect_snoop_resp) { 324 // we should never have an exsiting request outstanding 325 assert(outstandingSnoop.find(pkt->req) == 326 outstandingSnoop.end()); 327 outstandingSnoop.insert(pkt->req); 328 329 // basic sanity check on the outstanding snoops 330 panic_if(outstandingSnoop.size() > 512, 331 "Outstanding snoop requests exceeded 512\n"); 332 } 333 334 // remember where to route the normal response to 335 if (expect_response || expect_snoop_resp) { 336 assert(routeTo.find(pkt->req) == routeTo.end()); 337 routeTo[pkt->req] = slave_port_id; 338 339 panic_if(routeTo.size() > 512, 340 "Routing table exceeds 512 packets\n"); 341 } 342 343 // update the layer state and schedule an idle event 344 reqLayers[master_port_id]->succeededTiming(packetFinishTime); 345 } 346 347 // stats updates only consider packets that were successfully sent 348 pktCount[slave_port_id][master_port_id]++; 349 pktSize[slave_port_id][master_port_id] += pkt_size; 350 transDist[pkt_cmd]++; 351 352 if (is_express_snoop) { 353 snoops++; 354 snoopTraffic += pkt_size; 355 } 356 } 357 358 if (sink_packet) 359 // queue the packet for deletion 360 pendingDelete.reset(pkt); 361 362 // normally we respond to the packet we just received if we need to 363 PacketPtr rsp_pkt = pkt; 364 PortID rsp_port_id = slave_port_id; 365 366 // If this is the destination of the cache clean operation the 367 // crossbar is responsible for responding. This crossbar will 368 // respond when the cache clean is complete. A cache clean 369 // is complete either: 370 // * direcly, if no cache above had a dirty copy of the block 371 // as indicated by the satisfied flag of the packet, or 372 // * when the crossbar has seen both the cache clean request 373 // (CleanSharedReq, CleanInvalidReq) and the corresponding 374 // write (WriteClean) which updates the block in the memory 375 // below. 376 if (success && 377 ((pkt->isClean() && pkt->satisfied()) || 378 pkt->cmd == MemCmd::WriteClean) && 379 is_destination) { 380 PacketPtr deferred_rsp = pkt->isWrite() ? nullptr : pkt; 381 auto cmo_lookup = outstandingCMO.find(pkt->id); 382 if (cmo_lookup != outstandingCMO.end()) { 383 // the cache clean request has already reached this xbar 384 respond_directly = true; 385 if (pkt->isWrite()) { 386 rsp_pkt = cmo_lookup->second; 387 assert(rsp_pkt); 388 389 // determine the destination 390 const auto route_lookup = routeTo.find(rsp_pkt->req); 391 assert(route_lookup != routeTo.end()); 392 rsp_port_id = route_lookup->second; 393 assert(rsp_port_id != InvalidPortID); 394 assert(rsp_port_id < respLayers.size()); 395 // remove the request from the routing table 396 routeTo.erase(route_lookup); 397 } 398 outstandingCMO.erase(cmo_lookup); 399 } else { 400 respond_directly = false; 401 outstandingCMO.emplace(pkt->id, deferred_rsp); 402 if (!pkt->isWrite()) { 403 assert(routeTo.find(pkt->req) == routeTo.end()); 404 routeTo[pkt->req] = slave_port_id; 405 406 panic_if(routeTo.size() > 512, 407 "Routing table exceeds 512 packets\n"); 408 } 409 } 410 } 411 412 413 if (respond_directly) { 414 assert(rsp_pkt->needsResponse()); 415 assert(success); 416 417 rsp_pkt->makeResponse(); 418 419 if (snoopFilter && !system->bypassCaches()) { 420 // let the snoop filter inspect the response and update its state 421 snoopFilter->updateResponse(rsp_pkt, *slavePorts[rsp_port_id]); 422 } 423 424 // we send the response after the current packet, even if the 425 // response is not for this packet (e.g. cache clean operation 426 // where both the request and the write packet have to cross 427 // the destination xbar before the response is sent.) 428 Tick response_time = clockEdge() + pkt->headerDelay; 429 rsp_pkt->headerDelay = 0; 430 431 slavePorts[rsp_port_id]->schedTimingResp(rsp_pkt, response_time); 432 } 433 434 return success; 435} 436 437bool 438CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id) 439{ 440 // determine the source port based on the id 441 MasterPort *src_port = masterPorts[master_port_id]; 442 443 // determine the destination 444 const auto route_lookup = routeTo.find(pkt->req); 445 assert(route_lookup != routeTo.end()); 446 const PortID slave_port_id = route_lookup->second; 447 assert(slave_port_id != InvalidPortID); 448 assert(slave_port_id < respLayers.size()); 449 450 // test if the crossbar should be considered occupied for the 451 // current port 452 if (!respLayers[slave_port_id]->tryTiming(src_port)) { 453 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 454 src_port->name(), pkt->print()); 455 return false; 456 } 457 458 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 459 src_port->name(), pkt->print()); 460 461 // store size and command as they might be modified when 462 // forwarding the packet 463 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 464 unsigned int pkt_cmd = pkt->cmdToIndex(); 465 466 // a response sees the response latency 467 Tick xbar_delay = responseLatency * clockPeriod(); 468 469 // set the packet header and payload delay 470 calcPacketTiming(pkt, xbar_delay); 471 472 // determine how long to be crossbar layer is busy 473 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 474 475 if (snoopFilter && !system->bypassCaches()) { 476 // let the snoop filter inspect the response and update its state 477 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 478 } 479 480 // send the packet through the destination slave port and pay for 481 // any outstanding header delay 482 Tick latency = pkt->headerDelay; 483 pkt->headerDelay = 0; 484 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency); 485 486 // remove the request from the routing table 487 routeTo.erase(route_lookup); 488 489 respLayers[slave_port_id]->succeededTiming(packetFinishTime); 490 491 // stats updates 492 pktCount[slave_port_id][master_port_id]++; 493 pktSize[slave_port_id][master_port_id] += pkt_size; 494 transDist[pkt_cmd]++; 495 496 return true; 497} 498 499void 500CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id) 501{ 502 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 503 masterPorts[master_port_id]->name(), pkt->print()); 504 505 // update stats here as we know the forwarding will succeed 506 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 507 transDist[pkt->cmdToIndex()]++; 508 snoops++; 509 snoopTraffic += pkt_size; 510 511 // we should only see express snoops from caches 512 assert(pkt->isExpressSnoop()); 513 514 // set the packet header and payload delay, for now use forward latency 515 // @todo Assess the choice of latency further 516 calcPacketTiming(pkt, forwardLatency * clockPeriod()); 517 518 // remember if a cache has already committed to responding so we 519 // can see if it changes during the snooping 520 const bool cache_responding = pkt->cacheResponding(); 521 522 assert(pkt->snoopDelay == 0); 523 524 if (snoopFilter) { 525 // let the Snoop Filter work its magic and guide probing 526 auto sf_res = snoopFilter->lookupSnoop(pkt); 527 // the time required by a packet to be delivered through 528 // the xbar has to be charged also with to lookup latency 529 // of the snoop filter 530 pkt->headerDelay += sf_res.second * clockPeriod(); 531 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 532 __func__, masterPorts[master_port_id]->name(), pkt->print(), 533 sf_res.first.size(), sf_res.second); 534 535 // forward to all snoopers 536 forwardTiming(pkt, InvalidPortID, sf_res.first); 537 } else { 538 forwardTiming(pkt, InvalidPortID); 539 } 540 541 // add the snoop delay to our header delay, and then reset it 542 pkt->headerDelay += pkt->snoopDelay; 543 pkt->snoopDelay = 0; 544 545 // if we can expect a response, remember how to route it 546 if (!cache_responding && pkt->cacheResponding()) { 547 assert(routeTo.find(pkt->req) == routeTo.end()); 548 routeTo[pkt->req] = master_port_id; 549 } 550 551 // a snoop request came from a connected slave device (one of 552 // our master ports), and if it is not coming from the slave 553 // device responsible for the address range something is 554 // wrong, hence there is nothing further to do as the packet 555 // would be going back to where it came from 556 assert(master_port_id == findPort(pkt->getAddr())); 557} 558 559bool 560CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id) 561{ 562 // determine the source port based on the id 563 SlavePort* src_port = slavePorts[slave_port_id]; 564 565 // get the destination 566 const auto route_lookup = routeTo.find(pkt->req); 567 assert(route_lookup != routeTo.end()); 568 const PortID dest_port_id = route_lookup->second; 569 assert(dest_port_id != InvalidPortID); 570 571 // determine if the response is from a snoop request we 572 // created as the result of a normal request (in which case it 573 // should be in the outstandingSnoop), or if we merely forwarded 574 // someone else's snoop request 575 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 576 outstandingSnoop.end(); 577 578 // test if the crossbar should be considered occupied for the 579 // current port, note that the check is bypassed if the response 580 // is being passed on as a normal response since this is occupying 581 // the response layer rather than the snoop response layer 582 if (forwardAsSnoop) { 583 assert(dest_port_id < snoopLayers.size()); 584 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) { 585 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 586 src_port->name(), pkt->print()); 587 return false; 588 } 589 } else { 590 // get the master port that mirrors this slave port internally 591 MasterPort* snoop_port = snoopRespPorts[slave_port_id]; 592 assert(dest_port_id < respLayers.size()); 593 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) { 594 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 595 snoop_port->name(), pkt->print()); 596 return false; 597 } 598 } 599 600 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 601 src_port->name(), pkt->print()); 602 603 // store size and command as they might be modified when 604 // forwarding the packet 605 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 606 unsigned int pkt_cmd = pkt->cmdToIndex(); 607 608 // responses are never express snoops 609 assert(!pkt->isExpressSnoop()); 610 611 // a snoop response sees the snoop response latency, and if it is 612 // forwarded as a normal response, the response latency 613 Tick xbar_delay = 614 (forwardAsSnoop ? snoopResponseLatency : responseLatency) * 615 clockPeriod(); 616 617 // set the packet header and payload delay 618 calcPacketTiming(pkt, xbar_delay); 619 620 // determine how long to be crossbar layer is busy 621 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 622 623 // forward it either as a snoop response or a normal response 624 if (forwardAsSnoop) { 625 // this is a snoop response to a snoop request we forwarded, 626 // e.g. coming from the L1 and going to the L2, and it should 627 // be forwarded as a snoop response 628 629 if (snoopFilter) { 630 // update the probe filter so that it can properly track the line 631 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id], 632 *masterPorts[dest_port_id]); 633 } 634 635 bool success M5_VAR_USED = 636 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt); 637 pktCount[slave_port_id][dest_port_id]++; 638 pktSize[slave_port_id][dest_port_id] += pkt_size; 639 assert(success); 640 641 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime); 642 } else { 643 // we got a snoop response on one of our slave ports, 644 // i.e. from a coherent master connected to the crossbar, and 645 // since we created the snoop request as part of recvTiming, 646 // this should now be a normal response again 647 outstandingSnoop.erase(pkt->req); 648 649 // this is a snoop response from a coherent master, hence it 650 // should never go back to where the snoop response came from, 651 // but instead to where the original request came from 652 assert(slave_port_id != dest_port_id); 653 654 if (snoopFilter) { 655 // update the probe filter so that it can properly track the line 656 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id], 657 *slavePorts[dest_port_id]); 658 } 659 660 DPRINTF(CoherentXBar, "%s: src %s packet %s FWD RESP\n", __func__, 661 src_port->name(), pkt->print()); 662 663 // as a normal response, it should go back to a master through 664 // one of our slave ports, we also pay for any outstanding 665 // header latency 666 Tick latency = pkt->headerDelay; 667 pkt->headerDelay = 0; 668 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency); 669 670 respLayers[dest_port_id]->succeededTiming(packetFinishTime); 671 } 672 673 // remove the request from the routing table 674 routeTo.erase(route_lookup); 675 676 // stats updates 677 transDist[pkt_cmd]++; 678 snoops++; 679 snoopTraffic += pkt_size; 680 681 return true; 682} 683 684 685void 686CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id, 687 const std::vector<QueuedSlavePort*>& dests) 688{ 689 DPRINTF(CoherentXBar, "%s for %s\n", __func__, pkt->print()); 690 691 // snoops should only happen if the system isn't bypassing caches 692 assert(!system->bypassCaches()); 693 694 unsigned fanout = 0; 695 696 for (const auto& p: dests) { 697 // we could have gotten this request from a snooping master 698 // (corresponding to our own slave port that is also in 699 // snoopPorts) and should not send it back to where it came 700 // from 701 if (exclude_slave_port_id == InvalidPortID || 702 p->getId() != exclude_slave_port_id) { 703 // cache is not allowed to refuse snoop 704 p->sendTimingSnoopReq(pkt); 705 fanout++; 706 } 707 } 708 709 // Stats for fanout of this forward operation 710 snoopFanout.sample(fanout); 711} 712 713void 714CoherentXBar::recvReqRetry(PortID master_port_id) 715{ 716 // responses and snoop responses never block on forwarding them, 717 // so the retry will always be coming from a port to which we 718 // tried to forward a request 719 reqLayers[master_port_id]->recvRetry(); 720} 721 722Tick 723CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id) 724{ 725 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 726 slavePorts[slave_port_id]->name(), pkt->print()); 727 728 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 729 unsigned int pkt_cmd = pkt->cmdToIndex(); 730 731 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 732 Tick snoop_response_latency = 0; 733 734 // is this the destination point for this packet? (e.g. true if 735 // this xbar is the PoC for a cache maintenance operation to the 736 // PoC) otherwise the destination is any cache that can satisfy 737 // the request 738 const bool is_destination = isDestination(pkt); 739 740 const bool snoop_caches = !system->bypassCaches() && 741 pkt->cmd != MemCmd::WriteClean; 742 if (snoop_caches) { 743 // forward to all snoopers but the source 744 std::pair<MemCmd, Tick> snoop_result; 745 if (snoopFilter) { 746 // check with the snoop filter where to forward this packet 747 auto sf_res = 748 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]); 749 snoop_response_latency += sf_res.second * clockPeriod(); 750 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 751 __func__, slavePorts[slave_port_id]->name(), pkt->print(), 752 sf_res.first.size(), sf_res.second); 753 754 // let the snoop filter know about the success of the send 755 // operation, and do it even before sending it onwards to 756 // avoid situations where atomic upward snoops sneak in 757 // between and change the filter state 758 snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure()); 759 760 if (pkt->isEviction()) { 761 // for block-evicting packets, i.e. writebacks and 762 // clean evictions, there is no need to snoop up, as 763 // all we do is determine if the block is cached or 764 // not, instead just set it here based on the snoop 765 // filter result 766 if (!sf_res.first.empty()) 767 pkt->setBlockCached(); 768 } else { 769 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID, 770 sf_res.first); 771 } 772 } else { 773 snoop_result = forwardAtomic(pkt, slave_port_id); 774 } 775 snoop_response_cmd = snoop_result.first; 776 snoop_response_latency += snoop_result.second; 777 } 778 779 // set up a sensible default value 780 Tick response_latency = 0; 781 782 const bool sink_packet = sinkPacket(pkt); 783 784 // even if we had a snoop response, we must continue and also 785 // perform the actual request at the destination 786 PortID master_port_id = findPort(pkt->getAddr()); 787 788 if (sink_packet) { 789 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__, 790 pkt->print()); 791 } else { 792 if (forwardPacket(pkt)) { 793 // make sure that the write request (e.g., WriteClean) 794 // will stop at the memory below if this crossbar is its 795 // destination 796 if (pkt->isWrite() && is_destination) { 797 pkt->clearWriteThrough(); 798 } 799 800 // forward the request to the appropriate destination 801 response_latency = masterPorts[master_port_id]->sendAtomic(pkt); 802 } else { 803 // if it does not need a response we sink the packet above 804 assert(pkt->needsResponse()); 805 806 pkt->makeResponse(); 807 } 808 } 809 810 // stats updates for the request 811 pktCount[slave_port_id][master_port_id]++; 812 pktSize[slave_port_id][master_port_id] += pkt_size; 813 transDist[pkt_cmd]++; 814 815 816 // if lower levels have replied, tell the snoop filter 817 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) { 818 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 819 } 820 821 // if we got a response from a snooper, restore it here 822 if (snoop_response_cmd != MemCmd::InvalidCmd) { 823 // no one else should have responded 824 assert(!pkt->isResponse()); 825 pkt->cmd = snoop_response_cmd; 826 response_latency = snoop_response_latency; 827 } 828 829 // If this is the destination of the cache clean operation the 830 // crossbar is responsible for responding. This crossbar will 831 // respond when the cache clean is complete. An atomic cache clean 832 // is complete when the crossbars receives the cache clean 833 // request (CleanSharedReq, CleanInvalidReq), as either: 834 // * no cache above had a dirty copy of the block as indicated by 835 // the satisfied flag of the packet, or 836 // * the crossbar has already seen the corresponding write 837 // (WriteClean) which updates the block in the memory below. 838 if (pkt->isClean() && isDestination(pkt) && pkt->satisfied()) { 839 auto it = outstandingCMO.find(pkt->id); 840 assert(it != outstandingCMO.end()); 841 // we are responding right away 842 outstandingCMO.erase(it); 843 } else if (pkt->cmd == MemCmd::WriteClean && isDestination(pkt)) { 844 // if this is the destination of the operation, the xbar 845 // sends the responce to the cache clean operation only 846 // after having encountered the cache clean request 847 auto M5_VAR_USED ret = outstandingCMO.emplace(pkt->id, nullptr); 848 // in atomic mode we know that the WriteClean packet should 849 // precede the clean request 850 assert(ret.second); 851 } 852 853 // add the response data 854 if (pkt->isResponse()) { 855 pkt_size = pkt->hasData() ? pkt->getSize() : 0; 856 pkt_cmd = pkt->cmdToIndex(); 857 858 // stats updates 859 pktCount[slave_port_id][master_port_id]++; 860 pktSize[slave_port_id][master_port_id] += pkt_size; 861 transDist[pkt_cmd]++; 862 } 863 864 // @todo: Not setting header time 865 pkt->payloadDelay = response_latency; 866 return response_latency; 867} 868 869Tick 870CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id) 871{ 872 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 873 masterPorts[master_port_id]->name(), pkt->print()); 874 875 // add the request snoop data 876 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 877 snoops++; 878 snoopTraffic += pkt_size; 879 880 // forward to all snoopers 881 std::pair<MemCmd, Tick> snoop_result; 882 Tick snoop_response_latency = 0; 883 if (snoopFilter) { 884 auto sf_res = snoopFilter->lookupSnoop(pkt); 885 snoop_response_latency += sf_res.second * clockPeriod(); 886 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 887 __func__, masterPorts[master_port_id]->name(), pkt->print(), 888 sf_res.first.size(), sf_res.second); 889 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id, 890 sf_res.first); 891 } else { 892 snoop_result = forwardAtomic(pkt, InvalidPortID); 893 } 894 MemCmd snoop_response_cmd = snoop_result.first; 895 snoop_response_latency += snoop_result.second; 896 897 if (snoop_response_cmd != MemCmd::InvalidCmd) 898 pkt->cmd = snoop_response_cmd; 899 900 // add the response snoop data 901 if (pkt->isResponse()) { 902 snoops++; 903 } 904 905 // @todo: Not setting header time 906 pkt->payloadDelay = snoop_response_latency; 907 return snoop_response_latency; 908} 909 910std::pair<MemCmd, Tick> 911CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id, 912 PortID source_master_port_id, 913 const std::vector<QueuedSlavePort*>& dests) 914{ 915 // the packet may be changed on snoops, record the original 916 // command to enable us to restore it between snoops so that 917 // additional snoops can take place properly 918 MemCmd orig_cmd = pkt->cmd; 919 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 920 Tick snoop_response_latency = 0; 921 922 // snoops should only happen if the system isn't bypassing caches 923 assert(!system->bypassCaches()); 924 925 unsigned fanout = 0; 926 927 for (const auto& p: dests) { 928 // we could have gotten this request from a snooping master 929 // (corresponding to our own slave port that is also in 930 // snoopPorts) and should not send it back to where it came 931 // from 932 if (exclude_slave_port_id != InvalidPortID && 933 p->getId() == exclude_slave_port_id) 934 continue; 935 936 Tick latency = p->sendAtomicSnoop(pkt); 937 fanout++; 938 939 // in contrast to a functional access, we have to keep on 940 // going as all snoopers must be updated even if we get a 941 // response 942 if (!pkt->isResponse()) 943 continue; 944 945 // response from snoop agent 946 assert(pkt->cmd != orig_cmd); 947 assert(pkt->cacheResponding()); 948 // should only happen once 949 assert(snoop_response_cmd == MemCmd::InvalidCmd); 950 // save response state 951 snoop_response_cmd = pkt->cmd; 952 snoop_response_latency = latency; 953 954 if (snoopFilter) { 955 // Handle responses by the snoopers and differentiate between 956 // responses to requests from above and snoops from below 957 if (source_master_port_id != InvalidPortID) { 958 // Getting a response for a snoop from below 959 assert(exclude_slave_port_id == InvalidPortID); 960 snoopFilter->updateSnoopForward(pkt, *p, 961 *masterPorts[source_master_port_id]); 962 } else { 963 // Getting a response for a request from above 964 assert(source_master_port_id == InvalidPortID); 965 snoopFilter->updateSnoopResponse(pkt, *p, 966 *slavePorts[exclude_slave_port_id]); 967 } 968 } 969 // restore original packet state for remaining snoopers 970 pkt->cmd = orig_cmd; 971 } 972 973 // Stats for fanout 974 snoopFanout.sample(fanout); 975 976 // the packet is restored as part of the loop and any potential 977 // snoop response is part of the returned pair 978 return std::make_pair(snoop_response_cmd, snoop_response_latency); 979} 980 981void 982CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id) 983{ 984 if (!pkt->isPrint()) { 985 // don't do DPRINTFs on PrintReq as it clutters up the output 986 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 987 slavePorts[slave_port_id]->name(), pkt->print()); 988 } 989 990 if (!system->bypassCaches()) { 991 // forward to all snoopers but the source 992 forwardFunctional(pkt, slave_port_id); 993 } 994 995 // there is no need to continue if the snooping has found what we 996 // were looking for and the packet is already a response 997 if (!pkt->isResponse()) { 998 // since our slave ports are queued ports we need to check them as well 999 for (const auto& p : slavePorts) { 1000 // if we find a response that has the data, then the 1001 // downstream caches/memories may be out of date, so simply stop 1002 // here 1003 if (p->checkFunctional(pkt)) { 1004 if (pkt->needsResponse()) 1005 pkt->makeResponse(); 1006 return; 1007 } 1008 } 1009 1010 PortID dest_id = findPort(pkt->getAddr()); 1011 1012 masterPorts[dest_id]->sendFunctional(pkt); 1013 } 1014} 1015 1016void 1017CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id) 1018{ 1019 if (!pkt->isPrint()) { 1020 // don't do DPRINTFs on PrintReq as it clutters up the output 1021 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 1022 masterPorts[master_port_id]->name(), pkt->print()); 1023 } 1024 1025 for (const auto& p : slavePorts) { 1026 if (p->checkFunctional(pkt)) { 1027 if (pkt->needsResponse()) 1028 pkt->makeResponse(); 1029 return; 1030 } 1031 } 1032 1033 // forward to all snoopers 1034 forwardFunctional(pkt, InvalidPortID); 1035} 1036 1037void 1038CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id) 1039{ 1040 // snoops should only happen if the system isn't bypassing caches 1041 assert(!system->bypassCaches()); 1042 1043 for (const auto& p: snoopPorts) { 1044 // we could have gotten this request from a snooping master 1045 // (corresponding to our own slave port that is also in 1046 // snoopPorts) and should not send it back to where it came 1047 // from 1048 if (exclude_slave_port_id == InvalidPortID || 1049 p->getId() != exclude_slave_port_id) 1050 p->sendFunctionalSnoop(pkt); 1051 1052 // if we get a response we are done 1053 if (pkt->isResponse()) { 1054 break; 1055 } 1056 } 1057} 1058 1059bool 1060CoherentXBar::sinkPacket(const PacketPtr pkt) const 1061{ 1062 // we can sink the packet if: 1063 // 1) the crossbar is the point of coherency, and a cache is 1064 // responding after being snooped 1065 // 2) the crossbar is the point of coherency, and the packet is a 1066 // coherency packet (not a read or a write) that does not 1067 // require a response 1068 // 3) this is a clean evict or clean writeback, but the packet is 1069 // found in a cache above this crossbar 1070 // 4) a cache is responding after being snooped, and the packet 1071 // either does not need the block to be writable, or the cache 1072 // that has promised to respond (setting the cache responding 1073 // flag) is providing writable and thus had a Modified block, 1074 // and no further action is needed 1075 return (pointOfCoherency && pkt->cacheResponding()) || 1076 (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) && 1077 !pkt->needsResponse()) || 1078 (pkt->isCleanEviction() && pkt->isBlockCached()) || 1079 (pkt->cacheResponding() && 1080 (!pkt->needsWritable() || pkt->responderHadWritable())); 1081} 1082 1083bool 1084CoherentXBar::forwardPacket(const PacketPtr pkt) 1085{ 1086 // we are forwarding the packet if: 1087 // 1) this is a cache clean request to the PoU/PoC and this 1088 // crossbar is above the PoU/PoC 1089 // 2) this is a read or a write 1090 // 3) this crossbar is above the point of coherency 1091 if (pkt->isClean()) { 1092 return !isDestination(pkt); 1093 } 1094 return pkt->isRead() || pkt->isWrite() || !pointOfCoherency; 1095} 1096 1097 1098void 1099CoherentXBar::regStats() 1100{ 1101 // register the stats of the base class and our layers 1102 BaseXBar::regStats(); 1103 for (auto l: reqLayers) 1104 l->regStats(); 1105 for (auto l: respLayers) 1106 l->regStats(); 1107 for (auto l: snoopLayers) 1108 l->regStats(); 1109 1110 snoops 1111 .name(name() + ".snoops") 1112 .desc("Total snoops (count)") 1113 ; 1114 1115 snoopTraffic 1116 .name(name() + ".snoopTraffic") 1117 .desc("Total snoop traffic (bytes)") 1118 ; 1119 1120 snoopFanout 1121 .init(0, snoopPorts.size(), 1) 1122 .name(name() + ".snoop_fanout") 1123 .desc("Request fanout histogram") 1124 ; 1125} 1126 1127CoherentXBar * 1128CoherentXBarParams::create() 1129{ 1130 return new CoherentXBar(this); 1131} 1132