coherent_xbar.cc revision 11544
1/* 2 * Copyright (c) 2011-2015 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Ali Saidi 41 * Andreas Hansson 42 * William Wang 43 */ 44 45/** 46 * @file 47 * Definition of a crossbar object. 48 */ 49 50#include "base/misc.hh" 51#include "base/trace.hh" 52#include "debug/AddrRanges.hh" 53#include "debug/CoherentXBar.hh" 54#include "mem/coherent_xbar.hh" 55#include "sim/system.hh" 56 57CoherentXBar::CoherentXBar(const CoherentXBarParams *p) 58 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter), 59 snoopResponseLatency(p->snoop_response_latency), 60 pointOfCoherency(p->point_of_coherency) 61{ 62 // create the ports based on the size of the master and slave 63 // vector ports, and the presence of the default port, the ports 64 // are enumerated starting from zero 65 for (int i = 0; i < p->port_master_connection_count; ++i) { 66 std::string portName = csprintf("%s.master[%d]", name(), i); 67 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i); 68 masterPorts.push_back(bp); 69 reqLayers.push_back(new ReqLayer(*bp, *this, 70 csprintf(".reqLayer%d", i))); 71 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 72 csprintf(".snoopLayer%d", i))); 73 } 74 75 // see if we have a default slave device connected and if so add 76 // our corresponding master port 77 if (p->port_default_connection_count) { 78 defaultPortID = masterPorts.size(); 79 std::string portName = name() + ".default"; 80 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, 81 defaultPortID); 82 masterPorts.push_back(bp); 83 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d", 84 defaultPortID))); 85 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 86 csprintf(".snoopLayer%d", 87 defaultPortID))); 88 } 89 90 // create the slave ports, once again starting at zero 91 for (int i = 0; i < p->port_slave_connection_count; ++i) { 92 std::string portName = csprintf("%s.slave[%d]", name(), i); 93 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i); 94 slavePorts.push_back(bp); 95 respLayers.push_back(new RespLayer(*bp, *this, 96 csprintf(".respLayer%d", i))); 97 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this)); 98 } 99 100 clearPortCache(); 101} 102 103CoherentXBar::~CoherentXBar() 104{ 105 for (auto l: reqLayers) 106 delete l; 107 for (auto l: respLayers) 108 delete l; 109 for (auto l: snoopLayers) 110 delete l; 111 for (auto p: snoopRespPorts) 112 delete p; 113} 114 115void 116CoherentXBar::init() 117{ 118 BaseXBar::init(); 119 120 // iterate over our slave ports and determine which of our 121 // neighbouring master ports are snooping and add them as snoopers 122 for (const auto& p: slavePorts) { 123 // check if the connected master port is snooping 124 if (p->isSnooping()) { 125 DPRINTF(AddrRanges, "Adding snooping master %s\n", 126 p->getMasterPort().name()); 127 snoopPorts.push_back(p); 128 } 129 } 130 131 if (snoopPorts.empty()) 132 warn("CoherentXBar %s has no snooping ports attached!\n", name()); 133 134 // inform the snoop filter about the slave ports so it can create 135 // its own internal representation 136 if (snoopFilter) 137 snoopFilter->setSlavePorts(slavePorts); 138} 139 140bool 141CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id) 142{ 143 // determine the source port based on the id 144 SlavePort *src_port = slavePorts[slave_port_id]; 145 146 // remember if the packet is an express snoop 147 bool is_express_snoop = pkt->isExpressSnoop(); 148 bool cache_responding = pkt->cacheResponding(); 149 // for normal requests, going downstream, the express snoop flag 150 // and the cache responding flag should always be the same 151 assert(is_express_snoop == cache_responding); 152 153 // determine the destination based on the address 154 PortID master_port_id = findPort(pkt->getAddr()); 155 156 // test if the crossbar should be considered occupied for the current 157 // port, and exclude express snoops from the check 158 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) { 159 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n", 160 src_port->name(), pkt->cmdString(), pkt->getAddr()); 161 return false; 162 } 163 164 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n", 165 src_port->name(), pkt->cmdString(), is_express_snoop, 166 pkt->getAddr()); 167 168 // store size and command as they might be modified when 169 // forwarding the packet 170 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 171 unsigned int pkt_cmd = pkt->cmdToIndex(); 172 173 // store the old header delay so we can restore it if needed 174 Tick old_header_delay = pkt->headerDelay; 175 176 // a request sees the frontend and forward latency 177 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod(); 178 179 // set the packet header and payload delay 180 calcPacketTiming(pkt, xbar_delay); 181 182 // determine how long to be crossbar layer is busy 183 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 184 185 if (!system->bypassCaches()) { 186 assert(pkt->snoopDelay == 0); 187 188 // the packet is a memory-mapped request and should be 189 // broadcasted to our snoopers but the source 190 if (snoopFilter) { 191 // check with the snoop filter where to forward this packet 192 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port); 193 // the time required by a packet to be delivered through 194 // the xbar has to be charged also with to lookup latency 195 // of the snoop filter 196 pkt->headerDelay += sf_res.second * clockPeriod(); 197 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\ 198 " SF size: %i lat: %i\n", src_port->name(), 199 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(), 200 sf_res.second); 201 202 if (pkt->isEviction()) { 203 // for block-evicting packets, i.e. writebacks and 204 // clean evictions, there is no need to snoop up, as 205 // all we do is determine if the block is cached or 206 // not, instead just set it here based on the snoop 207 // filter result 208 if (!sf_res.first.empty()) 209 pkt->setBlockCached(); 210 } else { 211 forwardTiming(pkt, slave_port_id, sf_res.first); 212 } 213 } else { 214 forwardTiming(pkt, slave_port_id); 215 } 216 217 // add the snoop delay to our header delay, and then reset it 218 pkt->headerDelay += pkt->snoopDelay; 219 pkt->snoopDelay = 0; 220 } 221 222 // set up a sensible starting point 223 bool success = true; 224 225 // remember if the packet will generate a snoop response by 226 // checking if a cache set the cacheResponding flag during the 227 // snooping above 228 const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding(); 229 bool expect_response = pkt->needsResponse() && !pkt->cacheResponding(); 230 231 const bool sink_packet = sinkPacket(pkt); 232 233 // in certain cases the crossbar is responsible for responding 234 bool respond_directly = false; 235 // store the original address as an address mapper could possibly 236 // modify the address upon a sendTimingRequest 237 const Addr addr(pkt->getAddr()); 238 if (sink_packet) { 239 DPRINTF(CoherentXBar, "Not forwarding %s to %#llx\n", 240 pkt->cmdString(), pkt->getAddr()); 241 } else { 242 // determine if we are forwarding the packet, or responding to 243 // it 244 if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) { 245 // if we are passing on, rather than sinking, a packet to 246 // which an upstream cache has committed to responding, 247 // the line was needs writable, and the responding only 248 // had an Owned copy, so we need to immidiately let the 249 // downstream caches know, bypass any flow control 250 if (pkt->cacheResponding()) { 251 pkt->setExpressSnoop(); 252 } 253 254 // since it is a normal request, attempt to send the packet 255 success = masterPorts[master_port_id]->sendTimingReq(pkt); 256 } else { 257 // no need to forward, turn this packet around and respond 258 // directly 259 assert(pkt->needsResponse()); 260 261 respond_directly = true; 262 assert(!expect_snoop_resp); 263 expect_response = false; 264 } 265 } 266 267 if (snoopFilter && !system->bypassCaches()) { 268 // Let the snoop filter know about the success of the send operation 269 snoopFilter->finishRequest(!success, addr); 270 } 271 272 // check if we were successful in sending the packet onwards 273 if (!success) { 274 // express snoops should never be forced to retry 275 assert(!is_express_snoop); 276 277 // restore the header delay 278 pkt->headerDelay = old_header_delay; 279 280 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n", 281 src_port->name(), pkt->cmdString(), pkt->getAddr()); 282 283 // update the layer state and schedule an idle event 284 reqLayers[master_port_id]->failedTiming(src_port, 285 clockEdge(Cycles(1))); 286 } else { 287 // express snoops currently bypass the crossbar state entirely 288 if (!is_express_snoop) { 289 // if this particular request will generate a snoop 290 // response 291 if (expect_snoop_resp) { 292 // we should never have an exsiting request outstanding 293 assert(outstandingSnoop.find(pkt->req) == 294 outstandingSnoop.end()); 295 outstandingSnoop.insert(pkt->req); 296 297 // basic sanity check on the outstanding snoops 298 panic_if(outstandingSnoop.size() > 512, 299 "Outstanding snoop requests exceeded 512\n"); 300 } 301 302 // remember where to route the normal response to 303 if (expect_response || expect_snoop_resp) { 304 assert(routeTo.find(pkt->req) == routeTo.end()); 305 routeTo[pkt->req] = slave_port_id; 306 307 panic_if(routeTo.size() > 512, 308 "Routing table exceeds 512 packets\n"); 309 } 310 311 // update the layer state and schedule an idle event 312 reqLayers[master_port_id]->succeededTiming(packetFinishTime); 313 } 314 315 // stats updates only consider packets that were successfully sent 316 pktCount[slave_port_id][master_port_id]++; 317 pktSize[slave_port_id][master_port_id] += pkt_size; 318 transDist[pkt_cmd]++; 319 320 if (is_express_snoop) 321 snoops++; 322 } 323 324 if (sink_packet) 325 // queue the packet for deletion 326 pendingDelete.reset(pkt); 327 328 if (respond_directly) { 329 assert(pkt->needsResponse()); 330 assert(success); 331 332 pkt->makeResponse(); 333 334 if (snoopFilter && !system->bypassCaches()) { 335 // let the snoop filter inspect the response and update its state 336 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 337 } 338 339 Tick response_time = clockEdge() + pkt->headerDelay; 340 pkt->headerDelay = 0; 341 342 slavePorts[slave_port_id]->schedTimingResp(pkt, response_time); 343 } 344 345 return success; 346} 347 348bool 349CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id) 350{ 351 // determine the source port based on the id 352 MasterPort *src_port = masterPorts[master_port_id]; 353 354 // determine the destination 355 const auto route_lookup = routeTo.find(pkt->req); 356 assert(route_lookup != routeTo.end()); 357 const PortID slave_port_id = route_lookup->second; 358 assert(slave_port_id != InvalidPortID); 359 assert(slave_port_id < respLayers.size()); 360 361 // test if the crossbar should be considered occupied for the 362 // current port 363 if (!respLayers[slave_port_id]->tryTiming(src_port)) { 364 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n", 365 src_port->name(), pkt->cmdString(), pkt->getAddr()); 366 return false; 367 } 368 369 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n", 370 src_port->name(), pkt->cmdString(), pkt->getAddr()); 371 372 // store size and command as they might be modified when 373 // forwarding the packet 374 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 375 unsigned int pkt_cmd = pkt->cmdToIndex(); 376 377 // a response sees the response latency 378 Tick xbar_delay = responseLatency * clockPeriod(); 379 380 // set the packet header and payload delay 381 calcPacketTiming(pkt, xbar_delay); 382 383 // determine how long to be crossbar layer is busy 384 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 385 386 if (snoopFilter && !system->bypassCaches()) { 387 // let the snoop filter inspect the response and update its state 388 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 389 } 390 391 // send the packet through the destination slave port and pay for 392 // any outstanding header delay 393 Tick latency = pkt->headerDelay; 394 pkt->headerDelay = 0; 395 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency); 396 397 // remove the request from the routing table 398 routeTo.erase(route_lookup); 399 400 respLayers[slave_port_id]->succeededTiming(packetFinishTime); 401 402 // stats updates 403 pktCount[slave_port_id][master_port_id]++; 404 pktSize[slave_port_id][master_port_id] += pkt_size; 405 transDist[pkt_cmd]++; 406 407 return true; 408} 409 410void 411CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id) 412{ 413 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n", 414 masterPorts[master_port_id]->name(), pkt->cmdString(), 415 pkt->getAddr()); 416 417 // update stats here as we know the forwarding will succeed 418 transDist[pkt->cmdToIndex()]++; 419 snoops++; 420 421 // we should only see express snoops from caches 422 assert(pkt->isExpressSnoop()); 423 424 // set the packet header and payload delay, for now use forward latency 425 // @todo Assess the choice of latency further 426 calcPacketTiming(pkt, forwardLatency * clockPeriod()); 427 428 // remember if a cache has already committed to responding so we 429 // can see if it changes during the snooping 430 const bool cache_responding = pkt->cacheResponding(); 431 432 assert(pkt->snoopDelay == 0); 433 434 if (snoopFilter) { 435 // let the Snoop Filter work its magic and guide probing 436 auto sf_res = snoopFilter->lookupSnoop(pkt); 437 // the time required by a packet to be delivered through 438 // the xbar has to be charged also with to lookup latency 439 // of the snoop filter 440 pkt->headerDelay += sf_res.second * clockPeriod(); 441 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\ 442 " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(), 443 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(), 444 sf_res.second); 445 446 // forward to all snoopers 447 forwardTiming(pkt, InvalidPortID, sf_res.first); 448 } else { 449 forwardTiming(pkt, InvalidPortID); 450 } 451 452 // add the snoop delay to our header delay, and then reset it 453 pkt->headerDelay += pkt->snoopDelay; 454 pkt->snoopDelay = 0; 455 456 // if we can expect a response, remember how to route it 457 if (!cache_responding && pkt->cacheResponding()) { 458 assert(routeTo.find(pkt->req) == routeTo.end()); 459 routeTo[pkt->req] = master_port_id; 460 } 461 462 // a snoop request came from a connected slave device (one of 463 // our master ports), and if it is not coming from the slave 464 // device responsible for the address range something is 465 // wrong, hence there is nothing further to do as the packet 466 // would be going back to where it came from 467 assert(master_port_id == findPort(pkt->getAddr())); 468} 469 470bool 471CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id) 472{ 473 // determine the source port based on the id 474 SlavePort* src_port = slavePorts[slave_port_id]; 475 476 // get the destination 477 const auto route_lookup = routeTo.find(pkt->req); 478 assert(route_lookup != routeTo.end()); 479 const PortID dest_port_id = route_lookup->second; 480 assert(dest_port_id != InvalidPortID); 481 482 // determine if the response is from a snoop request we 483 // created as the result of a normal request (in which case it 484 // should be in the outstandingSnoop), or if we merely forwarded 485 // someone else's snoop request 486 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 487 outstandingSnoop.end(); 488 489 // test if the crossbar should be considered occupied for the 490 // current port, note that the check is bypassed if the response 491 // is being passed on as a normal response since this is occupying 492 // the response layer rather than the snoop response layer 493 if (forwardAsSnoop) { 494 assert(dest_port_id < snoopLayers.size()); 495 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) { 496 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n", 497 src_port->name(), pkt->cmdString(), pkt->getAddr()); 498 return false; 499 } 500 } else { 501 // get the master port that mirrors this slave port internally 502 MasterPort* snoop_port = snoopRespPorts[slave_port_id]; 503 assert(dest_port_id < respLayers.size()); 504 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) { 505 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n", 506 snoop_port->name(), pkt->cmdString(), pkt->getAddr()); 507 return false; 508 } 509 } 510 511 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n", 512 src_port->name(), pkt->cmdString(), pkt->getAddr()); 513 514 // store size and command as they might be modified when 515 // forwarding the packet 516 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 517 unsigned int pkt_cmd = pkt->cmdToIndex(); 518 519 // responses are never express snoops 520 assert(!pkt->isExpressSnoop()); 521 522 // a snoop response sees the snoop response latency, and if it is 523 // forwarded as a normal response, the response latency 524 Tick xbar_delay = 525 (forwardAsSnoop ? snoopResponseLatency : responseLatency) * 526 clockPeriod(); 527 528 // set the packet header and payload delay 529 calcPacketTiming(pkt, xbar_delay); 530 531 // determine how long to be crossbar layer is busy 532 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 533 534 // forward it either as a snoop response or a normal response 535 if (forwardAsSnoop) { 536 // this is a snoop response to a snoop request we forwarded, 537 // e.g. coming from the L1 and going to the L2, and it should 538 // be forwarded as a snoop response 539 540 if (snoopFilter) { 541 // update the probe filter so that it can properly track the line 542 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id], 543 *masterPorts[dest_port_id]); 544 } 545 546 bool success M5_VAR_USED = 547 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt); 548 pktCount[slave_port_id][dest_port_id]++; 549 pktSize[slave_port_id][dest_port_id] += pkt_size; 550 assert(success); 551 552 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime); 553 } else { 554 // we got a snoop response on one of our slave ports, 555 // i.e. from a coherent master connected to the crossbar, and 556 // since we created the snoop request as part of recvTiming, 557 // this should now be a normal response again 558 outstandingSnoop.erase(pkt->req); 559 560 // this is a snoop response from a coherent master, hence it 561 // should never go back to where the snoop response came from, 562 // but instead to where the original request came from 563 assert(slave_port_id != dest_port_id); 564 565 if (snoopFilter) { 566 // update the probe filter so that it can properly track the line 567 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id], 568 *slavePorts[dest_port_id]); 569 } 570 571 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\ 572 " FWD RESP\n", src_port->name(), pkt->cmdString(), 573 pkt->getAddr()); 574 575 // as a normal response, it should go back to a master through 576 // one of our slave ports, we also pay for any outstanding 577 // header latency 578 Tick latency = pkt->headerDelay; 579 pkt->headerDelay = 0; 580 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency); 581 582 respLayers[dest_port_id]->succeededTiming(packetFinishTime); 583 } 584 585 // remove the request from the routing table 586 routeTo.erase(route_lookup); 587 588 // stats updates 589 transDist[pkt_cmd]++; 590 snoops++; 591 592 return true; 593} 594 595 596void 597CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id, 598 const std::vector<QueuedSlavePort*>& dests) 599{ 600 DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__, 601 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 602 603 // snoops should only happen if the system isn't bypassing caches 604 assert(!system->bypassCaches()); 605 606 unsigned fanout = 0; 607 608 for (const auto& p: dests) { 609 // we could have gotten this request from a snooping master 610 // (corresponding to our own slave port that is also in 611 // snoopPorts) and should not send it back to where it came 612 // from 613 if (exclude_slave_port_id == InvalidPortID || 614 p->getId() != exclude_slave_port_id) { 615 // cache is not allowed to refuse snoop 616 p->sendTimingSnoopReq(pkt); 617 fanout++; 618 } 619 } 620 621 // Stats for fanout of this forward operation 622 snoopFanout.sample(fanout); 623} 624 625void 626CoherentXBar::recvReqRetry(PortID master_port_id) 627{ 628 // responses and snoop responses never block on forwarding them, 629 // so the retry will always be coming from a port to which we 630 // tried to forward a request 631 reqLayers[master_port_id]->recvRetry(); 632} 633 634Tick 635CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id) 636{ 637 DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n", 638 slavePorts[slave_port_id]->name(), pkt->getAddr(), 639 pkt->cmdString()); 640 641 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 642 unsigned int pkt_cmd = pkt->cmdToIndex(); 643 644 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 645 Tick snoop_response_latency = 0; 646 647 if (!system->bypassCaches()) { 648 // forward to all snoopers but the source 649 std::pair<MemCmd, Tick> snoop_result; 650 if (snoopFilter) { 651 // check with the snoop filter where to forward this packet 652 auto sf_res = 653 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]); 654 snoop_response_latency += sf_res.second * clockPeriod(); 655 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\ 656 " SF size: %i lat: %i\n", __func__, 657 slavePorts[slave_port_id]->name(), pkt->cmdString(), 658 pkt->getAddr(), sf_res.first.size(), sf_res.second); 659 660 // let the snoop filter know about the success of the send 661 // operation, and do it even before sending it onwards to 662 // avoid situations where atomic upward snoops sneak in 663 // between and change the filter state 664 snoopFilter->finishRequest(false, pkt->getAddr()); 665 666 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID, 667 sf_res.first); 668 } else { 669 snoop_result = forwardAtomic(pkt, slave_port_id); 670 } 671 snoop_response_cmd = snoop_result.first; 672 snoop_response_latency += snoop_result.second; 673 } 674 675 // set up a sensible default value 676 Tick response_latency = 0; 677 678 const bool sink_packet = sinkPacket(pkt); 679 680 // even if we had a snoop response, we must continue and also 681 // perform the actual request at the destination 682 PortID master_port_id = findPort(pkt->getAddr()); 683 684 if (sink_packet) { 685 DPRINTF(CoherentXBar, "Not forwarding %s to %#llx\n", 686 pkt->cmdString(), pkt->getAddr()); 687 } else { 688 if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) { 689 // forward the request to the appropriate destination 690 response_latency = masterPorts[master_port_id]->sendAtomic(pkt); 691 } else { 692 // if it does not need a response we sink the packet above 693 assert(pkt->needsResponse()); 694 695 pkt->makeResponse(); 696 } 697 } 698 699 // stats updates for the request 700 pktCount[slave_port_id][master_port_id]++; 701 pktSize[slave_port_id][master_port_id] += pkt_size; 702 transDist[pkt_cmd]++; 703 704 705 // if lower levels have replied, tell the snoop filter 706 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) { 707 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 708 } 709 710 // if we got a response from a snooper, restore it here 711 if (snoop_response_cmd != MemCmd::InvalidCmd) { 712 // no one else should have responded 713 assert(!pkt->isResponse()); 714 pkt->cmd = snoop_response_cmd; 715 response_latency = snoop_response_latency; 716 } 717 718 // add the response data 719 if (pkt->isResponse()) { 720 pkt_size = pkt->hasData() ? pkt->getSize() : 0; 721 pkt_cmd = pkt->cmdToIndex(); 722 723 // stats updates 724 pktCount[slave_port_id][master_port_id]++; 725 pktSize[slave_port_id][master_port_id] += pkt_size; 726 transDist[pkt_cmd]++; 727 } 728 729 // @todo: Not setting header time 730 pkt->payloadDelay = response_latency; 731 return response_latency; 732} 733 734Tick 735CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id) 736{ 737 DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n", 738 masterPorts[master_port_id]->name(), pkt->getAddr(), 739 pkt->cmdString()); 740 741 // add the request snoop data 742 snoops++; 743 744 // forward to all snoopers 745 std::pair<MemCmd, Tick> snoop_result; 746 Tick snoop_response_latency = 0; 747 if (snoopFilter) { 748 auto sf_res = snoopFilter->lookupSnoop(pkt); 749 snoop_response_latency += sf_res.second * clockPeriod(); 750 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n", 751 __func__, masterPorts[master_port_id]->name(), pkt->cmdString(), 752 pkt->getAddr(), sf_res.first.size(), sf_res.second); 753 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id, 754 sf_res.first); 755 } else { 756 snoop_result = forwardAtomic(pkt, InvalidPortID); 757 } 758 MemCmd snoop_response_cmd = snoop_result.first; 759 snoop_response_latency += snoop_result.second; 760 761 if (snoop_response_cmd != MemCmd::InvalidCmd) 762 pkt->cmd = snoop_response_cmd; 763 764 // add the response snoop data 765 if (pkt->isResponse()) { 766 snoops++; 767 } 768 769 // @todo: Not setting header time 770 pkt->payloadDelay = snoop_response_latency; 771 return snoop_response_latency; 772} 773 774std::pair<MemCmd, Tick> 775CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id, 776 PortID source_master_port_id, 777 const std::vector<QueuedSlavePort*>& dests) 778{ 779 // the packet may be changed on snoops, record the original 780 // command to enable us to restore it between snoops so that 781 // additional snoops can take place properly 782 MemCmd orig_cmd = pkt->cmd; 783 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 784 Tick snoop_response_latency = 0; 785 786 // snoops should only happen if the system isn't bypassing caches 787 assert(!system->bypassCaches()); 788 789 unsigned fanout = 0; 790 791 for (const auto& p: dests) { 792 // we could have gotten this request from a snooping master 793 // (corresponding to our own slave port that is also in 794 // snoopPorts) and should not send it back to where it came 795 // from 796 if (exclude_slave_port_id != InvalidPortID && 797 p->getId() == exclude_slave_port_id) 798 continue; 799 800 Tick latency = p->sendAtomicSnoop(pkt); 801 fanout++; 802 803 // in contrast to a functional access, we have to keep on 804 // going as all snoopers must be updated even if we get a 805 // response 806 if (!pkt->isResponse()) 807 continue; 808 809 // response from snoop agent 810 assert(pkt->cmd != orig_cmd); 811 assert(pkt->cacheResponding()); 812 // should only happen once 813 assert(snoop_response_cmd == MemCmd::InvalidCmd); 814 // save response state 815 snoop_response_cmd = pkt->cmd; 816 snoop_response_latency = latency; 817 818 if (snoopFilter) { 819 // Handle responses by the snoopers and differentiate between 820 // responses to requests from above and snoops from below 821 if (source_master_port_id != InvalidPortID) { 822 // Getting a response for a snoop from below 823 assert(exclude_slave_port_id == InvalidPortID); 824 snoopFilter->updateSnoopForward(pkt, *p, 825 *masterPorts[source_master_port_id]); 826 } else { 827 // Getting a response for a request from above 828 assert(source_master_port_id == InvalidPortID); 829 snoopFilter->updateSnoopResponse(pkt, *p, 830 *slavePorts[exclude_slave_port_id]); 831 } 832 } 833 // restore original packet state for remaining snoopers 834 pkt->cmd = orig_cmd; 835 } 836 837 // Stats for fanout 838 snoopFanout.sample(fanout); 839 840 // the packet is restored as part of the loop and any potential 841 // snoop response is part of the returned pair 842 return std::make_pair(snoop_response_cmd, snoop_response_latency); 843} 844 845void 846CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id) 847{ 848 if (!pkt->isPrint()) { 849 // don't do DPRINTFs on PrintReq as it clutters up the output 850 DPRINTF(CoherentXBar, 851 "recvFunctional: packet src %s addr 0x%x cmd %s\n", 852 slavePorts[slave_port_id]->name(), pkt->getAddr(), 853 pkt->cmdString()); 854 } 855 856 if (!system->bypassCaches()) { 857 // forward to all snoopers but the source 858 forwardFunctional(pkt, slave_port_id); 859 } 860 861 // there is no need to continue if the snooping has found what we 862 // were looking for and the packet is already a response 863 if (!pkt->isResponse()) { 864 // since our slave ports are queued ports we need to check them as well 865 for (const auto& p : slavePorts) { 866 // if we find a response that has the data, then the 867 // downstream caches/memories may be out of date, so simply stop 868 // here 869 if (p->checkFunctional(pkt)) { 870 if (pkt->needsResponse()) 871 pkt->makeResponse(); 872 return; 873 } 874 } 875 876 PortID dest_id = findPort(pkt->getAddr()); 877 878 masterPorts[dest_id]->sendFunctional(pkt); 879 } 880} 881 882void 883CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id) 884{ 885 if (!pkt->isPrint()) { 886 // don't do DPRINTFs on PrintReq as it clutters up the output 887 DPRINTF(CoherentXBar, 888 "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n", 889 masterPorts[master_port_id]->name(), pkt->getAddr(), 890 pkt->cmdString()); 891 } 892 893 for (const auto& p : slavePorts) { 894 if (p->checkFunctional(pkt)) { 895 if (pkt->needsResponse()) 896 pkt->makeResponse(); 897 return; 898 } 899 } 900 901 // forward to all snoopers 902 forwardFunctional(pkt, InvalidPortID); 903} 904 905void 906CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id) 907{ 908 // snoops should only happen if the system isn't bypassing caches 909 assert(!system->bypassCaches()); 910 911 for (const auto& p: snoopPorts) { 912 // we could have gotten this request from a snooping master 913 // (corresponding to our own slave port that is also in 914 // snoopPorts) and should not send it back to where it came 915 // from 916 if (exclude_slave_port_id == InvalidPortID || 917 p->getId() != exclude_slave_port_id) 918 p->sendFunctionalSnoop(pkt); 919 920 // if we get a response we are done 921 if (pkt->isResponse()) { 922 break; 923 } 924 } 925} 926 927bool 928CoherentXBar::sinkPacket(const PacketPtr pkt) const 929{ 930 // we can sink the packet if: 931 // 1) the crossbar is the point of coherency, and a cache is 932 // responding after being snooped 933 // 2) the crossbar is the point of coherency, and the packet is a 934 // coherency packet (not a read or a write) that does not 935 // require a response 936 // 3) this is a clean evict or clean writeback, but the packet is 937 // found in a cache above this crossbar 938 // 4) a cache is responding after being snooped, and the packet 939 // either does not need the block to be writable, or the cache 940 // that has promised to respond (setting the cache responding 941 // flag) is providing writable and thus had a Modified block, 942 // and no further action is needed 943 return (pointOfCoherency && pkt->cacheResponding()) || 944 (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) && 945 !pkt->needsResponse()) || 946 (pkt->isCleanEviction() && pkt->isBlockCached()) || 947 (pkt->cacheResponding() && 948 (!pkt->needsWritable() || pkt->responderHadWritable())); 949} 950 951void 952CoherentXBar::regStats() 953{ 954 // register the stats of the base class and our layers 955 BaseXBar::regStats(); 956 for (auto l: reqLayers) 957 l->regStats(); 958 for (auto l: respLayers) 959 l->regStats(); 960 for (auto l: snoopLayers) 961 l->regStats(); 962 963 snoops 964 .name(name() + ".snoops") 965 .desc("Total snoops (count)") 966 ; 967 968 snoopFanout 969 .init(0, snoopPorts.size(), 1) 970 .name(name() + ".snoop_fanout") 971 .desc("Request fanout histogram") 972 ; 973} 974 975CoherentXBar * 976CoherentXBarParams::create() 977{ 978 return new CoherentXBar(this); 979} 980