coherent_xbar.cc revision 11544:2383451ff6a5
1/*
2 * Copyright (c) 2011-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 *          Andreas Hansson
42 *          William Wang
43 */
44
45/**
46 * @file
47 * Definition of a crossbar object.
48 */
49
50#include "base/misc.hh"
51#include "base/trace.hh"
52#include "debug/AddrRanges.hh"
53#include "debug/CoherentXBar.hh"
54#include "mem/coherent_xbar.hh"
55#include "sim/system.hh"
56
57CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
58    : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
59      snoopResponseLatency(p->snoop_response_latency),
60      pointOfCoherency(p->point_of_coherency)
61{
62    // create the ports based on the size of the master and slave
63    // vector ports, and the presence of the default port, the ports
64    // are enumerated starting from zero
65    for (int i = 0; i < p->port_master_connection_count; ++i) {
66        std::string portName = csprintf("%s.master[%d]", name(), i);
67        MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
68        masterPorts.push_back(bp);
69        reqLayers.push_back(new ReqLayer(*bp, *this,
70                                         csprintf(".reqLayer%d", i)));
71        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
72                                                 csprintf(".snoopLayer%d", i)));
73    }
74
75    // see if we have a default slave device connected and if so add
76    // our corresponding master port
77    if (p->port_default_connection_count) {
78        defaultPortID = masterPorts.size();
79        std::string portName = name() + ".default";
80        MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
81                                                   defaultPortID);
82        masterPorts.push_back(bp);
83        reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
84                                             defaultPortID)));
85        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
86                                                 csprintf(".snoopLayer%d",
87                                                          defaultPortID)));
88    }
89
90    // create the slave ports, once again starting at zero
91    for (int i = 0; i < p->port_slave_connection_count; ++i) {
92        std::string portName = csprintf("%s.slave[%d]", name(), i);
93        QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
94        slavePorts.push_back(bp);
95        respLayers.push_back(new RespLayer(*bp, *this,
96                                           csprintf(".respLayer%d", i)));
97        snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
98    }
99
100    clearPortCache();
101}
102
103CoherentXBar::~CoherentXBar()
104{
105    for (auto l: reqLayers)
106        delete l;
107    for (auto l: respLayers)
108        delete l;
109    for (auto l: snoopLayers)
110        delete l;
111    for (auto p: snoopRespPorts)
112        delete p;
113}
114
115void
116CoherentXBar::init()
117{
118    BaseXBar::init();
119
120    // iterate over our slave ports and determine which of our
121    // neighbouring master ports are snooping and add them as snoopers
122    for (const auto& p: slavePorts) {
123        // check if the connected master port is snooping
124        if (p->isSnooping()) {
125            DPRINTF(AddrRanges, "Adding snooping master %s\n",
126                    p->getMasterPort().name());
127            snoopPorts.push_back(p);
128        }
129    }
130
131    if (snoopPorts.empty())
132        warn("CoherentXBar %s has no snooping ports attached!\n", name());
133
134    // inform the snoop filter about the slave ports so it can create
135    // its own internal representation
136    if (snoopFilter)
137        snoopFilter->setSlavePorts(slavePorts);
138}
139
140bool
141CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
142{
143    // determine the source port based on the id
144    SlavePort *src_port = slavePorts[slave_port_id];
145
146    // remember if the packet is an express snoop
147    bool is_express_snoop = pkt->isExpressSnoop();
148    bool cache_responding = pkt->cacheResponding();
149    // for normal requests, going downstream, the express snoop flag
150    // and the cache responding flag should always be the same
151    assert(is_express_snoop == cache_responding);
152
153    // determine the destination based on the address
154    PortID master_port_id = findPort(pkt->getAddr());
155
156    // test if the crossbar should be considered occupied for the current
157    // port, and exclude express snoops from the check
158    if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
159        DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n",
160                src_port->name(), pkt->cmdString(), pkt->getAddr());
161        return false;
162    }
163
164    DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n",
165            src_port->name(), pkt->cmdString(), is_express_snoop,
166            pkt->getAddr());
167
168    // store size and command as they might be modified when
169    // forwarding the packet
170    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
171    unsigned int pkt_cmd = pkt->cmdToIndex();
172
173    // store the old header delay so we can restore it if needed
174    Tick old_header_delay = pkt->headerDelay;
175
176    // a request sees the frontend and forward latency
177    Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
178
179    // set the packet header and payload delay
180    calcPacketTiming(pkt, xbar_delay);
181
182    // determine how long to be crossbar layer is busy
183    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
184
185    if (!system->bypassCaches()) {
186        assert(pkt->snoopDelay == 0);
187
188        // the packet is a memory-mapped request and should be
189        // broadcasted to our snoopers but the source
190        if (snoopFilter) {
191            // check with the snoop filter where to forward this packet
192            auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
193            // the time required by a packet to be delivered through
194            // the xbar has to be charged also with to lookup latency
195            // of the snoop filter
196            pkt->headerDelay += sf_res.second * clockPeriod();
197            DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\
198                    " SF size: %i lat: %i\n", src_port->name(),
199                    pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
200                    sf_res.second);
201
202            if (pkt->isEviction()) {
203                // for block-evicting packets, i.e. writebacks and
204                // clean evictions, there is no need to snoop up, as
205                // all we do is determine if the block is cached or
206                // not, instead just set it here based on the snoop
207                // filter result
208                if (!sf_res.first.empty())
209                    pkt->setBlockCached();
210            } else {
211                forwardTiming(pkt, slave_port_id, sf_res.first);
212            }
213        } else {
214            forwardTiming(pkt, slave_port_id);
215        }
216
217        // add the snoop delay to our header delay, and then reset it
218        pkt->headerDelay += pkt->snoopDelay;
219        pkt->snoopDelay = 0;
220    }
221
222    // set up a sensible starting point
223    bool success = true;
224
225    // remember if the packet will generate a snoop response by
226    // checking if a cache set the cacheResponding flag during the
227    // snooping above
228    const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding();
229    bool expect_response = pkt->needsResponse() && !pkt->cacheResponding();
230
231    const bool sink_packet = sinkPacket(pkt);
232
233    // in certain cases the crossbar is responsible for responding
234    bool respond_directly = false;
235    // store the original address as an address mapper could possibly
236    // modify the address upon a sendTimingRequest
237    const Addr addr(pkt->getAddr());
238    if (sink_packet) {
239        DPRINTF(CoherentXBar, "Not forwarding %s to %#llx\n",
240                pkt->cmdString(), pkt->getAddr());
241    } else {
242        // determine if we are forwarding the packet, or responding to
243        // it
244        if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) {
245            // if we are passing on, rather than sinking, a packet to
246            // which an upstream cache has committed to responding,
247            // the line was needs writable, and the responding only
248            // had an Owned copy, so we need to immidiately let the
249            // downstream caches know, bypass any flow control
250            if (pkt->cacheResponding()) {
251                pkt->setExpressSnoop();
252            }
253
254            // since it is a normal request, attempt to send the packet
255            success = masterPorts[master_port_id]->sendTimingReq(pkt);
256        } else {
257            // no need to forward, turn this packet around and respond
258            // directly
259            assert(pkt->needsResponse());
260
261            respond_directly = true;
262            assert(!expect_snoop_resp);
263            expect_response = false;
264        }
265    }
266
267    if (snoopFilter && !system->bypassCaches()) {
268        // Let the snoop filter know about the success of the send operation
269        snoopFilter->finishRequest(!success, addr);
270    }
271
272    // check if we were successful in sending the packet onwards
273    if (!success)  {
274        // express snoops should never be forced to retry
275        assert(!is_express_snoop);
276
277        // restore the header delay
278        pkt->headerDelay = old_header_delay;
279
280        DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n",
281                src_port->name(), pkt->cmdString(), pkt->getAddr());
282
283        // update the layer state and schedule an idle event
284        reqLayers[master_port_id]->failedTiming(src_port,
285                                                clockEdge(Cycles(1)));
286    } else {
287        // express snoops currently bypass the crossbar state entirely
288        if (!is_express_snoop) {
289            // if this particular request will generate a snoop
290            // response
291            if (expect_snoop_resp) {
292                // we should never have an exsiting request outstanding
293                assert(outstandingSnoop.find(pkt->req) ==
294                       outstandingSnoop.end());
295                outstandingSnoop.insert(pkt->req);
296
297                // basic sanity check on the outstanding snoops
298                panic_if(outstandingSnoop.size() > 512,
299                         "Outstanding snoop requests exceeded 512\n");
300            }
301
302            // remember where to route the normal response to
303            if (expect_response || expect_snoop_resp) {
304                assert(routeTo.find(pkt->req) == routeTo.end());
305                routeTo[pkt->req] = slave_port_id;
306
307                panic_if(routeTo.size() > 512,
308                         "Routing table exceeds 512 packets\n");
309            }
310
311            // update the layer state and schedule an idle event
312            reqLayers[master_port_id]->succeededTiming(packetFinishTime);
313        }
314
315        // stats updates only consider packets that were successfully sent
316        pktCount[slave_port_id][master_port_id]++;
317        pktSize[slave_port_id][master_port_id] += pkt_size;
318        transDist[pkt_cmd]++;
319
320        if (is_express_snoop)
321            snoops++;
322    }
323
324    if (sink_packet)
325        // queue the packet for deletion
326        pendingDelete.reset(pkt);
327
328    if (respond_directly) {
329        assert(pkt->needsResponse());
330        assert(success);
331
332        pkt->makeResponse();
333
334        if (snoopFilter && !system->bypassCaches()) {
335            // let the snoop filter inspect the response and update its state
336            snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
337        }
338
339        Tick response_time = clockEdge() + pkt->headerDelay;
340        pkt->headerDelay = 0;
341
342        slavePorts[slave_port_id]->schedTimingResp(pkt, response_time);
343    }
344
345    return success;
346}
347
348bool
349CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
350{
351    // determine the source port based on the id
352    MasterPort *src_port = masterPorts[master_port_id];
353
354    // determine the destination
355    const auto route_lookup = routeTo.find(pkt->req);
356    assert(route_lookup != routeTo.end());
357    const PortID slave_port_id = route_lookup->second;
358    assert(slave_port_id != InvalidPortID);
359    assert(slave_port_id < respLayers.size());
360
361    // test if the crossbar should be considered occupied for the
362    // current port
363    if (!respLayers[slave_port_id]->tryTiming(src_port)) {
364        DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n",
365                src_port->name(), pkt->cmdString(), pkt->getAddr());
366        return false;
367    }
368
369    DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n",
370            src_port->name(), pkt->cmdString(), pkt->getAddr());
371
372    // store size and command as they might be modified when
373    // forwarding the packet
374    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
375    unsigned int pkt_cmd = pkt->cmdToIndex();
376
377    // a response sees the response latency
378    Tick xbar_delay = responseLatency * clockPeriod();
379
380    // set the packet header and payload delay
381    calcPacketTiming(pkt, xbar_delay);
382
383    // determine how long to be crossbar layer is busy
384    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
385
386    if (snoopFilter && !system->bypassCaches()) {
387        // let the snoop filter inspect the response and update its state
388        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
389    }
390
391    // send the packet through the destination slave port and pay for
392    // any outstanding header delay
393    Tick latency = pkt->headerDelay;
394    pkt->headerDelay = 0;
395    slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
396
397    // remove the request from the routing table
398    routeTo.erase(route_lookup);
399
400    respLayers[slave_port_id]->succeededTiming(packetFinishTime);
401
402    // stats updates
403    pktCount[slave_port_id][master_port_id]++;
404    pktSize[slave_port_id][master_port_id] += pkt_size;
405    transDist[pkt_cmd]++;
406
407    return true;
408}
409
410void
411CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
412{
413    DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n",
414            masterPorts[master_port_id]->name(), pkt->cmdString(),
415            pkt->getAddr());
416
417    // update stats here as we know the forwarding will succeed
418    transDist[pkt->cmdToIndex()]++;
419    snoops++;
420
421    // we should only see express snoops from caches
422    assert(pkt->isExpressSnoop());
423
424    // set the packet header and payload delay, for now use forward latency
425    // @todo Assess the choice of latency further
426    calcPacketTiming(pkt, forwardLatency * clockPeriod());
427
428    // remember if a cache has already committed to responding so we
429    // can see if it changes during the snooping
430    const bool cache_responding = pkt->cacheResponding();
431
432    assert(pkt->snoopDelay == 0);
433
434    if (snoopFilter) {
435        // let the Snoop Filter work its magic and guide probing
436        auto sf_res = snoopFilter->lookupSnoop(pkt);
437        // the time required by a packet to be delivered through
438        // the xbar has to be charged also with to lookup latency
439        // of the snoop filter
440        pkt->headerDelay += sf_res.second * clockPeriod();
441        DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\
442                " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(),
443                pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
444                sf_res.second);
445
446        // forward to all snoopers
447        forwardTiming(pkt, InvalidPortID, sf_res.first);
448    } else {
449        forwardTiming(pkt, InvalidPortID);
450    }
451
452    // add the snoop delay to our header delay, and then reset it
453    pkt->headerDelay += pkt->snoopDelay;
454    pkt->snoopDelay = 0;
455
456    // if we can expect a response, remember how to route it
457    if (!cache_responding && pkt->cacheResponding()) {
458        assert(routeTo.find(pkt->req) == routeTo.end());
459        routeTo[pkt->req] = master_port_id;
460    }
461
462    // a snoop request came from a connected slave device (one of
463    // our master ports), and if it is not coming from the slave
464    // device responsible for the address range something is
465    // wrong, hence there is nothing further to do as the packet
466    // would be going back to where it came from
467    assert(master_port_id == findPort(pkt->getAddr()));
468}
469
470bool
471CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
472{
473    // determine the source port based on the id
474    SlavePort* src_port = slavePorts[slave_port_id];
475
476    // get the destination
477    const auto route_lookup = routeTo.find(pkt->req);
478    assert(route_lookup != routeTo.end());
479    const PortID dest_port_id = route_lookup->second;
480    assert(dest_port_id != InvalidPortID);
481
482    // determine if the response is from a snoop request we
483    // created as the result of a normal request (in which case it
484    // should be in the outstandingSnoop), or if we merely forwarded
485    // someone else's snoop request
486    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
487        outstandingSnoop.end();
488
489    // test if the crossbar should be considered occupied for the
490    // current port, note that the check is bypassed if the response
491    // is being passed on as a normal response since this is occupying
492    // the response layer rather than the snoop response layer
493    if (forwardAsSnoop) {
494        assert(dest_port_id < snoopLayers.size());
495        if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
496            DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
497                    src_port->name(), pkt->cmdString(), pkt->getAddr());
498            return false;
499        }
500    } else {
501        // get the master port that mirrors this slave port internally
502        MasterPort* snoop_port = snoopRespPorts[slave_port_id];
503        assert(dest_port_id < respLayers.size());
504        if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
505            DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
506                    snoop_port->name(), pkt->cmdString(), pkt->getAddr());
507            return false;
508        }
509    }
510
511    DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n",
512            src_port->name(), pkt->cmdString(), pkt->getAddr());
513
514    // store size and command as they might be modified when
515    // forwarding the packet
516    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
517    unsigned int pkt_cmd = pkt->cmdToIndex();
518
519    // responses are never express snoops
520    assert(!pkt->isExpressSnoop());
521
522    // a snoop response sees the snoop response latency, and if it is
523    // forwarded as a normal response, the response latency
524    Tick xbar_delay =
525        (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
526        clockPeriod();
527
528    // set the packet header and payload delay
529    calcPacketTiming(pkt, xbar_delay);
530
531    // determine how long to be crossbar layer is busy
532    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
533
534    // forward it either as a snoop response or a normal response
535    if (forwardAsSnoop) {
536        // this is a snoop response to a snoop request we forwarded,
537        // e.g. coming from the L1 and going to the L2, and it should
538        // be forwarded as a snoop response
539
540        if (snoopFilter) {
541            // update the probe filter so that it can properly track the line
542            snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
543                                            *masterPorts[dest_port_id]);
544        }
545
546        bool success M5_VAR_USED =
547            masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
548        pktCount[slave_port_id][dest_port_id]++;
549        pktSize[slave_port_id][dest_port_id] += pkt_size;
550        assert(success);
551
552        snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
553    } else {
554        // we got a snoop response on one of our slave ports,
555        // i.e. from a coherent master connected to the crossbar, and
556        // since we created the snoop request as part of recvTiming,
557        // this should now be a normal response again
558        outstandingSnoop.erase(pkt->req);
559
560        // this is a snoop response from a coherent master, hence it
561        // should never go back to where the snoop response came from,
562        // but instead to where the original request came from
563        assert(slave_port_id != dest_port_id);
564
565        if (snoopFilter) {
566            // update the probe filter so that it can properly track the line
567            snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
568                                    *slavePorts[dest_port_id]);
569        }
570
571        DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\
572                " FWD RESP\n", src_port->name(), pkt->cmdString(),
573                pkt->getAddr());
574
575        // as a normal response, it should go back to a master through
576        // one of our slave ports, we also pay for any outstanding
577        // header latency
578        Tick latency = pkt->headerDelay;
579        pkt->headerDelay = 0;
580        slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);
581
582        respLayers[dest_port_id]->succeededTiming(packetFinishTime);
583    }
584
585    // remove the request from the routing table
586    routeTo.erase(route_lookup);
587
588    // stats updates
589    transDist[pkt_cmd]++;
590    snoops++;
591
592    return true;
593}
594
595
596void
597CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
598                           const std::vector<QueuedSlavePort*>& dests)
599{
600    DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__,
601            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
602
603    // snoops should only happen if the system isn't bypassing caches
604    assert(!system->bypassCaches());
605
606    unsigned fanout = 0;
607
608    for (const auto& p: dests) {
609        // we could have gotten this request from a snooping master
610        // (corresponding to our own slave port that is also in
611        // snoopPorts) and should not send it back to where it came
612        // from
613        if (exclude_slave_port_id == InvalidPortID ||
614            p->getId() != exclude_slave_port_id) {
615            // cache is not allowed to refuse snoop
616            p->sendTimingSnoopReq(pkt);
617            fanout++;
618        }
619    }
620
621    // Stats for fanout of this forward operation
622    snoopFanout.sample(fanout);
623}
624
625void
626CoherentXBar::recvReqRetry(PortID master_port_id)
627{
628    // responses and snoop responses never block on forwarding them,
629    // so the retry will always be coming from a port to which we
630    // tried to forward a request
631    reqLayers[master_port_id]->recvRetry();
632}
633
634Tick
635CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
636{
637    DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n",
638            slavePorts[slave_port_id]->name(), pkt->getAddr(),
639            pkt->cmdString());
640
641    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
642    unsigned int pkt_cmd = pkt->cmdToIndex();
643
644    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
645    Tick snoop_response_latency = 0;
646
647    if (!system->bypassCaches()) {
648        // forward to all snoopers but the source
649        std::pair<MemCmd, Tick> snoop_result;
650        if (snoopFilter) {
651            // check with the snoop filter where to forward this packet
652            auto sf_res =
653                snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
654            snoop_response_latency += sf_res.second * clockPeriod();
655            DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\
656                    " SF size: %i lat: %i\n", __func__,
657                    slavePorts[slave_port_id]->name(), pkt->cmdString(),
658                    pkt->getAddr(), sf_res.first.size(), sf_res.second);
659
660            // let the snoop filter know about the success of the send
661            // operation, and do it even before sending it onwards to
662            // avoid situations where atomic upward snoops sneak in
663            // between and change the filter state
664            snoopFilter->finishRequest(false, pkt->getAddr());
665
666            snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
667                                         sf_res.first);
668        } else {
669            snoop_result = forwardAtomic(pkt, slave_port_id);
670        }
671        snoop_response_cmd = snoop_result.first;
672        snoop_response_latency += snoop_result.second;
673    }
674
675    // set up a sensible default value
676    Tick response_latency = 0;
677
678    const bool sink_packet = sinkPacket(pkt);
679
680    // even if we had a snoop response, we must continue and also
681    // perform the actual request at the destination
682    PortID master_port_id = findPort(pkt->getAddr());
683
684    if (sink_packet) {
685        DPRINTF(CoherentXBar, "Not forwarding %s to %#llx\n",
686                pkt->cmdString(), pkt->getAddr());
687    } else {
688        if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) {
689            // forward the request to the appropriate destination
690            response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
691        } else {
692            // if it does not need a response we sink the packet above
693            assert(pkt->needsResponse());
694
695            pkt->makeResponse();
696        }
697    }
698
699    // stats updates for the request
700    pktCount[slave_port_id][master_port_id]++;
701    pktSize[slave_port_id][master_port_id] += pkt_size;
702    transDist[pkt_cmd]++;
703
704
705    // if lower levels have replied, tell the snoop filter
706    if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) {
707        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
708    }
709
710    // if we got a response from a snooper, restore it here
711    if (snoop_response_cmd != MemCmd::InvalidCmd) {
712        // no one else should have responded
713        assert(!pkt->isResponse());
714        pkt->cmd = snoop_response_cmd;
715        response_latency = snoop_response_latency;
716    }
717
718    // add the response data
719    if (pkt->isResponse()) {
720        pkt_size = pkt->hasData() ? pkt->getSize() : 0;
721        pkt_cmd = pkt->cmdToIndex();
722
723        // stats updates
724        pktCount[slave_port_id][master_port_id]++;
725        pktSize[slave_port_id][master_port_id] += pkt_size;
726        transDist[pkt_cmd]++;
727    }
728
729    // @todo: Not setting header time
730    pkt->payloadDelay = response_latency;
731    return response_latency;
732}
733
734Tick
735CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
736{
737    DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n",
738            masterPorts[master_port_id]->name(), pkt->getAddr(),
739            pkt->cmdString());
740
741    // add the request snoop data
742    snoops++;
743
744    // forward to all snoopers
745    std::pair<MemCmd, Tick> snoop_result;
746    Tick snoop_response_latency = 0;
747    if (snoopFilter) {
748        auto sf_res = snoopFilter->lookupSnoop(pkt);
749        snoop_response_latency += sf_res.second * clockPeriod();
750        DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n",
751                __func__, masterPorts[master_port_id]->name(), pkt->cmdString(),
752                pkt->getAddr(), sf_res.first.size(), sf_res.second);
753        snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
754                                     sf_res.first);
755    } else {
756        snoop_result = forwardAtomic(pkt, InvalidPortID);
757    }
758    MemCmd snoop_response_cmd = snoop_result.first;
759    snoop_response_latency += snoop_result.second;
760
761    if (snoop_response_cmd != MemCmd::InvalidCmd)
762        pkt->cmd = snoop_response_cmd;
763
764    // add the response snoop data
765    if (pkt->isResponse()) {
766        snoops++;
767    }
768
769    // @todo: Not setting header time
770    pkt->payloadDelay = snoop_response_latency;
771    return snoop_response_latency;
772}
773
774std::pair<MemCmd, Tick>
775CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
776                           PortID source_master_port_id,
777                           const std::vector<QueuedSlavePort*>& dests)
778{
779    // the packet may be changed on snoops, record the original
780    // command to enable us to restore it between snoops so that
781    // additional snoops can take place properly
782    MemCmd orig_cmd = pkt->cmd;
783    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
784    Tick snoop_response_latency = 0;
785
786    // snoops should only happen if the system isn't bypassing caches
787    assert(!system->bypassCaches());
788
789    unsigned fanout = 0;
790
791    for (const auto& p: dests) {
792        // we could have gotten this request from a snooping master
793        // (corresponding to our own slave port that is also in
794        // snoopPorts) and should not send it back to where it came
795        // from
796        if (exclude_slave_port_id != InvalidPortID &&
797            p->getId() == exclude_slave_port_id)
798            continue;
799
800        Tick latency = p->sendAtomicSnoop(pkt);
801        fanout++;
802
803        // in contrast to a functional access, we have to keep on
804        // going as all snoopers must be updated even if we get a
805        // response
806        if (!pkt->isResponse())
807            continue;
808
809        // response from snoop agent
810        assert(pkt->cmd != orig_cmd);
811        assert(pkt->cacheResponding());
812        // should only happen once
813        assert(snoop_response_cmd == MemCmd::InvalidCmd);
814        // save response state
815        snoop_response_cmd = pkt->cmd;
816        snoop_response_latency = latency;
817
818        if (snoopFilter) {
819            // Handle responses by the snoopers and differentiate between
820            // responses to requests from above and snoops from below
821            if (source_master_port_id != InvalidPortID) {
822                // Getting a response for a snoop from below
823                assert(exclude_slave_port_id == InvalidPortID);
824                snoopFilter->updateSnoopForward(pkt, *p,
825                             *masterPorts[source_master_port_id]);
826            } else {
827                // Getting a response for a request from above
828                assert(source_master_port_id == InvalidPortID);
829                snoopFilter->updateSnoopResponse(pkt, *p,
830                             *slavePorts[exclude_slave_port_id]);
831            }
832        }
833        // restore original packet state for remaining snoopers
834        pkt->cmd = orig_cmd;
835    }
836
837    // Stats for fanout
838    snoopFanout.sample(fanout);
839
840    // the packet is restored as part of the loop and any potential
841    // snoop response is part of the returned pair
842    return std::make_pair(snoop_response_cmd, snoop_response_latency);
843}
844
845void
846CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
847{
848    if (!pkt->isPrint()) {
849        // don't do DPRINTFs on PrintReq as it clutters up the output
850        DPRINTF(CoherentXBar,
851                "recvFunctional: packet src %s addr 0x%x cmd %s\n",
852                slavePorts[slave_port_id]->name(), pkt->getAddr(),
853                pkt->cmdString());
854    }
855
856    if (!system->bypassCaches()) {
857        // forward to all snoopers but the source
858        forwardFunctional(pkt, slave_port_id);
859    }
860
861    // there is no need to continue if the snooping has found what we
862    // were looking for and the packet is already a response
863    if (!pkt->isResponse()) {
864        // since our slave ports are queued ports we need to check them as well
865        for (const auto& p : slavePorts) {
866            // if we find a response that has the data, then the
867            // downstream caches/memories may be out of date, so simply stop
868            // here
869            if (p->checkFunctional(pkt)) {
870                if (pkt->needsResponse())
871                    pkt->makeResponse();
872                return;
873            }
874        }
875
876        PortID dest_id = findPort(pkt->getAddr());
877
878        masterPorts[dest_id]->sendFunctional(pkt);
879    }
880}
881
882void
883CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
884{
885    if (!pkt->isPrint()) {
886        // don't do DPRINTFs on PrintReq as it clutters up the output
887        DPRINTF(CoherentXBar,
888                "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n",
889                masterPorts[master_port_id]->name(), pkt->getAddr(),
890                pkt->cmdString());
891    }
892
893    for (const auto& p : slavePorts) {
894        if (p->checkFunctional(pkt)) {
895            if (pkt->needsResponse())
896                pkt->makeResponse();
897            return;
898        }
899    }
900
901    // forward to all snoopers
902    forwardFunctional(pkt, InvalidPortID);
903}
904
905void
906CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
907{
908    // snoops should only happen if the system isn't bypassing caches
909    assert(!system->bypassCaches());
910
911    for (const auto& p: snoopPorts) {
912        // we could have gotten this request from a snooping master
913        // (corresponding to our own slave port that is also in
914        // snoopPorts) and should not send it back to where it came
915        // from
916        if (exclude_slave_port_id == InvalidPortID ||
917            p->getId() != exclude_slave_port_id)
918            p->sendFunctionalSnoop(pkt);
919
920        // if we get a response we are done
921        if (pkt->isResponse()) {
922            break;
923        }
924    }
925}
926
927bool
928CoherentXBar::sinkPacket(const PacketPtr pkt) const
929{
930    // we can sink the packet if:
931    // 1) the crossbar is the point of coherency, and a cache is
932    //    responding after being snooped
933    // 2) the crossbar is the point of coherency, and the packet is a
934    //    coherency packet (not a read or a write) that does not
935    //    require a response
936    // 3) this is a clean evict or clean writeback, but the packet is
937    //    found in a cache above this crossbar
938    // 4) a cache is responding after being snooped, and the packet
939    //    either does not need the block to be writable, or the cache
940    //    that has promised to respond (setting the cache responding
941    //    flag) is providing writable and thus had a Modified block,
942    //    and no further action is needed
943    return (pointOfCoherency && pkt->cacheResponding()) ||
944        (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) &&
945         !pkt->needsResponse()) ||
946        (pkt->isCleanEviction() && pkt->isBlockCached()) ||
947        (pkt->cacheResponding() &&
948         (!pkt->needsWritable() || pkt->responderHadWritable()));
949}
950
951void
952CoherentXBar::regStats()
953{
954    // register the stats of the base class and our layers
955    BaseXBar::regStats();
956    for (auto l: reqLayers)
957        l->regStats();
958    for (auto l: respLayers)
959        l->regStats();
960    for (auto l: snoopLayers)
961        l->regStats();
962
963    snoops
964        .name(name() + ".snoops")
965        .desc("Total snoops (count)")
966    ;
967
968    snoopFanout
969        .init(0, snoopPorts.size(), 1)
970        .name(name() + ".snoop_fanout")
971        .desc("Request fanout histogram")
972    ;
973}
974
975CoherentXBar *
976CoherentXBarParams::create()
977{
978    return new CoherentXBar(this);
979}
980