coherent_xbar.cc revision 11130
1/* 2 * Copyright (c) 2011-2015 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Ali Saidi 41 * Andreas Hansson 42 * William Wang 43 */ 44 45/** 46 * @file 47 * Definition of a crossbar object. 48 */ 49 50#include "base/misc.hh" 51#include "base/trace.hh" 52#include "debug/AddrRanges.hh" 53#include "debug/CoherentXBar.hh" 54#include "mem/coherent_xbar.hh" 55#include "sim/system.hh" 56 57CoherentXBar::CoherentXBar(const CoherentXBarParams *p) 58 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter), 59 snoopResponseLatency(p->snoop_response_latency) 60{ 61 // create the ports based on the size of the master and slave 62 // vector ports, and the presence of the default port, the ports 63 // are enumerated starting from zero 64 for (int i = 0; i < p->port_master_connection_count; ++i) { 65 std::string portName = csprintf("%s.master[%d]", name(), i); 66 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i); 67 masterPorts.push_back(bp); 68 reqLayers.push_back(new ReqLayer(*bp, *this, 69 csprintf(".reqLayer%d", i))); 70 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 71 csprintf(".snoopLayer%d", i))); 72 } 73 74 // see if we have a default slave device connected and if so add 75 // our corresponding master port 76 if (p->port_default_connection_count) { 77 defaultPortID = masterPorts.size(); 78 std::string portName = name() + ".default"; 79 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, 80 defaultPortID); 81 masterPorts.push_back(bp); 82 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d", 83 defaultPortID))); 84 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 85 csprintf(".snoopLayer%d", 86 defaultPortID))); 87 } 88 89 // create the slave ports, once again starting at zero 90 for (int i = 0; i < p->port_slave_connection_count; ++i) { 91 std::string portName = csprintf("%s.slave[%d]", name(), i); 92 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i); 93 slavePorts.push_back(bp); 94 respLayers.push_back(new RespLayer(*bp, *this, 95 csprintf(".respLayer%d", i))); 96 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this)); 97 } 98 99 if (snoopFilter) 100 snoopFilter->setSlavePorts(slavePorts); 101 102 clearPortCache(); 103} 104 105CoherentXBar::~CoherentXBar() 106{ 107 for (auto l: reqLayers) 108 delete l; 109 for (auto l: respLayers) 110 delete l; 111 for (auto l: snoopLayers) 112 delete l; 113 for (auto p: snoopRespPorts) 114 delete p; 115} 116 117void 118CoherentXBar::init() 119{ 120 // the base class is responsible for determining the block size 121 BaseXBar::init(); 122 123 // iterate over our slave ports and determine which of our 124 // neighbouring master ports are snooping and add them as snoopers 125 for (const auto& p: slavePorts) { 126 // check if the connected master port is snooping 127 if (p->isSnooping()) { 128 DPRINTF(AddrRanges, "Adding snooping master %s\n", 129 p->getMasterPort().name()); 130 snoopPorts.push_back(p); 131 } 132 } 133 134 if (snoopPorts.empty()) 135 warn("CoherentXBar %s has no snooping ports attached!\n", name()); 136} 137 138bool 139CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id) 140{ 141 // @todo temporary hack to deal with memory corruption issue until 142 // 4-phase transactions are complete 143 for (int x = 0; x < pendingDelete.size(); x++) 144 delete pendingDelete[x]; 145 pendingDelete.clear(); 146 147 // determine the source port based on the id 148 SlavePort *src_port = slavePorts[slave_port_id]; 149 150 // remember if the packet is an express snoop 151 bool is_express_snoop = pkt->isExpressSnoop(); 152 bool is_inhibited = pkt->memInhibitAsserted(); 153 // for normal requests, going downstream, the express snoop flag 154 // and the inhibited flag should always be the same 155 assert(is_express_snoop == is_inhibited); 156 157 // determine the destination based on the address 158 PortID master_port_id = findPort(pkt->getAddr()); 159 160 // test if the crossbar should be considered occupied for the current 161 // port, and exclude express snoops from the check 162 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) { 163 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n", 164 src_port->name(), pkt->cmdString(), pkt->getAddr()); 165 return false; 166 } 167 168 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n", 169 src_port->name(), pkt->cmdString(), is_express_snoop, 170 pkt->getAddr()); 171 172 // store size and command as they might be modified when 173 // forwarding the packet 174 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 175 unsigned int pkt_cmd = pkt->cmdToIndex(); 176 177 // store the old header delay so we can restore it if needed 178 Tick old_header_delay = pkt->headerDelay; 179 180 // a request sees the frontend and forward latency 181 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod(); 182 183 // set the packet header and payload delay 184 calcPacketTiming(pkt, xbar_delay); 185 186 // determine how long to be crossbar layer is busy 187 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 188 189 if (!system->bypassCaches()) { 190 assert(pkt->snoopDelay == 0); 191 192 // the packet is a memory-mapped request and should be 193 // broadcasted to our snoopers but the source 194 if (snoopFilter) { 195 // check with the snoop filter where to forward this packet 196 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port); 197 // the time required by a packet to be delivered through 198 // the xbar has to be charged also with to lookup latency 199 // of the snoop filter 200 pkt->headerDelay += sf_res.second * clockPeriod(); 201 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\ 202 " SF size: %i lat: %i\n", src_port->name(), 203 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(), 204 sf_res.second); 205 forwardTiming(pkt, slave_port_id, sf_res.first); 206 } else { 207 forwardTiming(pkt, slave_port_id); 208 } 209 210 // add the snoop delay to our header delay, and then reset it 211 pkt->headerDelay += pkt->snoopDelay; 212 pkt->snoopDelay = 0; 213 } 214 215 // forwardTiming snooped into peer caches of the sender, and if 216 // this is a clean evict, but the packet is found in a cache, do 217 // not forward it 218 if (pkt->cmd == MemCmd::CleanEvict && pkt->isBlockCached()) { 219 DPRINTF(CoherentXBar, "recvTimingReq: Clean evict 0x%x still cached, " 220 "not forwarding\n", pkt->getAddr()); 221 222 // update the layer state and schedule an idle event 223 reqLayers[master_port_id]->succeededTiming(packetFinishTime); 224 pendingDelete.push_back(pkt); 225 return true; 226 } 227 228 // remember if the packet will generate a snoop response 229 const bool expect_snoop_resp = !is_inhibited && pkt->memInhibitAsserted(); 230 const bool expect_response = pkt->needsResponse() && 231 !pkt->memInhibitAsserted(); 232 233 // since it is a normal request, attempt to send the packet 234 bool success = masterPorts[master_port_id]->sendTimingReq(pkt); 235 236 if (snoopFilter && !system->bypassCaches()) { 237 // Let the snoop filter know about the success of the send operation 238 snoopFilter->updateRequest(pkt, *src_port, !success); 239 } 240 241 // check if we were successful in sending the packet onwards 242 if (!success) { 243 // express snoops and inhibited packets should never be forced 244 // to retry 245 assert(!is_express_snoop); 246 assert(!pkt->memInhibitAsserted()); 247 248 // restore the header delay 249 pkt->headerDelay = old_header_delay; 250 251 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n", 252 src_port->name(), pkt->cmdString(), pkt->getAddr()); 253 254 // update the layer state and schedule an idle event 255 reqLayers[master_port_id]->failedTiming(src_port, 256 clockEdge(Cycles(1))); 257 } else { 258 // express snoops currently bypass the crossbar state entirely 259 if (!is_express_snoop) { 260 // if this particular request will generate a snoop 261 // response 262 if (expect_snoop_resp) { 263 // we should never have an exsiting request outstanding 264 assert(outstandingSnoop.find(pkt->req) == 265 outstandingSnoop.end()); 266 outstandingSnoop.insert(pkt->req); 267 268 // basic sanity check on the outstanding snoops 269 panic_if(outstandingSnoop.size() > 512, 270 "Outstanding snoop requests exceeded 512\n"); 271 } 272 273 // remember where to route the normal response to 274 if (expect_response || expect_snoop_resp) { 275 assert(routeTo.find(pkt->req) == routeTo.end()); 276 routeTo[pkt->req] = slave_port_id; 277 278 panic_if(routeTo.size() > 512, 279 "Routing table exceeds 512 packets\n"); 280 } 281 282 // update the layer state and schedule an idle event 283 reqLayers[master_port_id]->succeededTiming(packetFinishTime); 284 } 285 286 // stats updates only consider packets that were successfully sent 287 pktCount[slave_port_id][master_port_id]++; 288 pktSize[slave_port_id][master_port_id] += pkt_size; 289 transDist[pkt_cmd]++; 290 291 if (is_express_snoop) 292 snoops++; 293 } 294 295 return success; 296} 297 298bool 299CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id) 300{ 301 // determine the source port based on the id 302 MasterPort *src_port = masterPorts[master_port_id]; 303 304 // determine the destination 305 const auto route_lookup = routeTo.find(pkt->req); 306 assert(route_lookup != routeTo.end()); 307 const PortID slave_port_id = route_lookup->second; 308 assert(slave_port_id != InvalidPortID); 309 assert(slave_port_id < respLayers.size()); 310 311 // test if the crossbar should be considered occupied for the 312 // current port 313 if (!respLayers[slave_port_id]->tryTiming(src_port)) { 314 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n", 315 src_port->name(), pkt->cmdString(), pkt->getAddr()); 316 return false; 317 } 318 319 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n", 320 src_port->name(), pkt->cmdString(), pkt->getAddr()); 321 322 // store size and command as they might be modified when 323 // forwarding the packet 324 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 325 unsigned int pkt_cmd = pkt->cmdToIndex(); 326 327 // a response sees the response latency 328 Tick xbar_delay = responseLatency * clockPeriod(); 329 330 // set the packet header and payload delay 331 calcPacketTiming(pkt, xbar_delay); 332 333 // determine how long to be crossbar layer is busy 334 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 335 336 if (snoopFilter && !system->bypassCaches()) { 337 // let the snoop filter inspect the response and update its state 338 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 339 } 340 341 // send the packet through the destination slave port and pay for 342 // any outstanding header delay 343 Tick latency = pkt->headerDelay; 344 pkt->headerDelay = 0; 345 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency); 346 347 // remove the request from the routing table 348 routeTo.erase(route_lookup); 349 350 respLayers[slave_port_id]->succeededTiming(packetFinishTime); 351 352 // stats updates 353 pktCount[slave_port_id][master_port_id]++; 354 pktSize[slave_port_id][master_port_id] += pkt_size; 355 transDist[pkt_cmd]++; 356 357 return true; 358} 359 360void 361CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id) 362{ 363 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n", 364 masterPorts[master_port_id]->name(), pkt->cmdString(), 365 pkt->getAddr()); 366 367 // update stats here as we know the forwarding will succeed 368 transDist[pkt->cmdToIndex()]++; 369 snoops++; 370 371 // we should only see express snoops from caches 372 assert(pkt->isExpressSnoop()); 373 374 // set the packet header and payload delay, for now use forward latency 375 // @todo Assess the choice of latency further 376 calcPacketTiming(pkt, forwardLatency * clockPeriod()); 377 378 // remeber if the packet is inhibited so we can see if it changes 379 const bool is_inhibited = pkt->memInhibitAsserted(); 380 381 assert(pkt->snoopDelay == 0); 382 383 if (snoopFilter) { 384 // let the Snoop Filter work its magic and guide probing 385 auto sf_res = snoopFilter->lookupSnoop(pkt); 386 // the time required by a packet to be delivered through 387 // the xbar has to be charged also with to lookup latency 388 // of the snoop filter 389 pkt->headerDelay += sf_res.second * clockPeriod(); 390 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\ 391 " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(), 392 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(), 393 sf_res.second); 394 395 // forward to all snoopers 396 forwardTiming(pkt, InvalidPortID, sf_res.first); 397 } else { 398 forwardTiming(pkt, InvalidPortID); 399 } 400 401 // add the snoop delay to our header delay, and then reset it 402 pkt->headerDelay += pkt->snoopDelay; 403 pkt->snoopDelay = 0; 404 405 // if we can expect a response, remember how to route it 406 if (!is_inhibited && pkt->memInhibitAsserted()) { 407 assert(routeTo.find(pkt->req) == routeTo.end()); 408 routeTo[pkt->req] = master_port_id; 409 } 410 411 // a snoop request came from a connected slave device (one of 412 // our master ports), and if it is not coming from the slave 413 // device responsible for the address range something is 414 // wrong, hence there is nothing further to do as the packet 415 // would be going back to where it came from 416 assert(master_port_id == findPort(pkt->getAddr())); 417} 418 419bool 420CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id) 421{ 422 // determine the source port based on the id 423 SlavePort* src_port = slavePorts[slave_port_id]; 424 425 // get the destination 426 const auto route_lookup = routeTo.find(pkt->req); 427 assert(route_lookup != routeTo.end()); 428 const PortID dest_port_id = route_lookup->second; 429 assert(dest_port_id != InvalidPortID); 430 431 // determine if the response is from a snoop request we 432 // created as the result of a normal request (in which case it 433 // should be in the outstandingSnoop), or if we merely forwarded 434 // someone else's snoop request 435 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 436 outstandingSnoop.end(); 437 438 // test if the crossbar should be considered occupied for the 439 // current port, note that the check is bypassed if the response 440 // is being passed on as a normal response since this is occupying 441 // the response layer rather than the snoop response layer 442 if (forwardAsSnoop) { 443 assert(dest_port_id < snoopLayers.size()); 444 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) { 445 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n", 446 src_port->name(), pkt->cmdString(), pkt->getAddr()); 447 return false; 448 } 449 } else { 450 // get the master port that mirrors this slave port internally 451 MasterPort* snoop_port = snoopRespPorts[slave_port_id]; 452 assert(dest_port_id < respLayers.size()); 453 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) { 454 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n", 455 snoop_port->name(), pkt->cmdString(), pkt->getAddr()); 456 return false; 457 } 458 } 459 460 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n", 461 src_port->name(), pkt->cmdString(), pkt->getAddr()); 462 463 // store size and command as they might be modified when 464 // forwarding the packet 465 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 466 unsigned int pkt_cmd = pkt->cmdToIndex(); 467 468 // responses are never express snoops 469 assert(!pkt->isExpressSnoop()); 470 471 // a snoop response sees the snoop response latency, and if it is 472 // forwarded as a normal response, the response latency 473 Tick xbar_delay = 474 (forwardAsSnoop ? snoopResponseLatency : responseLatency) * 475 clockPeriod(); 476 477 // set the packet header and payload delay 478 calcPacketTiming(pkt, xbar_delay); 479 480 // determine how long to be crossbar layer is busy 481 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 482 483 // forward it either as a snoop response or a normal response 484 if (forwardAsSnoop) { 485 // this is a snoop response to a snoop request we forwarded, 486 // e.g. coming from the L1 and going to the L2, and it should 487 // be forwarded as a snoop response 488 489 if (snoopFilter) { 490 // update the probe filter so that it can properly track the line 491 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id], 492 *masterPorts[dest_port_id]); 493 } 494 495 bool success M5_VAR_USED = 496 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt); 497 pktCount[slave_port_id][dest_port_id]++; 498 pktSize[slave_port_id][dest_port_id] += pkt_size; 499 assert(success); 500 501 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime); 502 } else { 503 // we got a snoop response on one of our slave ports, 504 // i.e. from a coherent master connected to the crossbar, and 505 // since we created the snoop request as part of recvTiming, 506 // this should now be a normal response again 507 outstandingSnoop.erase(pkt->req); 508 509 // this is a snoop response from a coherent master, hence it 510 // should never go back to where the snoop response came from, 511 // but instead to where the original request came from 512 assert(slave_port_id != dest_port_id); 513 514 if (snoopFilter) { 515 // update the probe filter so that it can properly track the line 516 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id], 517 *slavePorts[dest_port_id]); 518 } 519 520 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\ 521 " FWD RESP\n", src_port->name(), pkt->cmdString(), 522 pkt->getAddr()); 523 524 // as a normal response, it should go back to a master through 525 // one of our slave ports, we also pay for any outstanding 526 // header latency 527 Tick latency = pkt->headerDelay; 528 pkt->headerDelay = 0; 529 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency); 530 531 respLayers[dest_port_id]->succeededTiming(packetFinishTime); 532 } 533 534 // remove the request from the routing table 535 routeTo.erase(route_lookup); 536 537 // stats updates 538 transDist[pkt_cmd]++; 539 snoops++; 540 541 return true; 542} 543 544 545void 546CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id, 547 const std::vector<QueuedSlavePort*>& dests) 548{ 549 DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__, 550 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 551 552 // snoops should only happen if the system isn't bypassing caches 553 assert(!system->bypassCaches()); 554 555 unsigned fanout = 0; 556 557 for (const auto& p: dests) { 558 // we could have gotten this request from a snooping master 559 // (corresponding to our own slave port that is also in 560 // snoopPorts) and should not send it back to where it came 561 // from 562 if (exclude_slave_port_id == InvalidPortID || 563 p->getId() != exclude_slave_port_id) { 564 // cache is not allowed to refuse snoop 565 p->sendTimingSnoopReq(pkt); 566 fanout++; 567 } 568 } 569 570 // Stats for fanout of this forward operation 571 snoopFanout.sample(fanout); 572} 573 574void 575CoherentXBar::recvReqRetry(PortID master_port_id) 576{ 577 // responses and snoop responses never block on forwarding them, 578 // so the retry will always be coming from a port to which we 579 // tried to forward a request 580 reqLayers[master_port_id]->recvRetry(); 581} 582 583Tick 584CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id) 585{ 586 DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n", 587 slavePorts[slave_port_id]->name(), pkt->getAddr(), 588 pkt->cmdString()); 589 590 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 591 unsigned int pkt_cmd = pkt->cmdToIndex(); 592 593 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 594 Tick snoop_response_latency = 0; 595 596 if (!system->bypassCaches()) { 597 // forward to all snoopers but the source 598 std::pair<MemCmd, Tick> snoop_result; 599 if (snoopFilter) { 600 // check with the snoop filter where to forward this packet 601 auto sf_res = 602 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]); 603 snoop_response_latency += sf_res.second * clockPeriod(); 604 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\ 605 " SF size: %i lat: %i\n", __func__, 606 slavePorts[slave_port_id]->name(), pkt->cmdString(), 607 pkt->getAddr(), sf_res.first.size(), sf_res.second); 608 609 // let the snoop filter know about the success of the send 610 // operation, and do it even before sending it onwards to 611 // avoid situations where atomic upward snoops sneak in 612 // between and change the filter state 613 snoopFilter->updateRequest(pkt, *slavePorts[slave_port_id], false); 614 615 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID, 616 sf_res.first); 617 } else { 618 snoop_result = forwardAtomic(pkt, slave_port_id); 619 } 620 snoop_response_cmd = snoop_result.first; 621 snoop_response_latency += snoop_result.second; 622 } 623 624 // forwardAtomic snooped into peer caches of the sender, and if 625 // this is a clean evict, but the packet is found in a cache, do 626 // not forward it 627 if (pkt->cmd == MemCmd::CleanEvict && pkt->isBlockCached()) { 628 DPRINTF(CoherentXBar, "recvAtomic: Clean evict 0x%x still cached, " 629 "not forwarding\n", pkt->getAddr()); 630 return 0; 631 } 632 633 // even if we had a snoop response, we must continue and also 634 // perform the actual request at the destination 635 PortID master_port_id = findPort(pkt->getAddr()); 636 637 // stats updates for the request 638 pktCount[slave_port_id][master_port_id]++; 639 pktSize[slave_port_id][master_port_id] += pkt_size; 640 transDist[pkt_cmd]++; 641 642 // forward the request to the appropriate destination 643 Tick response_latency = masterPorts[master_port_id]->sendAtomic(pkt); 644 645 // if lower levels have replied, tell the snoop filter 646 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) { 647 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 648 } 649 650 // if we got a response from a snooper, restore it here 651 if (snoop_response_cmd != MemCmd::InvalidCmd) { 652 // no one else should have responded 653 assert(!pkt->isResponse()); 654 pkt->cmd = snoop_response_cmd; 655 response_latency = snoop_response_latency; 656 } 657 658 // add the response data 659 if (pkt->isResponse()) { 660 pkt_size = pkt->hasData() ? pkt->getSize() : 0; 661 pkt_cmd = pkt->cmdToIndex(); 662 663 // stats updates 664 pktCount[slave_port_id][master_port_id]++; 665 pktSize[slave_port_id][master_port_id] += pkt_size; 666 transDist[pkt_cmd]++; 667 } 668 669 // @todo: Not setting header time 670 pkt->payloadDelay = response_latency; 671 return response_latency; 672} 673 674Tick 675CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id) 676{ 677 DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n", 678 masterPorts[master_port_id]->name(), pkt->getAddr(), 679 pkt->cmdString()); 680 681 // add the request snoop data 682 snoops++; 683 684 // forward to all snoopers 685 std::pair<MemCmd, Tick> snoop_result; 686 Tick snoop_response_latency = 0; 687 if (snoopFilter) { 688 auto sf_res = snoopFilter->lookupSnoop(pkt); 689 snoop_response_latency += sf_res.second * clockPeriod(); 690 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n", 691 __func__, masterPorts[master_port_id]->name(), pkt->cmdString(), 692 pkt->getAddr(), sf_res.first.size(), sf_res.second); 693 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id, 694 sf_res.first); 695 } else { 696 snoop_result = forwardAtomic(pkt, InvalidPortID); 697 } 698 MemCmd snoop_response_cmd = snoop_result.first; 699 snoop_response_latency += snoop_result.second; 700 701 if (snoop_response_cmd != MemCmd::InvalidCmd) 702 pkt->cmd = snoop_response_cmd; 703 704 // add the response snoop data 705 if (pkt->isResponse()) { 706 snoops++; 707 } 708 709 // @todo: Not setting header time 710 pkt->payloadDelay = snoop_response_latency; 711 return snoop_response_latency; 712} 713 714std::pair<MemCmd, Tick> 715CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id, 716 PortID source_master_port_id, 717 const std::vector<QueuedSlavePort*>& dests) 718{ 719 // the packet may be changed on snoops, record the original 720 // command to enable us to restore it between snoops so that 721 // additional snoops can take place properly 722 MemCmd orig_cmd = pkt->cmd; 723 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 724 Tick snoop_response_latency = 0; 725 726 // snoops should only happen if the system isn't bypassing caches 727 assert(!system->bypassCaches()); 728 729 unsigned fanout = 0; 730 731 for (const auto& p: dests) { 732 // we could have gotten this request from a snooping master 733 // (corresponding to our own slave port that is also in 734 // snoopPorts) and should not send it back to where it came 735 // from 736 if (exclude_slave_port_id != InvalidPortID && 737 p->getId() == exclude_slave_port_id) 738 continue; 739 740 Tick latency = p->sendAtomicSnoop(pkt); 741 fanout++; 742 743 // in contrast to a functional access, we have to keep on 744 // going as all snoopers must be updated even if we get a 745 // response 746 if (!pkt->isResponse()) 747 continue; 748 749 // response from snoop agent 750 assert(pkt->cmd != orig_cmd); 751 assert(pkt->memInhibitAsserted()); 752 // should only happen once 753 assert(snoop_response_cmd == MemCmd::InvalidCmd); 754 // save response state 755 snoop_response_cmd = pkt->cmd; 756 snoop_response_latency = latency; 757 758 if (snoopFilter) { 759 // Handle responses by the snoopers and differentiate between 760 // responses to requests from above and snoops from below 761 if (source_master_port_id != InvalidPortID) { 762 // Getting a response for a snoop from below 763 assert(exclude_slave_port_id == InvalidPortID); 764 snoopFilter->updateSnoopForward(pkt, *p, 765 *masterPorts[source_master_port_id]); 766 } else { 767 // Getting a response for a request from above 768 assert(source_master_port_id == InvalidPortID); 769 snoopFilter->updateSnoopResponse(pkt, *p, 770 *slavePorts[exclude_slave_port_id]); 771 } 772 } 773 // restore original packet state for remaining snoopers 774 pkt->cmd = orig_cmd; 775 } 776 777 // Stats for fanout 778 snoopFanout.sample(fanout); 779 780 // the packet is restored as part of the loop and any potential 781 // snoop response is part of the returned pair 782 return std::make_pair(snoop_response_cmd, snoop_response_latency); 783} 784 785void 786CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id) 787{ 788 if (!pkt->isPrint()) { 789 // don't do DPRINTFs on PrintReq as it clutters up the output 790 DPRINTF(CoherentXBar, 791 "recvFunctional: packet src %s addr 0x%x cmd %s\n", 792 slavePorts[slave_port_id]->name(), pkt->getAddr(), 793 pkt->cmdString()); 794 } 795 796 if (!system->bypassCaches()) { 797 // forward to all snoopers but the source 798 forwardFunctional(pkt, slave_port_id); 799 } 800 801 // there is no need to continue if the snooping has found what we 802 // were looking for and the packet is already a response 803 if (!pkt->isResponse()) { 804 // since our slave ports are queued ports we need to check them as well 805 for (const auto& p : slavePorts) { 806 // if we find a response that has the data, then the 807 // downstream caches/memories may be out of date, so simply stop 808 // here 809 if (p->checkFunctional(pkt)) { 810 if (pkt->needsResponse()) 811 pkt->makeResponse(); 812 return; 813 } 814 } 815 816 PortID dest_id = findPort(pkt->getAddr()); 817 818 masterPorts[dest_id]->sendFunctional(pkt); 819 } 820} 821 822void 823CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id) 824{ 825 if (!pkt->isPrint()) { 826 // don't do DPRINTFs on PrintReq as it clutters up the output 827 DPRINTF(CoherentXBar, 828 "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n", 829 masterPorts[master_port_id]->name(), pkt->getAddr(), 830 pkt->cmdString()); 831 } 832 833 // forward to all snoopers 834 forwardFunctional(pkt, InvalidPortID); 835} 836 837void 838CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id) 839{ 840 // snoops should only happen if the system isn't bypassing caches 841 assert(!system->bypassCaches()); 842 843 for (const auto& p: snoopPorts) { 844 // we could have gotten this request from a snooping master 845 // (corresponding to our own slave port that is also in 846 // snoopPorts) and should not send it back to where it came 847 // from 848 if (exclude_slave_port_id == InvalidPortID || 849 p->getId() != exclude_slave_port_id) 850 p->sendFunctionalSnoop(pkt); 851 852 // if we get a response we are done 853 if (pkt->isResponse()) { 854 break; 855 } 856 } 857} 858 859void 860CoherentXBar::regStats() 861{ 862 // register the stats of the base class and our layers 863 BaseXBar::regStats(); 864 for (auto l: reqLayers) 865 l->regStats(); 866 for (auto l: respLayers) 867 l->regStats(); 868 for (auto l: snoopLayers) 869 l->regStats(); 870 871 snoops 872 .name(name() + ".snoops") 873 .desc("Total snoops (count)") 874 ; 875 876 snoopFanout 877 .init(0, snoopPorts.size(), 1) 878 .name(name() + ".snoop_fanout") 879 .desc("Request fanout histogram") 880 ; 881} 882 883CoherentXBar * 884CoherentXBarParams::create() 885{ 886 return new CoherentXBar(this); 887} 888