coherent_xbar.cc revision 12351:17eaa27bef22
1/*
2 * Copyright (c) 2011-2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 *          Andreas Hansson
42 *          William Wang
43 *          Nikos Nikoleris
44 */
45
46/**
47 * @file
48 * Definition of a crossbar object.
49 */
50
51#include "mem/coherent_xbar.hh"
52
53#include "base/logging.hh"
54#include "base/trace.hh"
55#include "debug/AddrRanges.hh"
56#include "debug/CoherentXBar.hh"
57#include "sim/system.hh"
58
59CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
60    : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
61      snoopResponseLatency(p->snoop_response_latency),
62      pointOfCoherency(p->point_of_coherency),
63      pointOfUnification(p->point_of_unification)
64{
65    // create the ports based on the size of the master and slave
66    // vector ports, and the presence of the default port, the ports
67    // are enumerated starting from zero
68    for (int i = 0; i < p->port_master_connection_count; ++i) {
69        std::string portName = csprintf("%s.master[%d]", name(), i);
70        MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
71        masterPorts.push_back(bp);
72        reqLayers.push_back(new ReqLayer(*bp, *this,
73                                         csprintf(".reqLayer%d", i)));
74        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
75                                                 csprintf(".snoopLayer%d", i)));
76    }
77
78    // see if we have a default slave device connected and if so add
79    // our corresponding master port
80    if (p->port_default_connection_count) {
81        defaultPortID = masterPorts.size();
82        std::string portName = name() + ".default";
83        MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
84                                                   defaultPortID);
85        masterPorts.push_back(bp);
86        reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
87                                             defaultPortID)));
88        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
89                                                 csprintf(".snoopLayer%d",
90                                                          defaultPortID)));
91    }
92
93    // create the slave ports, once again starting at zero
94    for (int i = 0; i < p->port_slave_connection_count; ++i) {
95        std::string portName = csprintf("%s.slave[%d]", name(), i);
96        QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
97        slavePorts.push_back(bp);
98        respLayers.push_back(new RespLayer(*bp, *this,
99                                           csprintf(".respLayer%d", i)));
100        snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
101    }
102
103    clearPortCache();
104}
105
106CoherentXBar::~CoherentXBar()
107{
108    for (auto l: reqLayers)
109        delete l;
110    for (auto l: respLayers)
111        delete l;
112    for (auto l: snoopLayers)
113        delete l;
114    for (auto p: snoopRespPorts)
115        delete p;
116}
117
118void
119CoherentXBar::init()
120{
121    BaseXBar::init();
122
123    // iterate over our slave ports and determine which of our
124    // neighbouring master ports are snooping and add them as snoopers
125    for (const auto& p: slavePorts) {
126        // check if the connected master port is snooping
127        if (p->isSnooping()) {
128            DPRINTF(AddrRanges, "Adding snooping master %s\n",
129                    p->getMasterPort().name());
130            snoopPorts.push_back(p);
131        }
132    }
133
134    if (snoopPorts.empty())
135        warn("CoherentXBar %s has no snooping ports attached!\n", name());
136
137    // inform the snoop filter about the slave ports so it can create
138    // its own internal representation
139    if (snoopFilter)
140        snoopFilter->setSlavePorts(slavePorts);
141}
142
143bool
144CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
145{
146    // determine the source port based on the id
147    SlavePort *src_port = slavePorts[slave_port_id];
148
149    // remember if the packet is an express snoop
150    bool is_express_snoop = pkt->isExpressSnoop();
151    bool cache_responding = pkt->cacheResponding();
152    // for normal requests, going downstream, the express snoop flag
153    // and the cache responding flag should always be the same
154    assert(is_express_snoop == cache_responding);
155
156    // determine the destination based on the address
157    PortID master_port_id = findPort(pkt->getAddr());
158
159    // test if the crossbar should be considered occupied for the current
160    // port, and exclude express snoops from the check
161    if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
162        DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
163                src_port->name(), pkt->print());
164        return false;
165    }
166
167    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
168            src_port->name(), pkt->print());
169
170    // store size and command as they might be modified when
171    // forwarding the packet
172    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
173    unsigned int pkt_cmd = pkt->cmdToIndex();
174
175    // store the old header delay so we can restore it if needed
176    Tick old_header_delay = pkt->headerDelay;
177
178    // a request sees the frontend and forward latency
179    Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
180
181    // set the packet header and payload delay
182    calcPacketTiming(pkt, xbar_delay);
183
184    // determine how long to be crossbar layer is busy
185    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
186
187    // is this the destination point for this packet? (e.g. true if
188    // this xbar is the PoC for a cache maintenance operation to the
189    // PoC) otherwise the destination is any cache that can satisfy
190    // the request
191    const bool is_destination = isDestination(pkt);
192
193    const bool snoop_caches = !system->bypassCaches() &&
194        pkt->cmd != MemCmd::WriteClean;
195    if (snoop_caches) {
196        assert(pkt->snoopDelay == 0);
197
198        if (pkt->isClean() && !is_destination) {
199            // before snooping we need to make sure that the memory
200            // below is not busy and the cache clean request can be
201            // forwarded to it
202            if (!masterPorts[master_port_id]->tryTiming(pkt)) {
203                DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__,
204                        src_port->name(), pkt->print());
205
206                // update the layer state and schedule an idle event
207                reqLayers[master_port_id]->failedTiming(src_port,
208                                                        clockEdge(Cycles(1)));
209                return false;
210            }
211        }
212
213
214        // the packet is a memory-mapped request and should be
215        // broadcasted to our snoopers but the source
216        if (snoopFilter) {
217            // check with the snoop filter where to forward this packet
218            auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
219            // the time required by a packet to be delivered through
220            // the xbar has to be charged also with to lookup latency
221            // of the snoop filter
222            pkt->headerDelay += sf_res.second * clockPeriod();
223            DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
224                    __func__, src_port->name(), pkt->print(),
225                    sf_res.first.size(), sf_res.second);
226
227            if (pkt->isEviction()) {
228                // for block-evicting packets, i.e. writebacks and
229                // clean evictions, there is no need to snoop up, as
230                // all we do is determine if the block is cached or
231                // not, instead just set it here based on the snoop
232                // filter result
233                if (!sf_res.first.empty())
234                    pkt->setBlockCached();
235            } else {
236                forwardTiming(pkt, slave_port_id, sf_res.first);
237            }
238        } else {
239            forwardTiming(pkt, slave_port_id);
240        }
241
242        // add the snoop delay to our header delay, and then reset it
243        pkt->headerDelay += pkt->snoopDelay;
244        pkt->snoopDelay = 0;
245    }
246
247    // set up a sensible starting point
248    bool success = true;
249
250    // remember if the packet will generate a snoop response by
251    // checking if a cache set the cacheResponding flag during the
252    // snooping above
253    const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding();
254    bool expect_response = pkt->needsResponse() && !pkt->cacheResponding();
255
256    const bool sink_packet = sinkPacket(pkt);
257
258    // in certain cases the crossbar is responsible for responding
259    bool respond_directly = false;
260    // store the original address as an address mapper could possibly
261    // modify the address upon a sendTimingRequest
262    const Addr addr(pkt->getAddr());
263    if (sink_packet) {
264        DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
265                pkt->print());
266    } else {
267        // determine if we are forwarding the packet, or responding to
268        // it
269        if (forwardPacket(pkt)) {
270            // if we are passing on, rather than sinking, a packet to
271            // which an upstream cache has committed to responding,
272            // the line was needs writable, and the responding only
273            // had an Owned copy, so we need to immidiately let the
274            // downstream caches know, bypass any flow control
275            if (pkt->cacheResponding()) {
276                pkt->setExpressSnoop();
277            }
278
279            // make sure that the write request (e.g., WriteClean)
280            // will stop at the memory below if this crossbar is its
281            // destination
282            if (pkt->isWrite() && is_destination) {
283                pkt->clearWriteThrough();
284            }
285
286            // since it is a normal request, attempt to send the packet
287            success = masterPorts[master_port_id]->sendTimingReq(pkt);
288        } else {
289            // no need to forward, turn this packet around and respond
290            // directly
291            assert(pkt->needsResponse());
292
293            respond_directly = true;
294            assert(!expect_snoop_resp);
295            expect_response = false;
296        }
297    }
298
299    if (snoopFilter && snoop_caches) {
300        // Let the snoop filter know about the success of the send operation
301        snoopFilter->finishRequest(!success, addr, pkt->isSecure());
302    }
303
304    // check if we were successful in sending the packet onwards
305    if (!success)  {
306        // express snoops should never be forced to retry
307        assert(!is_express_snoop);
308
309        // restore the header delay
310        pkt->headerDelay = old_header_delay;
311
312        DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__,
313                src_port->name(), pkt->print());
314
315        // update the layer state and schedule an idle event
316        reqLayers[master_port_id]->failedTiming(src_port,
317                                                clockEdge(Cycles(1)));
318    } else {
319        // express snoops currently bypass the crossbar state entirely
320        if (!is_express_snoop) {
321            // if this particular request will generate a snoop
322            // response
323            if (expect_snoop_resp) {
324                // we should never have an exsiting request outstanding
325                assert(outstandingSnoop.find(pkt->req) ==
326                       outstandingSnoop.end());
327                outstandingSnoop.insert(pkt->req);
328
329                // basic sanity check on the outstanding snoops
330                panic_if(outstandingSnoop.size() > 512,
331                         "Outstanding snoop requests exceeded 512\n");
332            }
333
334            // remember where to route the normal response to
335            if (expect_response || expect_snoop_resp) {
336                assert(routeTo.find(pkt->req) == routeTo.end());
337                routeTo[pkt->req] = slave_port_id;
338
339                panic_if(routeTo.size() > 512,
340                         "Routing table exceeds 512 packets\n");
341            }
342
343            // update the layer state and schedule an idle event
344            reqLayers[master_port_id]->succeededTiming(packetFinishTime);
345        }
346
347        // stats updates only consider packets that were successfully sent
348        pktCount[slave_port_id][master_port_id]++;
349        pktSize[slave_port_id][master_port_id] += pkt_size;
350        transDist[pkt_cmd]++;
351
352        if (is_express_snoop) {
353            snoops++;
354            snoopTraffic += pkt_size;
355        }
356    }
357
358    if (sink_packet)
359        // queue the packet for deletion
360        pendingDelete.reset(pkt);
361
362    // normally we respond to the packet we just received if we need to
363    PacketPtr rsp_pkt = pkt;
364    PortID rsp_port_id = slave_port_id;
365
366    // If this is the destination of the cache clean operation the
367    // crossbar is responsible for responding. This crossbar will
368    // respond when the cache clean is complete. A cache clean
369    // is complete either:
370    // * direcly, if no cache above had a dirty copy of the block
371    //   as indicated by the satisfied flag of the packet, or
372    // * when the crossbar has seen both the cache clean request
373    //   (CleanSharedReq, CleanInvalidReq) and the corresponding
374    //   write (WriteClean) which updates the block in the memory
375    //   below.
376    if (success &&
377        ((pkt->isClean() && pkt->satisfied()) ||
378         pkt->cmd == MemCmd::WriteClean) &&
379        is_destination) {
380        PacketPtr deferred_rsp = pkt->isWrite() ? nullptr : pkt;
381        auto cmo_lookup = outstandingCMO.find(pkt->id);
382        if (cmo_lookup != outstandingCMO.end()) {
383            // the cache clean request has already reached this xbar
384            respond_directly = true;
385            if (pkt->isWrite()) {
386                rsp_pkt = cmo_lookup->second;
387                assert(rsp_pkt);
388
389                // determine the destination
390                const auto route_lookup = routeTo.find(rsp_pkt->req);
391                assert(route_lookup != routeTo.end());
392                rsp_port_id = route_lookup->second;
393                assert(rsp_port_id != InvalidPortID);
394                assert(rsp_port_id < respLayers.size());
395                // remove the request from the routing table
396                routeTo.erase(route_lookup);
397            }
398            outstandingCMO.erase(cmo_lookup);
399        } else {
400            respond_directly = false;
401            outstandingCMO.emplace(pkt->id, deferred_rsp);
402            if (!pkt->isWrite()) {
403                assert(routeTo.find(pkt->req) == routeTo.end());
404                routeTo[pkt->req] = slave_port_id;
405
406                panic_if(routeTo.size() > 512,
407                         "Routing table exceeds 512 packets\n");
408            }
409        }
410    }
411
412
413    if (respond_directly) {
414        assert(rsp_pkt->needsResponse());
415        assert(success);
416
417        rsp_pkt->makeResponse();
418
419        if (snoopFilter && !system->bypassCaches()) {
420            // let the snoop filter inspect the response and update its state
421            snoopFilter->updateResponse(rsp_pkt, *slavePorts[rsp_port_id]);
422        }
423
424        // we send the response after the current packet, even if the
425        // response is not for this packet (e.g. cache clean operation
426        // where both the request and the write packet have to cross
427        // the destination xbar before the response is sent.)
428        Tick response_time = clockEdge() + pkt->headerDelay;
429        rsp_pkt->headerDelay = 0;
430
431        slavePorts[rsp_port_id]->schedTimingResp(rsp_pkt, response_time);
432    }
433
434    return success;
435}
436
437bool
438CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
439{
440    // determine the source port based on the id
441    MasterPort *src_port = masterPorts[master_port_id];
442
443    // determine the destination
444    const auto route_lookup = routeTo.find(pkt->req);
445    assert(route_lookup != routeTo.end());
446    const PortID slave_port_id = route_lookup->second;
447    assert(slave_port_id != InvalidPortID);
448    assert(slave_port_id < respLayers.size());
449
450    // test if the crossbar should be considered occupied for the
451    // current port
452    if (!respLayers[slave_port_id]->tryTiming(src_port)) {
453        DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
454                src_port->name(), pkt->print());
455        return false;
456    }
457
458    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
459            src_port->name(), pkt->print());
460
461    // store size and command as they might be modified when
462    // forwarding the packet
463    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
464    unsigned int pkt_cmd = pkt->cmdToIndex();
465
466    // a response sees the response latency
467    Tick xbar_delay = responseLatency * clockPeriod();
468
469    // set the packet header and payload delay
470    calcPacketTiming(pkt, xbar_delay);
471
472    // determine how long to be crossbar layer is busy
473    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
474
475    if (snoopFilter && !system->bypassCaches()) {
476        // let the snoop filter inspect the response and update its state
477        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
478    }
479
480    // send the packet through the destination slave port and pay for
481    // any outstanding header delay
482    Tick latency = pkt->headerDelay;
483    pkt->headerDelay = 0;
484    slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
485
486    // remove the request from the routing table
487    routeTo.erase(route_lookup);
488
489    respLayers[slave_port_id]->succeededTiming(packetFinishTime);
490
491    // stats updates
492    pktCount[slave_port_id][master_port_id]++;
493    pktSize[slave_port_id][master_port_id] += pkt_size;
494    transDist[pkt_cmd]++;
495
496    return true;
497}
498
499void
500CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
501{
502    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
503            masterPorts[master_port_id]->name(), pkt->print());
504
505    // update stats here as we know the forwarding will succeed
506    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
507    transDist[pkt->cmdToIndex()]++;
508    snoops++;
509    snoopTraffic += pkt_size;
510
511    // we should only see express snoops from caches
512    assert(pkt->isExpressSnoop());
513
514    // set the packet header and payload delay, for now use forward latency
515    // @todo Assess the choice of latency further
516    calcPacketTiming(pkt, forwardLatency * clockPeriod());
517
518    // remember if a cache has already committed to responding so we
519    // can see if it changes during the snooping
520    const bool cache_responding = pkt->cacheResponding();
521
522    assert(pkt->snoopDelay == 0);
523
524    if (snoopFilter) {
525        // let the Snoop Filter work its magic and guide probing
526        auto sf_res = snoopFilter->lookupSnoop(pkt);
527        // the time required by a packet to be delivered through
528        // the xbar has to be charged also with to lookup latency
529        // of the snoop filter
530        pkt->headerDelay += sf_res.second * clockPeriod();
531        DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
532                __func__, masterPorts[master_port_id]->name(), pkt->print(),
533                sf_res.first.size(), sf_res.second);
534
535        // forward to all snoopers
536        forwardTiming(pkt, InvalidPortID, sf_res.first);
537    } else {
538        forwardTiming(pkt, InvalidPortID);
539    }
540
541    // add the snoop delay to our header delay, and then reset it
542    pkt->headerDelay += pkt->snoopDelay;
543    pkt->snoopDelay = 0;
544
545    // if we can expect a response, remember how to route it
546    if (!cache_responding && pkt->cacheResponding()) {
547        assert(routeTo.find(pkt->req) == routeTo.end());
548        routeTo[pkt->req] = master_port_id;
549    }
550
551    // a snoop request came from a connected slave device (one of
552    // our master ports), and if it is not coming from the slave
553    // device responsible for the address range something is
554    // wrong, hence there is nothing further to do as the packet
555    // would be going back to where it came from
556    assert(master_port_id == findPort(pkt->getAddr()));
557}
558
559bool
560CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
561{
562    // determine the source port based on the id
563    SlavePort* src_port = slavePorts[slave_port_id];
564
565    // get the destination
566    const auto route_lookup = routeTo.find(pkt->req);
567    assert(route_lookup != routeTo.end());
568    const PortID dest_port_id = route_lookup->second;
569    assert(dest_port_id != InvalidPortID);
570
571    // determine if the response is from a snoop request we
572    // created as the result of a normal request (in which case it
573    // should be in the outstandingSnoop), or if we merely forwarded
574    // someone else's snoop request
575    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
576        outstandingSnoop.end();
577
578    // test if the crossbar should be considered occupied for the
579    // current port, note that the check is bypassed if the response
580    // is being passed on as a normal response since this is occupying
581    // the response layer rather than the snoop response layer
582    if (forwardAsSnoop) {
583        assert(dest_port_id < snoopLayers.size());
584        if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
585            DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
586                    src_port->name(), pkt->print());
587            return false;
588        }
589    } else {
590        // get the master port that mirrors this slave port internally
591        MasterPort* snoop_port = snoopRespPorts[slave_port_id];
592        assert(dest_port_id < respLayers.size());
593        if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
594            DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
595                    snoop_port->name(), pkt->print());
596            return false;
597        }
598    }
599
600    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
601            src_port->name(), pkt->print());
602
603    // store size and command as they might be modified when
604    // forwarding the packet
605    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
606    unsigned int pkt_cmd = pkt->cmdToIndex();
607
608    // responses are never express snoops
609    assert(!pkt->isExpressSnoop());
610
611    // a snoop response sees the snoop response latency, and if it is
612    // forwarded as a normal response, the response latency
613    Tick xbar_delay =
614        (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
615        clockPeriod();
616
617    // set the packet header and payload delay
618    calcPacketTiming(pkt, xbar_delay);
619
620    // determine how long to be crossbar layer is busy
621    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
622
623    // forward it either as a snoop response or a normal response
624    if (forwardAsSnoop) {
625        // this is a snoop response to a snoop request we forwarded,
626        // e.g. coming from the L1 and going to the L2, and it should
627        // be forwarded as a snoop response
628
629        if (snoopFilter) {
630            // update the probe filter so that it can properly track the line
631            snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
632                                            *masterPorts[dest_port_id]);
633        }
634
635        bool success M5_VAR_USED =
636            masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
637        pktCount[slave_port_id][dest_port_id]++;
638        pktSize[slave_port_id][dest_port_id] += pkt_size;
639        assert(success);
640
641        snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
642    } else {
643        // we got a snoop response on one of our slave ports,
644        // i.e. from a coherent master connected to the crossbar, and
645        // since we created the snoop request as part of recvTiming,
646        // this should now be a normal response again
647        outstandingSnoop.erase(pkt->req);
648
649        // this is a snoop response from a coherent master, hence it
650        // should never go back to where the snoop response came from,
651        // but instead to where the original request came from
652        assert(slave_port_id != dest_port_id);
653
654        if (snoopFilter) {
655            // update the probe filter so that it can properly track the line
656            snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
657                                    *slavePorts[dest_port_id]);
658        }
659
660        DPRINTF(CoherentXBar, "%s: src %s packet %s FWD RESP\n", __func__,
661                src_port->name(), pkt->print());
662
663        // as a normal response, it should go back to a master through
664        // one of our slave ports, we also pay for any outstanding
665        // header latency
666        Tick latency = pkt->headerDelay;
667        pkt->headerDelay = 0;
668        slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);
669
670        respLayers[dest_port_id]->succeededTiming(packetFinishTime);
671    }
672
673    // remove the request from the routing table
674    routeTo.erase(route_lookup);
675
676    // stats updates
677    transDist[pkt_cmd]++;
678    snoops++;
679    snoopTraffic += pkt_size;
680
681    return true;
682}
683
684
685void
686CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
687                           const std::vector<QueuedSlavePort*>& dests)
688{
689    DPRINTF(CoherentXBar, "%s for %s\n", __func__, pkt->print());
690
691    // snoops should only happen if the system isn't bypassing caches
692    assert(!system->bypassCaches());
693
694    unsigned fanout = 0;
695
696    for (const auto& p: dests) {
697        // we could have gotten this request from a snooping master
698        // (corresponding to our own slave port that is also in
699        // snoopPorts) and should not send it back to where it came
700        // from
701        if (exclude_slave_port_id == InvalidPortID ||
702            p->getId() != exclude_slave_port_id) {
703            // cache is not allowed to refuse snoop
704            p->sendTimingSnoopReq(pkt);
705            fanout++;
706        }
707    }
708
709    // Stats for fanout of this forward operation
710    snoopFanout.sample(fanout);
711}
712
713void
714CoherentXBar::recvReqRetry(PortID master_port_id)
715{
716    // responses and snoop responses never block on forwarding them,
717    // so the retry will always be coming from a port to which we
718    // tried to forward a request
719    reqLayers[master_port_id]->recvRetry();
720}
721
722Tick
723CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
724{
725    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
726            slavePorts[slave_port_id]->name(), pkt->print());
727
728    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
729    unsigned int pkt_cmd = pkt->cmdToIndex();
730
731    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
732    Tick snoop_response_latency = 0;
733
734    // is this the destination point for this packet? (e.g. true if
735    // this xbar is the PoC for a cache maintenance operation to the
736    // PoC) otherwise the destination is any cache that can satisfy
737    // the request
738    const bool is_destination = isDestination(pkt);
739
740    const bool snoop_caches = !system->bypassCaches() &&
741        pkt->cmd != MemCmd::WriteClean;
742    if (snoop_caches) {
743        // forward to all snoopers but the source
744        std::pair<MemCmd, Tick> snoop_result;
745        if (snoopFilter) {
746            // check with the snoop filter where to forward this packet
747            auto sf_res =
748                snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
749            snoop_response_latency += sf_res.second * clockPeriod();
750            DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
751                    __func__, slavePorts[slave_port_id]->name(), pkt->print(),
752                    sf_res.first.size(), sf_res.second);
753
754            // let the snoop filter know about the success of the send
755            // operation, and do it even before sending it onwards to
756            // avoid situations where atomic upward snoops sneak in
757            // between and change the filter state
758            snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure());
759
760            if (pkt->isEviction()) {
761                // for block-evicting packets, i.e. writebacks and
762                // clean evictions, there is no need to snoop up, as
763                // all we do is determine if the block is cached or
764                // not, instead just set it here based on the snoop
765                // filter result
766                if (!sf_res.first.empty())
767                    pkt->setBlockCached();
768            } else {
769                snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
770                                             sf_res.first);
771            }
772        } else {
773            snoop_result = forwardAtomic(pkt, slave_port_id);
774        }
775        snoop_response_cmd = snoop_result.first;
776        snoop_response_latency += snoop_result.second;
777    }
778
779    // set up a sensible default value
780    Tick response_latency = 0;
781
782    const bool sink_packet = sinkPacket(pkt);
783
784    // even if we had a snoop response, we must continue and also
785    // perform the actual request at the destination
786    PortID master_port_id = findPort(pkt->getAddr());
787
788    if (sink_packet) {
789        DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
790                pkt->print());
791    } else {
792        if (forwardPacket(pkt)) {
793            // make sure that the write request (e.g., WriteClean)
794            // will stop at the memory below if this crossbar is its
795            // destination
796            if (pkt->isWrite() && is_destination) {
797                pkt->clearWriteThrough();
798            }
799
800            // forward the request to the appropriate destination
801            response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
802        } else {
803            // if it does not need a response we sink the packet above
804            assert(pkt->needsResponse());
805
806            pkt->makeResponse();
807        }
808    }
809
810    // stats updates for the request
811    pktCount[slave_port_id][master_port_id]++;
812    pktSize[slave_port_id][master_port_id] += pkt_size;
813    transDist[pkt_cmd]++;
814
815
816    // if lower levels have replied, tell the snoop filter
817    if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) {
818        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
819    }
820
821    // if we got a response from a snooper, restore it here
822    if (snoop_response_cmd != MemCmd::InvalidCmd) {
823        // no one else should have responded
824        assert(!pkt->isResponse());
825        pkt->cmd = snoop_response_cmd;
826        response_latency = snoop_response_latency;
827    }
828
829    // If this is the destination of the cache clean operation the
830    // crossbar is responsible for responding. This crossbar will
831    // respond when the cache clean is complete. An atomic cache clean
832    // is complete when the crossbars receives the cache clean
833    // request (CleanSharedReq, CleanInvalidReq), as either:
834    // * no cache above had a dirty copy of the block as indicated by
835    //   the satisfied flag of the packet, or
836    // * the crossbar has already seen the corresponding write
837    //   (WriteClean) which updates the block in the memory below.
838    if (pkt->isClean() && isDestination(pkt) && pkt->satisfied()) {
839        auto it = outstandingCMO.find(pkt->id);
840        assert(it != outstandingCMO.end());
841        // we are responding right away
842        outstandingCMO.erase(it);
843    } else if (pkt->cmd == MemCmd::WriteClean && isDestination(pkt)) {
844        // if this is the destination of the operation, the xbar
845        // sends the responce to the cache clean operation only
846        // after having encountered the cache clean request
847        auto M5_VAR_USED ret = outstandingCMO.emplace(pkt->id, nullptr);
848        // in atomic mode we know that the WriteClean packet should
849        // precede the clean request
850        assert(ret.second);
851    }
852
853    // add the response data
854    if (pkt->isResponse()) {
855        pkt_size = pkt->hasData() ? pkt->getSize() : 0;
856        pkt_cmd = pkt->cmdToIndex();
857
858        // stats updates
859        pktCount[slave_port_id][master_port_id]++;
860        pktSize[slave_port_id][master_port_id] += pkt_size;
861        transDist[pkt_cmd]++;
862    }
863
864    // @todo: Not setting header time
865    pkt->payloadDelay = response_latency;
866    return response_latency;
867}
868
869Tick
870CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
871{
872    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
873            masterPorts[master_port_id]->name(), pkt->print());
874
875    // add the request snoop data
876    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
877    snoops++;
878    snoopTraffic += pkt_size;
879
880    // forward to all snoopers
881    std::pair<MemCmd, Tick> snoop_result;
882    Tick snoop_response_latency = 0;
883    if (snoopFilter) {
884        auto sf_res = snoopFilter->lookupSnoop(pkt);
885        snoop_response_latency += sf_res.second * clockPeriod();
886        DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
887                __func__, masterPorts[master_port_id]->name(), pkt->print(),
888                sf_res.first.size(), sf_res.second);
889        snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
890                                     sf_res.first);
891    } else {
892        snoop_result = forwardAtomic(pkt, InvalidPortID);
893    }
894    MemCmd snoop_response_cmd = snoop_result.first;
895    snoop_response_latency += snoop_result.second;
896
897    if (snoop_response_cmd != MemCmd::InvalidCmd)
898        pkt->cmd = snoop_response_cmd;
899
900    // add the response snoop data
901    if (pkt->isResponse()) {
902        snoops++;
903    }
904
905    // @todo: Not setting header time
906    pkt->payloadDelay = snoop_response_latency;
907    return snoop_response_latency;
908}
909
910std::pair<MemCmd, Tick>
911CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
912                           PortID source_master_port_id,
913                           const std::vector<QueuedSlavePort*>& dests)
914{
915    // the packet may be changed on snoops, record the original
916    // command to enable us to restore it between snoops so that
917    // additional snoops can take place properly
918    MemCmd orig_cmd = pkt->cmd;
919    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
920    Tick snoop_response_latency = 0;
921
922    // snoops should only happen if the system isn't bypassing caches
923    assert(!system->bypassCaches());
924
925    unsigned fanout = 0;
926
927    for (const auto& p: dests) {
928        // we could have gotten this request from a snooping master
929        // (corresponding to our own slave port that is also in
930        // snoopPorts) and should not send it back to where it came
931        // from
932        if (exclude_slave_port_id != InvalidPortID &&
933            p->getId() == exclude_slave_port_id)
934            continue;
935
936        Tick latency = p->sendAtomicSnoop(pkt);
937        fanout++;
938
939        // in contrast to a functional access, we have to keep on
940        // going as all snoopers must be updated even if we get a
941        // response
942        if (!pkt->isResponse())
943            continue;
944
945        // response from snoop agent
946        assert(pkt->cmd != orig_cmd);
947        assert(pkt->cacheResponding());
948        // should only happen once
949        assert(snoop_response_cmd == MemCmd::InvalidCmd);
950        // save response state
951        snoop_response_cmd = pkt->cmd;
952        snoop_response_latency = latency;
953
954        if (snoopFilter) {
955            // Handle responses by the snoopers and differentiate between
956            // responses to requests from above and snoops from below
957            if (source_master_port_id != InvalidPortID) {
958                // Getting a response for a snoop from below
959                assert(exclude_slave_port_id == InvalidPortID);
960                snoopFilter->updateSnoopForward(pkt, *p,
961                             *masterPorts[source_master_port_id]);
962            } else {
963                // Getting a response for a request from above
964                assert(source_master_port_id == InvalidPortID);
965                snoopFilter->updateSnoopResponse(pkt, *p,
966                             *slavePorts[exclude_slave_port_id]);
967            }
968        }
969        // restore original packet state for remaining snoopers
970        pkt->cmd = orig_cmd;
971    }
972
973    // Stats for fanout
974    snoopFanout.sample(fanout);
975
976    // the packet is restored as part of the loop and any potential
977    // snoop response is part of the returned pair
978    return std::make_pair(snoop_response_cmd, snoop_response_latency);
979}
980
981void
982CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
983{
984    if (!pkt->isPrint()) {
985        // don't do DPRINTFs on PrintReq as it clutters up the output
986        DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
987                slavePorts[slave_port_id]->name(), pkt->print());
988    }
989
990    if (!system->bypassCaches()) {
991        // forward to all snoopers but the source
992        forwardFunctional(pkt, slave_port_id);
993    }
994
995    // there is no need to continue if the snooping has found what we
996    // were looking for and the packet is already a response
997    if (!pkt->isResponse()) {
998        // since our slave ports are queued ports we need to check them as well
999        for (const auto& p : slavePorts) {
1000            // if we find a response that has the data, then the
1001            // downstream caches/memories may be out of date, so simply stop
1002            // here
1003            if (p->checkFunctional(pkt)) {
1004                if (pkt->needsResponse())
1005                    pkt->makeResponse();
1006                return;
1007            }
1008        }
1009
1010        PortID dest_id = findPort(pkt->getAddr());
1011
1012        masterPorts[dest_id]->sendFunctional(pkt);
1013    }
1014}
1015
1016void
1017CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
1018{
1019    if (!pkt->isPrint()) {
1020        // don't do DPRINTFs on PrintReq as it clutters up the output
1021        DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
1022                masterPorts[master_port_id]->name(), pkt->print());
1023    }
1024
1025    for (const auto& p : slavePorts) {
1026        if (p->checkFunctional(pkt)) {
1027            if (pkt->needsResponse())
1028                pkt->makeResponse();
1029            return;
1030        }
1031    }
1032
1033    // forward to all snoopers
1034    forwardFunctional(pkt, InvalidPortID);
1035}
1036
1037void
1038CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
1039{
1040    // snoops should only happen if the system isn't bypassing caches
1041    assert(!system->bypassCaches());
1042
1043    for (const auto& p: snoopPorts) {
1044        // we could have gotten this request from a snooping master
1045        // (corresponding to our own slave port that is also in
1046        // snoopPorts) and should not send it back to where it came
1047        // from
1048        if (exclude_slave_port_id == InvalidPortID ||
1049            p->getId() != exclude_slave_port_id)
1050            p->sendFunctionalSnoop(pkt);
1051
1052        // if we get a response we are done
1053        if (pkt->isResponse()) {
1054            break;
1055        }
1056    }
1057}
1058
1059bool
1060CoherentXBar::sinkPacket(const PacketPtr pkt) const
1061{
1062    // we can sink the packet if:
1063    // 1) the crossbar is the point of coherency, and a cache is
1064    //    responding after being snooped
1065    // 2) the crossbar is the point of coherency, and the packet is a
1066    //    coherency packet (not a read or a write) that does not
1067    //    require a response
1068    // 3) this is a clean evict or clean writeback, but the packet is
1069    //    found in a cache above this crossbar
1070    // 4) a cache is responding after being snooped, and the packet
1071    //    either does not need the block to be writable, or the cache
1072    //    that has promised to respond (setting the cache responding
1073    //    flag) is providing writable and thus had a Modified block,
1074    //    and no further action is needed
1075    return (pointOfCoherency && pkt->cacheResponding()) ||
1076        (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) &&
1077         !pkt->needsResponse()) ||
1078        (pkt->isCleanEviction() && pkt->isBlockCached()) ||
1079        (pkt->cacheResponding() &&
1080         (!pkt->needsWritable() || pkt->responderHadWritable()));
1081}
1082
1083bool
1084CoherentXBar::forwardPacket(const PacketPtr pkt)
1085{
1086    // we are forwarding the packet if:
1087    // 1) this is a cache clean request to the PoU/PoC and this
1088    //    crossbar is above the PoU/PoC
1089    // 2) this is a read or a write
1090    // 3) this crossbar is above the point of coherency
1091    if (pkt->isClean()) {
1092        return !isDestination(pkt);
1093    }
1094    return pkt->isRead() || pkt->isWrite() || !pointOfCoherency;
1095}
1096
1097
1098void
1099CoherentXBar::regStats()
1100{
1101    // register the stats of the base class and our layers
1102    BaseXBar::regStats();
1103    for (auto l: reqLayers)
1104        l->regStats();
1105    for (auto l: respLayers)
1106        l->regStats();
1107    for (auto l: snoopLayers)
1108        l->regStats();
1109
1110    snoops
1111        .name(name() + ".snoops")
1112        .desc("Total snoops (count)")
1113    ;
1114
1115    snoopTraffic
1116        .name(name() + ".snoopTraffic")
1117        .desc("Total snoop traffic (bytes)")
1118    ;
1119
1120    snoopFanout
1121        .init(0, snoopPorts.size(), 1)
1122        .name(name() + ".snoop_fanout")
1123        .desc("Request fanout histogram")
1124    ;
1125}
1126
1127CoherentXBar *
1128CoherentXBarParams::create()
1129{
1130    return new CoherentXBar(this);
1131}
1132