coherent_xbar.cc revision 12341:6eebba99d117
1/* 2 * Copyright (c) 2011-2017 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Ali Saidi 41 * Andreas Hansson 42 * William Wang 43 */ 44 45/** 46 * @file 47 * Definition of a crossbar object. 48 */ 49 50#include "mem/coherent_xbar.hh" 51 52#include "base/logging.hh" 53#include "base/trace.hh" 54#include "debug/AddrRanges.hh" 55#include "debug/CoherentXBar.hh" 56#include "sim/system.hh" 57 58CoherentXBar::CoherentXBar(const CoherentXBarParams *p) 59 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter), 60 snoopResponseLatency(p->snoop_response_latency), 61 pointOfCoherency(p->point_of_coherency), 62 pointOfUnification(p->point_of_unification) 63{ 64 // create the ports based on the size of the master and slave 65 // vector ports, and the presence of the default port, the ports 66 // are enumerated starting from zero 67 for (int i = 0; i < p->port_master_connection_count; ++i) { 68 std::string portName = csprintf("%s.master[%d]", name(), i); 69 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i); 70 masterPorts.push_back(bp); 71 reqLayers.push_back(new ReqLayer(*bp, *this, 72 csprintf(".reqLayer%d", i))); 73 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 74 csprintf(".snoopLayer%d", i))); 75 } 76 77 // see if we have a default slave device connected and if so add 78 // our corresponding master port 79 if (p->port_default_connection_count) { 80 defaultPortID = masterPorts.size(); 81 std::string portName = name() + ".default"; 82 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, 83 defaultPortID); 84 masterPorts.push_back(bp); 85 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d", 86 defaultPortID))); 87 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 88 csprintf(".snoopLayer%d", 89 defaultPortID))); 90 } 91 92 // create the slave ports, once again starting at zero 93 for (int i = 0; i < p->port_slave_connection_count; ++i) { 94 std::string portName = csprintf("%s.slave[%d]", name(), i); 95 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i); 96 slavePorts.push_back(bp); 97 respLayers.push_back(new RespLayer(*bp, *this, 98 csprintf(".respLayer%d", i))); 99 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this)); 100 } 101 102 clearPortCache(); 103} 104 105CoherentXBar::~CoherentXBar() 106{ 107 for (auto l: reqLayers) 108 delete l; 109 for (auto l: respLayers) 110 delete l; 111 for (auto l: snoopLayers) 112 delete l; 113 for (auto p: snoopRespPorts) 114 delete p; 115} 116 117void 118CoherentXBar::init() 119{ 120 BaseXBar::init(); 121 122 // iterate over our slave ports and determine which of our 123 // neighbouring master ports are snooping and add them as snoopers 124 for (const auto& p: slavePorts) { 125 // check if the connected master port is snooping 126 if (p->isSnooping()) { 127 DPRINTF(AddrRanges, "Adding snooping master %s\n", 128 p->getMasterPort().name()); 129 snoopPorts.push_back(p); 130 } 131 } 132 133 if (snoopPorts.empty()) 134 warn("CoherentXBar %s has no snooping ports attached!\n", name()); 135 136 // inform the snoop filter about the slave ports so it can create 137 // its own internal representation 138 if (snoopFilter) 139 snoopFilter->setSlavePorts(slavePorts); 140} 141 142bool 143CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id) 144{ 145 // determine the source port based on the id 146 SlavePort *src_port = slavePorts[slave_port_id]; 147 148 // remember if the packet is an express snoop 149 bool is_express_snoop = pkt->isExpressSnoop(); 150 bool cache_responding = pkt->cacheResponding(); 151 // for normal requests, going downstream, the express snoop flag 152 // and the cache responding flag should always be the same 153 assert(is_express_snoop == cache_responding); 154 155 // determine the destination based on the address 156 PortID master_port_id = findPort(pkt->getAddr()); 157 158 // test if the crossbar should be considered occupied for the current 159 // port, and exclude express snoops from the check 160 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) { 161 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 162 src_port->name(), pkt->print()); 163 return false; 164 } 165 166 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 167 src_port->name(), pkt->print()); 168 169 // store size and command as they might be modified when 170 // forwarding the packet 171 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 172 unsigned int pkt_cmd = pkt->cmdToIndex(); 173 174 // store the old header delay so we can restore it if needed 175 Tick old_header_delay = pkt->headerDelay; 176 177 // a request sees the frontend and forward latency 178 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod(); 179 180 // set the packet header and payload delay 181 calcPacketTiming(pkt, xbar_delay); 182 183 // determine how long to be crossbar layer is busy 184 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 185 186 if (!system->bypassCaches()) { 187 assert(pkt->snoopDelay == 0); 188 189 // the packet is a memory-mapped request and should be 190 // broadcasted to our snoopers but the source 191 if (snoopFilter) { 192 // check with the snoop filter where to forward this packet 193 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port); 194 // the time required by a packet to be delivered through 195 // the xbar has to be charged also with to lookup latency 196 // of the snoop filter 197 pkt->headerDelay += sf_res.second * clockPeriod(); 198 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 199 __func__, src_port->name(), pkt->print(), 200 sf_res.first.size(), sf_res.second); 201 202 if (pkt->isEviction()) { 203 // for block-evicting packets, i.e. writebacks and 204 // clean evictions, there is no need to snoop up, as 205 // all we do is determine if the block is cached or 206 // not, instead just set it here based on the snoop 207 // filter result 208 if (!sf_res.first.empty()) 209 pkt->setBlockCached(); 210 } else { 211 forwardTiming(pkt, slave_port_id, sf_res.first); 212 } 213 } else { 214 forwardTiming(pkt, slave_port_id); 215 } 216 217 // add the snoop delay to our header delay, and then reset it 218 pkt->headerDelay += pkt->snoopDelay; 219 pkt->snoopDelay = 0; 220 } 221 222 // set up a sensible starting point 223 bool success = true; 224 225 // remember if the packet will generate a snoop response by 226 // checking if a cache set the cacheResponding flag during the 227 // snooping above 228 const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding(); 229 bool expect_response = pkt->needsResponse() && !pkt->cacheResponding(); 230 231 const bool sink_packet = sinkPacket(pkt); 232 233 // in certain cases the crossbar is responsible for responding 234 bool respond_directly = false; 235 // store the original address as an address mapper could possibly 236 // modify the address upon a sendTimingRequest 237 const Addr addr(pkt->getAddr()); 238 if (sink_packet) { 239 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__, 240 pkt->print()); 241 } else { 242 // determine if we are forwarding the packet, or responding to 243 // it 244 if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) { 245 // if we are passing on, rather than sinking, a packet to 246 // which an upstream cache has committed to responding, 247 // the line was needs writable, and the responding only 248 // had an Owned copy, so we need to immidiately let the 249 // downstream caches know, bypass any flow control 250 if (pkt->cacheResponding()) { 251 pkt->setExpressSnoop(); 252 } 253 254 // since it is a normal request, attempt to send the packet 255 success = masterPorts[master_port_id]->sendTimingReq(pkt); 256 } else { 257 // no need to forward, turn this packet around and respond 258 // directly 259 assert(pkt->needsResponse()); 260 261 respond_directly = true; 262 assert(!expect_snoop_resp); 263 expect_response = false; 264 } 265 } 266 267 if (snoopFilter && !system->bypassCaches()) { 268 // Let the snoop filter know about the success of the send operation 269 snoopFilter->finishRequest(!success, addr, pkt->isSecure()); 270 } 271 272 // check if we were successful in sending the packet onwards 273 if (!success) { 274 // express snoops should never be forced to retry 275 assert(!is_express_snoop); 276 277 // restore the header delay 278 pkt->headerDelay = old_header_delay; 279 280 DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__, 281 src_port->name(), pkt->print()); 282 283 // update the layer state and schedule an idle event 284 reqLayers[master_port_id]->failedTiming(src_port, 285 clockEdge(Cycles(1))); 286 } else { 287 // express snoops currently bypass the crossbar state entirely 288 if (!is_express_snoop) { 289 // if this particular request will generate a snoop 290 // response 291 if (expect_snoop_resp) { 292 // we should never have an exsiting request outstanding 293 assert(outstandingSnoop.find(pkt->req) == 294 outstandingSnoop.end()); 295 outstandingSnoop.insert(pkt->req); 296 297 // basic sanity check on the outstanding snoops 298 panic_if(outstandingSnoop.size() > 512, 299 "Outstanding snoop requests exceeded 512\n"); 300 } 301 302 // remember where to route the normal response to 303 if (expect_response || expect_snoop_resp) { 304 assert(routeTo.find(pkt->req) == routeTo.end()); 305 routeTo[pkt->req] = slave_port_id; 306 307 panic_if(routeTo.size() > 512, 308 "Routing table exceeds 512 packets\n"); 309 } 310 311 // update the layer state and schedule an idle event 312 reqLayers[master_port_id]->succeededTiming(packetFinishTime); 313 } 314 315 // stats updates only consider packets that were successfully sent 316 pktCount[slave_port_id][master_port_id]++; 317 pktSize[slave_port_id][master_port_id] += pkt_size; 318 transDist[pkt_cmd]++; 319 320 if (is_express_snoop) { 321 snoops++; 322 snoopTraffic += pkt_size; 323 } 324 } 325 326 if (sink_packet) 327 // queue the packet for deletion 328 pendingDelete.reset(pkt); 329 330 if (respond_directly) { 331 assert(pkt->needsResponse()); 332 assert(success); 333 334 pkt->makeResponse(); 335 336 if (snoopFilter && !system->bypassCaches()) { 337 // let the snoop filter inspect the response and update its state 338 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 339 } 340 341 Tick response_time = clockEdge() + pkt->headerDelay; 342 pkt->headerDelay = 0; 343 344 slavePorts[slave_port_id]->schedTimingResp(pkt, response_time); 345 } 346 347 return success; 348} 349 350bool 351CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id) 352{ 353 // determine the source port based on the id 354 MasterPort *src_port = masterPorts[master_port_id]; 355 356 // determine the destination 357 const auto route_lookup = routeTo.find(pkt->req); 358 assert(route_lookup != routeTo.end()); 359 const PortID slave_port_id = route_lookup->second; 360 assert(slave_port_id != InvalidPortID); 361 assert(slave_port_id < respLayers.size()); 362 363 // test if the crossbar should be considered occupied for the 364 // current port 365 if (!respLayers[slave_port_id]->tryTiming(src_port)) { 366 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 367 src_port->name(), pkt->print()); 368 return false; 369 } 370 371 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 372 src_port->name(), pkt->print()); 373 374 // store size and command as they might be modified when 375 // forwarding the packet 376 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 377 unsigned int pkt_cmd = pkt->cmdToIndex(); 378 379 // a response sees the response latency 380 Tick xbar_delay = responseLatency * clockPeriod(); 381 382 // set the packet header and payload delay 383 calcPacketTiming(pkt, xbar_delay); 384 385 // determine how long to be crossbar layer is busy 386 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 387 388 if (snoopFilter && !system->bypassCaches()) { 389 // let the snoop filter inspect the response and update its state 390 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 391 } 392 393 // send the packet through the destination slave port and pay for 394 // any outstanding header delay 395 Tick latency = pkt->headerDelay; 396 pkt->headerDelay = 0; 397 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency); 398 399 // remove the request from the routing table 400 routeTo.erase(route_lookup); 401 402 respLayers[slave_port_id]->succeededTiming(packetFinishTime); 403 404 // stats updates 405 pktCount[slave_port_id][master_port_id]++; 406 pktSize[slave_port_id][master_port_id] += pkt_size; 407 transDist[pkt_cmd]++; 408 409 return true; 410} 411 412void 413CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id) 414{ 415 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 416 masterPorts[master_port_id]->name(), pkt->print()); 417 418 // update stats here as we know the forwarding will succeed 419 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 420 transDist[pkt->cmdToIndex()]++; 421 snoops++; 422 snoopTraffic += pkt_size; 423 424 // we should only see express snoops from caches 425 assert(pkt->isExpressSnoop()); 426 427 // set the packet header and payload delay, for now use forward latency 428 // @todo Assess the choice of latency further 429 calcPacketTiming(pkt, forwardLatency * clockPeriod()); 430 431 // remember if a cache has already committed to responding so we 432 // can see if it changes during the snooping 433 const bool cache_responding = pkt->cacheResponding(); 434 435 assert(pkt->snoopDelay == 0); 436 437 if (snoopFilter) { 438 // let the Snoop Filter work its magic and guide probing 439 auto sf_res = snoopFilter->lookupSnoop(pkt); 440 // the time required by a packet to be delivered through 441 // the xbar has to be charged also with to lookup latency 442 // of the snoop filter 443 pkt->headerDelay += sf_res.second * clockPeriod(); 444 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 445 __func__, masterPorts[master_port_id]->name(), pkt->print(), 446 sf_res.first.size(), sf_res.second); 447 448 // forward to all snoopers 449 forwardTiming(pkt, InvalidPortID, sf_res.first); 450 } else { 451 forwardTiming(pkt, InvalidPortID); 452 } 453 454 // add the snoop delay to our header delay, and then reset it 455 pkt->headerDelay += pkt->snoopDelay; 456 pkt->snoopDelay = 0; 457 458 // if we can expect a response, remember how to route it 459 if (!cache_responding && pkt->cacheResponding()) { 460 assert(routeTo.find(pkt->req) == routeTo.end()); 461 routeTo[pkt->req] = master_port_id; 462 } 463 464 // a snoop request came from a connected slave device (one of 465 // our master ports), and if it is not coming from the slave 466 // device responsible for the address range something is 467 // wrong, hence there is nothing further to do as the packet 468 // would be going back to where it came from 469 assert(master_port_id == findPort(pkt->getAddr())); 470} 471 472bool 473CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id) 474{ 475 // determine the source port based on the id 476 SlavePort* src_port = slavePorts[slave_port_id]; 477 478 // get the destination 479 const auto route_lookup = routeTo.find(pkt->req); 480 assert(route_lookup != routeTo.end()); 481 const PortID dest_port_id = route_lookup->second; 482 assert(dest_port_id != InvalidPortID); 483 484 // determine if the response is from a snoop request we 485 // created as the result of a normal request (in which case it 486 // should be in the outstandingSnoop), or if we merely forwarded 487 // someone else's snoop request 488 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 489 outstandingSnoop.end(); 490 491 // test if the crossbar should be considered occupied for the 492 // current port, note that the check is bypassed if the response 493 // is being passed on as a normal response since this is occupying 494 // the response layer rather than the snoop response layer 495 if (forwardAsSnoop) { 496 assert(dest_port_id < snoopLayers.size()); 497 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) { 498 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 499 src_port->name(), pkt->print()); 500 return false; 501 } 502 } else { 503 // get the master port that mirrors this slave port internally 504 MasterPort* snoop_port = snoopRespPorts[slave_port_id]; 505 assert(dest_port_id < respLayers.size()); 506 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) { 507 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, 508 snoop_port->name(), pkt->print()); 509 return false; 510 } 511 } 512 513 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 514 src_port->name(), pkt->print()); 515 516 // store size and command as they might be modified when 517 // forwarding the packet 518 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 519 unsigned int pkt_cmd = pkt->cmdToIndex(); 520 521 // responses are never express snoops 522 assert(!pkt->isExpressSnoop()); 523 524 // a snoop response sees the snoop response latency, and if it is 525 // forwarded as a normal response, the response latency 526 Tick xbar_delay = 527 (forwardAsSnoop ? snoopResponseLatency : responseLatency) * 528 clockPeriod(); 529 530 // set the packet header and payload delay 531 calcPacketTiming(pkt, xbar_delay); 532 533 // determine how long to be crossbar layer is busy 534 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 535 536 // forward it either as a snoop response or a normal response 537 if (forwardAsSnoop) { 538 // this is a snoop response to a snoop request we forwarded, 539 // e.g. coming from the L1 and going to the L2, and it should 540 // be forwarded as a snoop response 541 542 if (snoopFilter) { 543 // update the probe filter so that it can properly track the line 544 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id], 545 *masterPorts[dest_port_id]); 546 } 547 548 bool success M5_VAR_USED = 549 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt); 550 pktCount[slave_port_id][dest_port_id]++; 551 pktSize[slave_port_id][dest_port_id] += pkt_size; 552 assert(success); 553 554 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime); 555 } else { 556 // we got a snoop response on one of our slave ports, 557 // i.e. from a coherent master connected to the crossbar, and 558 // since we created the snoop request as part of recvTiming, 559 // this should now be a normal response again 560 outstandingSnoop.erase(pkt->req); 561 562 // this is a snoop response from a coherent master, hence it 563 // should never go back to where the snoop response came from, 564 // but instead to where the original request came from 565 assert(slave_port_id != dest_port_id); 566 567 if (snoopFilter) { 568 // update the probe filter so that it can properly track the line 569 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id], 570 *slavePorts[dest_port_id]); 571 } 572 573 DPRINTF(CoherentXBar, "%s: src %s packet %s FWD RESP\n", __func__, 574 src_port->name(), pkt->print()); 575 576 // as a normal response, it should go back to a master through 577 // one of our slave ports, we also pay for any outstanding 578 // header latency 579 Tick latency = pkt->headerDelay; 580 pkt->headerDelay = 0; 581 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency); 582 583 respLayers[dest_port_id]->succeededTiming(packetFinishTime); 584 } 585 586 // remove the request from the routing table 587 routeTo.erase(route_lookup); 588 589 // stats updates 590 transDist[pkt_cmd]++; 591 snoops++; 592 snoopTraffic += pkt_size; 593 594 return true; 595} 596 597 598void 599CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id, 600 const std::vector<QueuedSlavePort*>& dests) 601{ 602 DPRINTF(CoherentXBar, "%s for %s\n", __func__, pkt->print()); 603 604 // snoops should only happen if the system isn't bypassing caches 605 assert(!system->bypassCaches()); 606 607 unsigned fanout = 0; 608 609 for (const auto& p: dests) { 610 // we could have gotten this request from a snooping master 611 // (corresponding to our own slave port that is also in 612 // snoopPorts) and should not send it back to where it came 613 // from 614 if (exclude_slave_port_id == InvalidPortID || 615 p->getId() != exclude_slave_port_id) { 616 // cache is not allowed to refuse snoop 617 p->sendTimingSnoopReq(pkt); 618 fanout++; 619 } 620 } 621 622 // Stats for fanout of this forward operation 623 snoopFanout.sample(fanout); 624} 625 626void 627CoherentXBar::recvReqRetry(PortID master_port_id) 628{ 629 // responses and snoop responses never block on forwarding them, 630 // so the retry will always be coming from a port to which we 631 // tried to forward a request 632 reqLayers[master_port_id]->recvRetry(); 633} 634 635Tick 636CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id) 637{ 638 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 639 slavePorts[slave_port_id]->name(), pkt->print()); 640 641 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 642 unsigned int pkt_cmd = pkt->cmdToIndex(); 643 644 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 645 Tick snoop_response_latency = 0; 646 647 if (!system->bypassCaches()) { 648 // forward to all snoopers but the source 649 std::pair<MemCmd, Tick> snoop_result; 650 if (snoopFilter) { 651 // check with the snoop filter where to forward this packet 652 auto sf_res = 653 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]); 654 snoop_response_latency += sf_res.second * clockPeriod(); 655 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 656 __func__, slavePorts[slave_port_id]->name(), pkt->print(), 657 sf_res.first.size(), sf_res.second); 658 659 // let the snoop filter know about the success of the send 660 // operation, and do it even before sending it onwards to 661 // avoid situations where atomic upward snoops sneak in 662 // between and change the filter state 663 snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure()); 664 665 if (pkt->isEviction()) { 666 // for block-evicting packets, i.e. writebacks and 667 // clean evictions, there is no need to snoop up, as 668 // all we do is determine if the block is cached or 669 // not, instead just set it here based on the snoop 670 // filter result 671 if (!sf_res.first.empty()) 672 pkt->setBlockCached(); 673 } else { 674 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID, 675 sf_res.first); 676 } 677 } else { 678 snoop_result = forwardAtomic(pkt, slave_port_id); 679 } 680 snoop_response_cmd = snoop_result.first; 681 snoop_response_latency += snoop_result.second; 682 } 683 684 // set up a sensible default value 685 Tick response_latency = 0; 686 687 const bool sink_packet = sinkPacket(pkt); 688 689 // even if we had a snoop response, we must continue and also 690 // perform the actual request at the destination 691 PortID master_port_id = findPort(pkt->getAddr()); 692 693 if (sink_packet) { 694 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__, 695 pkt->print()); 696 } else { 697 if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) { 698 // forward the request to the appropriate destination 699 response_latency = masterPorts[master_port_id]->sendAtomic(pkt); 700 } else { 701 // if it does not need a response we sink the packet above 702 assert(pkt->needsResponse()); 703 704 pkt->makeResponse(); 705 } 706 } 707 708 // stats updates for the request 709 pktCount[slave_port_id][master_port_id]++; 710 pktSize[slave_port_id][master_port_id] += pkt_size; 711 transDist[pkt_cmd]++; 712 713 714 // if lower levels have replied, tell the snoop filter 715 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) { 716 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 717 } 718 719 // if we got a response from a snooper, restore it here 720 if (snoop_response_cmd != MemCmd::InvalidCmd) { 721 // no one else should have responded 722 assert(!pkt->isResponse()); 723 pkt->cmd = snoop_response_cmd; 724 response_latency = snoop_response_latency; 725 } 726 727 // add the response data 728 if (pkt->isResponse()) { 729 pkt_size = pkt->hasData() ? pkt->getSize() : 0; 730 pkt_cmd = pkt->cmdToIndex(); 731 732 // stats updates 733 pktCount[slave_port_id][master_port_id]++; 734 pktSize[slave_port_id][master_port_id] += pkt_size; 735 transDist[pkt_cmd]++; 736 } 737 738 // @todo: Not setting header time 739 pkt->payloadDelay = response_latency; 740 return response_latency; 741} 742 743Tick 744CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id) 745{ 746 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 747 masterPorts[master_port_id]->name(), pkt->print()); 748 749 // add the request snoop data 750 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 751 snoops++; 752 snoopTraffic += pkt_size; 753 754 // forward to all snoopers 755 std::pair<MemCmd, Tick> snoop_result; 756 Tick snoop_response_latency = 0; 757 if (snoopFilter) { 758 auto sf_res = snoopFilter->lookupSnoop(pkt); 759 snoop_response_latency += sf_res.second * clockPeriod(); 760 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", 761 __func__, masterPorts[master_port_id]->name(), pkt->print(), 762 sf_res.first.size(), sf_res.second); 763 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id, 764 sf_res.first); 765 } else { 766 snoop_result = forwardAtomic(pkt, InvalidPortID); 767 } 768 MemCmd snoop_response_cmd = snoop_result.first; 769 snoop_response_latency += snoop_result.second; 770 771 if (snoop_response_cmd != MemCmd::InvalidCmd) 772 pkt->cmd = snoop_response_cmd; 773 774 // add the response snoop data 775 if (pkt->isResponse()) { 776 snoops++; 777 } 778 779 // @todo: Not setting header time 780 pkt->payloadDelay = snoop_response_latency; 781 return snoop_response_latency; 782} 783 784std::pair<MemCmd, Tick> 785CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id, 786 PortID source_master_port_id, 787 const std::vector<QueuedSlavePort*>& dests) 788{ 789 // the packet may be changed on snoops, record the original 790 // command to enable us to restore it between snoops so that 791 // additional snoops can take place properly 792 MemCmd orig_cmd = pkt->cmd; 793 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 794 Tick snoop_response_latency = 0; 795 796 // snoops should only happen if the system isn't bypassing caches 797 assert(!system->bypassCaches()); 798 799 unsigned fanout = 0; 800 801 for (const auto& p: dests) { 802 // we could have gotten this request from a snooping master 803 // (corresponding to our own slave port that is also in 804 // snoopPorts) and should not send it back to where it came 805 // from 806 if (exclude_slave_port_id != InvalidPortID && 807 p->getId() == exclude_slave_port_id) 808 continue; 809 810 Tick latency = p->sendAtomicSnoop(pkt); 811 fanout++; 812 813 // in contrast to a functional access, we have to keep on 814 // going as all snoopers must be updated even if we get a 815 // response 816 if (!pkt->isResponse()) 817 continue; 818 819 // response from snoop agent 820 assert(pkt->cmd != orig_cmd); 821 assert(pkt->cacheResponding()); 822 // should only happen once 823 assert(snoop_response_cmd == MemCmd::InvalidCmd); 824 // save response state 825 snoop_response_cmd = pkt->cmd; 826 snoop_response_latency = latency; 827 828 if (snoopFilter) { 829 // Handle responses by the snoopers and differentiate between 830 // responses to requests from above and snoops from below 831 if (source_master_port_id != InvalidPortID) { 832 // Getting a response for a snoop from below 833 assert(exclude_slave_port_id == InvalidPortID); 834 snoopFilter->updateSnoopForward(pkt, *p, 835 *masterPorts[source_master_port_id]); 836 } else { 837 // Getting a response for a request from above 838 assert(source_master_port_id == InvalidPortID); 839 snoopFilter->updateSnoopResponse(pkt, *p, 840 *slavePorts[exclude_slave_port_id]); 841 } 842 } 843 // restore original packet state for remaining snoopers 844 pkt->cmd = orig_cmd; 845 } 846 847 // Stats for fanout 848 snoopFanout.sample(fanout); 849 850 // the packet is restored as part of the loop and any potential 851 // snoop response is part of the returned pair 852 return std::make_pair(snoop_response_cmd, snoop_response_latency); 853} 854 855void 856CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id) 857{ 858 if (!pkt->isPrint()) { 859 // don't do DPRINTFs on PrintReq as it clutters up the output 860 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 861 slavePorts[slave_port_id]->name(), pkt->print()); 862 } 863 864 if (!system->bypassCaches()) { 865 // forward to all snoopers but the source 866 forwardFunctional(pkt, slave_port_id); 867 } 868 869 // there is no need to continue if the snooping has found what we 870 // were looking for and the packet is already a response 871 if (!pkt->isResponse()) { 872 // since our slave ports are queued ports we need to check them as well 873 for (const auto& p : slavePorts) { 874 // if we find a response that has the data, then the 875 // downstream caches/memories may be out of date, so simply stop 876 // here 877 if (p->checkFunctional(pkt)) { 878 if (pkt->needsResponse()) 879 pkt->makeResponse(); 880 return; 881 } 882 } 883 884 PortID dest_id = findPort(pkt->getAddr()); 885 886 masterPorts[dest_id]->sendFunctional(pkt); 887 } 888} 889 890void 891CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id) 892{ 893 if (!pkt->isPrint()) { 894 // don't do DPRINTFs on PrintReq as it clutters up the output 895 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, 896 masterPorts[master_port_id]->name(), pkt->print()); 897 } 898 899 for (const auto& p : slavePorts) { 900 if (p->checkFunctional(pkt)) { 901 if (pkt->needsResponse()) 902 pkt->makeResponse(); 903 return; 904 } 905 } 906 907 // forward to all snoopers 908 forwardFunctional(pkt, InvalidPortID); 909} 910 911void 912CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id) 913{ 914 // snoops should only happen if the system isn't bypassing caches 915 assert(!system->bypassCaches()); 916 917 for (const auto& p: snoopPorts) { 918 // we could have gotten this request from a snooping master 919 // (corresponding to our own slave port that is also in 920 // snoopPorts) and should not send it back to where it came 921 // from 922 if (exclude_slave_port_id == InvalidPortID || 923 p->getId() != exclude_slave_port_id) 924 p->sendFunctionalSnoop(pkt); 925 926 // if we get a response we are done 927 if (pkt->isResponse()) { 928 break; 929 } 930 } 931} 932 933bool 934CoherentXBar::sinkPacket(const PacketPtr pkt) const 935{ 936 // we can sink the packet if: 937 // 1) the crossbar is the point of coherency, and a cache is 938 // responding after being snooped 939 // 2) the crossbar is the point of coherency, and the packet is a 940 // coherency packet (not a read or a write) that does not 941 // require a response 942 // 3) this is a clean evict or clean writeback, but the packet is 943 // found in a cache above this crossbar 944 // 4) a cache is responding after being snooped, and the packet 945 // either does not need the block to be writable, or the cache 946 // that has promised to respond (setting the cache responding 947 // flag) is providing writable and thus had a Modified block, 948 // and no further action is needed 949 return (pointOfCoherency && pkt->cacheResponding()) || 950 (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) && 951 !pkt->needsResponse()) || 952 (pkt->isCleanEviction() && pkt->isBlockCached()) || 953 (pkt->cacheResponding() && 954 (!pkt->needsWritable() || pkt->responderHadWritable())); 955} 956 957void 958CoherentXBar::regStats() 959{ 960 // register the stats of the base class and our layers 961 BaseXBar::regStats(); 962 for (auto l: reqLayers) 963 l->regStats(); 964 for (auto l: respLayers) 965 l->regStats(); 966 for (auto l: snoopLayers) 967 l->regStats(); 968 969 snoops 970 .name(name() + ".snoops") 971 .desc("Total snoops (count)") 972 ; 973 974 snoopTraffic 975 .name(name() + ".snoopTraffic") 976 .desc("Total snoop traffic (bytes)") 977 ; 978 979 snoopFanout 980 .init(0, snoopPorts.size(), 1) 981 .name(name() + ".snoop_fanout") 982 .desc("Request fanout histogram") 983 ; 984} 985 986CoherentXBar * 987CoherentXBarParams::create() 988{ 989 return new CoherentXBar(this); 990} 991