coherent_xbar.cc revision 12345
1/* 2 * Copyright (c) 2011-2017 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Ali Saidi 41 * Andreas Hansson 42 * William Wang 43 */ 44 45/** 46 * @file 47 * Definition of a crossbar object. 48 */ 49 50#include "mem/coherent_xbar.hh" 51 52#include "base/logging.hh" 53#include "base/trace.hh" 54#include "debug/AddrRanges.hh" 55#include "debug/CoherentXBar.hh" 56#include "sim/system.hh" 57 58CoherentXBar::CoherentXBar(const CoherentXBarParams *p) 59 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter), 60 snoopResponseLatency(p->snoop_response_latency), 61 pointOfCoherency(p->point_of_coherency), 62 pointOfUnification(p->point_of_unification) 63{ 64 // create the ports based on the size of the master and slave 65 // vector ports, and the presence of the default port, the ports 66 // are enumerated starting from zero 67 for (int i = 0; i < p->port_master_connection_count; ++i) { 68 std::string portName = csprintf("%s.master[%d]", name(), i); 69 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i); 70 masterPorts.push_back(bp); 71 reqLayers.push_back(new ReqLayer(*bp, *this, 72 csprintf(".reqLayer%d", i))); 73 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 74 csprintf(".snoopLayer%d", i))); 75 } 76 77 // see if we have a default slave device connected and if so add 78 // our corresponding master port 79 if (p->port_default_connection_count) { 80 defaultPortID = masterPorts.size(); 81 std::string portName = name() + ".default"; 82 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, 83 defaultPortID); 84 masterPorts.push_back(bp); 85 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d", 86 defaultPortID))); 87 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 88 csprintf(".snoopLayer%d", 89 defaultPortID))); 90 } 91 92 // create the slave ports, once again starting at zero 93 for (int i = 0; i < p->port_slave_connection_count; ++i) { 94 std::string portName = csprintf("%s.slave[%d]", name(), i); 95 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i); 96 slavePorts.push_back(bp); 97 respLayers.push_back(new RespLayer(*bp, *this, 98 csprintf(".respLayer%d", i))); 99 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this)); 100 } 101 102 clearPortCache(); 103} 104 105CoherentXBar::~CoherentXBar() 106{ 107 for (auto l: reqLayers) 108 delete l; 109 for (auto l: respLayers) 110 delete l; 111 for (auto l: snoopLayers) 112 delete l; 113 for (auto p: snoopRespPorts) 114 delete p; 115} 116 117void 118CoherentXBar::init() 119{ 120 BaseXBar::init(); 121 122 // iterate over our slave ports and determine which of our 123 // neighbouring master ports are snooping and add them as snoopers 124 for (const auto& p: slavePorts) { 125 // check if the connected master port is snooping 126 if (p->isSnooping()) { 127 DPRINTF(AddrRanges, "Adding snooping master %s\n", 128 p->getMasterPort().name()); 129 snoopPorts.push_back(p); 130 } 131 } 132 133 if (snoopPorts.empty()) 134 warn("CoherentXBar %s has no snooping ports attached!\n", name()); 135 136 // inform the snoop filter about the slave ports so it can create 137 // its own internal representation 138 if (snoopFilter) 139 snoopFilter->setSlavePorts(slavePorts); 140} 141 142bool 143CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id) 144{ 145 // determine the source port based on the id 146 SlavePort *src_port = slavePorts[slave_port_id]; 147 148 // remember if the packet is an express snoop 149 bool is_express_snoop = pkt->isExpressSnoop(); 150 bool cache_responding = pkt->cacheResponding(); 151 // for normal requests, going downstream, the express snoop flag 152 // and the cache responding flag should always be the same 153 assert(is_express_snoop == cache_responding); 154 155 // determine the destination based on the address 156 PortID master_port_id = findPort(pkt->getAddr()); 157 158 // test if the crossbar should be considered occupied for the current 159 // port, and exclude express snoops from the check 160 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) { 161 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 162 src_port->name(), pkt->print()); 163 return false; 164 } 165 166 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 167 src_port->name(), pkt->print()); 168 169 // store size and command as they might be modified when 170 // forwarding the packet 171 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 172 unsigned int pkt_cmd = pkt->cmdToIndex(); 173 174 // store the old header delay so we can restore it if needed 175 Tick old_header_delay = pkt->headerDelay; 176 177 // a request sees the frontend and forward latency 178 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod(); 179 180 // set the packet header and payload delay 181 calcPacketTiming(pkt, xbar_delay); 182 183 // determine how long to be crossbar layer is busy 184 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 185 186 const bool snoop_caches = !system->bypassCaches() && 187 pkt->cmd != MemCmd::WriteClean; 188 if (snoop_caches) { 189 assert(pkt->snoopDelay == 0); 190 191 // the packet is a memory-mapped request and should be 192 // broadcasted to our snoopers but the source 193 if (snoopFilter) { 194 // check with the snoop filter where to forward this packet 195 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port); 196 // the time required by a packet to be delivered through 197 // the xbar has to be charged also with to lookup latency 198 // of the snoop filter 199 pkt->headerDelay += sf_res.second * clockPeriod(); 200 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 201 __func__, src_port->name(), pkt->print(), 202 sf_res.first.size(), sf_res.second); 203 204 if (pkt->isEviction()) { 205 // for block-evicting packets, i.e. writebacks and 206 // clean evictions, there is no need to snoop up, as 207 // all we do is determine if the block is cached or 208 // not, instead just set it here based on the snoop 209 // filter result 210 if (!sf_res.first.empty()) 211 pkt->setBlockCached(); 212 } else { 213 forwardTiming(pkt, slave_port_id, sf_res.first); 214 } 215 } else { 216 forwardTiming(pkt, slave_port_id); 217 } 218 219 // add the snoop delay to our header delay, and then reset it 220 pkt->headerDelay += pkt->snoopDelay; 221 pkt->snoopDelay = 0; 222 } 223 224 // set up a sensible starting point 225 bool success = true; 226 227 // remember if the packet will generate a snoop response by 228 // checking if a cache set the cacheResponding flag during the 229 // snooping above 230 const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding(); 231 bool expect_response = pkt->needsResponse() && !pkt->cacheResponding(); 232 233 const bool sink_packet = sinkPacket(pkt); 234 235 // in certain cases the crossbar is responsible for responding 236 bool respond_directly = false; 237 // store the original address as an address mapper could possibly 238 // modify the address upon a sendTimingRequest 239 const Addr addr(pkt->getAddr()); 240 if (sink_packet) { 241 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__, 242 pkt->print()); 243 } else { 244 // determine if we are forwarding the packet, or responding to 245 // it 246 if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) { 247 // if we are passing on, rather than sinking, a packet to 248 // which an upstream cache has committed to responding, 249 // the line was needs writable, and the responding only 250 // had an Owned copy, so we need to immidiately let the 251 // downstream caches know, bypass any flow control 252 if (pkt->cacheResponding()) { 253 pkt->setExpressSnoop(); 254 } 255 256 // since it is a normal request, attempt to send the packet 257 success = masterPorts[master_port_id]->sendTimingReq(pkt); 258 } else { 259 // no need to forward, turn this packet around and respond 260 // directly 261 assert(pkt->needsResponse()); 262 263 respond_directly = true; 264 assert(!expect_snoop_resp); 265 expect_response = false; 266 } 267 } 268 269 if (snoopFilter && snoop_caches) { 270 // Let the snoop filter know about the success of the send operation 271 snoopFilter->finishRequest(!success, addr, pkt->isSecure()); 272 } 273 274 // check if we were successful in sending the packet onwards 275 if (!success) { 276 // express snoops should never be forced to retry 277 assert(!is_express_snoop); 278 279 // restore the header delay 280 pkt->headerDelay = old_header_delay; 281 282 DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__, 283 src_port->name(), pkt->print()); 284 285 // update the layer state and schedule an idle event 286 reqLayers[master_port_id]->failedTiming(src_port, 287 clockEdge(Cycles(1))); 288 } else { 289 // express snoops currently bypass the crossbar state entirely 290 if (!is_express_snoop) { 291 // if this particular request will generate a snoop 292 // response 293 if (expect_snoop_resp) { 294 // we should never have an exsiting request outstanding 295 assert(outstandingSnoop.find(pkt->req) == 296 outstandingSnoop.end()); 297 outstandingSnoop.insert(pkt->req); 298 299 // basic sanity check on the outstanding snoops 300 panic_if(outstandingSnoop.size() > 512, 301 "Outstanding snoop requests exceeded 512\n"); 302 } 303 304 // remember where to route the normal response to 305 if (expect_response || expect_snoop_resp) { 306 assert(routeTo.find(pkt->req) == routeTo.end()); 307 routeTo[pkt->req] = slave_port_id; 308 309 panic_if(routeTo.size() > 512, 310 "Routing table exceeds 512 packets\n"); 311 } 312 313 // update the layer state and schedule an idle event 314 reqLayers[master_port_id]->succeededTiming(packetFinishTime); 315 } 316 317 // stats updates only consider packets that were successfully sent 318 pktCount[slave_port_id][master_port_id]++; 319 pktSize[slave_port_id][master_port_id] += pkt_size; 320 transDist[pkt_cmd]++; 321 322 if (is_express_snoop) { 323 snoops++; 324 snoopTraffic += pkt_size; 325 } 326 } 327 328 if (sink_packet) 329 // queue the packet for deletion 330 pendingDelete.reset(pkt); 331 332 if (respond_directly) { 333 assert(pkt->needsResponse()); 334 assert(success); 335 336 pkt->makeResponse(); 337 338 if (snoopFilter && !system->bypassCaches()) { 339 // let the snoop filter inspect the response and update its state 340 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 341 } 342 343 Tick response_time = clockEdge() + pkt->headerDelay; 344 pkt->headerDelay = 0; 345 346 slavePorts[slave_port_id]->schedTimingResp(pkt, response_time); 347 } 348 349 return success; 350} 351 352bool 353CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id) 354{ 355 // determine the source port based on the id 356 MasterPort *src_port = masterPorts[master_port_id]; 357 358 // determine the destination 359 const auto route_lookup = routeTo.find(pkt->req); 360 assert(route_lookup != routeTo.end()); 361 const PortID slave_port_id = route_lookup->second; 362 assert(slave_port_id != InvalidPortID); 363 assert(slave_port_id < respLayers.size()); 364 365 // test if the crossbar should be considered occupied for the 366 // current port 367 if (!respLayers[slave_port_id]->tryTiming(src_port)) { 368 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 369 src_port->name(), pkt->print()); 370 return false; 371 } 372 373 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 374 src_port->name(), pkt->print()); 375 376 // store size and command as they might be modified when 377 // forwarding the packet 378 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 379 unsigned int pkt_cmd = pkt->cmdToIndex(); 380 381 // a response sees the response latency 382 Tick xbar_delay = responseLatency * clockPeriod(); 383 384 // set the packet header and payload delay 385 calcPacketTiming(pkt, xbar_delay); 386 387 // determine how long to be crossbar layer is busy 388 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 389 390 if (snoopFilter && !system->bypassCaches()) { 391 // let the snoop filter inspect the response and update its state 392 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 393 } 394 395 // send the packet through the destination slave port and pay for 396 // any outstanding header delay 397 Tick latency = pkt->headerDelay; 398 pkt->headerDelay = 0; 399 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency); 400 401 // remove the request from the routing table 402 routeTo.erase(route_lookup); 403 404 respLayers[slave_port_id]->succeededTiming(packetFinishTime); 405 406 // stats updates 407 pktCount[slave_port_id][master_port_id]++; 408 pktSize[slave_port_id][master_port_id] += pkt_size; 409 transDist[pkt_cmd]++; 410 411 return true; 412} 413 414void 415CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id) 416{ 417 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 418 masterPorts[master_port_id]->name(), pkt->print()); 419 420 // update stats here as we know the forwarding will succeed 421 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 422 transDist[pkt->cmdToIndex()]++; 423 snoops++; 424 snoopTraffic += pkt_size; 425 426 // we should only see express snoops from caches 427 assert(pkt->isExpressSnoop()); 428 429 // set the packet header and payload delay, for now use forward latency 430 // @todo Assess the choice of latency further 431 calcPacketTiming(pkt, forwardLatency * clockPeriod()); 432 433 // remember if a cache has already committed to responding so we 434 // can see if it changes during the snooping 435 const bool cache_responding = pkt->cacheResponding(); 436 437 assert(pkt->snoopDelay == 0); 438 439 if (snoopFilter) { 440 // let the Snoop Filter work its magic and guide probing 441 auto sf_res = snoopFilter->lookupSnoop(pkt); 442 // the time required by a packet to be delivered through 443 // the xbar has to be charged also with to lookup latency 444 // of the snoop filter 445 pkt->headerDelay += sf_res.second * clockPeriod(); 446 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 447 __func__, masterPorts[master_port_id]->name(), pkt->print(), 448 sf_res.first.size(), sf_res.second); 449 450 // forward to all snoopers 451 forwardTiming(pkt, InvalidPortID, sf_res.first); 452 } else { 453 forwardTiming(pkt, InvalidPortID); 454 } 455 456 // add the snoop delay to our header delay, and then reset it 457 pkt->headerDelay += pkt->snoopDelay; 458 pkt->snoopDelay = 0; 459 460 // if we can expect a response, remember how to route it 461 if (!cache_responding && pkt->cacheResponding()) { 462 assert(routeTo.find(pkt->req) == routeTo.end()); 463 routeTo[pkt->req] = master_port_id; 464 } 465 466 // a snoop request came from a connected slave device (one of 467 // our master ports), and if it is not coming from the slave 468 // device responsible for the address range something is 469 // wrong, hence there is nothing further to do as the packet 470 // would be going back to where it came from 471 assert(master_port_id == findPort(pkt->getAddr())); 472} 473 474bool 475CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id) 476{ 477 // determine the source port based on the id 478 SlavePort* src_port = slavePorts[slave_port_id]; 479 480 // get the destination 481 const auto route_lookup = routeTo.find(pkt->req); 482 assert(route_lookup != routeTo.end()); 483 const PortID dest_port_id = route_lookup->second; 484 assert(dest_port_id != InvalidPortID); 485 486 // determine if the response is from a snoop request we 487 // created as the result of a normal request (in which case it 488 // should be in the outstandingSnoop), or if we merely forwarded 489 // someone else's snoop request 490 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 491 outstandingSnoop.end(); 492 493 // test if the crossbar should be considered occupied for the 494 // current port, note that the check is bypassed if the response 495 // is being passed on as a normal response since this is occupying 496 // the response layer rather than the snoop response layer 497 if (forwardAsSnoop) { 498 assert(dest_port_id < snoopLayers.size()); 499 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) { 500 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 501 src_port->name(), pkt->print()); 502 return false; 503 } 504 } else { 505 // get the master port that mirrors this slave port internally 506 MasterPort* snoop_port = snoopRespPorts[slave_port_id]; 507 assert(dest_port_id < respLayers.size()); 508 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) { 509 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 510 snoop_port->name(), pkt->print()); 511 return false; 512 } 513 } 514 515 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 516 src_port->name(), pkt->print()); 517 518 // store size and command as they might be modified when 519 // forwarding the packet 520 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 521 unsigned int pkt_cmd = pkt->cmdToIndex(); 522 523 // responses are never express snoops 524 assert(!pkt->isExpressSnoop()); 525 526 // a snoop response sees the snoop response latency, and if it is 527 // forwarded as a normal response, the response latency 528 Tick xbar_delay = 529 (forwardAsSnoop ? snoopResponseLatency : responseLatency) * 530 clockPeriod(); 531 532 // set the packet header and payload delay 533 calcPacketTiming(pkt, xbar_delay); 534 535 // determine how long to be crossbar layer is busy 536 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 537 538 // forward it either as a snoop response or a normal response 539 if (forwardAsSnoop) { 540 // this is a snoop response to a snoop request we forwarded, 541 // e.g. coming from the L1 and going to the L2, and it should 542 // be forwarded as a snoop response 543 544 if (snoopFilter) { 545 // update the probe filter so that it can properly track the line 546 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id], 547 *masterPorts[dest_port_id]); 548 } 549 550 bool success M5_VAR_USED = 551 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt); 552 pktCount[slave_port_id][dest_port_id]++; 553 pktSize[slave_port_id][dest_port_id] += pkt_size; 554 assert(success); 555 556 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime); 557 } else { 558 // we got a snoop response on one of our slave ports, 559 // i.e. from a coherent master connected to the crossbar, and 560 // since we created the snoop request as part of recvTiming, 561 // this should now be a normal response again 562 outstandingSnoop.erase(pkt->req); 563 564 // this is a snoop response from a coherent master, hence it 565 // should never go back to where the snoop response came from, 566 // but instead to where the original request came from 567 assert(slave_port_id != dest_port_id); 568 569 if (snoopFilter) { 570 // update the probe filter so that it can properly track the line 571 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id], 572 *slavePorts[dest_port_id]); 573 } 574 575 DPRINTF(CoherentXBar, "%s: src %s packet %s FWD RESP\n", __func__, 576 src_port->name(), pkt->print()); 577 578 // as a normal response, it should go back to a master through 579 // one of our slave ports, we also pay for any outstanding 580 // header latency 581 Tick latency = pkt->headerDelay; 582 pkt->headerDelay = 0; 583 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency); 584 585 respLayers[dest_port_id]->succeededTiming(packetFinishTime); 586 } 587 588 // remove the request from the routing table 589 routeTo.erase(route_lookup); 590 591 // stats updates 592 transDist[pkt_cmd]++; 593 snoops++; 594 snoopTraffic += pkt_size; 595 596 return true; 597} 598 599 600void 601CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id, 602 const std::vector<QueuedSlavePort*>& dests) 603{ 604 DPRINTF(CoherentXBar, "%s for %s\n", __func__, pkt->print()); 605 606 // snoops should only happen if the system isn't bypassing caches 607 assert(!system->bypassCaches()); 608 609 unsigned fanout = 0; 610 611 for (const auto& p: dests) { 612 // we could have gotten this request from a snooping master 613 // (corresponding to our own slave port that is also in 614 // snoopPorts) and should not send it back to where it came 615 // from 616 if (exclude_slave_port_id == InvalidPortID || 617 p->getId() != exclude_slave_port_id) { 618 // cache is not allowed to refuse snoop 619 p->sendTimingSnoopReq(pkt); 620 fanout++; 621 } 622 } 623 624 // Stats for fanout of this forward operation 625 snoopFanout.sample(fanout); 626} 627 628void 629CoherentXBar::recvReqRetry(PortID master_port_id) 630{ 631 // responses and snoop responses never block on forwarding them, 632 // so the retry will always be coming from a port to which we 633 // tried to forward a request 634 reqLayers[master_port_id]->recvRetry(); 635} 636 637Tick 638CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id) 639{ 640 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 641 slavePorts[slave_port_id]->name(), pkt->print()); 642 643 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 644 unsigned int pkt_cmd = pkt->cmdToIndex(); 645 646 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 647 Tick snoop_response_latency = 0; 648 649 const bool snoop_caches = !system->bypassCaches() && 650 pkt->cmd != MemCmd::WriteClean; 651 if (snoop_caches) { 652 // forward to all snoopers but the source 653 std::pair<MemCmd, Tick> snoop_result; 654 if (snoopFilter) { 655 // check with the snoop filter where to forward this packet 656 auto sf_res = 657 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]); 658 snoop_response_latency += sf_res.second * clockPeriod(); 659 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 660 __func__, slavePorts[slave_port_id]->name(), pkt->print(), 661 sf_res.first.size(), sf_res.second); 662 663 // let the snoop filter know about the success of the send 664 // operation, and do it even before sending it onwards to 665 // avoid situations where atomic upward snoops sneak in 666 // between and change the filter state 667 snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure()); 668 669 if (pkt->isEviction()) { 670 // for block-evicting packets, i.e. writebacks and 671 // clean evictions, there is no need to snoop up, as 672 // all we do is determine if the block is cached or 673 // not, instead just set it here based on the snoop 674 // filter result 675 if (!sf_res.first.empty()) 676 pkt->setBlockCached(); 677 } else { 678 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID, 679 sf_res.first); 680 } 681 } else { 682 snoop_result = forwardAtomic(pkt, slave_port_id); 683 } 684 snoop_response_cmd = snoop_result.first; 685 snoop_response_latency += snoop_result.second; 686 } 687 688 // set up a sensible default value 689 Tick response_latency = 0; 690 691 const bool sink_packet = sinkPacket(pkt); 692 693 // even if we had a snoop response, we must continue and also 694 // perform the actual request at the destination 695 PortID master_port_id = findPort(pkt->getAddr()); 696 697 if (sink_packet) { 698 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__, 699 pkt->print()); 700 } else { 701 if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) { 702 // forward the request to the appropriate destination 703 response_latency = masterPorts[master_port_id]->sendAtomic(pkt); 704 } else { 705 // if it does not need a response we sink the packet above 706 assert(pkt->needsResponse()); 707 708 pkt->makeResponse(); 709 } 710 } 711 712 // stats updates for the request 713 pktCount[slave_port_id][master_port_id]++; 714 pktSize[slave_port_id][master_port_id] += pkt_size; 715 transDist[pkt_cmd]++; 716 717 718 // if lower levels have replied, tell the snoop filter 719 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) { 720 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 721 } 722 723 // if we got a response from a snooper, restore it here 724 if (snoop_response_cmd != MemCmd::InvalidCmd) { 725 // no one else should have responded 726 assert(!pkt->isResponse()); 727 pkt->cmd = snoop_response_cmd; 728 response_latency = snoop_response_latency; 729 } 730 731 // add the response data 732 if (pkt->isResponse()) { 733 pkt_size = pkt->hasData() ? pkt->getSize() : 0; 734 pkt_cmd = pkt->cmdToIndex(); 735 736 // stats updates 737 pktCount[slave_port_id][master_port_id]++; 738 pktSize[slave_port_id][master_port_id] += pkt_size; 739 transDist[pkt_cmd]++; 740 } 741 742 // @todo: Not setting header time 743 pkt->payloadDelay = response_latency; 744 return response_latency; 745} 746 747Tick 748CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id) 749{ 750 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 751 masterPorts[master_port_id]->name(), pkt->print()); 752 753 // add the request snoop data 754 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 755 snoops++; 756 snoopTraffic += pkt_size; 757 758 // forward to all snoopers 759 std::pair<MemCmd, Tick> snoop_result; 760 Tick snoop_response_latency = 0; 761 if (snoopFilter) { 762 auto sf_res = snoopFilter->lookupSnoop(pkt); 763 snoop_response_latency += sf_res.second * clockPeriod(); 764 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 765 __func__, masterPorts[master_port_id]->name(), pkt->print(), 766 sf_res.first.size(), sf_res.second); 767 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id, 768 sf_res.first); 769 } else { 770 snoop_result = forwardAtomic(pkt, InvalidPortID); 771 } 772 MemCmd snoop_response_cmd = snoop_result.first; 773 snoop_response_latency += snoop_result.second; 774 775 if (snoop_response_cmd != MemCmd::InvalidCmd) 776 pkt->cmd = snoop_response_cmd; 777 778 // add the response snoop data 779 if (pkt->isResponse()) { 780 snoops++; 781 } 782 783 // @todo: Not setting header time 784 pkt->payloadDelay = snoop_response_latency; 785 return snoop_response_latency; 786} 787 788std::pair<MemCmd, Tick> 789CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id, 790 PortID source_master_port_id, 791 const std::vector<QueuedSlavePort*>& dests) 792{ 793 // the packet may be changed on snoops, record the original 794 // command to enable us to restore it between snoops so that 795 // additional snoops can take place properly 796 MemCmd orig_cmd = pkt->cmd; 797 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 798 Tick snoop_response_latency = 0; 799 800 // snoops should only happen if the system isn't bypassing caches 801 assert(!system->bypassCaches()); 802 803 unsigned fanout = 0; 804 805 for (const auto& p: dests) { 806 // we could have gotten this request from a snooping master 807 // (corresponding to our own slave port that is also in 808 // snoopPorts) and should not send it back to where it came 809 // from 810 if (exclude_slave_port_id != InvalidPortID && 811 p->getId() == exclude_slave_port_id) 812 continue; 813 814 Tick latency = p->sendAtomicSnoop(pkt); 815 fanout++; 816 817 // in contrast to a functional access, we have to keep on 818 // going as all snoopers must be updated even if we get a 819 // response 820 if (!pkt->isResponse()) 821 continue; 822 823 // response from snoop agent 824 assert(pkt->cmd != orig_cmd); 825 assert(pkt->cacheResponding()); 826 // should only happen once 827 assert(snoop_response_cmd == MemCmd::InvalidCmd); 828 // save response state 829 snoop_response_cmd = pkt->cmd; 830 snoop_response_latency = latency; 831 832 if (snoopFilter) { 833 // Handle responses by the snoopers and differentiate between 834 // responses to requests from above and snoops from below 835 if (source_master_port_id != InvalidPortID) { 836 // Getting a response for a snoop from below 837 assert(exclude_slave_port_id == InvalidPortID); 838 snoopFilter->updateSnoopForward(pkt, *p, 839 *masterPorts[source_master_port_id]); 840 } else { 841 // Getting a response for a request from above 842 assert(source_master_port_id == InvalidPortID); 843 snoopFilter->updateSnoopResponse(pkt, *p, 844 *slavePorts[exclude_slave_port_id]); 845 } 846 } 847 // restore original packet state for remaining snoopers 848 pkt->cmd = orig_cmd; 849 } 850 851 // Stats for fanout 852 snoopFanout.sample(fanout); 853 854 // the packet is restored as part of the loop and any potential 855 // snoop response is part of the returned pair 856 return std::make_pair(snoop_response_cmd, snoop_response_latency); 857} 858 859void 860CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id) 861{ 862 if (!pkt->isPrint()) { 863 // don't do DPRINTFs on PrintReq as it clutters up the output 864 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 865 slavePorts[slave_port_id]->name(), pkt->print()); 866 } 867 868 if (!system->bypassCaches()) { 869 // forward to all snoopers but the source 870 forwardFunctional(pkt, slave_port_id); 871 } 872 873 // there is no need to continue if the snooping has found what we 874 // were looking for and the packet is already a response 875 if (!pkt->isResponse()) { 876 // since our slave ports are queued ports we need to check them as well 877 for (const auto& p : slavePorts) { 878 // if we find a response that has the data, then the 879 // downstream caches/memories may be out of date, so simply stop 880 // here 881 if (p->checkFunctional(pkt)) { 882 if (pkt->needsResponse()) 883 pkt->makeResponse(); 884 return; 885 } 886 } 887 888 PortID dest_id = findPort(pkt->getAddr()); 889 890 masterPorts[dest_id]->sendFunctional(pkt); 891 } 892} 893 894void 895CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id) 896{ 897 if (!pkt->isPrint()) { 898 // don't do DPRINTFs on PrintReq as it clutters up the output 899 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 900 masterPorts[master_port_id]->name(), pkt->print()); 901 } 902 903 for (const auto& p : slavePorts) { 904 if (p->checkFunctional(pkt)) { 905 if (pkt->needsResponse()) 906 pkt->makeResponse(); 907 return; 908 } 909 } 910 911 // forward to all snoopers 912 forwardFunctional(pkt, InvalidPortID); 913} 914 915void 916CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id) 917{ 918 // snoops should only happen if the system isn't bypassing caches 919 assert(!system->bypassCaches()); 920 921 for (const auto& p: snoopPorts) { 922 // we could have gotten this request from a snooping master 923 // (corresponding to our own slave port that is also in 924 // snoopPorts) and should not send it back to where it came 925 // from 926 if (exclude_slave_port_id == InvalidPortID || 927 p->getId() != exclude_slave_port_id) 928 p->sendFunctionalSnoop(pkt); 929 930 // if we get a response we are done 931 if (pkt->isResponse()) { 932 break; 933 } 934 } 935} 936 937bool 938CoherentXBar::sinkPacket(const PacketPtr pkt) const 939{ 940 // we can sink the packet if: 941 // 1) the crossbar is the point of coherency, and a cache is 942 // responding after being snooped 943 // 2) the crossbar is the point of coherency, and the packet is a 944 // coherency packet (not a read or a write) that does not 945 // require a response 946 // 3) this is a clean evict or clean writeback, but the packet is 947 // found in a cache above this crossbar 948 // 4) a cache is responding after being snooped, and the packet 949 // either does not need the block to be writable, or the cache 950 // that has promised to respond (setting the cache responding 951 // flag) is providing writable and thus had a Modified block, 952 // and no further action is needed 953 return (pointOfCoherency && pkt->cacheResponding()) || 954 (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) && 955 !pkt->needsResponse()) || 956 (pkt->isCleanEviction() && pkt->isBlockCached()) || 957 (pkt->cacheResponding() && 958 (!pkt->needsWritable() || pkt->responderHadWritable())); 959} 960 961void 962CoherentXBar::regStats() 963{ 964 // register the stats of the base class and our layers 965 BaseXBar::regStats(); 966 for (auto l: reqLayers) 967 l->regStats(); 968 for (auto l: respLayers) 969 l->regStats(); 970 for (auto l: snoopLayers) 971 l->regStats(); 972 973 snoops 974 .name(name() + ".snoops") 975 .desc("Total snoops (count)") 976 ; 977 978 snoopTraffic 979 .name(name() + ".snoopTraffic") 980 .desc("Total snoop traffic (bytes)") 981 ; 982 983 snoopFanout 984 .init(0, snoopPorts.size(), 1) 985 .name(name() + ".snoop_fanout") 986 .desc("Request fanout histogram") 987 ; 988} 989 990CoherentXBar * 991CoherentXBarParams::create() 992{ 993 return new CoherentXBar(this); 994} 995