coherent_xbar.cc revision 10719:b4fc9ad648aa
1/* 2 * Copyright (c) 2011-2015 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Ali Saidi 41 * Andreas Hansson 42 * William Wang 43 */ 44 45/** 46 * @file 47 * Definition of a crossbar object. 48 */ 49 50#include "base/misc.hh" 51#include "base/trace.hh" 52#include "debug/AddrRanges.hh" 53#include "debug/CoherentXBar.hh" 54#include "mem/coherent_xbar.hh" 55#include "sim/system.hh" 56 57CoherentXBar::CoherentXBar(const CoherentXBarParams *p) 58 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter), 59 snoopResponseLatency(p->snoop_response_latency) 60{ 61 // create the ports based on the size of the master and slave 62 // vector ports, and the presence of the default port, the ports 63 // are enumerated starting from zero 64 for (int i = 0; i < p->port_master_connection_count; ++i) { 65 std::string portName = csprintf("%s.master[%d]", name(), i); 66 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i); 67 masterPorts.push_back(bp); 68 reqLayers.push_back(new ReqLayer(*bp, *this, 69 csprintf(".reqLayer%d", i))); 70 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 71 csprintf(".snoopLayer%d", i))); 72 } 73 74 // see if we have a default slave device connected and if so add 75 // our corresponding master port 76 if (p->port_default_connection_count) { 77 defaultPortID = masterPorts.size(); 78 std::string portName = name() + ".default"; 79 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, 80 defaultPortID); 81 masterPorts.push_back(bp); 82 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d", 83 defaultPortID))); 84 snoopLayers.push_back(new SnoopRespLayer(*bp, *this, 85 csprintf(".snoopLayer%d", 86 defaultPortID))); 87 } 88 89 // create the slave ports, once again starting at zero 90 for (int i = 0; i < p->port_slave_connection_count; ++i) { 91 std::string portName = csprintf("%s.slave[%d]", name(), i); 92 SlavePort* bp = new CoherentXBarSlavePort(portName, *this, i); 93 slavePorts.push_back(bp); 94 respLayers.push_back(new RespLayer(*bp, *this, 95 csprintf(".respLayer%d", i))); 96 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this)); 97 } 98 99 if (snoopFilter) 100 snoopFilter->setSlavePorts(slavePorts); 101 102 clearPortCache(); 103} 104 105CoherentXBar::~CoherentXBar() 106{ 107 for (auto l: reqLayers) 108 delete l; 109 for (auto l: respLayers) 110 delete l; 111 for (auto l: snoopLayers) 112 delete l; 113 for (auto p: snoopRespPorts) 114 delete p; 115} 116 117void 118CoherentXBar::init() 119{ 120 // the base class is responsible for determining the block size 121 BaseXBar::init(); 122 123 // iterate over our slave ports and determine which of our 124 // neighbouring master ports are snooping and add them as snoopers 125 for (const auto& p: slavePorts) { 126 // check if the connected master port is snooping 127 if (p->isSnooping()) { 128 DPRINTF(AddrRanges, "Adding snooping master %s\n", 129 p->getMasterPort().name()); 130 snoopPorts.push_back(p); 131 } 132 } 133 134 if (snoopPorts.empty()) 135 warn("CoherentXBar %s has no snooping ports attached!\n", name()); 136} 137 138bool 139CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id) 140{ 141 // determine the source port based on the id 142 SlavePort *src_port = slavePorts[slave_port_id]; 143 144 // remember if the packet is an express snoop 145 bool is_express_snoop = pkt->isExpressSnoop(); 146 bool is_inhibited = pkt->memInhibitAsserted(); 147 // for normal requests, going downstream, the express snoop flag 148 // and the inhibited flag should always be the same 149 assert(is_express_snoop == is_inhibited); 150 151 // determine the destination based on the address 152 PortID master_port_id = findPort(pkt->getAddr()); 153 154 // test if the crossbar should be considered occupied for the current 155 // port, and exclude express snoops from the check 156 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) { 157 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n", 158 src_port->name(), pkt->cmdString(), pkt->getAddr()); 159 return false; 160 } 161 162 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n", 163 src_port->name(), pkt->cmdString(), is_express_snoop, 164 pkt->getAddr()); 165 166 // store size and command as they might be modified when 167 // forwarding the packet 168 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 169 unsigned int pkt_cmd = pkt->cmdToIndex(); 170 171 // store the old header delay so we can restore it if needed 172 Tick old_header_delay = pkt->headerDelay; 173 174 // a request sees the frontend and forward latency 175 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod(); 176 177 // set the packet header and payload delay 178 calcPacketTiming(pkt, xbar_delay); 179 180 // determine how long to be crossbar layer is busy 181 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 182 183 // uncacheable requests need never be snooped 184 if (!pkt->req->isUncacheable() && !system->bypassCaches()) { 185 // the packet is a memory-mapped request and should be 186 // broadcasted to our snoopers but the source 187 if (snoopFilter) { 188 // check with the snoop filter where to forward this packet 189 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port); 190 // If SnoopFilter is enabled, the total time required by a packet 191 // to be delivered through the xbar has to be charged also with 192 // to lookup latency of the snoop filter (sf_res.second). 193 pkt->headerDelay += sf_res.second * clockPeriod(); 194 packetFinishTime += sf_res.second * clockPeriod(); 195 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\ 196 " SF size: %i lat: %i\n", src_port->name(), 197 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(), 198 sf_res.second); 199 forwardTiming(pkt, slave_port_id, sf_res.first); 200 } else { 201 forwardTiming(pkt, slave_port_id); 202 } 203 } 204 205 // remember if the packet will generate a snoop response 206 const bool expect_snoop_resp = !is_inhibited && pkt->memInhibitAsserted(); 207 const bool expect_response = pkt->needsResponse() && 208 !pkt->memInhibitAsserted(); 209 210 // Note: Cannot create a copy of the full packet, here. 211 MemCmd orig_cmd(pkt->cmd); 212 213 // since it is a normal request, attempt to send the packet 214 bool success = masterPorts[master_port_id]->sendTimingReq(pkt); 215 216 if (snoopFilter && !pkt->req->isUncacheable() 217 && !system->bypassCaches()) { 218 // The packet may already be overwritten by the sendTimingReq function. 219 // The snoop filter needs to see the original request *and* the return 220 // status of the send operation, so we need to recreate the original 221 // request. Atomic mode does not have the issue, as there the send 222 // operation and the response happen instantaneously and don't need two 223 // phase tracking. 224 MemCmd tmp_cmd(pkt->cmd); 225 pkt->cmd = orig_cmd; 226 // Let the snoop filter know about the success of the send operation 227 snoopFilter->updateRequest(pkt, *src_port, !success); 228 pkt->cmd = tmp_cmd; 229 } 230 231 // check if we were successful in sending the packet onwards 232 if (!success) { 233 // express snoops and inhibited packets should never be forced 234 // to retry 235 assert(!is_express_snoop); 236 assert(!pkt->memInhibitAsserted()); 237 238 // restore the header delay 239 pkt->headerDelay = old_header_delay; 240 241 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n", 242 src_port->name(), pkt->cmdString(), pkt->getAddr()); 243 244 // update the layer state and schedule an idle event 245 reqLayers[master_port_id]->failedTiming(src_port, 246 clockEdge(Cycles(1))); 247 } else { 248 // express snoops currently bypass the crossbar state entirely 249 if (!is_express_snoop) { 250 // if this particular request will generate a snoop 251 // response 252 if (expect_snoop_resp) { 253 // we should never have an exsiting request outstanding 254 assert(outstandingSnoop.find(pkt->req) == 255 outstandingSnoop.end()); 256 outstandingSnoop.insert(pkt->req); 257 258 // basic sanity check on the outstanding snoops 259 panic_if(outstandingSnoop.size() > 512, 260 "Outstanding snoop requests exceeded 512\n"); 261 } 262 263 // remember where to route the normal response to 264 if (expect_response || expect_snoop_resp) { 265 assert(routeTo.find(pkt->req) == routeTo.end()); 266 routeTo[pkt->req] = slave_port_id; 267 268 panic_if(routeTo.size() > 512, 269 "Routing table exceeds 512 packets\n"); 270 } 271 272 // update the layer state and schedule an idle event 273 reqLayers[master_port_id]->succeededTiming(packetFinishTime); 274 } 275 276 // stats updates only consider packets that were successfully sent 277 pktCount[slave_port_id][master_port_id]++; 278 pktSize[slave_port_id][master_port_id] += pkt_size; 279 transDist[pkt_cmd]++; 280 281 if (is_express_snoop) 282 snoops++; 283 } 284 285 return success; 286} 287 288bool 289CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id) 290{ 291 // determine the source port based on the id 292 MasterPort *src_port = masterPorts[master_port_id]; 293 294 // determine the destination 295 const auto route_lookup = routeTo.find(pkt->req); 296 assert(route_lookup != routeTo.end()); 297 const PortID slave_port_id = route_lookup->second; 298 assert(slave_port_id != InvalidPortID); 299 assert(slave_port_id < respLayers.size()); 300 301 // test if the crossbar should be considered occupied for the 302 // current port 303 if (!respLayers[slave_port_id]->tryTiming(src_port)) { 304 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n", 305 src_port->name(), pkt->cmdString(), pkt->getAddr()); 306 return false; 307 } 308 309 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n", 310 src_port->name(), pkt->cmdString(), pkt->getAddr()); 311 312 // store size and command as they might be modified when 313 // forwarding the packet 314 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 315 unsigned int pkt_cmd = pkt->cmdToIndex(); 316 317 // a response sees the response latency 318 Tick xbar_delay = responseLatency * clockPeriod(); 319 320 // set the packet header and payload delay 321 calcPacketTiming(pkt, xbar_delay); 322 323 // determine how long to be crossbar layer is busy 324 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 325 326 if (snoopFilter && !pkt->req->isUncacheable() && !system->bypassCaches()) { 327 // let the snoop filter inspect the response and update its state 328 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 329 } 330 331 // send the packet through the destination slave port 332 bool success M5_VAR_USED = slavePorts[slave_port_id]->sendTimingResp(pkt); 333 334 // currently it is illegal to block responses... can lead to 335 // deadlock 336 assert(success); 337 338 // remove the request from the routing table 339 routeTo.erase(route_lookup); 340 341 respLayers[slave_port_id]->succeededTiming(packetFinishTime); 342 343 // stats updates 344 pktCount[slave_port_id][master_port_id]++; 345 pktSize[slave_port_id][master_port_id] += pkt_size; 346 transDist[pkt_cmd]++; 347 348 return true; 349} 350 351void 352CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id) 353{ 354 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n", 355 masterPorts[master_port_id]->name(), pkt->cmdString(), 356 pkt->getAddr()); 357 358 // update stats here as we know the forwarding will succeed 359 transDist[pkt->cmdToIndex()]++; 360 snoops++; 361 362 // we should only see express snoops from caches 363 assert(pkt->isExpressSnoop()); 364 365 // remeber if the packet is inhibited so we can see if it changes 366 const bool is_inhibited = pkt->memInhibitAsserted(); 367 368 if (snoopFilter) { 369 // let the Snoop Filter work its magic and guide probing 370 auto sf_res = snoopFilter->lookupSnoop(pkt); 371 // No timing here: packetFinishTime += sf_res.second * clockPeriod(); 372 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\ 373 " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(), 374 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(), 375 sf_res.second); 376 377 // forward to all snoopers 378 forwardTiming(pkt, InvalidPortID, sf_res.first); 379 } else { 380 forwardTiming(pkt, InvalidPortID); 381 } 382 383 // if we can expect a response, remember how to route it 384 if (!is_inhibited && pkt->memInhibitAsserted()) { 385 assert(routeTo.find(pkt->req) == routeTo.end()); 386 routeTo[pkt->req] = master_port_id; 387 } 388 389 // a snoop request came from a connected slave device (one of 390 // our master ports), and if it is not coming from the slave 391 // device responsible for the address range something is 392 // wrong, hence there is nothing further to do as the packet 393 // would be going back to where it came from 394 assert(master_port_id == findPort(pkt->getAddr())); 395} 396 397bool 398CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id) 399{ 400 // determine the source port based on the id 401 SlavePort* src_port = slavePorts[slave_port_id]; 402 403 // get the destination 404 const auto route_lookup = routeTo.find(pkt->req); 405 assert(route_lookup != routeTo.end()); 406 const PortID dest_port_id = route_lookup->second; 407 assert(dest_port_id != InvalidPortID); 408 409 // determine if the response is from a snoop request we 410 // created as the result of a normal request (in which case it 411 // should be in the outstandingSnoop), or if we merely forwarded 412 // someone else's snoop request 413 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 414 outstandingSnoop.end(); 415 416 // test if the crossbar should be considered occupied for the 417 // current port, note that the check is bypassed if the response 418 // is being passed on as a normal response since this is occupying 419 // the response layer rather than the snoop response layer 420 if (forwardAsSnoop) { 421 assert(dest_port_id < snoopLayers.size()); 422 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) { 423 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n", 424 src_port->name(), pkt->cmdString(), pkt->getAddr()); 425 return false; 426 } 427 } else { 428 // get the master port that mirrors this slave port internally 429 MasterPort* snoop_port = snoopRespPorts[slave_port_id]; 430 assert(dest_port_id < respLayers.size()); 431 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) { 432 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n", 433 snoop_port->name(), pkt->cmdString(), pkt->getAddr()); 434 return false; 435 } 436 } 437 438 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n", 439 src_port->name(), pkt->cmdString(), pkt->getAddr()); 440 441 // store size and command as they might be modified when 442 // forwarding the packet 443 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 444 unsigned int pkt_cmd = pkt->cmdToIndex(); 445 446 // responses are never express snoops 447 assert(!pkt->isExpressSnoop()); 448 449 // a snoop response sees the snoop response latency, and if it is 450 // forwarded as a normal response, the response latency 451 Tick xbar_delay = 452 (forwardAsSnoop ? snoopResponseLatency : responseLatency) * 453 clockPeriod(); 454 455 // set the packet header and payload delay 456 calcPacketTiming(pkt, xbar_delay); 457 458 // determine how long to be crossbar layer is busy 459 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; 460 461 // forward it either as a snoop response or a normal response 462 if (forwardAsSnoop) { 463 // this is a snoop response to a snoop request we forwarded, 464 // e.g. coming from the L1 and going to the L2, and it should 465 // be forwarded as a snoop response 466 467 if (snoopFilter) { 468 // update the probe filter so that it can properly track the line 469 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id], 470 *masterPorts[dest_port_id]); 471 } 472 473 bool success M5_VAR_USED = 474 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt); 475 pktCount[slave_port_id][dest_port_id]++; 476 pktSize[slave_port_id][dest_port_id] += pkt_size; 477 assert(success); 478 479 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime); 480 } else { 481 // we got a snoop response on one of our slave ports, 482 // i.e. from a coherent master connected to the crossbar, and 483 // since we created the snoop request as part of recvTiming, 484 // this should now be a normal response again 485 outstandingSnoop.erase(pkt->req); 486 487 // this is a snoop response from a coherent master, hence it 488 // should never go back to where the snoop response came from, 489 // but instead to where the original request came from 490 assert(slave_port_id != dest_port_id); 491 492 if (snoopFilter) { 493 // update the probe filter so that it can properly track the line 494 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id], 495 *slavePorts[dest_port_id]); 496 } 497 498 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\ 499 " FWD RESP\n", src_port->name(), pkt->cmdString(), 500 pkt->getAddr()); 501 502 // as a normal response, it should go back to a master through 503 // one of our slave ports, at this point we are ignoring the 504 // fact that the response layer could be busy and do not touch 505 // its state 506 bool success M5_VAR_USED = 507 slavePorts[dest_port_id]->sendTimingResp(pkt); 508 509 // @todo Put the response in an internal FIFO and pass it on 510 // to the response layer from there 511 512 // currently it is illegal to block responses... can lead 513 // to deadlock 514 assert(success); 515 516 respLayers[dest_port_id]->succeededTiming(packetFinishTime); 517 } 518 519 // remove the request from the routing table 520 routeTo.erase(route_lookup); 521 522 // stats updates 523 transDist[pkt_cmd]++; 524 snoops++; 525 526 return true; 527} 528 529 530void 531CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id, 532 const std::vector<SlavePort*>& dests) 533{ 534 DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__, 535 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 536 537 // snoops should only happen if the system isn't bypassing caches 538 assert(!system->bypassCaches()); 539 540 unsigned fanout = 0; 541 542 for (const auto& p: dests) { 543 // we could have gotten this request from a snooping master 544 // (corresponding to our own slave port that is also in 545 // snoopPorts) and should not send it back to where it came 546 // from 547 if (exclude_slave_port_id == InvalidPortID || 548 p->getId() != exclude_slave_port_id) { 549 // cache is not allowed to refuse snoop 550 p->sendTimingSnoopReq(pkt); 551 fanout++; 552 } 553 } 554 555 // Stats for fanout of this forward operation 556 snoopFanout.sample(fanout); 557} 558 559void 560CoherentXBar::recvReqRetry(PortID master_port_id) 561{ 562 // responses and snoop responses never block on forwarding them, 563 // so the retry will always be coming from a port to which we 564 // tried to forward a request 565 reqLayers[master_port_id]->recvRetry(); 566} 567 568Tick 569CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id) 570{ 571 DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n", 572 slavePorts[slave_port_id]->name(), pkt->getAddr(), 573 pkt->cmdString()); 574 575 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; 576 unsigned int pkt_cmd = pkt->cmdToIndex(); 577 578 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 579 Tick snoop_response_latency = 0; 580 581 // uncacheable requests need never be snooped 582 if (!pkt->req->isUncacheable() && !system->bypassCaches()) { 583 // forward to all snoopers but the source 584 std::pair<MemCmd, Tick> snoop_result; 585 if (snoopFilter) { 586 // check with the snoop filter where to forward this packet 587 auto sf_res = 588 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]); 589 snoop_response_latency += sf_res.second * clockPeriod(); 590 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\ 591 " SF size: %i lat: %i\n", __func__, 592 slavePorts[slave_port_id]->name(), pkt->cmdString(), 593 pkt->getAddr(), sf_res.first.size(), sf_res.second); 594 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID, 595 sf_res.first); 596 } else { 597 snoop_result = forwardAtomic(pkt, slave_port_id); 598 } 599 snoop_response_cmd = snoop_result.first; 600 snoop_response_latency += snoop_result.second; 601 } 602 603 // even if we had a snoop response, we must continue and also 604 // perform the actual request at the destination 605 PortID master_port_id = findPort(pkt->getAddr()); 606 607 // stats updates for the request 608 pktCount[slave_port_id][master_port_id]++; 609 pktSize[slave_port_id][master_port_id] += pkt_size; 610 transDist[pkt_cmd]++; 611 612 // forward the request to the appropriate destination 613 Tick response_latency = masterPorts[master_port_id]->sendAtomic(pkt); 614 615 // Lower levels have replied, tell the snoop filter 616 if (snoopFilter && !pkt->req->isUncacheable() && !system->bypassCaches() && 617 pkt->isResponse()) { 618 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); 619 } 620 621 // if we got a response from a snooper, restore it here 622 if (snoop_response_cmd != MemCmd::InvalidCmd) { 623 // no one else should have responded 624 assert(!pkt->isResponse()); 625 pkt->cmd = snoop_response_cmd; 626 response_latency = snoop_response_latency; 627 } 628 629 // add the response data 630 if (pkt->isResponse()) { 631 pkt_size = pkt->hasData() ? pkt->getSize() : 0; 632 pkt_cmd = pkt->cmdToIndex(); 633 634 // stats updates 635 pktCount[slave_port_id][master_port_id]++; 636 pktSize[slave_port_id][master_port_id] += pkt_size; 637 transDist[pkt_cmd]++; 638 } 639 640 // @todo: Not setting header time 641 pkt->payloadDelay = response_latency; 642 return response_latency; 643} 644 645Tick 646CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id) 647{ 648 DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n", 649 masterPorts[master_port_id]->name(), pkt->getAddr(), 650 pkt->cmdString()); 651 652 // add the request snoop data 653 snoops++; 654 655 // forward to all snoopers 656 std::pair<MemCmd, Tick> snoop_result; 657 Tick snoop_response_latency = 0; 658 if (snoopFilter) { 659 auto sf_res = snoopFilter->lookupSnoop(pkt); 660 snoop_response_latency += sf_res.second * clockPeriod(); 661 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n", 662 __func__, masterPorts[master_port_id]->name(), pkt->cmdString(), 663 pkt->getAddr(), sf_res.first.size(), sf_res.second); 664 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id, 665 sf_res.first); 666 } else { 667 snoop_result = forwardAtomic(pkt, InvalidPortID); 668 } 669 MemCmd snoop_response_cmd = snoop_result.first; 670 snoop_response_latency += snoop_result.second; 671 672 if (snoop_response_cmd != MemCmd::InvalidCmd) 673 pkt->cmd = snoop_response_cmd; 674 675 // add the response snoop data 676 if (pkt->isResponse()) { 677 snoops++; 678 } 679 680 // @todo: Not setting header time 681 pkt->payloadDelay = snoop_response_latency; 682 return snoop_response_latency; 683} 684 685std::pair<MemCmd, Tick> 686CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id, 687 PortID source_master_port_id, 688 const std::vector<SlavePort*>& dests) 689{ 690 // the packet may be changed on snoops, record the original 691 // command to enable us to restore it between snoops so that 692 // additional snoops can take place properly 693 MemCmd orig_cmd = pkt->cmd; 694 MemCmd snoop_response_cmd = MemCmd::InvalidCmd; 695 Tick snoop_response_latency = 0; 696 697 // snoops should only happen if the system isn't bypassing caches 698 assert(!system->bypassCaches()); 699 700 unsigned fanout = 0; 701 702 for (const auto& p: dests) { 703 // we could have gotten this request from a snooping master 704 // (corresponding to our own slave port that is also in 705 // snoopPorts) and should not send it back to where it came 706 // from 707 if (exclude_slave_port_id != InvalidPortID && 708 p->getId() == exclude_slave_port_id) 709 continue; 710 711 Tick latency = p->sendAtomicSnoop(pkt); 712 fanout++; 713 714 // in contrast to a functional access, we have to keep on 715 // going as all snoopers must be updated even if we get a 716 // response 717 if (!pkt->isResponse()) 718 continue; 719 720 // response from snoop agent 721 assert(pkt->cmd != orig_cmd); 722 assert(pkt->memInhibitAsserted()); 723 // should only happen once 724 assert(snoop_response_cmd == MemCmd::InvalidCmd); 725 // save response state 726 snoop_response_cmd = pkt->cmd; 727 snoop_response_latency = latency; 728 729 if (snoopFilter) { 730 // Handle responses by the snoopers and differentiate between 731 // responses to requests from above and snoops from below 732 if (source_master_port_id != InvalidPortID) { 733 // Getting a response for a snoop from below 734 assert(exclude_slave_port_id == InvalidPortID); 735 snoopFilter->updateSnoopForward(pkt, *p, 736 *masterPorts[source_master_port_id]); 737 } else { 738 // Getting a response for a request from above 739 assert(source_master_port_id == InvalidPortID); 740 snoopFilter->updateSnoopResponse(pkt, *p, 741 *slavePorts[exclude_slave_port_id]); 742 } 743 } 744 // restore original packet state for remaining snoopers 745 pkt->cmd = orig_cmd; 746 } 747 748 // Stats for fanout 749 snoopFanout.sample(fanout); 750 751 // the packet is restored as part of the loop and any potential 752 // snoop response is part of the returned pair 753 return std::make_pair(snoop_response_cmd, snoop_response_latency); 754} 755 756void 757CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id) 758{ 759 if (!pkt->isPrint()) { 760 // don't do DPRINTFs on PrintReq as it clutters up the output 761 DPRINTF(CoherentXBar, 762 "recvFunctional: packet src %s addr 0x%x cmd %s\n", 763 slavePorts[slave_port_id]->name(), pkt->getAddr(), 764 pkt->cmdString()); 765 } 766 767 // uncacheable requests need never be snooped 768 if (!pkt->req->isUncacheable() && !system->bypassCaches()) { 769 // forward to all snoopers but the source 770 forwardFunctional(pkt, slave_port_id); 771 } 772 773 // there is no need to continue if the snooping has found what we 774 // were looking for and the packet is already a response 775 if (!pkt->isResponse()) { 776 PortID dest_id = findPort(pkt->getAddr()); 777 778 masterPorts[dest_id]->sendFunctional(pkt); 779 } 780} 781 782void 783CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id) 784{ 785 if (!pkt->isPrint()) { 786 // don't do DPRINTFs on PrintReq as it clutters up the output 787 DPRINTF(CoherentXBar, 788 "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n", 789 masterPorts[master_port_id]->name(), pkt->getAddr(), 790 pkt->cmdString()); 791 } 792 793 // forward to all snoopers 794 forwardFunctional(pkt, InvalidPortID); 795} 796 797void 798CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id) 799{ 800 // snoops should only happen if the system isn't bypassing caches 801 assert(!system->bypassCaches()); 802 803 for (const auto& p: snoopPorts) { 804 // we could have gotten this request from a snooping master 805 // (corresponding to our own slave port that is also in 806 // snoopPorts) and should not send it back to where it came 807 // from 808 if (exclude_slave_port_id == InvalidPortID || 809 p->getId() != exclude_slave_port_id) 810 p->sendFunctionalSnoop(pkt); 811 812 // if we get a response we are done 813 if (pkt->isResponse()) { 814 break; 815 } 816 } 817} 818 819unsigned int 820CoherentXBar::drain(DrainManager *dm) 821{ 822 // sum up the individual layers 823 unsigned int total = 0; 824 for (auto l: reqLayers) 825 total += l->drain(dm); 826 for (auto l: respLayers) 827 total += l->drain(dm); 828 for (auto l: snoopLayers) 829 total += l->drain(dm); 830 return total; 831} 832 833void 834CoherentXBar::regStats() 835{ 836 // register the stats of the base class and our layers 837 BaseXBar::regStats(); 838 for (auto l: reqLayers) 839 l->regStats(); 840 for (auto l: respLayers) 841 l->regStats(); 842 for (auto l: snoopLayers) 843 l->regStats(); 844 845 snoops 846 .name(name() + ".snoops") 847 .desc("Total snoops (count)") 848 ; 849 850 snoopFanout 851 .init(0, snoopPorts.size(), 1) 852 .name(name() + ".snoop_fanout") 853 .desc("Request fanout histogram") 854 ; 855} 856 857CoherentXBar * 858CoherentXBarParams::create() 859{ 860 return new CoherentXBar(this); 861} 862