coherent_xbar.cc revision 11196:53d4f7e452d6
1/* 2 * Copyright (c) 2011-2015 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Ali Saidi 41 * Andreas Hansson 42 * William Wang 43 */ 44 45/** 46 * @file 47 * Definition of a crossbar object. 48 */ 49 50#include "base/misc.hh" 51#include "base/trace.hh" 52#include "debug/AddrRanges.hh" 53#include "debug/CoherentXBar.hh" 54#include "mem/coherent_xbar.hh" 55#include "sim/system.hh" 56 57CoherentXBar::CoherentXBar(const CoherentXBarParams *p) 58 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter), 59 snoopResponseLatency(p->snoop_response_latency) 60{ 61 // create the ports based on the size of the master and slave 62 // vector ports, and the presence of the default port, the ports 63 // are enumerated starting from zero 64 for (int i = 0; i < p->port_master_connection_count; ++i) { 65 std::string portName = csprintf("%s.master[%d]", name(), i); 66 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i); 67 masterPorts.push_back(bp); 68 reqLayers.push_back(new ReqLayer(*bp, *this, 69 csprintf(".reqLayer%d", i))); 70 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 71 csprintf(".snoopLayer%d", i))); 72 } 73 74 // see if we have a default slave device connected and if so add 75 // our corresponding master port 76 if (p->port_default_connection_count) { 77 defaultPortID = masterPorts.size(); 78 std::string portName = name() + ".default"; 79 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, 80 defaultPortID); 81 masterPorts.push_back(bp); 82 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d", 83 defaultPortID))); 84 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 85 csprintf(".snoopLayer%d", 86 defaultPortID))); 87 } 88 89 // create the slave ports, once again starting at zero 90 for (int i = 0; i < p->port_slave_connection_count; ++i) { 91 std::string portName = csprintf("%s.slave[%d]", name(), i); 92 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i); 93 slavePorts.push_back(bp); 94 respLayers.push_back(new RespLayer(*bp, *this, 95 csprintf(".respLayer%d", i))); 96 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this)); 97 } 98 99 clearPortCache(); 100} 101 102CoherentXBar::~CoherentXBar() 103{ 104 for (auto l: reqLayers) 105 delete l; 106 for (auto l: respLayers) 107 delete l; 108 for (auto l: snoopLayers) 109 delete l; 110 for (auto p: snoopRespPorts) 111 delete p; 112} 113 114void 115CoherentXBar::init() 116{ 117 // the base class is responsible for determining the block size 118 BaseXBar::init(); 119 120 // iterate over our slave ports and determine which of our 121 // neighbouring master ports are snooping and add them as snoopers 122 for (const auto& p: slavePorts) { 123 // check if the connected master port is snooping 124 if (p->isSnooping()) { 125 DPRINTF(AddrRanges, "Adding snooping master %s\n", 126 p->getMasterPort().name()); 127 snoopPorts.push_back(p); 128 } 129 } 130 131 if (snoopPorts.empty()) 132 warn("CoherentXBar %s has no snooping ports attached!\n", name()); 133 134 // inform the snoop filter about the slave ports so it can create 135 // its own internal representation 136 if (snoopFilter) 137 snoopFilter->setSlavePorts(slavePorts); 138} 139 140bool 141CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id) 142{ 143 // determine the source port based on the id 144 SlavePort *src_port = slavePorts[slave_port_id]; 145 146 // remember if the packet is an express snoop 147 bool is_express_snoop = pkt->isExpressSnoop(); 148 bool is_inhibited = pkt->memInhibitAsserted(); 149 // for normal requests, going downstream, the express snoop flag 150 // and the inhibited flag should always be the same 151 assert(is_express_snoop == is_inhibited); 152 153 // determine the destination based on the address 154 PortID master_port_id = findPort(pkt->getAddr()); 155 156 // test if the crossbar should be considered occupied for the current 157 // port, and exclude express snoops from the check 158 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) { 159 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n", 160 src_port->name(), pkt->cmdString(), pkt->getAddr()); 161 return false; 162 } 163 164 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n", 165 src_port->name(), pkt->cmdString(), is_express_snoop, 166 pkt->getAddr()); 167 168 // store size and command as they might be modified when 169 // forwarding the packet 170 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 171 unsigned int pkt_cmd = pkt->cmdToIndex(); 172 173 // store the old header delay so we can restore it if needed 174 Tick old_header_delay = pkt->headerDelay; 175 176 // a request sees the frontend and forward latency 177 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod(); 178 179 // set the packet header and payload delay 180 calcPacketTiming(pkt, xbar_delay); 181 182 // determine how long to be crossbar layer is busy 183 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 184 185 if (!system->bypassCaches()) { 186 assert(pkt->snoopDelay == 0); 187 188 // the packet is a memory-mapped request and should be 189 // broadcasted to our snoopers but the source 190 if (snoopFilter) { 191 // check with the snoop filter where to forward this packet 192 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port); 193 // the time required by a packet to be delivered through 194 // the xbar has to be charged also with to lookup latency 195 // of the snoop filter 196 pkt->headerDelay += sf_res.second * clockPeriod(); 197 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\ 198 " SF size: %i lat: %i\n", src_port->name(), 199 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(), 200 sf_res.second); 201 202 if (pkt->evictingBlock()) { 203 // for block-evicting packets, i.e. writebacks and 204 // clean evictions, there is no need to snoop up, as 205 // all we do is determine if the block is cached or 206 // not, instead just set it here based on the snoop 207 // filter result 208 if (!sf_res.first.empty()) 209 pkt->setBlockCached(); 210 } else { 211 forwardTiming(pkt, slave_port_id, sf_res.first); 212 } 213 } else { 214 forwardTiming(pkt, slave_port_id); 215 } 216 217 // add the snoop delay to our header delay, and then reset it 218 pkt->headerDelay += pkt->snoopDelay; 219 pkt->snoopDelay = 0; 220 } 221 222 // forwardTiming snooped into peer caches of the sender, and if 223 // this is a clean evict, but the packet is found in a cache, do 224 // not forward it 225 if (pkt->cmd == MemCmd::CleanEvict && pkt->isBlockCached()) { 226 DPRINTF(CoherentXBar, "recvTimingReq: Clean evict 0x%x still cached, " 227 "not forwarding\n", pkt->getAddr()); 228 229 // update the layer state and schedule an idle event 230 reqLayers[master_port_id]->succeededTiming(packetFinishTime); 231 232 // queue the packet for deletion 233 pendingDelete.reset(pkt); 234 235 return true; 236 } 237 238 // remember if the packet will generate a snoop response 239 const bool expect_snoop_resp = !is_inhibited && pkt->memInhibitAsserted(); 240 const bool expect_response = pkt->needsResponse() && 241 !pkt->memInhibitAsserted(); 242 243 // since it is a normal request, attempt to send the packet 244 bool success = masterPorts[master_port_id]->sendTimingReq(pkt); 245 246 if (snoopFilter && !system->bypassCaches()) { 247 // Let the snoop filter know about the success of the send operation 248 snoopFilter->finishRequest(!success, pkt); 249 } 250 251 // check if we were successful in sending the packet onwards 252 if (!success) { 253 // express snoops and inhibited packets should never be forced 254 // to retry 255 assert(!is_express_snoop); 256 assert(!pkt->memInhibitAsserted()); 257 258 // restore the header delay 259 pkt->headerDelay = old_header_delay; 260 261 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n", 262 src_port->name(), pkt->cmdString(), pkt->getAddr()); 263 264 // update the layer state and schedule an idle event 265 reqLayers[master_port_id]->failedTiming(src_port, 266 clockEdge(Cycles(1))); 267 } else { 268 // express snoops currently bypass the crossbar state entirely 269 if (!is_express_snoop) { 270 // if this particular request will generate a snoop 271 // response 272 if (expect_snoop_resp) { 273 // we should never have an exsiting request outstanding 274 assert(outstandingSnoop.find(pkt->req) == 275 outstandingSnoop.end()); 276 outstandingSnoop.insert(pkt->req); 277 278 // basic sanity check on the outstanding snoops 279 panic_if(outstandingSnoop.size() > 512, 280 "Outstanding snoop requests exceeded 512\n"); 281 } 282 283 // remember where to route the normal response to 284 if (expect_response || expect_snoop_resp) { 285 assert(routeTo.find(pkt->req) == routeTo.end()); 286 routeTo[pkt->req] = slave_port_id; 287 288 panic_if(routeTo.size() > 512, 289 "Routing table exceeds 512 packets\n"); 290 } 291 292 // update the layer state and schedule an idle event 293 reqLayers[master_port_id]->succeededTiming(packetFinishTime); 294 } 295 296 // stats updates only consider packets that were successfully sent 297 pktCount[slave_port_id][master_port_id]++; 298 pktSize[slave_port_id][master_port_id] += pkt_size; 299 transDist[pkt_cmd]++; 300 301 if (is_express_snoop) 302 snoops++; 303 } 304 305 return success; 306} 307 308bool 309CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id) 310{ 311 // determine the source port based on the id 312 MasterPort *src_port = masterPorts[master_port_id]; 313 314 // determine the destination 315 const auto route_lookup = routeTo.find(pkt->req); 316 assert(route_lookup != routeTo.end()); 317 const PortID slave_port_id = route_lookup->second; 318 assert(slave_port_id != InvalidPortID); 319 assert(slave_port_id < respLayers.size()); 320 321 // test if the crossbar should be considered occupied for the 322 // current port 323 if (!respLayers[slave_port_id]->tryTiming(src_port)) { 324 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n", 325 src_port->name(), pkt->cmdString(), pkt->getAddr()); 326 return false; 327 } 328 329 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n", 330 src_port->name(), pkt->cmdString(), pkt->getAddr()); 331 332 // store size and command as they might be modified when 333 // forwarding the packet 334 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 335 unsigned int pkt_cmd = pkt->cmdToIndex(); 336 337 // a response sees the response latency 338 Tick xbar_delay = responseLatency * clockPeriod(); 339 340 // set the packet header and payload delay 341 calcPacketTiming(pkt, xbar_delay); 342 343 // determine how long to be crossbar layer is busy 344 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 345 346 if (snoopFilter && !system->bypassCaches()) { 347 // let the snoop filter inspect the response and update its state 348 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 349 } 350 351 // send the packet through the destination slave port and pay for 352 // any outstanding header delay 353 Tick latency = pkt->headerDelay; 354 pkt->headerDelay = 0; 355 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency); 356 357 // remove the request from the routing table 358 routeTo.erase(route_lookup); 359 360 respLayers[slave_port_id]->succeededTiming(packetFinishTime); 361 362 // stats updates 363 pktCount[slave_port_id][master_port_id]++; 364 pktSize[slave_port_id][master_port_id] += pkt_size; 365 transDist[pkt_cmd]++; 366 367 return true; 368} 369 370void 371CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id) 372{ 373 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n", 374 masterPorts[master_port_id]->name(), pkt->cmdString(), 375 pkt->getAddr()); 376 377 // update stats here as we know the forwarding will succeed 378 transDist[pkt->cmdToIndex()]++; 379 snoops++; 380 381 // we should only see express snoops from caches 382 assert(pkt->isExpressSnoop()); 383 384 // set the packet header and payload delay, for now use forward latency 385 // @todo Assess the choice of latency further 386 calcPacketTiming(pkt, forwardLatency * clockPeriod()); 387 388 // remeber if the packet is inhibited so we can see if it changes 389 const bool is_inhibited = pkt->memInhibitAsserted(); 390 391 assert(pkt->snoopDelay == 0); 392 393 if (snoopFilter) { 394 // let the Snoop Filter work its magic and guide probing 395 auto sf_res = snoopFilter->lookupSnoop(pkt); 396 // the time required by a packet to be delivered through 397 // the xbar has to be charged also with to lookup latency 398 // of the snoop filter 399 pkt->headerDelay += sf_res.second * clockPeriod(); 400 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\ 401 " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(), 402 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(), 403 sf_res.second); 404 405 // forward to all snoopers 406 forwardTiming(pkt, InvalidPortID, sf_res.first); 407 } else { 408 forwardTiming(pkt, InvalidPortID); 409 } 410 411 // add the snoop delay to our header delay, and then reset it 412 pkt->headerDelay += pkt->snoopDelay; 413 pkt->snoopDelay = 0; 414 415 // if we can expect a response, remember how to route it 416 if (!is_inhibited && pkt->memInhibitAsserted()) { 417 assert(routeTo.find(pkt->req) == routeTo.end()); 418 routeTo[pkt->req] = master_port_id; 419 } 420 421 // a snoop request came from a connected slave device (one of 422 // our master ports), and if it is not coming from the slave 423 // device responsible for the address range something is 424 // wrong, hence there is nothing further to do as the packet 425 // would be going back to where it came from 426 assert(master_port_id == findPort(pkt->getAddr())); 427} 428 429bool 430CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id) 431{ 432 // determine the source port based on the id 433 SlavePort* src_port = slavePorts[slave_port_id]; 434 435 // get the destination 436 const auto route_lookup = routeTo.find(pkt->req); 437 assert(route_lookup != routeTo.end()); 438 const PortID dest_port_id = route_lookup->second; 439 assert(dest_port_id != InvalidPortID); 440 441 // determine if the response is from a snoop request we 442 // created as the result of a normal request (in which case it 443 // should be in the outstandingSnoop), or if we merely forwarded 444 // someone else's snoop request 445 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 446 outstandingSnoop.end(); 447 448 // test if the crossbar should be considered occupied for the 449 // current port, note that the check is bypassed if the response 450 // is being passed on as a normal response since this is occupying 451 // the response layer rather than the snoop response layer 452 if (forwardAsSnoop) { 453 assert(dest_port_id < snoopLayers.size()); 454 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) { 455 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n", 456 src_port->name(), pkt->cmdString(), pkt->getAddr()); 457 return false; 458 } 459 } else { 460 // get the master port that mirrors this slave port internally 461 MasterPort* snoop_port = snoopRespPorts[slave_port_id]; 462 assert(dest_port_id < respLayers.size()); 463 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) { 464 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n", 465 snoop_port->name(), pkt->cmdString(), pkt->getAddr()); 466 return false; 467 } 468 } 469 470 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n", 471 src_port->name(), pkt->cmdString(), pkt->getAddr()); 472 473 // store size and command as they might be modified when 474 // forwarding the packet 475 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 476 unsigned int pkt_cmd = pkt->cmdToIndex(); 477 478 // responses are never express snoops 479 assert(!pkt->isExpressSnoop()); 480 481 // a snoop response sees the snoop response latency, and if it is 482 // forwarded as a normal response, the response latency 483 Tick xbar_delay = 484 (forwardAsSnoop ? snoopResponseLatency : responseLatency) * 485 clockPeriod(); 486 487 // set the packet header and payload delay 488 calcPacketTiming(pkt, xbar_delay); 489 490 // determine how long to be crossbar layer is busy 491 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 492 493 // forward it either as a snoop response or a normal response 494 if (forwardAsSnoop) { 495 // this is a snoop response to a snoop request we forwarded, 496 // e.g. coming from the L1 and going to the L2, and it should 497 // be forwarded as a snoop response 498 499 if (snoopFilter) { 500 // update the probe filter so that it can properly track the line 501 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id], 502 *masterPorts[dest_port_id]); 503 } 504 505 bool success M5_VAR_USED = 506 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt); 507 pktCount[slave_port_id][dest_port_id]++; 508 pktSize[slave_port_id][dest_port_id] += pkt_size; 509 assert(success); 510 511 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime); 512 } else { 513 // we got a snoop response on one of our slave ports, 514 // i.e. from a coherent master connected to the crossbar, and 515 // since we created the snoop request as part of recvTiming, 516 // this should now be a normal response again 517 outstandingSnoop.erase(pkt->req); 518 519 // this is a snoop response from a coherent master, hence it 520 // should never go back to where the snoop response came from, 521 // but instead to where the original request came from 522 assert(slave_port_id != dest_port_id); 523 524 if (snoopFilter) { 525 // update the probe filter so that it can properly track the line 526 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id], 527 *slavePorts[dest_port_id]); 528 } 529 530 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\ 531 " FWD RESP\n", src_port->name(), pkt->cmdString(), 532 pkt->getAddr()); 533 534 // as a normal response, it should go back to a master through 535 // one of our slave ports, we also pay for any outstanding 536 // header latency 537 Tick latency = pkt->headerDelay; 538 pkt->headerDelay = 0; 539 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency); 540 541 respLayers[dest_port_id]->succeededTiming(packetFinishTime); 542 } 543 544 // remove the request from the routing table 545 routeTo.erase(route_lookup); 546 547 // stats updates 548 transDist[pkt_cmd]++; 549 snoops++; 550 551 return true; 552} 553 554 555void 556CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id, 557 const std::vector<QueuedSlavePort*>& dests) 558{ 559 DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__, 560 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 561 562 // snoops should only happen if the system isn't bypassing caches 563 assert(!system->bypassCaches()); 564 565 unsigned fanout = 0; 566 567 for (const auto& p: dests) { 568 // we could have gotten this request from a snooping master 569 // (corresponding to our own slave port that is also in 570 // snoopPorts) and should not send it back to where it came 571 // from 572 if (exclude_slave_port_id == InvalidPortID || 573 p->getId() != exclude_slave_port_id) { 574 // cache is not allowed to refuse snoop 575 p->sendTimingSnoopReq(pkt); 576 fanout++; 577 } 578 } 579 580 // Stats for fanout of this forward operation 581 snoopFanout.sample(fanout); 582} 583 584void 585CoherentXBar::recvReqRetry(PortID master_port_id) 586{ 587 // responses and snoop responses never block on forwarding them, 588 // so the retry will always be coming from a port to which we 589 // tried to forward a request 590 reqLayers[master_port_id]->recvRetry(); 591} 592 593Tick 594CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id) 595{ 596 DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n", 597 slavePorts[slave_port_id]->name(), pkt->getAddr(), 598 pkt->cmdString()); 599 600 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 601 unsigned int pkt_cmd = pkt->cmdToIndex(); 602 603 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 604 Tick snoop_response_latency = 0; 605 606 if (!system->bypassCaches()) { 607 // forward to all snoopers but the source 608 std::pair<MemCmd, Tick> snoop_result; 609 if (snoopFilter) { 610 // check with the snoop filter where to forward this packet 611 auto sf_res = 612 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]); 613 snoop_response_latency += sf_res.second * clockPeriod(); 614 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\ 615 " SF size: %i lat: %i\n", __func__, 616 slavePorts[slave_port_id]->name(), pkt->cmdString(), 617 pkt->getAddr(), sf_res.first.size(), sf_res.second); 618 619 // let the snoop filter know about the success of the send 620 // operation, and do it even before sending it onwards to 621 // avoid situations where atomic upward snoops sneak in 622 // between and change the filter state 623 snoopFilter->finishRequest(false, pkt); 624 625 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID, 626 sf_res.first); 627 } else { 628 snoop_result = forwardAtomic(pkt, slave_port_id); 629 } 630 snoop_response_cmd = snoop_result.first; 631 snoop_response_latency += snoop_result.second; 632 } 633 634 // forwardAtomic snooped into peer caches of the sender, and if 635 // this is a clean evict, but the packet is found in a cache, do 636 // not forward it 637 if (pkt->cmd == MemCmd::CleanEvict && pkt->isBlockCached()) { 638 DPRINTF(CoherentXBar, "recvAtomic: Clean evict 0x%x still cached, " 639 "not forwarding\n", pkt->getAddr()); 640 return 0; 641 } 642 643 // even if we had a snoop response, we must continue and also 644 // perform the actual request at the destination 645 PortID master_port_id = findPort(pkt->getAddr()); 646 647 // stats updates for the request 648 pktCount[slave_port_id][master_port_id]++; 649 pktSize[slave_port_id][master_port_id] += pkt_size; 650 transDist[pkt_cmd]++; 651 652 // forward the request to the appropriate destination 653 Tick response_latency = masterPorts[master_port_id]->sendAtomic(pkt); 654 655 // if lower levels have replied, tell the snoop filter 656 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) { 657 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 658 } 659 660 // if we got a response from a snooper, restore it here 661 if (snoop_response_cmd != MemCmd::InvalidCmd) { 662 // no one else should have responded 663 assert(!pkt->isResponse()); 664 pkt->cmd = snoop_response_cmd; 665 response_latency = snoop_response_latency; 666 } 667 668 // add the response data 669 if (pkt->isResponse()) { 670 pkt_size = pkt->hasData() ? pkt->getSize() : 0; 671 pkt_cmd = pkt->cmdToIndex(); 672 673 // stats updates 674 pktCount[slave_port_id][master_port_id]++; 675 pktSize[slave_port_id][master_port_id] += pkt_size; 676 transDist[pkt_cmd]++; 677 } 678 679 // @todo: Not setting header time 680 pkt->payloadDelay = response_latency; 681 return response_latency; 682} 683 684Tick 685CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id) 686{ 687 DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n", 688 masterPorts[master_port_id]->name(), pkt->getAddr(), 689 pkt->cmdString()); 690 691 // add the request snoop data 692 snoops++; 693 694 // forward to all snoopers 695 std::pair<MemCmd, Tick> snoop_result; 696 Tick snoop_response_latency = 0; 697 if (snoopFilter) { 698 auto sf_res = snoopFilter->lookupSnoop(pkt); 699 snoop_response_latency += sf_res.second * clockPeriod(); 700 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n", 701 __func__, masterPorts[master_port_id]->name(), pkt->cmdString(), 702 pkt->getAddr(), sf_res.first.size(), sf_res.second); 703 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id, 704 sf_res.first); 705 } else { 706 snoop_result = forwardAtomic(pkt, InvalidPortID); 707 } 708 MemCmd snoop_response_cmd = snoop_result.first; 709 snoop_response_latency += snoop_result.second; 710 711 if (snoop_response_cmd != MemCmd::InvalidCmd) 712 pkt->cmd = snoop_response_cmd; 713 714 // add the response snoop data 715 if (pkt->isResponse()) { 716 snoops++; 717 } 718 719 // @todo: Not setting header time 720 pkt->payloadDelay = snoop_response_latency; 721 return snoop_response_latency; 722} 723 724std::pair<MemCmd, Tick> 725CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id, 726 PortID source_master_port_id, 727 const std::vector<QueuedSlavePort*>& dests) 728{ 729 // the packet may be changed on snoops, record the original 730 // command to enable us to restore it between snoops so that 731 // additional snoops can take place properly 732 MemCmd orig_cmd = pkt->cmd; 733 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 734 Tick snoop_response_latency = 0; 735 736 // snoops should only happen if the system isn't bypassing caches 737 assert(!system->bypassCaches()); 738 739 unsigned fanout = 0; 740 741 for (const auto& p: dests) { 742 // we could have gotten this request from a snooping master 743 // (corresponding to our own slave port that is also in 744 // snoopPorts) and should not send it back to where it came 745 // from 746 if (exclude_slave_port_id != InvalidPortID && 747 p->getId() == exclude_slave_port_id) 748 continue; 749 750 Tick latency = p->sendAtomicSnoop(pkt); 751 fanout++; 752 753 // in contrast to a functional access, we have to keep on 754 // going as all snoopers must be updated even if we get a 755 // response 756 if (!pkt->isResponse()) 757 continue; 758 759 // response from snoop agent 760 assert(pkt->cmd != orig_cmd); 761 assert(pkt->memInhibitAsserted()); 762 // should only happen once 763 assert(snoop_response_cmd == MemCmd::InvalidCmd); 764 // save response state 765 snoop_response_cmd = pkt->cmd; 766 snoop_response_latency = latency; 767 768 if (snoopFilter) { 769 // Handle responses by the snoopers and differentiate between 770 // responses to requests from above and snoops from below 771 if (source_master_port_id != InvalidPortID) { 772 // Getting a response for a snoop from below 773 assert(exclude_slave_port_id == InvalidPortID); 774 snoopFilter->updateSnoopForward(pkt, *p, 775 *masterPorts[source_master_port_id]); 776 } else { 777 // Getting a response for a request from above 778 assert(source_master_port_id == InvalidPortID); 779 snoopFilter->updateSnoopResponse(pkt, *p, 780 *slavePorts[exclude_slave_port_id]); 781 } 782 } 783 // restore original packet state for remaining snoopers 784 pkt->cmd = orig_cmd; 785 } 786 787 // Stats for fanout 788 snoopFanout.sample(fanout); 789 790 // the packet is restored as part of the loop and any potential 791 // snoop response is part of the returned pair 792 return std::make_pair(snoop_response_cmd, snoop_response_latency); 793} 794 795void 796CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id) 797{ 798 if (!pkt->isPrint()) { 799 // don't do DPRINTFs on PrintReq as it clutters up the output 800 DPRINTF(CoherentXBar, 801 "recvFunctional: packet src %s addr 0x%x cmd %s\n", 802 slavePorts[slave_port_id]->name(), pkt->getAddr(), 803 pkt->cmdString()); 804 } 805 806 if (!system->bypassCaches()) { 807 // forward to all snoopers but the source 808 forwardFunctional(pkt, slave_port_id); 809 } 810 811 // there is no need to continue if the snooping has found what we 812 // were looking for and the packet is already a response 813 if (!pkt->isResponse()) { 814 // since our slave ports are queued ports we need to check them as well 815 for (const auto& p : slavePorts) { 816 // if we find a response that has the data, then the 817 // downstream caches/memories may be out of date, so simply stop 818 // here 819 if (p->checkFunctional(pkt)) { 820 if (pkt->needsResponse()) 821 pkt->makeResponse(); 822 return; 823 } 824 } 825 826 PortID dest_id = findPort(pkt->getAddr()); 827 828 masterPorts[dest_id]->sendFunctional(pkt); 829 } 830} 831 832void 833CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id) 834{ 835 if (!pkt->isPrint()) { 836 // don't do DPRINTFs on PrintReq as it clutters up the output 837 DPRINTF(CoherentXBar, 838 "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n", 839 masterPorts[master_port_id]->name(), pkt->getAddr(), 840 pkt->cmdString()); 841 } 842 843 for (const auto& p : slavePorts) { 844 if (p->checkFunctional(pkt)) { 845 if (pkt->needsResponse()) 846 pkt->makeResponse(); 847 return; 848 } 849 } 850 851 // forward to all snoopers 852 forwardFunctional(pkt, InvalidPortID); 853} 854 855void 856CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id) 857{ 858 // snoops should only happen if the system isn't bypassing caches 859 assert(!system->bypassCaches()); 860 861 for (const auto& p: snoopPorts) { 862 // we could have gotten this request from a snooping master 863 // (corresponding to our own slave port that is also in 864 // snoopPorts) and should not send it back to where it came 865 // from 866 if (exclude_slave_port_id == InvalidPortID || 867 p->getId() != exclude_slave_port_id) 868 p->sendFunctionalSnoop(pkt); 869 870 // if we get a response we are done 871 if (pkt->isResponse()) { 872 break; 873 } 874 } 875} 876 877void 878CoherentXBar::regStats() 879{ 880 // register the stats of the base class and our layers 881 BaseXBar::regStats(); 882 for (auto l: reqLayers) 883 l->regStats(); 884 for (auto l: respLayers) 885 l->regStats(); 886 for (auto l: snoopLayers) 887 l->regStats(); 888 889 snoops 890 .name(name() + ".snoops") 891 .desc("Total snoops (count)") 892 ; 893 894 snoopFanout 895 .init(0, snoopPorts.size(), 1) 896 .name(name() + ".snoop_fanout") 897 .desc("Request fanout histogram") 898 ; 899} 900 901CoherentXBar * 902CoherentXBarParams::create() 903{ 904 return new CoherentXBar(this); 905} 906