coherent_xbar.cc revision 11334:9bd2e84abdca
1/* 2 * Copyright (c) 2011-2015 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Ali Saidi 41 * Andreas Hansson 42 * William Wang 43 */ 44 45/** 46 * @file 47 * Definition of a crossbar object. 48 */ 49 50#include "base/misc.hh" 51#include "base/trace.hh" 52#include "debug/AddrRanges.hh" 53#include "debug/CoherentXBar.hh" 54#include "mem/coherent_xbar.hh" 55#include "sim/system.hh" 56 57CoherentXBar::CoherentXBar(const CoherentXBarParams *p) 58 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter), 59 snoopResponseLatency(p->snoop_response_latency), 60 pointOfCoherency(p->point_of_coherency) 61{ 62 // create the ports based on the size of the master and slave 63 // vector ports, and the presence of the default port, the ports 64 // are enumerated starting from zero 65 for (int i = 0; i < p->port_master_connection_count; ++i) { 66 std::string portName = csprintf("%s.master[%d]", name(), i); 67 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i); 68 masterPorts.push_back(bp); 69 reqLayers.push_back(new ReqLayer(*bp, *this, 70 csprintf(".reqLayer%d", i))); 71 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 72 csprintf(".snoopLayer%d", i))); 73 } 74 75 // see if we have a default slave device connected and if so add 76 // our corresponding master port 77 if (p->port_default_connection_count) { 78 defaultPortID = masterPorts.size(); 79 std::string portName = name() + ".default"; 80 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, 81 defaultPortID); 82 masterPorts.push_back(bp); 83 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d", 84 defaultPortID))); 85 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 86 csprintf(".snoopLayer%d", 87 defaultPortID))); 88 } 89 90 // create the slave ports, once again starting at zero 91 for (int i = 0; i < p->port_slave_connection_count; ++i) { 92 std::string portName = csprintf("%s.slave[%d]", name(), i); 93 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i); 94 slavePorts.push_back(bp); 95 respLayers.push_back(new RespLayer(*bp, *this, 96 csprintf(".respLayer%d", i))); 97 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this)); 98 } 99 100 clearPortCache(); 101} 102 103CoherentXBar::~CoherentXBar() 104{ 105 for (auto l: reqLayers) 106 delete l; 107 for (auto l: respLayers) 108 delete l; 109 for (auto l: snoopLayers) 110 delete l; 111 for (auto p: snoopRespPorts) 112 delete p; 113} 114 115void 116CoherentXBar::init() 117{ 118 // the base class is responsible for determining the block size 119 BaseXBar::init(); 120 121 // iterate over our slave ports and determine which of our 122 // neighbouring master ports are snooping and add them as snoopers 123 for (const auto& p: slavePorts) { 124 // check if the connected master port is snooping 125 if (p->isSnooping()) { 126 DPRINTF(AddrRanges, "Adding snooping master %s\n", 127 p->getMasterPort().name()); 128 snoopPorts.push_back(p); 129 } 130 } 131 132 if (snoopPorts.empty()) 133 warn("CoherentXBar %s has no snooping ports attached!\n", name()); 134 135 // inform the snoop filter about the slave ports so it can create 136 // its own internal representation 137 if (snoopFilter) 138 snoopFilter->setSlavePorts(slavePorts); 139} 140 141bool 142CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id) 143{ 144 // determine the source port based on the id 145 SlavePort *src_port = slavePorts[slave_port_id]; 146 147 // remember if the packet is an express snoop 148 bool is_express_snoop = pkt->isExpressSnoop(); 149 bool cache_responding = pkt->cacheResponding(); 150 // for normal requests, going downstream, the express snoop flag 151 // and the cache responding flag should always be the same 152 assert(is_express_snoop == cache_responding); 153 154 // determine the destination based on the address 155 PortID master_port_id = findPort(pkt->getAddr()); 156 157 // test if the crossbar should be considered occupied for the current 158 // port, and exclude express snoops from the check 159 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) { 160 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n", 161 src_port->name(), pkt->cmdString(), pkt->getAddr()); 162 return false; 163 } 164 165 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n", 166 src_port->name(), pkt->cmdString(), is_express_snoop, 167 pkt->getAddr()); 168 169 // store size and command as they might be modified when 170 // forwarding the packet 171 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 172 unsigned int pkt_cmd = pkt->cmdToIndex(); 173 174 // store the old header delay so we can restore it if needed 175 Tick old_header_delay = pkt->headerDelay; 176 177 // a request sees the frontend and forward latency 178 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod(); 179 180 // set the packet header and payload delay 181 calcPacketTiming(pkt, xbar_delay); 182 183 // determine how long to be crossbar layer is busy 184 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 185 186 if (!system->bypassCaches()) { 187 assert(pkt->snoopDelay == 0); 188 189 // the packet is a memory-mapped request and should be 190 // broadcasted to our snoopers but the source 191 if (snoopFilter) { 192 // check with the snoop filter where to forward this packet 193 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port); 194 // the time required by a packet to be delivered through 195 // the xbar has to be charged also with to lookup latency 196 // of the snoop filter 197 pkt->headerDelay += sf_res.second * clockPeriod(); 198 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\ 199 " SF size: %i lat: %i\n", src_port->name(), 200 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(), 201 sf_res.second); 202 203 if (pkt->isEviction()) { 204 // for block-evicting packets, i.e. writebacks and 205 // clean evictions, there is no need to snoop up, as 206 // all we do is determine if the block is cached or 207 // not, instead just set it here based on the snoop 208 // filter result 209 if (!sf_res.first.empty()) 210 pkt->setBlockCached(); 211 } else { 212 forwardTiming(pkt, slave_port_id, sf_res.first); 213 } 214 } else { 215 forwardTiming(pkt, slave_port_id); 216 } 217 218 // add the snoop delay to our header delay, and then reset it 219 pkt->headerDelay += pkt->snoopDelay; 220 pkt->snoopDelay = 0; 221 } 222 223 // set up a sensible starting point 224 bool success = true; 225 226 // remember if the packet will generate a snoop response by 227 // checking if a cache set the cacheResponding flag during the 228 // snooping above 229 const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding(); 230 bool expect_response = pkt->needsResponse() && !pkt->cacheResponding(); 231 232 const bool sink_packet = sinkPacket(pkt); 233 234 // in certain cases the crossbar is responsible for responding 235 bool respond_directly = false; 236 237 if (sink_packet) { 238 DPRINTF(CoherentXBar, "Not forwarding %s to %#llx\n", 239 pkt->cmdString(), pkt->getAddr()); 240 } else { 241 // determine if we are forwarding the packet, or responding to 242 // it 243 if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) { 244 // if we are passing on, rather than sinking, a packet to 245 // which an upstream cache has committed to responding, 246 // the line was needs writable, and the responding only 247 // had an Owned copy, so we need to immidiately let the 248 // downstream caches know, bypass any flow control 249 if (pkt->cacheResponding()) { 250 pkt->setExpressSnoop(); 251 } 252 253 // since it is a normal request, attempt to send the packet 254 success = masterPorts[master_port_id]->sendTimingReq(pkt); 255 } else { 256 // no need to forward, turn this packet around and respond 257 // directly 258 assert(pkt->needsResponse()); 259 260 respond_directly = true; 261 assert(!expect_snoop_resp); 262 expect_response = false; 263 } 264 } 265 266 if (snoopFilter && !system->bypassCaches()) { 267 // Let the snoop filter know about the success of the send operation 268 snoopFilter->finishRequest(!success, pkt); 269 } 270 271 // check if we were successful in sending the packet onwards 272 if (!success) { 273 // express snoops should never be forced to retry 274 assert(!is_express_snoop); 275 276 // restore the header delay 277 pkt->headerDelay = old_header_delay; 278 279 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n", 280 src_port->name(), pkt->cmdString(), pkt->getAddr()); 281 282 // update the layer state and schedule an idle event 283 reqLayers[master_port_id]->failedTiming(src_port, 284 clockEdge(Cycles(1))); 285 } else { 286 // express snoops currently bypass the crossbar state entirely 287 if (!is_express_snoop) { 288 // if this particular request will generate a snoop 289 // response 290 if (expect_snoop_resp) { 291 // we should never have an exsiting request outstanding 292 assert(outstandingSnoop.find(pkt->req) == 293 outstandingSnoop.end()); 294 outstandingSnoop.insert(pkt->req); 295 296 // basic sanity check on the outstanding snoops 297 panic_if(outstandingSnoop.size() > 512, 298 "Outstanding snoop requests exceeded 512\n"); 299 } 300 301 // remember where to route the normal response to 302 if (expect_response || expect_snoop_resp) { 303 assert(routeTo.find(pkt->req) == routeTo.end()); 304 routeTo[pkt->req] = slave_port_id; 305 306 panic_if(routeTo.size() > 512, 307 "Routing table exceeds 512 packets\n"); 308 } 309 310 // update the layer state and schedule an idle event 311 reqLayers[master_port_id]->succeededTiming(packetFinishTime); 312 } 313 314 // stats updates only consider packets that were successfully sent 315 pktCount[slave_port_id][master_port_id]++; 316 pktSize[slave_port_id][master_port_id] += pkt_size; 317 transDist[pkt_cmd]++; 318 319 if (is_express_snoop) 320 snoops++; 321 } 322 323 if (sink_packet) 324 // queue the packet for deletion 325 pendingDelete.reset(pkt); 326 327 if (respond_directly) { 328 assert(pkt->needsResponse()); 329 assert(success); 330 331 pkt->makeResponse(); 332 333 if (snoopFilter && !system->bypassCaches()) { 334 // let the snoop filter inspect the response and update its state 335 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 336 } 337 338 Tick response_time = clockEdge() + pkt->headerDelay; 339 pkt->headerDelay = 0; 340 341 slavePorts[slave_port_id]->schedTimingResp(pkt, response_time); 342 } 343 344 return success; 345} 346 347bool 348CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id) 349{ 350 // determine the source port based on the id 351 MasterPort *src_port = masterPorts[master_port_id]; 352 353 // determine the destination 354 const auto route_lookup = routeTo.find(pkt->req); 355 assert(route_lookup != routeTo.end()); 356 const PortID slave_port_id = route_lookup->second; 357 assert(slave_port_id != InvalidPortID); 358 assert(slave_port_id < respLayers.size()); 359 360 // test if the crossbar should be considered occupied for the 361 // current port 362 if (!respLayers[slave_port_id]->tryTiming(src_port)) { 363 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n", 364 src_port->name(), pkt->cmdString(), pkt->getAddr()); 365 return false; 366 } 367 368 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n", 369 src_port->name(), pkt->cmdString(), pkt->getAddr()); 370 371 // store size and command as they might be modified when 372 // forwarding the packet 373 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 374 unsigned int pkt_cmd = pkt->cmdToIndex(); 375 376 // a response sees the response latency 377 Tick xbar_delay = responseLatency * clockPeriod(); 378 379 // set the packet header and payload delay 380 calcPacketTiming(pkt, xbar_delay); 381 382 // determine how long to be crossbar layer is busy 383 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 384 385 if (snoopFilter && !system->bypassCaches()) { 386 // let the snoop filter inspect the response and update its state 387 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 388 } 389 390 // send the packet through the destination slave port and pay for 391 // any outstanding header delay 392 Tick latency = pkt->headerDelay; 393 pkt->headerDelay = 0; 394 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency); 395 396 // remove the request from the routing table 397 routeTo.erase(route_lookup); 398 399 respLayers[slave_port_id]->succeededTiming(packetFinishTime); 400 401 // stats updates 402 pktCount[slave_port_id][master_port_id]++; 403 pktSize[slave_port_id][master_port_id] += pkt_size; 404 transDist[pkt_cmd]++; 405 406 return true; 407} 408 409void 410CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id) 411{ 412 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n", 413 masterPorts[master_port_id]->name(), pkt->cmdString(), 414 pkt->getAddr()); 415 416 // update stats here as we know the forwarding will succeed 417 transDist[pkt->cmdToIndex()]++; 418 snoops++; 419 420 // we should only see express snoops from caches 421 assert(pkt->isExpressSnoop()); 422 423 // set the packet header and payload delay, for now use forward latency 424 // @todo Assess the choice of latency further 425 calcPacketTiming(pkt, forwardLatency * clockPeriod()); 426 427 // remember if a cache has already committed to responding so we 428 // can see if it changes during the snooping 429 const bool cache_responding = pkt->cacheResponding(); 430 431 assert(pkt->snoopDelay == 0); 432 433 if (snoopFilter) { 434 // let the Snoop Filter work its magic and guide probing 435 auto sf_res = snoopFilter->lookupSnoop(pkt); 436 // the time required by a packet to be delivered through 437 // the xbar has to be charged also with to lookup latency 438 // of the snoop filter 439 pkt->headerDelay += sf_res.second * clockPeriod(); 440 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\ 441 " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(), 442 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(), 443 sf_res.second); 444 445 // forward to all snoopers 446 forwardTiming(pkt, InvalidPortID, sf_res.first); 447 } else { 448 forwardTiming(pkt, InvalidPortID); 449 } 450 451 // add the snoop delay to our header delay, and then reset it 452 pkt->headerDelay += pkt->snoopDelay; 453 pkt->snoopDelay = 0; 454 455 // if we can expect a response, remember how to route it 456 if (!cache_responding && pkt->cacheResponding()) { 457 assert(routeTo.find(pkt->req) == routeTo.end()); 458 routeTo[pkt->req] = master_port_id; 459 } 460 461 // a snoop request came from a connected slave device (one of 462 // our master ports), and if it is not coming from the slave 463 // device responsible for the address range something is 464 // wrong, hence there is nothing further to do as the packet 465 // would be going back to where it came from 466 assert(master_port_id == findPort(pkt->getAddr())); 467} 468 469bool 470CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id) 471{ 472 // determine the source port based on the id 473 SlavePort* src_port = slavePorts[slave_port_id]; 474 475 // get the destination 476 const auto route_lookup = routeTo.find(pkt->req); 477 assert(route_lookup != routeTo.end()); 478 const PortID dest_port_id = route_lookup->second; 479 assert(dest_port_id != InvalidPortID); 480 481 // determine if the response is from a snoop request we 482 // created as the result of a normal request (in which case it 483 // should be in the outstandingSnoop), or if we merely forwarded 484 // someone else's snoop request 485 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 486 outstandingSnoop.end(); 487 488 // test if the crossbar should be considered occupied for the 489 // current port, note that the check is bypassed if the response 490 // is being passed on as a normal response since this is occupying 491 // the response layer rather than the snoop response layer 492 if (forwardAsSnoop) { 493 assert(dest_port_id < snoopLayers.size()); 494 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) { 495 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n", 496 src_port->name(), pkt->cmdString(), pkt->getAddr()); 497 return false; 498 } 499 } else { 500 // get the master port that mirrors this slave port internally 501 MasterPort* snoop_port = snoopRespPorts[slave_port_id]; 502 assert(dest_port_id < respLayers.size()); 503 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) { 504 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n", 505 snoop_port->name(), pkt->cmdString(), pkt->getAddr()); 506 return false; 507 } 508 } 509 510 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n", 511 src_port->name(), pkt->cmdString(), pkt->getAddr()); 512 513 // store size and command as they might be modified when 514 // forwarding the packet 515 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 516 unsigned int pkt_cmd = pkt->cmdToIndex(); 517 518 // responses are never express snoops 519 assert(!pkt->isExpressSnoop()); 520 521 // a snoop response sees the snoop response latency, and if it is 522 // forwarded as a normal response, the response latency 523 Tick xbar_delay = 524 (forwardAsSnoop ? snoopResponseLatency : responseLatency) * 525 clockPeriod(); 526 527 // set the packet header and payload delay 528 calcPacketTiming(pkt, xbar_delay); 529 530 // determine how long to be crossbar layer is busy 531 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 532 533 // forward it either as a snoop response or a normal response 534 if (forwardAsSnoop) { 535 // this is a snoop response to a snoop request we forwarded, 536 // e.g. coming from the L1 and going to the L2, and it should 537 // be forwarded as a snoop response 538 539 if (snoopFilter) { 540 // update the probe filter so that it can properly track the line 541 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id], 542 *masterPorts[dest_port_id]); 543 } 544 545 bool success M5_VAR_USED = 546 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt); 547 pktCount[slave_port_id][dest_port_id]++; 548 pktSize[slave_port_id][dest_port_id] += pkt_size; 549 assert(success); 550 551 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime); 552 } else { 553 // we got a snoop response on one of our slave ports, 554 // i.e. from a coherent master connected to the crossbar, and 555 // since we created the snoop request as part of recvTiming, 556 // this should now be a normal response again 557 outstandingSnoop.erase(pkt->req); 558 559 // this is a snoop response from a coherent master, hence it 560 // should never go back to where the snoop response came from, 561 // but instead to where the original request came from 562 assert(slave_port_id != dest_port_id); 563 564 if (snoopFilter) { 565 // update the probe filter so that it can properly track the line 566 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id], 567 *slavePorts[dest_port_id]); 568 } 569 570 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\ 571 " FWD RESP\n", src_port->name(), pkt->cmdString(), 572 pkt->getAddr()); 573 574 // as a normal response, it should go back to a master through 575 // one of our slave ports, we also pay for any outstanding 576 // header latency 577 Tick latency = pkt->headerDelay; 578 pkt->headerDelay = 0; 579 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency); 580 581 respLayers[dest_port_id]->succeededTiming(packetFinishTime); 582 } 583 584 // remove the request from the routing table 585 routeTo.erase(route_lookup); 586 587 // stats updates 588 transDist[pkt_cmd]++; 589 snoops++; 590 591 return true; 592} 593 594 595void 596CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id, 597 const std::vector<QueuedSlavePort*>& dests) 598{ 599 DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__, 600 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 601 602 // snoops should only happen if the system isn't bypassing caches 603 assert(!system->bypassCaches()); 604 605 unsigned fanout = 0; 606 607 for (const auto& p: dests) { 608 // we could have gotten this request from a snooping master 609 // (corresponding to our own slave port that is also in 610 // snoopPorts) and should not send it back to where it came 611 // from 612 if (exclude_slave_port_id == InvalidPortID || 613 p->getId() != exclude_slave_port_id) { 614 // cache is not allowed to refuse snoop 615 p->sendTimingSnoopReq(pkt); 616 fanout++; 617 } 618 } 619 620 // Stats for fanout of this forward operation 621 snoopFanout.sample(fanout); 622} 623 624void 625CoherentXBar::recvReqRetry(PortID master_port_id) 626{ 627 // responses and snoop responses never block on forwarding them, 628 // so the retry will always be coming from a port to which we 629 // tried to forward a request 630 reqLayers[master_port_id]->recvRetry(); 631} 632 633Tick 634CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id) 635{ 636 DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n", 637 slavePorts[slave_port_id]->name(), pkt->getAddr(), 638 pkt->cmdString()); 639 640 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 641 unsigned int pkt_cmd = pkt->cmdToIndex(); 642 643 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 644 Tick snoop_response_latency = 0; 645 646 if (!system->bypassCaches()) { 647 // forward to all snoopers but the source 648 std::pair<MemCmd, Tick> snoop_result; 649 if (snoopFilter) { 650 // check with the snoop filter where to forward this packet 651 auto sf_res = 652 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]); 653 snoop_response_latency += sf_res.second * clockPeriod(); 654 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\ 655 " SF size: %i lat: %i\n", __func__, 656 slavePorts[slave_port_id]->name(), pkt->cmdString(), 657 pkt->getAddr(), sf_res.first.size(), sf_res.second); 658 659 // let the snoop filter know about the success of the send 660 // operation, and do it even before sending it onwards to 661 // avoid situations where atomic upward snoops sneak in 662 // between and change the filter state 663 snoopFilter->finishRequest(false, pkt); 664 665 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID, 666 sf_res.first); 667 } else { 668 snoop_result = forwardAtomic(pkt, slave_port_id); 669 } 670 snoop_response_cmd = snoop_result.first; 671 snoop_response_latency += snoop_result.second; 672 } 673 674 // set up a sensible default value 675 Tick response_latency = 0; 676 677 const bool sink_packet = sinkPacket(pkt); 678 679 // even if we had a snoop response, we must continue and also 680 // perform the actual request at the destination 681 PortID master_port_id = findPort(pkt->getAddr()); 682 683 if (sink_packet) { 684 DPRINTF(CoherentXBar, "Not forwarding %s to %#llx\n", 685 pkt->cmdString(), pkt->getAddr()); 686 } else { 687 if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) { 688 // forward the request to the appropriate destination 689 response_latency = masterPorts[master_port_id]->sendAtomic(pkt); 690 } else { 691 // if it does not need a response we sink the packet above 692 assert(pkt->needsResponse()); 693 694 pkt->makeResponse(); 695 } 696 } 697 698 // stats updates for the request 699 pktCount[slave_port_id][master_port_id]++; 700 pktSize[slave_port_id][master_port_id] += pkt_size; 701 transDist[pkt_cmd]++; 702 703 704 // if lower levels have replied, tell the snoop filter 705 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) { 706 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 707 } 708 709 // if we got a response from a snooper, restore it here 710 if (snoop_response_cmd != MemCmd::InvalidCmd) { 711 // no one else should have responded 712 assert(!pkt->isResponse()); 713 pkt->cmd = snoop_response_cmd; 714 response_latency = snoop_response_latency; 715 } 716 717 // add the response data 718 if (pkt->isResponse()) { 719 pkt_size = pkt->hasData() ? pkt->getSize() : 0; 720 pkt_cmd = pkt->cmdToIndex(); 721 722 // stats updates 723 pktCount[slave_port_id][master_port_id]++; 724 pktSize[slave_port_id][master_port_id] += pkt_size; 725 transDist[pkt_cmd]++; 726 } 727 728 // @todo: Not setting header time 729 pkt->payloadDelay = response_latency; 730 return response_latency; 731} 732 733Tick 734CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id) 735{ 736 DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n", 737 masterPorts[master_port_id]->name(), pkt->getAddr(), 738 pkt->cmdString()); 739 740 // add the request snoop data 741 snoops++; 742 743 // forward to all snoopers 744 std::pair<MemCmd, Tick> snoop_result; 745 Tick snoop_response_latency = 0; 746 if (snoopFilter) { 747 auto sf_res = snoopFilter->lookupSnoop(pkt); 748 snoop_response_latency += sf_res.second * clockPeriod(); 749 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n", 750 __func__, masterPorts[master_port_id]->name(), pkt->cmdString(), 751 pkt->getAddr(), sf_res.first.size(), sf_res.second); 752 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id, 753 sf_res.first); 754 } else { 755 snoop_result = forwardAtomic(pkt, InvalidPortID); 756 } 757 MemCmd snoop_response_cmd = snoop_result.first; 758 snoop_response_latency += snoop_result.second; 759 760 if (snoop_response_cmd != MemCmd::InvalidCmd) 761 pkt->cmd = snoop_response_cmd; 762 763 // add the response snoop data 764 if (pkt->isResponse()) { 765 snoops++; 766 } 767 768 // @todo: Not setting header time 769 pkt->payloadDelay = snoop_response_latency; 770 return snoop_response_latency; 771} 772 773std::pair<MemCmd, Tick> 774CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id, 775 PortID source_master_port_id, 776 const std::vector<QueuedSlavePort*>& dests) 777{ 778 // the packet may be changed on snoops, record the original 779 // command to enable us to restore it between snoops so that 780 // additional snoops can take place properly 781 MemCmd orig_cmd = pkt->cmd; 782 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 783 Tick snoop_response_latency = 0; 784 785 // snoops should only happen if the system isn't bypassing caches 786 assert(!system->bypassCaches()); 787 788 unsigned fanout = 0; 789 790 for (const auto& p: dests) { 791 // we could have gotten this request from a snooping master 792 // (corresponding to our own slave port that is also in 793 // snoopPorts) and should not send it back to where it came 794 // from 795 if (exclude_slave_port_id != InvalidPortID && 796 p->getId() == exclude_slave_port_id) 797 continue; 798 799 Tick latency = p->sendAtomicSnoop(pkt); 800 fanout++; 801 802 // in contrast to a functional access, we have to keep on 803 // going as all snoopers must be updated even if we get a 804 // response 805 if (!pkt->isResponse()) 806 continue; 807 808 // response from snoop agent 809 assert(pkt->cmd != orig_cmd); 810 assert(pkt->cacheResponding()); 811 // should only happen once 812 assert(snoop_response_cmd == MemCmd::InvalidCmd); 813 // save response state 814 snoop_response_cmd = pkt->cmd; 815 snoop_response_latency = latency; 816 817 if (snoopFilter) { 818 // Handle responses by the snoopers and differentiate between 819 // responses to requests from above and snoops from below 820 if (source_master_port_id != InvalidPortID) { 821 // Getting a response for a snoop from below 822 assert(exclude_slave_port_id == InvalidPortID); 823 snoopFilter->updateSnoopForward(pkt, *p, 824 *masterPorts[source_master_port_id]); 825 } else { 826 // Getting a response for a request from above 827 assert(source_master_port_id == InvalidPortID); 828 snoopFilter->updateSnoopResponse(pkt, *p, 829 *slavePorts[exclude_slave_port_id]); 830 } 831 } 832 // restore original packet state for remaining snoopers 833 pkt->cmd = orig_cmd; 834 } 835 836 // Stats for fanout 837 snoopFanout.sample(fanout); 838 839 // the packet is restored as part of the loop and any potential 840 // snoop response is part of the returned pair 841 return std::make_pair(snoop_response_cmd, snoop_response_latency); 842} 843 844void 845CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id) 846{ 847 if (!pkt->isPrint()) { 848 // don't do DPRINTFs on PrintReq as it clutters up the output 849 DPRINTF(CoherentXBar, 850 "recvFunctional: packet src %s addr 0x%x cmd %s\n", 851 slavePorts[slave_port_id]->name(), pkt->getAddr(), 852 pkt->cmdString()); 853 } 854 855 if (!system->bypassCaches()) { 856 // forward to all snoopers but the source 857 forwardFunctional(pkt, slave_port_id); 858 } 859 860 // there is no need to continue if the snooping has found what we 861 // were looking for and the packet is already a response 862 if (!pkt->isResponse()) { 863 // since our slave ports are queued ports we need to check them as well 864 for (const auto& p : slavePorts) { 865 // if we find a response that has the data, then the 866 // downstream caches/memories may be out of date, so simply stop 867 // here 868 if (p->checkFunctional(pkt)) { 869 if (pkt->needsResponse()) 870 pkt->makeResponse(); 871 return; 872 } 873 } 874 875 PortID dest_id = findPort(pkt->getAddr()); 876 877 masterPorts[dest_id]->sendFunctional(pkt); 878 } 879} 880 881void 882CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id) 883{ 884 if (!pkt->isPrint()) { 885 // don't do DPRINTFs on PrintReq as it clutters up the output 886 DPRINTF(CoherentXBar, 887 "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n", 888 masterPorts[master_port_id]->name(), pkt->getAddr(), 889 pkt->cmdString()); 890 } 891 892 for (const auto& p : slavePorts) { 893 if (p->checkFunctional(pkt)) { 894 if (pkt->needsResponse()) 895 pkt->makeResponse(); 896 return; 897 } 898 } 899 900 // forward to all snoopers 901 forwardFunctional(pkt, InvalidPortID); 902} 903 904void 905CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id) 906{ 907 // snoops should only happen if the system isn't bypassing caches 908 assert(!system->bypassCaches()); 909 910 for (const auto& p: snoopPorts) { 911 // we could have gotten this request from a snooping master 912 // (corresponding to our own slave port that is also in 913 // snoopPorts) and should not send it back to where it came 914 // from 915 if (exclude_slave_port_id == InvalidPortID || 916 p->getId() != exclude_slave_port_id) 917 p->sendFunctionalSnoop(pkt); 918 919 // if we get a response we are done 920 if (pkt->isResponse()) { 921 break; 922 } 923 } 924} 925 926bool 927CoherentXBar::sinkPacket(const PacketPtr pkt) const 928{ 929 // we can sink the packet if: 930 // 1) the crossbar is the point of coherency, and a cache is 931 // responding after being snooped 932 // 2) the crossbar is the point of coherency, and the packet is a 933 // coherency packet (not a read or a write) that does not 934 // require a response 935 // 3) this is a clean evict or clean writeback, but the packet is 936 // found in a cache above this crossbar 937 // 4) a cache is responding after being snooped, and the packet 938 // either does not need the block to be writable, or the cache 939 // that has promised to respond (setting the cache responding 940 // flag) is providing writable and thus had a Modified block, 941 // and no further action is needed 942 return (pointOfCoherency && pkt->cacheResponding()) || 943 (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) && 944 !pkt->needsResponse()) || 945 (pkt->isCleanEviction() && pkt->isBlockCached()) || 946 (pkt->cacheResponding() && 947 (!pkt->needsWritable() || pkt->responderHadWritable())); 948} 949 950void 951CoherentXBar::regStats() 952{ 953 // register the stats of the base class and our layers 954 BaseXBar::regStats(); 955 for (auto l: reqLayers) 956 l->regStats(); 957 for (auto l: respLayers) 958 l->regStats(); 959 for (auto l: snoopLayers) 960 l->regStats(); 961 962 snoops 963 .name(name() + ".snoops") 964 .desc("Total snoops (count)") 965 ; 966 967 snoopFanout 968 .init(0, snoopPorts.size(), 1) 969 .name(name() + ".snoop_fanout") 970 .desc("Request fanout histogram") 971 ; 972} 973 974CoherentXBar * 975CoherentXBarParams::create() 976{ 977 return new CoherentXBar(this); 978} 979