coherent_xbar.cc revision 11334
1/*
2 * Copyright (c) 2011-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 *          Andreas Hansson
42 *          William Wang
43 */
44
45/**
46 * @file
47 * Definition of a crossbar object.
48 */
49
50#include "base/misc.hh"
51#include "base/trace.hh"
52#include "debug/AddrRanges.hh"
53#include "debug/CoherentXBar.hh"
54#include "mem/coherent_xbar.hh"
55#include "sim/system.hh"
56
57CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
58    : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
59      snoopResponseLatency(p->snoop_response_latency),
60      pointOfCoherency(p->point_of_coherency)
61{
62    // create the ports based on the size of the master and slave
63    // vector ports, and the presence of the default port, the ports
64    // are enumerated starting from zero
65    for (int i = 0; i < p->port_master_connection_count; ++i) {
66        std::string portName = csprintf("%s.master[%d]", name(), i);
67        MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
68        masterPorts.push_back(bp);
69        reqLayers.push_back(new ReqLayer(*bp, *this,
70                                         csprintf(".reqLayer%d", i)));
71        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
72                                                 csprintf(".snoopLayer%d", i)));
73    }
74
75    // see if we have a default slave device connected and if so add
76    // our corresponding master port
77    if (p->port_default_connection_count) {
78        defaultPortID = masterPorts.size();
79        std::string portName = name() + ".default";
80        MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
81                                                   defaultPortID);
82        masterPorts.push_back(bp);
83        reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
84                                             defaultPortID)));
85        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
86                                                 csprintf(".snoopLayer%d",
87                                                          defaultPortID)));
88    }
89
90    // create the slave ports, once again starting at zero
91    for (int i = 0; i < p->port_slave_connection_count; ++i) {
92        std::string portName = csprintf("%s.slave[%d]", name(), i);
93        QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
94        slavePorts.push_back(bp);
95        respLayers.push_back(new RespLayer(*bp, *this,
96                                           csprintf(".respLayer%d", i)));
97        snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
98    }
99
100    clearPortCache();
101}
102
103CoherentXBar::~CoherentXBar()
104{
105    for (auto l: reqLayers)
106        delete l;
107    for (auto l: respLayers)
108        delete l;
109    for (auto l: snoopLayers)
110        delete l;
111    for (auto p: snoopRespPorts)
112        delete p;
113}
114
115void
116CoherentXBar::init()
117{
118    // the base class is responsible for determining the block size
119    BaseXBar::init();
120
121    // iterate over our slave ports and determine which of our
122    // neighbouring master ports are snooping and add them as snoopers
123    for (const auto& p: slavePorts) {
124        // check if the connected master port is snooping
125        if (p->isSnooping()) {
126            DPRINTF(AddrRanges, "Adding snooping master %s\n",
127                    p->getMasterPort().name());
128            snoopPorts.push_back(p);
129        }
130    }
131
132    if (snoopPorts.empty())
133        warn("CoherentXBar %s has no snooping ports attached!\n", name());
134
135    // inform the snoop filter about the slave ports so it can create
136    // its own internal representation
137    if (snoopFilter)
138        snoopFilter->setSlavePorts(slavePorts);
139}
140
141bool
142CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
143{
144    // determine the source port based on the id
145    SlavePort *src_port = slavePorts[slave_port_id];
146
147    // remember if the packet is an express snoop
148    bool is_express_snoop = pkt->isExpressSnoop();
149    bool cache_responding = pkt->cacheResponding();
150    // for normal requests, going downstream, the express snoop flag
151    // and the cache responding flag should always be the same
152    assert(is_express_snoop == cache_responding);
153
154    // determine the destination based on the address
155    PortID master_port_id = findPort(pkt->getAddr());
156
157    // test if the crossbar should be considered occupied for the current
158    // port, and exclude express snoops from the check
159    if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
160        DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n",
161                src_port->name(), pkt->cmdString(), pkt->getAddr());
162        return false;
163    }
164
165    DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n",
166            src_port->name(), pkt->cmdString(), is_express_snoop,
167            pkt->getAddr());
168
169    // store size and command as they might be modified when
170    // forwarding the packet
171    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
172    unsigned int pkt_cmd = pkt->cmdToIndex();
173
174    // store the old header delay so we can restore it if needed
175    Tick old_header_delay = pkt->headerDelay;
176
177    // a request sees the frontend and forward latency
178    Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
179
180    // set the packet header and payload delay
181    calcPacketTiming(pkt, xbar_delay);
182
183    // determine how long to be crossbar layer is busy
184    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
185
186    if (!system->bypassCaches()) {
187        assert(pkt->snoopDelay == 0);
188
189        // the packet is a memory-mapped request and should be
190        // broadcasted to our snoopers but the source
191        if (snoopFilter) {
192            // check with the snoop filter where to forward this packet
193            auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
194            // the time required by a packet to be delivered through
195            // the xbar has to be charged also with to lookup latency
196            // of the snoop filter
197            pkt->headerDelay += sf_res.second * clockPeriod();
198            DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\
199                    " SF size: %i lat: %i\n", src_port->name(),
200                    pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
201                    sf_res.second);
202
203            if (pkt->isEviction()) {
204                // for block-evicting packets, i.e. writebacks and
205                // clean evictions, there is no need to snoop up, as
206                // all we do is determine if the block is cached or
207                // not, instead just set it here based on the snoop
208                // filter result
209                if (!sf_res.first.empty())
210                    pkt->setBlockCached();
211            } else {
212                forwardTiming(pkt, slave_port_id, sf_res.first);
213            }
214        } else {
215            forwardTiming(pkt, slave_port_id);
216        }
217
218        // add the snoop delay to our header delay, and then reset it
219        pkt->headerDelay += pkt->snoopDelay;
220        pkt->snoopDelay = 0;
221    }
222
223    // set up a sensible starting point
224    bool success = true;
225
226    // remember if the packet will generate a snoop response by
227    // checking if a cache set the cacheResponding flag during the
228    // snooping above
229    const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding();
230    bool expect_response = pkt->needsResponse() && !pkt->cacheResponding();
231
232    const bool sink_packet = sinkPacket(pkt);
233
234    // in certain cases the crossbar is responsible for responding
235    bool respond_directly = false;
236
237    if (sink_packet) {
238        DPRINTF(CoherentXBar, "Not forwarding %s to %#llx\n",
239                pkt->cmdString(), pkt->getAddr());
240    } else {
241        // determine if we are forwarding the packet, or responding to
242        // it
243        if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) {
244            // if we are passing on, rather than sinking, a packet to
245            // which an upstream cache has committed to responding,
246            // the line was needs writable, and the responding only
247            // had an Owned copy, so we need to immidiately let the
248            // downstream caches know, bypass any flow control
249            if (pkt->cacheResponding()) {
250                pkt->setExpressSnoop();
251            }
252
253            // since it is a normal request, attempt to send the packet
254            success = masterPorts[master_port_id]->sendTimingReq(pkt);
255        } else {
256            // no need to forward, turn this packet around and respond
257            // directly
258            assert(pkt->needsResponse());
259
260            respond_directly = true;
261            assert(!expect_snoop_resp);
262            expect_response = false;
263        }
264    }
265
266    if (snoopFilter && !system->bypassCaches()) {
267        // Let the snoop filter know about the success of the send operation
268        snoopFilter->finishRequest(!success, pkt);
269    }
270
271    // check if we were successful in sending the packet onwards
272    if (!success)  {
273        // express snoops should never be forced to retry
274        assert(!is_express_snoop);
275
276        // restore the header delay
277        pkt->headerDelay = old_header_delay;
278
279        DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n",
280                src_port->name(), pkt->cmdString(), pkt->getAddr());
281
282        // update the layer state and schedule an idle event
283        reqLayers[master_port_id]->failedTiming(src_port,
284                                                clockEdge(Cycles(1)));
285    } else {
286        // express snoops currently bypass the crossbar state entirely
287        if (!is_express_snoop) {
288            // if this particular request will generate a snoop
289            // response
290            if (expect_snoop_resp) {
291                // we should never have an exsiting request outstanding
292                assert(outstandingSnoop.find(pkt->req) ==
293                       outstandingSnoop.end());
294                outstandingSnoop.insert(pkt->req);
295
296                // basic sanity check on the outstanding snoops
297                panic_if(outstandingSnoop.size() > 512,
298                         "Outstanding snoop requests exceeded 512\n");
299            }
300
301            // remember where to route the normal response to
302            if (expect_response || expect_snoop_resp) {
303                assert(routeTo.find(pkt->req) == routeTo.end());
304                routeTo[pkt->req] = slave_port_id;
305
306                panic_if(routeTo.size() > 512,
307                         "Routing table exceeds 512 packets\n");
308            }
309
310            // update the layer state and schedule an idle event
311            reqLayers[master_port_id]->succeededTiming(packetFinishTime);
312        }
313
314        // stats updates only consider packets that were successfully sent
315        pktCount[slave_port_id][master_port_id]++;
316        pktSize[slave_port_id][master_port_id] += pkt_size;
317        transDist[pkt_cmd]++;
318
319        if (is_express_snoop)
320            snoops++;
321    }
322
323    if (sink_packet)
324        // queue the packet for deletion
325        pendingDelete.reset(pkt);
326
327    if (respond_directly) {
328        assert(pkt->needsResponse());
329        assert(success);
330
331        pkt->makeResponse();
332
333        if (snoopFilter && !system->bypassCaches()) {
334            // let the snoop filter inspect the response and update its state
335            snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
336        }
337
338        Tick response_time = clockEdge() + pkt->headerDelay;
339        pkt->headerDelay = 0;
340
341        slavePorts[slave_port_id]->schedTimingResp(pkt, response_time);
342    }
343
344    return success;
345}
346
347bool
348CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
349{
350    // determine the source port based on the id
351    MasterPort *src_port = masterPorts[master_port_id];
352
353    // determine the destination
354    const auto route_lookup = routeTo.find(pkt->req);
355    assert(route_lookup != routeTo.end());
356    const PortID slave_port_id = route_lookup->second;
357    assert(slave_port_id != InvalidPortID);
358    assert(slave_port_id < respLayers.size());
359
360    // test if the crossbar should be considered occupied for the
361    // current port
362    if (!respLayers[slave_port_id]->tryTiming(src_port)) {
363        DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n",
364                src_port->name(), pkt->cmdString(), pkt->getAddr());
365        return false;
366    }
367
368    DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n",
369            src_port->name(), pkt->cmdString(), pkt->getAddr());
370
371    // store size and command as they might be modified when
372    // forwarding the packet
373    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
374    unsigned int pkt_cmd = pkt->cmdToIndex();
375
376    // a response sees the response latency
377    Tick xbar_delay = responseLatency * clockPeriod();
378
379    // set the packet header and payload delay
380    calcPacketTiming(pkt, xbar_delay);
381
382    // determine how long to be crossbar layer is busy
383    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
384
385    if (snoopFilter && !system->bypassCaches()) {
386        // let the snoop filter inspect the response and update its state
387        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
388    }
389
390    // send the packet through the destination slave port and pay for
391    // any outstanding header delay
392    Tick latency = pkt->headerDelay;
393    pkt->headerDelay = 0;
394    slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
395
396    // remove the request from the routing table
397    routeTo.erase(route_lookup);
398
399    respLayers[slave_port_id]->succeededTiming(packetFinishTime);
400
401    // stats updates
402    pktCount[slave_port_id][master_port_id]++;
403    pktSize[slave_port_id][master_port_id] += pkt_size;
404    transDist[pkt_cmd]++;
405
406    return true;
407}
408
409void
410CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
411{
412    DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n",
413            masterPorts[master_port_id]->name(), pkt->cmdString(),
414            pkt->getAddr());
415
416    // update stats here as we know the forwarding will succeed
417    transDist[pkt->cmdToIndex()]++;
418    snoops++;
419
420    // we should only see express snoops from caches
421    assert(pkt->isExpressSnoop());
422
423    // set the packet header and payload delay, for now use forward latency
424    // @todo Assess the choice of latency further
425    calcPacketTiming(pkt, forwardLatency * clockPeriod());
426
427    // remember if a cache has already committed to responding so we
428    // can see if it changes during the snooping
429    const bool cache_responding = pkt->cacheResponding();
430
431    assert(pkt->snoopDelay == 0);
432
433    if (snoopFilter) {
434        // let the Snoop Filter work its magic and guide probing
435        auto sf_res = snoopFilter->lookupSnoop(pkt);
436        // the time required by a packet to be delivered through
437        // the xbar has to be charged also with to lookup latency
438        // of the snoop filter
439        pkt->headerDelay += sf_res.second * clockPeriod();
440        DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\
441                " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(),
442                pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
443                sf_res.second);
444
445        // forward to all snoopers
446        forwardTiming(pkt, InvalidPortID, sf_res.first);
447    } else {
448        forwardTiming(pkt, InvalidPortID);
449    }
450
451    // add the snoop delay to our header delay, and then reset it
452    pkt->headerDelay += pkt->snoopDelay;
453    pkt->snoopDelay = 0;
454
455    // if we can expect a response, remember how to route it
456    if (!cache_responding && pkt->cacheResponding()) {
457        assert(routeTo.find(pkt->req) == routeTo.end());
458        routeTo[pkt->req] = master_port_id;
459    }
460
461    // a snoop request came from a connected slave device (one of
462    // our master ports), and if it is not coming from the slave
463    // device responsible for the address range something is
464    // wrong, hence there is nothing further to do as the packet
465    // would be going back to where it came from
466    assert(master_port_id == findPort(pkt->getAddr()));
467}
468
469bool
470CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
471{
472    // determine the source port based on the id
473    SlavePort* src_port = slavePorts[slave_port_id];
474
475    // get the destination
476    const auto route_lookup = routeTo.find(pkt->req);
477    assert(route_lookup != routeTo.end());
478    const PortID dest_port_id = route_lookup->second;
479    assert(dest_port_id != InvalidPortID);
480
481    // determine if the response is from a snoop request we
482    // created as the result of a normal request (in which case it
483    // should be in the outstandingSnoop), or if we merely forwarded
484    // someone else's snoop request
485    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
486        outstandingSnoop.end();
487
488    // test if the crossbar should be considered occupied for the
489    // current port, note that the check is bypassed if the response
490    // is being passed on as a normal response since this is occupying
491    // the response layer rather than the snoop response layer
492    if (forwardAsSnoop) {
493        assert(dest_port_id < snoopLayers.size());
494        if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
495            DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
496                    src_port->name(), pkt->cmdString(), pkt->getAddr());
497            return false;
498        }
499    } else {
500        // get the master port that mirrors this slave port internally
501        MasterPort* snoop_port = snoopRespPorts[slave_port_id];
502        assert(dest_port_id < respLayers.size());
503        if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
504            DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
505                    snoop_port->name(), pkt->cmdString(), pkt->getAddr());
506            return false;
507        }
508    }
509
510    DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n",
511            src_port->name(), pkt->cmdString(), pkt->getAddr());
512
513    // store size and command as they might be modified when
514    // forwarding the packet
515    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
516    unsigned int pkt_cmd = pkt->cmdToIndex();
517
518    // responses are never express snoops
519    assert(!pkt->isExpressSnoop());
520
521    // a snoop response sees the snoop response latency, and if it is
522    // forwarded as a normal response, the response latency
523    Tick xbar_delay =
524        (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
525        clockPeriod();
526
527    // set the packet header and payload delay
528    calcPacketTiming(pkt, xbar_delay);
529
530    // determine how long to be crossbar layer is busy
531    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
532
533    // forward it either as a snoop response or a normal response
534    if (forwardAsSnoop) {
535        // this is a snoop response to a snoop request we forwarded,
536        // e.g. coming from the L1 and going to the L2, and it should
537        // be forwarded as a snoop response
538
539        if (snoopFilter) {
540            // update the probe filter so that it can properly track the line
541            snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
542                                            *masterPorts[dest_port_id]);
543        }
544
545        bool success M5_VAR_USED =
546            masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
547        pktCount[slave_port_id][dest_port_id]++;
548        pktSize[slave_port_id][dest_port_id] += pkt_size;
549        assert(success);
550
551        snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
552    } else {
553        // we got a snoop response on one of our slave ports,
554        // i.e. from a coherent master connected to the crossbar, and
555        // since we created the snoop request as part of recvTiming,
556        // this should now be a normal response again
557        outstandingSnoop.erase(pkt->req);
558
559        // this is a snoop response from a coherent master, hence it
560        // should never go back to where the snoop response came from,
561        // but instead to where the original request came from
562        assert(slave_port_id != dest_port_id);
563
564        if (snoopFilter) {
565            // update the probe filter so that it can properly track the line
566            snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
567                                    *slavePorts[dest_port_id]);
568        }
569
570        DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\
571                " FWD RESP\n", src_port->name(), pkt->cmdString(),
572                pkt->getAddr());
573
574        // as a normal response, it should go back to a master through
575        // one of our slave ports, we also pay for any outstanding
576        // header latency
577        Tick latency = pkt->headerDelay;
578        pkt->headerDelay = 0;
579        slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);
580
581        respLayers[dest_port_id]->succeededTiming(packetFinishTime);
582    }
583
584    // remove the request from the routing table
585    routeTo.erase(route_lookup);
586
587    // stats updates
588    transDist[pkt_cmd]++;
589    snoops++;
590
591    return true;
592}
593
594
595void
596CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
597                           const std::vector<QueuedSlavePort*>& dests)
598{
599    DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__,
600            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
601
602    // snoops should only happen if the system isn't bypassing caches
603    assert(!system->bypassCaches());
604
605    unsigned fanout = 0;
606
607    for (const auto& p: dests) {
608        // we could have gotten this request from a snooping master
609        // (corresponding to our own slave port that is also in
610        // snoopPorts) and should not send it back to where it came
611        // from
612        if (exclude_slave_port_id == InvalidPortID ||
613            p->getId() != exclude_slave_port_id) {
614            // cache is not allowed to refuse snoop
615            p->sendTimingSnoopReq(pkt);
616            fanout++;
617        }
618    }
619
620    // Stats for fanout of this forward operation
621    snoopFanout.sample(fanout);
622}
623
624void
625CoherentXBar::recvReqRetry(PortID master_port_id)
626{
627    // responses and snoop responses never block on forwarding them,
628    // so the retry will always be coming from a port to which we
629    // tried to forward a request
630    reqLayers[master_port_id]->recvRetry();
631}
632
633Tick
634CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
635{
636    DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n",
637            slavePorts[slave_port_id]->name(), pkt->getAddr(),
638            pkt->cmdString());
639
640    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
641    unsigned int pkt_cmd = pkt->cmdToIndex();
642
643    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
644    Tick snoop_response_latency = 0;
645
646    if (!system->bypassCaches()) {
647        // forward to all snoopers but the source
648        std::pair<MemCmd, Tick> snoop_result;
649        if (snoopFilter) {
650            // check with the snoop filter where to forward this packet
651            auto sf_res =
652                snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
653            snoop_response_latency += sf_res.second * clockPeriod();
654            DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\
655                    " SF size: %i lat: %i\n", __func__,
656                    slavePorts[slave_port_id]->name(), pkt->cmdString(),
657                    pkt->getAddr(), sf_res.first.size(), sf_res.second);
658
659            // let the snoop filter know about the success of the send
660            // operation, and do it even before sending it onwards to
661            // avoid situations where atomic upward snoops sneak in
662            // between and change the filter state
663            snoopFilter->finishRequest(false, pkt);
664
665            snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
666                                         sf_res.first);
667        } else {
668            snoop_result = forwardAtomic(pkt, slave_port_id);
669        }
670        snoop_response_cmd = snoop_result.first;
671        snoop_response_latency += snoop_result.second;
672    }
673
674    // set up a sensible default value
675    Tick response_latency = 0;
676
677    const bool sink_packet = sinkPacket(pkt);
678
679    // even if we had a snoop response, we must continue and also
680    // perform the actual request at the destination
681    PortID master_port_id = findPort(pkt->getAddr());
682
683    if (sink_packet) {
684        DPRINTF(CoherentXBar, "Not forwarding %s to %#llx\n",
685                pkt->cmdString(), pkt->getAddr());
686    } else {
687        if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) {
688            // forward the request to the appropriate destination
689            response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
690        } else {
691            // if it does not need a response we sink the packet above
692            assert(pkt->needsResponse());
693
694            pkt->makeResponse();
695        }
696    }
697
698    // stats updates for the request
699    pktCount[slave_port_id][master_port_id]++;
700    pktSize[slave_port_id][master_port_id] += pkt_size;
701    transDist[pkt_cmd]++;
702
703
704    // if lower levels have replied, tell the snoop filter
705    if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) {
706        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
707    }
708
709    // if we got a response from a snooper, restore it here
710    if (snoop_response_cmd != MemCmd::InvalidCmd) {
711        // no one else should have responded
712        assert(!pkt->isResponse());
713        pkt->cmd = snoop_response_cmd;
714        response_latency = snoop_response_latency;
715    }
716
717    // add the response data
718    if (pkt->isResponse()) {
719        pkt_size = pkt->hasData() ? pkt->getSize() : 0;
720        pkt_cmd = pkt->cmdToIndex();
721
722        // stats updates
723        pktCount[slave_port_id][master_port_id]++;
724        pktSize[slave_port_id][master_port_id] += pkt_size;
725        transDist[pkt_cmd]++;
726    }
727
728    // @todo: Not setting header time
729    pkt->payloadDelay = response_latency;
730    return response_latency;
731}
732
733Tick
734CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
735{
736    DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n",
737            masterPorts[master_port_id]->name(), pkt->getAddr(),
738            pkt->cmdString());
739
740    // add the request snoop data
741    snoops++;
742
743    // forward to all snoopers
744    std::pair<MemCmd, Tick> snoop_result;
745    Tick snoop_response_latency = 0;
746    if (snoopFilter) {
747        auto sf_res = snoopFilter->lookupSnoop(pkt);
748        snoop_response_latency += sf_res.second * clockPeriod();
749        DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n",
750                __func__, masterPorts[master_port_id]->name(), pkt->cmdString(),
751                pkt->getAddr(), sf_res.first.size(), sf_res.second);
752        snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
753                                     sf_res.first);
754    } else {
755        snoop_result = forwardAtomic(pkt, InvalidPortID);
756    }
757    MemCmd snoop_response_cmd = snoop_result.first;
758    snoop_response_latency += snoop_result.second;
759
760    if (snoop_response_cmd != MemCmd::InvalidCmd)
761        pkt->cmd = snoop_response_cmd;
762
763    // add the response snoop data
764    if (pkt->isResponse()) {
765        snoops++;
766    }
767
768    // @todo: Not setting header time
769    pkt->payloadDelay = snoop_response_latency;
770    return snoop_response_latency;
771}
772
773std::pair<MemCmd, Tick>
774CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
775                           PortID source_master_port_id,
776                           const std::vector<QueuedSlavePort*>& dests)
777{
778    // the packet may be changed on snoops, record the original
779    // command to enable us to restore it between snoops so that
780    // additional snoops can take place properly
781    MemCmd orig_cmd = pkt->cmd;
782    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
783    Tick snoop_response_latency = 0;
784
785    // snoops should only happen if the system isn't bypassing caches
786    assert(!system->bypassCaches());
787
788    unsigned fanout = 0;
789
790    for (const auto& p: dests) {
791        // we could have gotten this request from a snooping master
792        // (corresponding to our own slave port that is also in
793        // snoopPorts) and should not send it back to where it came
794        // from
795        if (exclude_slave_port_id != InvalidPortID &&
796            p->getId() == exclude_slave_port_id)
797            continue;
798
799        Tick latency = p->sendAtomicSnoop(pkt);
800        fanout++;
801
802        // in contrast to a functional access, we have to keep on
803        // going as all snoopers must be updated even if we get a
804        // response
805        if (!pkt->isResponse())
806            continue;
807
808        // response from snoop agent
809        assert(pkt->cmd != orig_cmd);
810        assert(pkt->cacheResponding());
811        // should only happen once
812        assert(snoop_response_cmd == MemCmd::InvalidCmd);
813        // save response state
814        snoop_response_cmd = pkt->cmd;
815        snoop_response_latency = latency;
816
817        if (snoopFilter) {
818            // Handle responses by the snoopers and differentiate between
819            // responses to requests from above and snoops from below
820            if (source_master_port_id != InvalidPortID) {
821                // Getting a response for a snoop from below
822                assert(exclude_slave_port_id == InvalidPortID);
823                snoopFilter->updateSnoopForward(pkt, *p,
824                             *masterPorts[source_master_port_id]);
825            } else {
826                // Getting a response for a request from above
827                assert(source_master_port_id == InvalidPortID);
828                snoopFilter->updateSnoopResponse(pkt, *p,
829                             *slavePorts[exclude_slave_port_id]);
830            }
831        }
832        // restore original packet state for remaining snoopers
833        pkt->cmd = orig_cmd;
834    }
835
836    // Stats for fanout
837    snoopFanout.sample(fanout);
838
839    // the packet is restored as part of the loop and any potential
840    // snoop response is part of the returned pair
841    return std::make_pair(snoop_response_cmd, snoop_response_latency);
842}
843
844void
845CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
846{
847    if (!pkt->isPrint()) {
848        // don't do DPRINTFs on PrintReq as it clutters up the output
849        DPRINTF(CoherentXBar,
850                "recvFunctional: packet src %s addr 0x%x cmd %s\n",
851                slavePorts[slave_port_id]->name(), pkt->getAddr(),
852                pkt->cmdString());
853    }
854
855    if (!system->bypassCaches()) {
856        // forward to all snoopers but the source
857        forwardFunctional(pkt, slave_port_id);
858    }
859
860    // there is no need to continue if the snooping has found what we
861    // were looking for and the packet is already a response
862    if (!pkt->isResponse()) {
863        // since our slave ports are queued ports we need to check them as well
864        for (const auto& p : slavePorts) {
865            // if we find a response that has the data, then the
866            // downstream caches/memories may be out of date, so simply stop
867            // here
868            if (p->checkFunctional(pkt)) {
869                if (pkt->needsResponse())
870                    pkt->makeResponse();
871                return;
872            }
873        }
874
875        PortID dest_id = findPort(pkt->getAddr());
876
877        masterPorts[dest_id]->sendFunctional(pkt);
878    }
879}
880
881void
882CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
883{
884    if (!pkt->isPrint()) {
885        // don't do DPRINTFs on PrintReq as it clutters up the output
886        DPRINTF(CoherentXBar,
887                "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n",
888                masterPorts[master_port_id]->name(), pkt->getAddr(),
889                pkt->cmdString());
890    }
891
892    for (const auto& p : slavePorts) {
893        if (p->checkFunctional(pkt)) {
894            if (pkt->needsResponse())
895                pkt->makeResponse();
896            return;
897        }
898    }
899
900    // forward to all snoopers
901    forwardFunctional(pkt, InvalidPortID);
902}
903
904void
905CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
906{
907    // snoops should only happen if the system isn't bypassing caches
908    assert(!system->bypassCaches());
909
910    for (const auto& p: snoopPorts) {
911        // we could have gotten this request from a snooping master
912        // (corresponding to our own slave port that is also in
913        // snoopPorts) and should not send it back to where it came
914        // from
915        if (exclude_slave_port_id == InvalidPortID ||
916            p->getId() != exclude_slave_port_id)
917            p->sendFunctionalSnoop(pkt);
918
919        // if we get a response we are done
920        if (pkt->isResponse()) {
921            break;
922        }
923    }
924}
925
926bool
927CoherentXBar::sinkPacket(const PacketPtr pkt) const
928{
929    // we can sink the packet if:
930    // 1) the crossbar is the point of coherency, and a cache is
931    //    responding after being snooped
932    // 2) the crossbar is the point of coherency, and the packet is a
933    //    coherency packet (not a read or a write) that does not
934    //    require a response
935    // 3) this is a clean evict or clean writeback, but the packet is
936    //    found in a cache above this crossbar
937    // 4) a cache is responding after being snooped, and the packet
938    //    either does not need the block to be writable, or the cache
939    //    that has promised to respond (setting the cache responding
940    //    flag) is providing writable and thus had a Modified block,
941    //    and no further action is needed
942    return (pointOfCoherency && pkt->cacheResponding()) ||
943        (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) &&
944         !pkt->needsResponse()) ||
945        (pkt->isCleanEviction() && pkt->isBlockCached()) ||
946        (pkt->cacheResponding() &&
947         (!pkt->needsWritable() || pkt->responderHadWritable()));
948}
949
950void
951CoherentXBar::regStats()
952{
953    // register the stats of the base class and our layers
954    BaseXBar::regStats();
955    for (auto l: reqLayers)
956        l->regStats();
957    for (auto l: respLayers)
958        l->regStats();
959    for (auto l: snoopLayers)
960        l->regStats();
961
962    snoops
963        .name(name() + ".snoops")
964        .desc("Total snoops (count)")
965    ;
966
967    snoopFanout
968        .init(0, snoopPorts.size(), 1)
969        .name(name() + ".snoop_fanout")
970        .desc("Request fanout histogram")
971    ;
972}
973
974CoherentXBar *
975CoherentXBarParams::create()
976{
977    return new CoherentXBar(this);
978}
979