coherent_xbar.cc revision 12341:6eebba99d117
1/*
2 * Copyright (c) 2011-2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 *          Andreas Hansson
42 *          William Wang
43 */
44
45/**
46 * @file
47 * Definition of a crossbar object.
48 */
49
50#include "mem/coherent_xbar.hh"
51
52#include "base/logging.hh"
53#include "base/trace.hh"
54#include "debug/AddrRanges.hh"
55#include "debug/CoherentXBar.hh"
56#include "sim/system.hh"
57
58CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
59    : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
60      snoopResponseLatency(p->snoop_response_latency),
61      pointOfCoherency(p->point_of_coherency),
62      pointOfUnification(p->point_of_unification)
63{
64    // create the ports based on the size of the master and slave
65    // vector ports, and the presence of the default port, the ports
66    // are enumerated starting from zero
67    for (int i = 0; i < p->port_master_connection_count; ++i) {
68        std::string portName = csprintf("%s.master[%d]", name(), i);
69        MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
70        masterPorts.push_back(bp);
71        reqLayers.push_back(new ReqLayer(*bp, *this,
72                                         csprintf(".reqLayer%d", i)));
73        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
74                                                 csprintf(".snoopLayer%d", i)));
75    }
76
77    // see if we have a default slave device connected and if so add
78    // our corresponding master port
79    if (p->port_default_connection_count) {
80        defaultPortID = masterPorts.size();
81        std::string portName = name() + ".default";
82        MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
83                                                   defaultPortID);
84        masterPorts.push_back(bp);
85        reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
86                                             defaultPortID)));
87        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
88                                                 csprintf(".snoopLayer%d",
89                                                          defaultPortID)));
90    }
91
92    // create the slave ports, once again starting at zero
93    for (int i = 0; i < p->port_slave_connection_count; ++i) {
94        std::string portName = csprintf("%s.slave[%d]", name(), i);
95        QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
96        slavePorts.push_back(bp);
97        respLayers.push_back(new RespLayer(*bp, *this,
98                                           csprintf(".respLayer%d", i)));
99        snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
100    }
101
102    clearPortCache();
103}
104
105CoherentXBar::~CoherentXBar()
106{
107    for (auto l: reqLayers)
108        delete l;
109    for (auto l: respLayers)
110        delete l;
111    for (auto l: snoopLayers)
112        delete l;
113    for (auto p: snoopRespPorts)
114        delete p;
115}
116
117void
118CoherentXBar::init()
119{
120    BaseXBar::init();
121
122    // iterate over our slave ports and determine which of our
123    // neighbouring master ports are snooping and add them as snoopers
124    for (const auto& p: slavePorts) {
125        // check if the connected master port is snooping
126        if (p->isSnooping()) {
127            DPRINTF(AddrRanges, "Adding snooping master %s\n",
128                    p->getMasterPort().name());
129            snoopPorts.push_back(p);
130        }
131    }
132
133    if (snoopPorts.empty())
134        warn("CoherentXBar %s has no snooping ports attached!\n", name());
135
136    // inform the snoop filter about the slave ports so it can create
137    // its own internal representation
138    if (snoopFilter)
139        snoopFilter->setSlavePorts(slavePorts);
140}
141
142bool
143CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
144{
145    // determine the source port based on the id
146    SlavePort *src_port = slavePorts[slave_port_id];
147
148    // remember if the packet is an express snoop
149    bool is_express_snoop = pkt->isExpressSnoop();
150    bool cache_responding = pkt->cacheResponding();
151    // for normal requests, going downstream, the express snoop flag
152    // and the cache responding flag should always be the same
153    assert(is_express_snoop == cache_responding);
154
155    // determine the destination based on the address
156    PortID master_port_id = findPort(pkt->getAddr());
157
158    // test if the crossbar should be considered occupied for the current
159    // port, and exclude express snoops from the check
160    if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
161        DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
162                src_port->name(), pkt->print());
163        return false;
164    }
165
166    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
167            src_port->name(), pkt->print());
168
169    // store size and command as they might be modified when
170    // forwarding the packet
171    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
172    unsigned int pkt_cmd = pkt->cmdToIndex();
173
174    // store the old header delay so we can restore it if needed
175    Tick old_header_delay = pkt->headerDelay;
176
177    // a request sees the frontend and forward latency
178    Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
179
180    // set the packet header and payload delay
181    calcPacketTiming(pkt, xbar_delay);
182
183    // determine how long to be crossbar layer is busy
184    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
185
186    if (!system->bypassCaches()) {
187        assert(pkt->snoopDelay == 0);
188
189        // the packet is a memory-mapped request and should be
190        // broadcasted to our snoopers but the source
191        if (snoopFilter) {
192            // check with the snoop filter where to forward this packet
193            auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
194            // the time required by a packet to be delivered through
195            // the xbar has to be charged also with to lookup latency
196            // of the snoop filter
197            pkt->headerDelay += sf_res.second * clockPeriod();
198            DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
199                    __func__, src_port->name(), pkt->print(),
200                    sf_res.first.size(), sf_res.second);
201
202            if (pkt->isEviction()) {
203                // for block-evicting packets, i.e. writebacks and
204                // clean evictions, there is no need to snoop up, as
205                // all we do is determine if the block is cached or
206                // not, instead just set it here based on the snoop
207                // filter result
208                if (!sf_res.first.empty())
209                    pkt->setBlockCached();
210            } else {
211                forwardTiming(pkt, slave_port_id, sf_res.first);
212            }
213        } else {
214            forwardTiming(pkt, slave_port_id);
215        }
216
217        // add the snoop delay to our header delay, and then reset it
218        pkt->headerDelay += pkt->snoopDelay;
219        pkt->snoopDelay = 0;
220    }
221
222    // set up a sensible starting point
223    bool success = true;
224
225    // remember if the packet will generate a snoop response by
226    // checking if a cache set the cacheResponding flag during the
227    // snooping above
228    const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding();
229    bool expect_response = pkt->needsResponse() && !pkt->cacheResponding();
230
231    const bool sink_packet = sinkPacket(pkt);
232
233    // in certain cases the crossbar is responsible for responding
234    bool respond_directly = false;
235    // store the original address as an address mapper could possibly
236    // modify the address upon a sendTimingRequest
237    const Addr addr(pkt->getAddr());
238    if (sink_packet) {
239        DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
240                pkt->print());
241    } else {
242        // determine if we are forwarding the packet, or responding to
243        // it
244        if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) {
245            // if we are passing on, rather than sinking, a packet to
246            // which an upstream cache has committed to responding,
247            // the line was needs writable, and the responding only
248            // had an Owned copy, so we need to immidiately let the
249            // downstream caches know, bypass any flow control
250            if (pkt->cacheResponding()) {
251                pkt->setExpressSnoop();
252            }
253
254            // since it is a normal request, attempt to send the packet
255            success = masterPorts[master_port_id]->sendTimingReq(pkt);
256        } else {
257            // no need to forward, turn this packet around and respond
258            // directly
259            assert(pkt->needsResponse());
260
261            respond_directly = true;
262            assert(!expect_snoop_resp);
263            expect_response = false;
264        }
265    }
266
267    if (snoopFilter && !system->bypassCaches()) {
268        // Let the snoop filter know about the success of the send operation
269        snoopFilter->finishRequest(!success, addr, pkt->isSecure());
270    }
271
272    // check if we were successful in sending the packet onwards
273    if (!success)  {
274        // express snoops should never be forced to retry
275        assert(!is_express_snoop);
276
277        // restore the header delay
278        pkt->headerDelay = old_header_delay;
279
280        DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__,
281                src_port->name(), pkt->print());
282
283        // update the layer state and schedule an idle event
284        reqLayers[master_port_id]->failedTiming(src_port,
285                                                clockEdge(Cycles(1)));
286    } else {
287        // express snoops currently bypass the crossbar state entirely
288        if (!is_express_snoop) {
289            // if this particular request will generate a snoop
290            // response
291            if (expect_snoop_resp) {
292                // we should never have an exsiting request outstanding
293                assert(outstandingSnoop.find(pkt->req) ==
294                       outstandingSnoop.end());
295                outstandingSnoop.insert(pkt->req);
296
297                // basic sanity check on the outstanding snoops
298                panic_if(outstandingSnoop.size() > 512,
299                         "Outstanding snoop requests exceeded 512\n");
300            }
301
302            // remember where to route the normal response to
303            if (expect_response || expect_snoop_resp) {
304                assert(routeTo.find(pkt->req) == routeTo.end());
305                routeTo[pkt->req] = slave_port_id;
306
307                panic_if(routeTo.size() > 512,
308                         "Routing table exceeds 512 packets\n");
309            }
310
311            // update the layer state and schedule an idle event
312            reqLayers[master_port_id]->succeededTiming(packetFinishTime);
313        }
314
315        // stats updates only consider packets that were successfully sent
316        pktCount[slave_port_id][master_port_id]++;
317        pktSize[slave_port_id][master_port_id] += pkt_size;
318        transDist[pkt_cmd]++;
319
320        if (is_express_snoop) {
321            snoops++;
322            snoopTraffic += pkt_size;
323        }
324    }
325
326    if (sink_packet)
327        // queue the packet for deletion
328        pendingDelete.reset(pkt);
329
330    if (respond_directly) {
331        assert(pkt->needsResponse());
332        assert(success);
333
334        pkt->makeResponse();
335
336        if (snoopFilter && !system->bypassCaches()) {
337            // let the snoop filter inspect the response and update its state
338            snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
339        }
340
341        Tick response_time = clockEdge() + pkt->headerDelay;
342        pkt->headerDelay = 0;
343
344        slavePorts[slave_port_id]->schedTimingResp(pkt, response_time);
345    }
346
347    return success;
348}
349
350bool
351CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
352{
353    // determine the source port based on the id
354    MasterPort *src_port = masterPorts[master_port_id];
355
356    // determine the destination
357    const auto route_lookup = routeTo.find(pkt->req);
358    assert(route_lookup != routeTo.end());
359    const PortID slave_port_id = route_lookup->second;
360    assert(slave_port_id != InvalidPortID);
361    assert(slave_port_id < respLayers.size());
362
363    // test if the crossbar should be considered occupied for the
364    // current port
365    if (!respLayers[slave_port_id]->tryTiming(src_port)) {
366        DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
367                src_port->name(), pkt->print());
368        return false;
369    }
370
371    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
372            src_port->name(), pkt->print());
373
374    // store size and command as they might be modified when
375    // forwarding the packet
376    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
377    unsigned int pkt_cmd = pkt->cmdToIndex();
378
379    // a response sees the response latency
380    Tick xbar_delay = responseLatency * clockPeriod();
381
382    // set the packet header and payload delay
383    calcPacketTiming(pkt, xbar_delay);
384
385    // determine how long to be crossbar layer is busy
386    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
387
388    if (snoopFilter && !system->bypassCaches()) {
389        // let the snoop filter inspect the response and update its state
390        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
391    }
392
393    // send the packet through the destination slave port and pay for
394    // any outstanding header delay
395    Tick latency = pkt->headerDelay;
396    pkt->headerDelay = 0;
397    slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
398
399    // remove the request from the routing table
400    routeTo.erase(route_lookup);
401
402    respLayers[slave_port_id]->succeededTiming(packetFinishTime);
403
404    // stats updates
405    pktCount[slave_port_id][master_port_id]++;
406    pktSize[slave_port_id][master_port_id] += pkt_size;
407    transDist[pkt_cmd]++;
408
409    return true;
410}
411
412void
413CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
414{
415    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
416            masterPorts[master_port_id]->name(), pkt->print());
417
418    // update stats here as we know the forwarding will succeed
419    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
420    transDist[pkt->cmdToIndex()]++;
421    snoops++;
422    snoopTraffic += pkt_size;
423
424    // we should only see express snoops from caches
425    assert(pkt->isExpressSnoop());
426
427    // set the packet header and payload delay, for now use forward latency
428    // @todo Assess the choice of latency further
429    calcPacketTiming(pkt, forwardLatency * clockPeriod());
430
431    // remember if a cache has already committed to responding so we
432    // can see if it changes during the snooping
433    const bool cache_responding = pkt->cacheResponding();
434
435    assert(pkt->snoopDelay == 0);
436
437    if (snoopFilter) {
438        // let the Snoop Filter work its magic and guide probing
439        auto sf_res = snoopFilter->lookupSnoop(pkt);
440        // the time required by a packet to be delivered through
441        // the xbar has to be charged also with to lookup latency
442        // of the snoop filter
443        pkt->headerDelay += sf_res.second * clockPeriod();
444        DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
445                __func__, masterPorts[master_port_id]->name(), pkt->print(),
446                sf_res.first.size(), sf_res.second);
447
448        // forward to all snoopers
449        forwardTiming(pkt, InvalidPortID, sf_res.first);
450    } else {
451        forwardTiming(pkt, InvalidPortID);
452    }
453
454    // add the snoop delay to our header delay, and then reset it
455    pkt->headerDelay += pkt->snoopDelay;
456    pkt->snoopDelay = 0;
457
458    // if we can expect a response, remember how to route it
459    if (!cache_responding && pkt->cacheResponding()) {
460        assert(routeTo.find(pkt->req) == routeTo.end());
461        routeTo[pkt->req] = master_port_id;
462    }
463
464    // a snoop request came from a connected slave device (one of
465    // our master ports), and if it is not coming from the slave
466    // device responsible for the address range something is
467    // wrong, hence there is nothing further to do as the packet
468    // would be going back to where it came from
469    assert(master_port_id == findPort(pkt->getAddr()));
470}
471
472bool
473CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
474{
475    // determine the source port based on the id
476    SlavePort* src_port = slavePorts[slave_port_id];
477
478    // get the destination
479    const auto route_lookup = routeTo.find(pkt->req);
480    assert(route_lookup != routeTo.end());
481    const PortID dest_port_id = route_lookup->second;
482    assert(dest_port_id != InvalidPortID);
483
484    // determine if the response is from a snoop request we
485    // created as the result of a normal request (in which case it
486    // should be in the outstandingSnoop), or if we merely forwarded
487    // someone else's snoop request
488    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
489        outstandingSnoop.end();
490
491    // test if the crossbar should be considered occupied for the
492    // current port, note that the check is bypassed if the response
493    // is being passed on as a normal response since this is occupying
494    // the response layer rather than the snoop response layer
495    if (forwardAsSnoop) {
496        assert(dest_port_id < snoopLayers.size());
497        if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
498            DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
499                    src_port->name(), pkt->print());
500            return false;
501        }
502    } else {
503        // get the master port that mirrors this slave port internally
504        MasterPort* snoop_port = snoopRespPorts[slave_port_id];
505        assert(dest_port_id < respLayers.size());
506        if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
507            DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
508                    snoop_port->name(), pkt->print());
509            return false;
510        }
511    }
512
513    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
514            src_port->name(), pkt->print());
515
516    // store size and command as they might be modified when
517    // forwarding the packet
518    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
519    unsigned int pkt_cmd = pkt->cmdToIndex();
520
521    // responses are never express snoops
522    assert(!pkt->isExpressSnoop());
523
524    // a snoop response sees the snoop response latency, and if it is
525    // forwarded as a normal response, the response latency
526    Tick xbar_delay =
527        (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
528        clockPeriod();
529
530    // set the packet header and payload delay
531    calcPacketTiming(pkt, xbar_delay);
532
533    // determine how long to be crossbar layer is busy
534    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
535
536    // forward it either as a snoop response or a normal response
537    if (forwardAsSnoop) {
538        // this is a snoop response to a snoop request we forwarded,
539        // e.g. coming from the L1 and going to the L2, and it should
540        // be forwarded as a snoop response
541
542        if (snoopFilter) {
543            // update the probe filter so that it can properly track the line
544            snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
545                                            *masterPorts[dest_port_id]);
546        }
547
548        bool success M5_VAR_USED =
549            masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
550        pktCount[slave_port_id][dest_port_id]++;
551        pktSize[slave_port_id][dest_port_id] += pkt_size;
552        assert(success);
553
554        snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
555    } else {
556        // we got a snoop response on one of our slave ports,
557        // i.e. from a coherent master connected to the crossbar, and
558        // since we created the snoop request as part of recvTiming,
559        // this should now be a normal response again
560        outstandingSnoop.erase(pkt->req);
561
562        // this is a snoop response from a coherent master, hence it
563        // should never go back to where the snoop response came from,
564        // but instead to where the original request came from
565        assert(slave_port_id != dest_port_id);
566
567        if (snoopFilter) {
568            // update the probe filter so that it can properly track the line
569            snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
570                                    *slavePorts[dest_port_id]);
571        }
572
573        DPRINTF(CoherentXBar, "%s: src %s packet %s FWD RESP\n", __func__,
574                src_port->name(), pkt->print());
575
576        // as a normal response, it should go back to a master through
577        // one of our slave ports, we also pay for any outstanding
578        // header latency
579        Tick latency = pkt->headerDelay;
580        pkt->headerDelay = 0;
581        slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);
582
583        respLayers[dest_port_id]->succeededTiming(packetFinishTime);
584    }
585
586    // remove the request from the routing table
587    routeTo.erase(route_lookup);
588
589    // stats updates
590    transDist[pkt_cmd]++;
591    snoops++;
592    snoopTraffic += pkt_size;
593
594    return true;
595}
596
597
598void
599CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
600                           const std::vector<QueuedSlavePort*>& dests)
601{
602    DPRINTF(CoherentXBar, "%s for %s\n", __func__, pkt->print());
603
604    // snoops should only happen if the system isn't bypassing caches
605    assert(!system->bypassCaches());
606
607    unsigned fanout = 0;
608
609    for (const auto& p: dests) {
610        // we could have gotten this request from a snooping master
611        // (corresponding to our own slave port that is also in
612        // snoopPorts) and should not send it back to where it came
613        // from
614        if (exclude_slave_port_id == InvalidPortID ||
615            p->getId() != exclude_slave_port_id) {
616            // cache is not allowed to refuse snoop
617            p->sendTimingSnoopReq(pkt);
618            fanout++;
619        }
620    }
621
622    // Stats for fanout of this forward operation
623    snoopFanout.sample(fanout);
624}
625
626void
627CoherentXBar::recvReqRetry(PortID master_port_id)
628{
629    // responses and snoop responses never block on forwarding them,
630    // so the retry will always be coming from a port to which we
631    // tried to forward a request
632    reqLayers[master_port_id]->recvRetry();
633}
634
635Tick
636CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
637{
638    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
639            slavePorts[slave_port_id]->name(), pkt->print());
640
641    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
642    unsigned int pkt_cmd = pkt->cmdToIndex();
643
644    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
645    Tick snoop_response_latency = 0;
646
647    if (!system->bypassCaches()) {
648        // forward to all snoopers but the source
649        std::pair<MemCmd, Tick> snoop_result;
650        if (snoopFilter) {
651            // check with the snoop filter where to forward this packet
652            auto sf_res =
653                snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
654            snoop_response_latency += sf_res.second * clockPeriod();
655            DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
656                    __func__, slavePorts[slave_port_id]->name(), pkt->print(),
657                    sf_res.first.size(), sf_res.second);
658
659            // let the snoop filter know about the success of the send
660            // operation, and do it even before sending it onwards to
661            // avoid situations where atomic upward snoops sneak in
662            // between and change the filter state
663            snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure());
664
665            if (pkt->isEviction()) {
666                // for block-evicting packets, i.e. writebacks and
667                // clean evictions, there is no need to snoop up, as
668                // all we do is determine if the block is cached or
669                // not, instead just set it here based on the snoop
670                // filter result
671                if (!sf_res.first.empty())
672                    pkt->setBlockCached();
673            } else {
674                snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
675                                             sf_res.first);
676            }
677        } else {
678            snoop_result = forwardAtomic(pkt, slave_port_id);
679        }
680        snoop_response_cmd = snoop_result.first;
681        snoop_response_latency += snoop_result.second;
682    }
683
684    // set up a sensible default value
685    Tick response_latency = 0;
686
687    const bool sink_packet = sinkPacket(pkt);
688
689    // even if we had a snoop response, we must continue and also
690    // perform the actual request at the destination
691    PortID master_port_id = findPort(pkt->getAddr());
692
693    if (sink_packet) {
694        DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
695                pkt->print());
696    } else {
697        if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) {
698            // forward the request to the appropriate destination
699            response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
700        } else {
701            // if it does not need a response we sink the packet above
702            assert(pkt->needsResponse());
703
704            pkt->makeResponse();
705        }
706    }
707
708    // stats updates for the request
709    pktCount[slave_port_id][master_port_id]++;
710    pktSize[slave_port_id][master_port_id] += pkt_size;
711    transDist[pkt_cmd]++;
712
713
714    // if lower levels have replied, tell the snoop filter
715    if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) {
716        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
717    }
718
719    // if we got a response from a snooper, restore it here
720    if (snoop_response_cmd != MemCmd::InvalidCmd) {
721        // no one else should have responded
722        assert(!pkt->isResponse());
723        pkt->cmd = snoop_response_cmd;
724        response_latency = snoop_response_latency;
725    }
726
727    // add the response data
728    if (pkt->isResponse()) {
729        pkt_size = pkt->hasData() ? pkt->getSize() : 0;
730        pkt_cmd = pkt->cmdToIndex();
731
732        // stats updates
733        pktCount[slave_port_id][master_port_id]++;
734        pktSize[slave_port_id][master_port_id] += pkt_size;
735        transDist[pkt_cmd]++;
736    }
737
738    // @todo: Not setting header time
739    pkt->payloadDelay = response_latency;
740    return response_latency;
741}
742
743Tick
744CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
745{
746    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
747            masterPorts[master_port_id]->name(), pkt->print());
748
749    // add the request snoop data
750    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
751    snoops++;
752    snoopTraffic += pkt_size;
753
754    // forward to all snoopers
755    std::pair<MemCmd, Tick> snoop_result;
756    Tick snoop_response_latency = 0;
757    if (snoopFilter) {
758        auto sf_res = snoopFilter->lookupSnoop(pkt);
759        snoop_response_latency += sf_res.second * clockPeriod();
760        DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
761                __func__, masterPorts[master_port_id]->name(), pkt->print(),
762                sf_res.first.size(), sf_res.second);
763        snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
764                                     sf_res.first);
765    } else {
766        snoop_result = forwardAtomic(pkt, InvalidPortID);
767    }
768    MemCmd snoop_response_cmd = snoop_result.first;
769    snoop_response_latency += snoop_result.second;
770
771    if (snoop_response_cmd != MemCmd::InvalidCmd)
772        pkt->cmd = snoop_response_cmd;
773
774    // add the response snoop data
775    if (pkt->isResponse()) {
776        snoops++;
777    }
778
779    // @todo: Not setting header time
780    pkt->payloadDelay = snoop_response_latency;
781    return snoop_response_latency;
782}
783
784std::pair<MemCmd, Tick>
785CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
786                           PortID source_master_port_id,
787                           const std::vector<QueuedSlavePort*>& dests)
788{
789    // the packet may be changed on snoops, record the original
790    // command to enable us to restore it between snoops so that
791    // additional snoops can take place properly
792    MemCmd orig_cmd = pkt->cmd;
793    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
794    Tick snoop_response_latency = 0;
795
796    // snoops should only happen if the system isn't bypassing caches
797    assert(!system->bypassCaches());
798
799    unsigned fanout = 0;
800
801    for (const auto& p: dests) {
802        // we could have gotten this request from a snooping master
803        // (corresponding to our own slave port that is also in
804        // snoopPorts) and should not send it back to where it came
805        // from
806        if (exclude_slave_port_id != InvalidPortID &&
807            p->getId() == exclude_slave_port_id)
808            continue;
809
810        Tick latency = p->sendAtomicSnoop(pkt);
811        fanout++;
812
813        // in contrast to a functional access, we have to keep on
814        // going as all snoopers must be updated even if we get a
815        // response
816        if (!pkt->isResponse())
817            continue;
818
819        // response from snoop agent
820        assert(pkt->cmd != orig_cmd);
821        assert(pkt->cacheResponding());
822        // should only happen once
823        assert(snoop_response_cmd == MemCmd::InvalidCmd);
824        // save response state
825        snoop_response_cmd = pkt->cmd;
826        snoop_response_latency = latency;
827
828        if (snoopFilter) {
829            // Handle responses by the snoopers and differentiate between
830            // responses to requests from above and snoops from below
831            if (source_master_port_id != InvalidPortID) {
832                // Getting a response for a snoop from below
833                assert(exclude_slave_port_id == InvalidPortID);
834                snoopFilter->updateSnoopForward(pkt, *p,
835                             *masterPorts[source_master_port_id]);
836            } else {
837                // Getting a response for a request from above
838                assert(source_master_port_id == InvalidPortID);
839                snoopFilter->updateSnoopResponse(pkt, *p,
840                             *slavePorts[exclude_slave_port_id]);
841            }
842        }
843        // restore original packet state for remaining snoopers
844        pkt->cmd = orig_cmd;
845    }
846
847    // Stats for fanout
848    snoopFanout.sample(fanout);
849
850    // the packet is restored as part of the loop and any potential
851    // snoop response is part of the returned pair
852    return std::make_pair(snoop_response_cmd, snoop_response_latency);
853}
854
855void
856CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
857{
858    if (!pkt->isPrint()) {
859        // don't do DPRINTFs on PrintReq as it clutters up the output
860        DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
861                slavePorts[slave_port_id]->name(), pkt->print());
862    }
863
864    if (!system->bypassCaches()) {
865        // forward to all snoopers but the source
866        forwardFunctional(pkt, slave_port_id);
867    }
868
869    // there is no need to continue if the snooping has found what we
870    // were looking for and the packet is already a response
871    if (!pkt->isResponse()) {
872        // since our slave ports are queued ports we need to check them as well
873        for (const auto& p : slavePorts) {
874            // if we find a response that has the data, then the
875            // downstream caches/memories may be out of date, so simply stop
876            // here
877            if (p->checkFunctional(pkt)) {
878                if (pkt->needsResponse())
879                    pkt->makeResponse();
880                return;
881            }
882        }
883
884        PortID dest_id = findPort(pkt->getAddr());
885
886        masterPorts[dest_id]->sendFunctional(pkt);
887    }
888}
889
890void
891CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
892{
893    if (!pkt->isPrint()) {
894        // don't do DPRINTFs on PrintReq as it clutters up the output
895        DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
896                masterPorts[master_port_id]->name(), pkt->print());
897    }
898
899    for (const auto& p : slavePorts) {
900        if (p->checkFunctional(pkt)) {
901            if (pkt->needsResponse())
902                pkt->makeResponse();
903            return;
904        }
905    }
906
907    // forward to all snoopers
908    forwardFunctional(pkt, InvalidPortID);
909}
910
911void
912CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
913{
914    // snoops should only happen if the system isn't bypassing caches
915    assert(!system->bypassCaches());
916
917    for (const auto& p: snoopPorts) {
918        // we could have gotten this request from a snooping master
919        // (corresponding to our own slave port that is also in
920        // snoopPorts) and should not send it back to where it came
921        // from
922        if (exclude_slave_port_id == InvalidPortID ||
923            p->getId() != exclude_slave_port_id)
924            p->sendFunctionalSnoop(pkt);
925
926        // if we get a response we are done
927        if (pkt->isResponse()) {
928            break;
929        }
930    }
931}
932
933bool
934CoherentXBar::sinkPacket(const PacketPtr pkt) const
935{
936    // we can sink the packet if:
937    // 1) the crossbar is the point of coherency, and a cache is
938    //    responding after being snooped
939    // 2) the crossbar is the point of coherency, and the packet is a
940    //    coherency packet (not a read or a write) that does not
941    //    require a response
942    // 3) this is a clean evict or clean writeback, but the packet is
943    //    found in a cache above this crossbar
944    // 4) a cache is responding after being snooped, and the packet
945    //    either does not need the block to be writable, or the cache
946    //    that has promised to respond (setting the cache responding
947    //    flag) is providing writable and thus had a Modified block,
948    //    and no further action is needed
949    return (pointOfCoherency && pkt->cacheResponding()) ||
950        (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) &&
951         !pkt->needsResponse()) ||
952        (pkt->isCleanEviction() && pkt->isBlockCached()) ||
953        (pkt->cacheResponding() &&
954         (!pkt->needsWritable() || pkt->responderHadWritable()));
955}
956
957void
958CoherentXBar::regStats()
959{
960    // register the stats of the base class and our layers
961    BaseXBar::regStats();
962    for (auto l: reqLayers)
963        l->regStats();
964    for (auto l: respLayers)
965        l->regStats();
966    for (auto l: snoopLayers)
967        l->regStats();
968
969    snoops
970        .name(name() + ".snoops")
971        .desc("Total snoops (count)")
972    ;
973
974    snoopTraffic
975        .name(name() + ".snoopTraffic")
976        .desc("Total snoop traffic (bytes)")
977    ;
978
979    snoopFanout
980        .init(0, snoopPorts.size(), 1)
981        .name(name() + ".snoop_fanout")
982        .desc("Request fanout histogram")
983    ;
984}
985
986CoherentXBar *
987CoherentXBarParams::create()
988{
989    return new CoherentXBar(this);
990}
991