coherent_xbar.cc revision 11199:929fd978ab4e
1/* 2 * Copyright (c) 2011-2015 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Ali Saidi 41 * Andreas Hansson 42 * William Wang 43 */ 44 45/** 46 * @file 47 * Definition of a crossbar object. 48 */ 49 50#include "base/misc.hh" 51#include "base/trace.hh" 52#include "debug/AddrRanges.hh" 53#include "debug/CoherentXBar.hh" 54#include "mem/coherent_xbar.hh" 55#include "sim/system.hh" 56 57CoherentXBar::CoherentXBar(const CoherentXBarParams *p) 58 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter), 59 snoopResponseLatency(p->snoop_response_latency) 60{ 61 // create the ports based on the size of the master and slave 62 // vector ports, and the presence of the default port, the ports 63 // are enumerated starting from zero 64 for (int i = 0; i < p->port_master_connection_count; ++i) { 65 std::string portName = csprintf("%s.master[%d]", name(), i); 66 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i); 67 masterPorts.push_back(bp); 68 reqLayers.push_back(new ReqLayer(*bp, *this, 69 csprintf(".reqLayer%d", i))); 70 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 71 csprintf(".snoopLayer%d", i))); 72 } 73 74 // see if we have a default slave device connected and if so add 75 // our corresponding master port 76 if (p->port_default_connection_count) { 77 defaultPortID = masterPorts.size(); 78 std::string portName = name() + ".default"; 79 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, 80 defaultPortID); 81 masterPorts.push_back(bp); 82 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d", 83 defaultPortID))); 84 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 85 csprintf(".snoopLayer%d", 86 defaultPortID))); 87 } 88 89 // create the slave ports, once again starting at zero 90 for (int i = 0; i < p->port_slave_connection_count; ++i) { 91 std::string portName = csprintf("%s.slave[%d]", name(), i); 92 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i); 93 slavePorts.push_back(bp); 94 respLayers.push_back(new RespLayer(*bp, *this, 95 csprintf(".respLayer%d", i))); 96 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this)); 97 } 98 99 clearPortCache(); 100} 101 102CoherentXBar::~CoherentXBar() 103{ 104 for (auto l: reqLayers) 105 delete l; 106 for (auto l: respLayers) 107 delete l; 108 for (auto l: snoopLayers) 109 delete l; 110 for (auto p: snoopRespPorts) 111 delete p; 112} 113 114void 115CoherentXBar::init() 116{ 117 // the base class is responsible for determining the block size 118 BaseXBar::init(); 119 120 // iterate over our slave ports and determine which of our 121 // neighbouring master ports are snooping and add them as snoopers 122 for (const auto& p: slavePorts) { 123 // check if the connected master port is snooping 124 if (p->isSnooping()) { 125 DPRINTF(AddrRanges, "Adding snooping master %s\n", 126 p->getMasterPort().name()); 127 snoopPorts.push_back(p); 128 } 129 } 130 131 if (snoopPorts.empty()) 132 warn("CoherentXBar %s has no snooping ports attached!\n", name()); 133 134 // inform the snoop filter about the slave ports so it can create 135 // its own internal representation 136 if (snoopFilter) 137 snoopFilter->setSlavePorts(slavePorts); 138} 139 140bool 141CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id) 142{ 143 // determine the source port based on the id 144 SlavePort *src_port = slavePorts[slave_port_id]; 145 146 // remember if the packet is an express snoop 147 bool is_express_snoop = pkt->isExpressSnoop(); 148 bool is_inhibited = pkt->memInhibitAsserted(); 149 // for normal requests, going downstream, the express snoop flag 150 // and the inhibited flag should always be the same 151 assert(is_express_snoop == is_inhibited); 152 153 // determine the destination based on the address 154 PortID master_port_id = findPort(pkt->getAddr()); 155 156 // test if the crossbar should be considered occupied for the current 157 // port, and exclude express snoops from the check 158 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) { 159 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n", 160 src_port->name(), pkt->cmdString(), pkt->getAddr()); 161 return false; 162 } 163 164 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n", 165 src_port->name(), pkt->cmdString(), is_express_snoop, 166 pkt->getAddr()); 167 168 // store size and command as they might be modified when 169 // forwarding the packet 170 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 171 unsigned int pkt_cmd = pkt->cmdToIndex(); 172 173 // store the old header delay so we can restore it if needed 174 Tick old_header_delay = pkt->headerDelay; 175 176 // a request sees the frontend and forward latency 177 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod(); 178 179 // set the packet header and payload delay 180 calcPacketTiming(pkt, xbar_delay); 181 182 // determine how long to be crossbar layer is busy 183 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 184 185 if (!system->bypassCaches()) { 186 assert(pkt->snoopDelay == 0); 187 188 // the packet is a memory-mapped request and should be 189 // broadcasted to our snoopers but the source 190 if (snoopFilter) { 191 // check with the snoop filter where to forward this packet 192 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port); 193 // the time required by a packet to be delivered through 194 // the xbar has to be charged also with to lookup latency 195 // of the snoop filter 196 pkt->headerDelay += sf_res.second * clockPeriod(); 197 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\ 198 " SF size: %i lat: %i\n", src_port->name(), 199 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(), 200 sf_res.second); 201 202 if (pkt->isEviction()) { 203 // for block-evicting packets, i.e. writebacks and 204 // clean evictions, there is no need to snoop up, as 205 // all we do is determine if the block is cached or 206 // not, instead just set it here based on the snoop 207 // filter result 208 if (!sf_res.first.empty()) 209 pkt->setBlockCached(); 210 } else { 211 forwardTiming(pkt, slave_port_id, sf_res.first); 212 } 213 } else { 214 forwardTiming(pkt, slave_port_id); 215 } 216 217 // add the snoop delay to our header delay, and then reset it 218 pkt->headerDelay += pkt->snoopDelay; 219 pkt->snoopDelay = 0; 220 } 221 222 // forwardTiming snooped into peer caches of the sender, and if 223 // this is a clean evict or clean writeback, but the packet is 224 // found in a cache, do not forward it 225 if ((pkt->cmd == MemCmd::CleanEvict || 226 pkt->cmd == MemCmd::WritebackClean) && pkt->isBlockCached()) { 227 DPRINTF(CoherentXBar, "Clean evict/writeback %#llx still cached, " 228 "not forwarding\n", pkt->getAddr()); 229 230 // update the layer state and schedule an idle event 231 reqLayers[master_port_id]->succeededTiming(packetFinishTime); 232 233 // queue the packet for deletion 234 pendingDelete.reset(pkt); 235 236 return true; 237 } 238 239 // remember if the packet will generate a snoop response 240 const bool expect_snoop_resp = !is_inhibited && pkt->memInhibitAsserted(); 241 const bool expect_response = pkt->needsResponse() && 242 !pkt->memInhibitAsserted(); 243 244 // since it is a normal request, attempt to send the packet 245 bool success = masterPorts[master_port_id]->sendTimingReq(pkt); 246 247 if (snoopFilter && !system->bypassCaches()) { 248 // Let the snoop filter know about the success of the send operation 249 snoopFilter->finishRequest(!success, pkt); 250 } 251 252 // check if we were successful in sending the packet onwards 253 if (!success) { 254 // express snoops and inhibited packets should never be forced 255 // to retry 256 assert(!is_express_snoop); 257 assert(!pkt->memInhibitAsserted()); 258 259 // restore the header delay 260 pkt->headerDelay = old_header_delay; 261 262 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n", 263 src_port->name(), pkt->cmdString(), pkt->getAddr()); 264 265 // update the layer state and schedule an idle event 266 reqLayers[master_port_id]->failedTiming(src_port, 267 clockEdge(Cycles(1))); 268 } else { 269 // express snoops currently bypass the crossbar state entirely 270 if (!is_express_snoop) { 271 // if this particular request will generate a snoop 272 // response 273 if (expect_snoop_resp) { 274 // we should never have an exsiting request outstanding 275 assert(outstandingSnoop.find(pkt->req) == 276 outstandingSnoop.end()); 277 outstandingSnoop.insert(pkt->req); 278 279 // basic sanity check on the outstanding snoops 280 panic_if(outstandingSnoop.size() > 512, 281 "Outstanding snoop requests exceeded 512\n"); 282 } 283 284 // remember where to route the normal response to 285 if (expect_response || expect_snoop_resp) { 286 assert(routeTo.find(pkt->req) == routeTo.end()); 287 routeTo[pkt->req] = slave_port_id; 288 289 panic_if(routeTo.size() > 512, 290 "Routing table exceeds 512 packets\n"); 291 } 292 293 // update the layer state and schedule an idle event 294 reqLayers[master_port_id]->succeededTiming(packetFinishTime); 295 } 296 297 // stats updates only consider packets that were successfully sent 298 pktCount[slave_port_id][master_port_id]++; 299 pktSize[slave_port_id][master_port_id] += pkt_size; 300 transDist[pkt_cmd]++; 301 302 if (is_express_snoop) 303 snoops++; 304 } 305 306 return success; 307} 308 309bool 310CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id) 311{ 312 // determine the source port based on the id 313 MasterPort *src_port = masterPorts[master_port_id]; 314 315 // determine the destination 316 const auto route_lookup = routeTo.find(pkt->req); 317 assert(route_lookup != routeTo.end()); 318 const PortID slave_port_id = route_lookup->second; 319 assert(slave_port_id != InvalidPortID); 320 assert(slave_port_id < respLayers.size()); 321 322 // test if the crossbar should be considered occupied for the 323 // current port 324 if (!respLayers[slave_port_id]->tryTiming(src_port)) { 325 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n", 326 src_port->name(), pkt->cmdString(), pkt->getAddr()); 327 return false; 328 } 329 330 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n", 331 src_port->name(), pkt->cmdString(), pkt->getAddr()); 332 333 // store size and command as they might be modified when 334 // forwarding the packet 335 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 336 unsigned int pkt_cmd = pkt->cmdToIndex(); 337 338 // a response sees the response latency 339 Tick xbar_delay = responseLatency * clockPeriod(); 340 341 // set the packet header and payload delay 342 calcPacketTiming(pkt, xbar_delay); 343 344 // determine how long to be crossbar layer is busy 345 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 346 347 if (snoopFilter && !system->bypassCaches()) { 348 // let the snoop filter inspect the response and update its state 349 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 350 } 351 352 // send the packet through the destination slave port and pay for 353 // any outstanding header delay 354 Tick latency = pkt->headerDelay; 355 pkt->headerDelay = 0; 356 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency); 357 358 // remove the request from the routing table 359 routeTo.erase(route_lookup); 360 361 respLayers[slave_port_id]->succeededTiming(packetFinishTime); 362 363 // stats updates 364 pktCount[slave_port_id][master_port_id]++; 365 pktSize[slave_port_id][master_port_id] += pkt_size; 366 transDist[pkt_cmd]++; 367 368 return true; 369} 370 371void 372CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id) 373{ 374 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n", 375 masterPorts[master_port_id]->name(), pkt->cmdString(), 376 pkt->getAddr()); 377 378 // update stats here as we know the forwarding will succeed 379 transDist[pkt->cmdToIndex()]++; 380 snoops++; 381 382 // we should only see express snoops from caches 383 assert(pkt->isExpressSnoop()); 384 385 // set the packet header and payload delay, for now use forward latency 386 // @todo Assess the choice of latency further 387 calcPacketTiming(pkt, forwardLatency * clockPeriod()); 388 389 // remeber if the packet is inhibited so we can see if it changes 390 const bool is_inhibited = pkt->memInhibitAsserted(); 391 392 assert(pkt->snoopDelay == 0); 393 394 if (snoopFilter) { 395 // let the Snoop Filter work its magic and guide probing 396 auto sf_res = snoopFilter->lookupSnoop(pkt); 397 // the time required by a packet to be delivered through 398 // the xbar has to be charged also with to lookup latency 399 // of the snoop filter 400 pkt->headerDelay += sf_res.second * clockPeriod(); 401 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\ 402 " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(), 403 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(), 404 sf_res.second); 405 406 // forward to all snoopers 407 forwardTiming(pkt, InvalidPortID, sf_res.first); 408 } else { 409 forwardTiming(pkt, InvalidPortID); 410 } 411 412 // add the snoop delay to our header delay, and then reset it 413 pkt->headerDelay += pkt->snoopDelay; 414 pkt->snoopDelay = 0; 415 416 // if we can expect a response, remember how to route it 417 if (!is_inhibited && pkt->memInhibitAsserted()) { 418 assert(routeTo.find(pkt->req) == routeTo.end()); 419 routeTo[pkt->req] = master_port_id; 420 } 421 422 // a snoop request came from a connected slave device (one of 423 // our master ports), and if it is not coming from the slave 424 // device responsible for the address range something is 425 // wrong, hence there is nothing further to do as the packet 426 // would be going back to where it came from 427 assert(master_port_id == findPort(pkt->getAddr())); 428} 429 430bool 431CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id) 432{ 433 // determine the source port based on the id 434 SlavePort* src_port = slavePorts[slave_port_id]; 435 436 // get the destination 437 const auto route_lookup = routeTo.find(pkt->req); 438 assert(route_lookup != routeTo.end()); 439 const PortID dest_port_id = route_lookup->second; 440 assert(dest_port_id != InvalidPortID); 441 442 // determine if the response is from a snoop request we 443 // created as the result of a normal request (in which case it 444 // should be in the outstandingSnoop), or if we merely forwarded 445 // someone else's snoop request 446 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 447 outstandingSnoop.end(); 448 449 // test if the crossbar should be considered occupied for the 450 // current port, note that the check is bypassed if the response 451 // is being passed on as a normal response since this is occupying 452 // the response layer rather than the snoop response layer 453 if (forwardAsSnoop) { 454 assert(dest_port_id < snoopLayers.size()); 455 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) { 456 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n", 457 src_port->name(), pkt->cmdString(), pkt->getAddr()); 458 return false; 459 } 460 } else { 461 // get the master port that mirrors this slave port internally 462 MasterPort* snoop_port = snoopRespPorts[slave_port_id]; 463 assert(dest_port_id < respLayers.size()); 464 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) { 465 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n", 466 snoop_port->name(), pkt->cmdString(), pkt->getAddr()); 467 return false; 468 } 469 } 470 471 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n", 472 src_port->name(), pkt->cmdString(), pkt->getAddr()); 473 474 // store size and command as they might be modified when 475 // forwarding the packet 476 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 477 unsigned int pkt_cmd = pkt->cmdToIndex(); 478 479 // responses are never express snoops 480 assert(!pkt->isExpressSnoop()); 481 482 // a snoop response sees the snoop response latency, and if it is 483 // forwarded as a normal response, the response latency 484 Tick xbar_delay = 485 (forwardAsSnoop ? snoopResponseLatency : responseLatency) * 486 clockPeriod(); 487 488 // set the packet header and payload delay 489 calcPacketTiming(pkt, xbar_delay); 490 491 // determine how long to be crossbar layer is busy 492 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 493 494 // forward it either as a snoop response or a normal response 495 if (forwardAsSnoop) { 496 // this is a snoop response to a snoop request we forwarded, 497 // e.g. coming from the L1 and going to the L2, and it should 498 // be forwarded as a snoop response 499 500 if (snoopFilter) { 501 // update the probe filter so that it can properly track the line 502 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id], 503 *masterPorts[dest_port_id]); 504 } 505 506 bool success M5_VAR_USED = 507 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt); 508 pktCount[slave_port_id][dest_port_id]++; 509 pktSize[slave_port_id][dest_port_id] += pkt_size; 510 assert(success); 511 512 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime); 513 } else { 514 // we got a snoop response on one of our slave ports, 515 // i.e. from a coherent master connected to the crossbar, and 516 // since we created the snoop request as part of recvTiming, 517 // this should now be a normal response again 518 outstandingSnoop.erase(pkt->req); 519 520 // this is a snoop response from a coherent master, hence it 521 // should never go back to where the snoop response came from, 522 // but instead to where the original request came from 523 assert(slave_port_id != dest_port_id); 524 525 if (snoopFilter) { 526 // update the probe filter so that it can properly track the line 527 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id], 528 *slavePorts[dest_port_id]); 529 } 530 531 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\ 532 " FWD RESP\n", src_port->name(), pkt->cmdString(), 533 pkt->getAddr()); 534 535 // as a normal response, it should go back to a master through 536 // one of our slave ports, we also pay for any outstanding 537 // header latency 538 Tick latency = pkt->headerDelay; 539 pkt->headerDelay = 0; 540 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency); 541 542 respLayers[dest_port_id]->succeededTiming(packetFinishTime); 543 } 544 545 // remove the request from the routing table 546 routeTo.erase(route_lookup); 547 548 // stats updates 549 transDist[pkt_cmd]++; 550 snoops++; 551 552 return true; 553} 554 555 556void 557CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id, 558 const std::vector<QueuedSlavePort*>& dests) 559{ 560 DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__, 561 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 562 563 // snoops should only happen if the system isn't bypassing caches 564 assert(!system->bypassCaches()); 565 566 unsigned fanout = 0; 567 568 for (const auto& p: dests) { 569 // we could have gotten this request from a snooping master 570 // (corresponding to our own slave port that is also in 571 // snoopPorts) and should not send it back to where it came 572 // from 573 if (exclude_slave_port_id == InvalidPortID || 574 p->getId() != exclude_slave_port_id) { 575 // cache is not allowed to refuse snoop 576 p->sendTimingSnoopReq(pkt); 577 fanout++; 578 } 579 } 580 581 // Stats for fanout of this forward operation 582 snoopFanout.sample(fanout); 583} 584 585void 586CoherentXBar::recvReqRetry(PortID master_port_id) 587{ 588 // responses and snoop responses never block on forwarding them, 589 // so the retry will always be coming from a port to which we 590 // tried to forward a request 591 reqLayers[master_port_id]->recvRetry(); 592} 593 594Tick 595CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id) 596{ 597 DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n", 598 slavePorts[slave_port_id]->name(), pkt->getAddr(), 599 pkt->cmdString()); 600 601 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 602 unsigned int pkt_cmd = pkt->cmdToIndex(); 603 604 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 605 Tick snoop_response_latency = 0; 606 607 if (!system->bypassCaches()) { 608 // forward to all snoopers but the source 609 std::pair<MemCmd, Tick> snoop_result; 610 if (snoopFilter) { 611 // check with the snoop filter where to forward this packet 612 auto sf_res = 613 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]); 614 snoop_response_latency += sf_res.second * clockPeriod(); 615 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\ 616 " SF size: %i lat: %i\n", __func__, 617 slavePorts[slave_port_id]->name(), pkt->cmdString(), 618 pkt->getAddr(), sf_res.first.size(), sf_res.second); 619 620 // let the snoop filter know about the success of the send 621 // operation, and do it even before sending it onwards to 622 // avoid situations where atomic upward snoops sneak in 623 // between and change the filter state 624 snoopFilter->finishRequest(false, pkt); 625 626 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID, 627 sf_res.first); 628 } else { 629 snoop_result = forwardAtomic(pkt, slave_port_id); 630 } 631 snoop_response_cmd = snoop_result.first; 632 snoop_response_latency += snoop_result.second; 633 } 634 635 // forwardAtomic snooped into peer caches of the sender, and if 636 // this is a clean evict, but the packet is found in a cache, do 637 // not forward it 638 if ((pkt->cmd == MemCmd::CleanEvict || 639 pkt->cmd == MemCmd::WritebackClean) && pkt->isBlockCached()) { 640 DPRINTF(CoherentXBar, "Clean evict/writeback %#llx still cached, " 641 "not forwarding\n", pkt->getAddr()); 642 return 0; 643 } 644 645 // even if we had a snoop response, we must continue and also 646 // perform the actual request at the destination 647 PortID master_port_id = findPort(pkt->getAddr()); 648 649 // stats updates for the request 650 pktCount[slave_port_id][master_port_id]++; 651 pktSize[slave_port_id][master_port_id] += pkt_size; 652 transDist[pkt_cmd]++; 653 654 // forward the request to the appropriate destination 655 Tick response_latency = masterPorts[master_port_id]->sendAtomic(pkt); 656 657 // if lower levels have replied, tell the snoop filter 658 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) { 659 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 660 } 661 662 // if we got a response from a snooper, restore it here 663 if (snoop_response_cmd != MemCmd::InvalidCmd) { 664 // no one else should have responded 665 assert(!pkt->isResponse()); 666 pkt->cmd = snoop_response_cmd; 667 response_latency = snoop_response_latency; 668 } 669 670 // add the response data 671 if (pkt->isResponse()) { 672 pkt_size = pkt->hasData() ? pkt->getSize() : 0; 673 pkt_cmd = pkt->cmdToIndex(); 674 675 // stats updates 676 pktCount[slave_port_id][master_port_id]++; 677 pktSize[slave_port_id][master_port_id] += pkt_size; 678 transDist[pkt_cmd]++; 679 } 680 681 // @todo: Not setting header time 682 pkt->payloadDelay = response_latency; 683 return response_latency; 684} 685 686Tick 687CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id) 688{ 689 DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n", 690 masterPorts[master_port_id]->name(), pkt->getAddr(), 691 pkt->cmdString()); 692 693 // add the request snoop data 694 snoops++; 695 696 // forward to all snoopers 697 std::pair<MemCmd, Tick> snoop_result; 698 Tick snoop_response_latency = 0; 699 if (snoopFilter) { 700 auto sf_res = snoopFilter->lookupSnoop(pkt); 701 snoop_response_latency += sf_res.second * clockPeriod(); 702 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n", 703 __func__, masterPorts[master_port_id]->name(), pkt->cmdString(), 704 pkt->getAddr(), sf_res.first.size(), sf_res.second); 705 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id, 706 sf_res.first); 707 } else { 708 snoop_result = forwardAtomic(pkt, InvalidPortID); 709 } 710 MemCmd snoop_response_cmd = snoop_result.first; 711 snoop_response_latency += snoop_result.second; 712 713 if (snoop_response_cmd != MemCmd::InvalidCmd) 714 pkt->cmd = snoop_response_cmd; 715 716 // add the response snoop data 717 if (pkt->isResponse()) { 718 snoops++; 719 } 720 721 // @todo: Not setting header time 722 pkt->payloadDelay = snoop_response_latency; 723 return snoop_response_latency; 724} 725 726std::pair<MemCmd, Tick> 727CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id, 728 PortID source_master_port_id, 729 const std::vector<QueuedSlavePort*>& dests) 730{ 731 // the packet may be changed on snoops, record the original 732 // command to enable us to restore it between snoops so that 733 // additional snoops can take place properly 734 MemCmd orig_cmd = pkt->cmd; 735 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 736 Tick snoop_response_latency = 0; 737 738 // snoops should only happen if the system isn't bypassing caches 739 assert(!system->bypassCaches()); 740 741 unsigned fanout = 0; 742 743 for (const auto& p: dests) { 744 // we could have gotten this request from a snooping master 745 // (corresponding to our own slave port that is also in 746 // snoopPorts) and should not send it back to where it came 747 // from 748 if (exclude_slave_port_id != InvalidPortID && 749 p->getId() == exclude_slave_port_id) 750 continue; 751 752 Tick latency = p->sendAtomicSnoop(pkt); 753 fanout++; 754 755 // in contrast to a functional access, we have to keep on 756 // going as all snoopers must be updated even if we get a 757 // response 758 if (!pkt->isResponse()) 759 continue; 760 761 // response from snoop agent 762 assert(pkt->cmd != orig_cmd); 763 assert(pkt->memInhibitAsserted()); 764 // should only happen once 765 assert(snoop_response_cmd == MemCmd::InvalidCmd); 766 // save response state 767 snoop_response_cmd = pkt->cmd; 768 snoop_response_latency = latency; 769 770 if (snoopFilter) { 771 // Handle responses by the snoopers and differentiate between 772 // responses to requests from above and snoops from below 773 if (source_master_port_id != InvalidPortID) { 774 // Getting a response for a snoop from below 775 assert(exclude_slave_port_id == InvalidPortID); 776 snoopFilter->updateSnoopForward(pkt, *p, 777 *masterPorts[source_master_port_id]); 778 } else { 779 // Getting a response for a request from above 780 assert(source_master_port_id == InvalidPortID); 781 snoopFilter->updateSnoopResponse(pkt, *p, 782 *slavePorts[exclude_slave_port_id]); 783 } 784 } 785 // restore original packet state for remaining snoopers 786 pkt->cmd = orig_cmd; 787 } 788 789 // Stats for fanout 790 snoopFanout.sample(fanout); 791 792 // the packet is restored as part of the loop and any potential 793 // snoop response is part of the returned pair 794 return std::make_pair(snoop_response_cmd, snoop_response_latency); 795} 796 797void 798CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id) 799{ 800 if (!pkt->isPrint()) { 801 // don't do DPRINTFs on PrintReq as it clutters up the output 802 DPRINTF(CoherentXBar, 803 "recvFunctional: packet src %s addr 0x%x cmd %s\n", 804 slavePorts[slave_port_id]->name(), pkt->getAddr(), 805 pkt->cmdString()); 806 } 807 808 if (!system->bypassCaches()) { 809 // forward to all snoopers but the source 810 forwardFunctional(pkt, slave_port_id); 811 } 812 813 // there is no need to continue if the snooping has found what we 814 // were looking for and the packet is already a response 815 if (!pkt->isResponse()) { 816 // since our slave ports are queued ports we need to check them as well 817 for (const auto& p : slavePorts) { 818 // if we find a response that has the data, then the 819 // downstream caches/memories may be out of date, so simply stop 820 // here 821 if (p->checkFunctional(pkt)) { 822 if (pkt->needsResponse()) 823 pkt->makeResponse(); 824 return; 825 } 826 } 827 828 PortID dest_id = findPort(pkt->getAddr()); 829 830 masterPorts[dest_id]->sendFunctional(pkt); 831 } 832} 833 834void 835CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id) 836{ 837 if (!pkt->isPrint()) { 838 // don't do DPRINTFs on PrintReq as it clutters up the output 839 DPRINTF(CoherentXBar, 840 "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n", 841 masterPorts[master_port_id]->name(), pkt->getAddr(), 842 pkt->cmdString()); 843 } 844 845 for (const auto& p : slavePorts) { 846 if (p->checkFunctional(pkt)) { 847 if (pkt->needsResponse()) 848 pkt->makeResponse(); 849 return; 850 } 851 } 852 853 // forward to all snoopers 854 forwardFunctional(pkt, InvalidPortID); 855} 856 857void 858CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id) 859{ 860 // snoops should only happen if the system isn't bypassing caches 861 assert(!system->bypassCaches()); 862 863 for (const auto& p: snoopPorts) { 864 // we could have gotten this request from a snooping master 865 // (corresponding to our own slave port that is also in 866 // snoopPorts) and should not send it back to where it came 867 // from 868 if (exclude_slave_port_id == InvalidPortID || 869 p->getId() != exclude_slave_port_id) 870 p->sendFunctionalSnoop(pkt); 871 872 // if we get a response we are done 873 if (pkt->isResponse()) { 874 break; 875 } 876 } 877} 878 879void 880CoherentXBar::regStats() 881{ 882 // register the stats of the base class and our layers 883 BaseXBar::regStats(); 884 for (auto l: reqLayers) 885 l->regStats(); 886 for (auto l: respLayers) 887 l->regStats(); 888 for (auto l: snoopLayers) 889 l->regStats(); 890 891 snoops 892 .name(name() + ".snoops") 893 .desc("Total snoops (count)") 894 ; 895 896 snoopFanout 897 .init(0, snoopPorts.size(), 1) 898 .name(name() + ".snoop_fanout") 899 .desc("Request fanout histogram") 900 ; 901} 902 903CoherentXBar * 904CoherentXBarParams::create() 905{ 906 return new CoherentXBar(this); 907} 908