coherent_xbar.cc revision 10572:fc4c90a7d2f5
1/*
2 * Copyright (c) 2011-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 *          Andreas Hansson
42 *          William Wang
43 */
44
45/**
46 * @file
47 * Definition of a crossbar object.
48 */
49
50#include "base/misc.hh"
51#include "base/trace.hh"
52#include "debug/AddrRanges.hh"
53#include "debug/CoherentXBar.hh"
54#include "mem/coherent_xbar.hh"
55#include "sim/system.hh"
56
57CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
58    : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter)
59{
60    // create the ports based on the size of the master and slave
61    // vector ports, and the presence of the default port, the ports
62    // are enumerated starting from zero
63    for (int i = 0; i < p->port_master_connection_count; ++i) {
64        std::string portName = csprintf("%s.master[%d]", name(), i);
65        MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
66        masterPorts.push_back(bp);
67        reqLayers.push_back(new ReqLayer(*bp, *this,
68                                         csprintf(".reqLayer%d", i)));
69        snoopLayers.push_back(new SnoopLayer(*bp, *this,
70                                             csprintf(".snoopLayer%d", i)));
71    }
72
73    // see if we have a default slave device connected and if so add
74    // our corresponding master port
75    if (p->port_default_connection_count) {
76        defaultPortID = masterPorts.size();
77        std::string portName = name() + ".default";
78        MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
79                                                   defaultPortID);
80        masterPorts.push_back(bp);
81        reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
82                                             defaultPortID)));
83        snoopLayers.push_back(new SnoopLayer(*bp, *this,
84                                             csprintf(".snoopLayer%d",
85                                                      defaultPortID)));
86    }
87
88    // create the slave ports, once again starting at zero
89    for (int i = 0; i < p->port_slave_connection_count; ++i) {
90        std::string portName = csprintf("%s.slave[%d]", name(), i);
91        SlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
92        slavePorts.push_back(bp);
93        respLayers.push_back(new RespLayer(*bp, *this,
94                                           csprintf(".respLayer%d", i)));
95        snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
96    }
97
98    if (snoopFilter)
99        snoopFilter->setSlavePorts(slavePorts);
100
101    clearPortCache();
102}
103
104CoherentXBar::~CoherentXBar()
105{
106    for (auto l: reqLayers)
107        delete l;
108    for (auto l: respLayers)
109        delete l;
110    for (auto l: snoopLayers)
111        delete l;
112    for (auto p: snoopRespPorts)
113        delete p;
114}
115
116void
117CoherentXBar::init()
118{
119    // the base class is responsible for determining the block size
120    BaseXBar::init();
121
122    // iterate over our slave ports and determine which of our
123    // neighbouring master ports are snooping and add them as snoopers
124    for (const auto& p: slavePorts) {
125        // check if the connected master port is snooping
126        if (p->isSnooping()) {
127            DPRINTF(AddrRanges, "Adding snooping master %s\n",
128                    p->getMasterPort().name());
129            snoopPorts.push_back(p);
130        }
131    }
132
133    if (snoopPorts.empty())
134        warn("CoherentXBar %s has no snooping ports attached!\n", name());
135}
136
137bool
138CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
139{
140    // determine the source port based on the id
141    SlavePort *src_port = slavePorts[slave_port_id];
142
143    // remember if the packet is an express snoop
144    bool is_express_snoop = pkt->isExpressSnoop();
145
146    // determine the destination based on the address
147    PortID master_port_id = findPort(pkt->getAddr());
148
149    // test if the crossbar should be considered occupied for the current
150    // port, and exclude express snoops from the check
151    if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
152        DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n",
153                src_port->name(), pkt->cmdString(), pkt->getAddr());
154        return false;
155    }
156
157    DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n",
158            src_port->name(), pkt->cmdString(), is_express_snoop,
159            pkt->getAddr());
160
161    // store size and command as they might be modified when
162    // forwarding the packet
163    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
164    unsigned int pkt_cmd = pkt->cmdToIndex();
165
166    // set the source port for routing of the response
167    pkt->setSrc(slave_port_id);
168
169    calcPacketTiming(pkt);
170    Tick packetFinishTime = pkt->lastWordDelay + curTick();
171
172    // uncacheable requests need never be snooped
173    if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
174        // the packet is a memory-mapped request and should be
175        // broadcasted to our snoopers but the source
176        if (snoopFilter) {
177            // check with the snoop filter where to forward this packet
178            auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
179            packetFinishTime += sf_res.second * clockPeriod();
180            DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\
181                    " SF size: %i lat: %i\n", src_port->name(),
182                    pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
183                    sf_res.second);
184            forwardTiming(pkt, slave_port_id, sf_res.first);
185        } else {
186            forwardTiming(pkt, slave_port_id);
187        }
188    }
189
190    // remember if we add an outstanding req so we can undo it if
191    // necessary, if the packet needs a response, we should add it
192    // as outstanding and express snoops never fail so there is
193    // not need to worry about them
194    bool add_outstanding = !is_express_snoop && pkt->needsResponse();
195
196    // keep track that we have an outstanding request packet
197    // matching this request, this is used by the coherency
198    // mechanism in determining what to do with snoop responses
199    // (in recvTimingSnoop)
200    if (add_outstanding) {
201        // we should never have an exsiting request outstanding
202        assert(outstandingReq.find(pkt->req) == outstandingReq.end());
203        outstandingReq.insert(pkt->req);
204    }
205
206    // Note: Cannot create a copy of the full packet, here.
207    MemCmd orig_cmd(pkt->cmd);
208
209    // since it is a normal request, attempt to send the packet
210    bool success = masterPorts[master_port_id]->sendTimingReq(pkt);
211
212    if (snoopFilter && !pkt->req->isUncacheable()
213        && !system->bypassCaches()) {
214        // The packet may already be overwritten by the sendTimingReq function.
215        // The snoop filter needs to see the original request *and* the return
216        // status of the send operation, so we need to recreate the original
217        // request.  Atomic mode does not have the issue, as there the send
218        // operation and the response happen instantaneously and don't need two
219        // phase tracking.
220        MemCmd tmp_cmd(pkt->cmd);
221        pkt->cmd = orig_cmd;
222        // Let the snoop filter know about the success of the send operation
223        snoopFilter->updateRequest(pkt, *src_port, !success);
224        pkt->cmd = tmp_cmd;
225    }
226
227    // if this is an express snoop, we are done at this point
228    if (is_express_snoop) {
229        assert(success);
230        snoops++;
231    } else {
232        // for normal requests, check if successful
233        if (!success)  {
234            // inhibited packets should never be forced to retry
235            assert(!pkt->memInhibitAsserted());
236
237            // if it was added as outstanding and the send failed, then
238            // erase it again
239            if (add_outstanding)
240                outstandingReq.erase(pkt->req);
241
242            // undo the calculation so we can check for 0 again
243            pkt->firstWordDelay = pkt->lastWordDelay = 0;
244
245            DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n",
246                    src_port->name(), pkt->cmdString(), pkt->getAddr());
247
248            // update the layer state and schedule an idle event
249            reqLayers[master_port_id]->failedTiming(src_port,
250                                                    clockEdge(headerCycles));
251        } else {
252            // update the layer state and schedule an idle event
253            reqLayers[master_port_id]->succeededTiming(packetFinishTime);
254        }
255    }
256
257    // stats updates only consider packets that were successfully sent
258    if (success) {
259        pktCount[slave_port_id][master_port_id]++;
260        pktSize[slave_port_id][master_port_id] += pkt_size;
261        transDist[pkt_cmd]++;
262    }
263
264    return success;
265}
266
267bool
268CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
269{
270    // determine the source port based on the id
271    MasterPort *src_port = masterPorts[master_port_id];
272
273    // determine the destination based on what is stored in the packet
274    PortID slave_port_id = pkt->getDest();
275    assert(slave_port_id != InvalidPortID);
276    assert(slave_port_id < respLayers.size());
277
278    // test if the crossbar should be considered occupied for the
279    // current port
280    if (!respLayers[slave_port_id]->tryTiming(src_port)) {
281        DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n",
282                src_port->name(), pkt->cmdString(), pkt->getAddr());
283        return false;
284    }
285
286    DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n",
287            src_port->name(), pkt->cmdString(), pkt->getAddr());
288
289    // store size and command as they might be modified when
290    // forwarding the packet
291    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
292    unsigned int pkt_cmd = pkt->cmdToIndex();
293
294    calcPacketTiming(pkt);
295    Tick packetFinishTime = pkt->lastWordDelay + curTick();
296
297    // the packet is a normal response to a request that we should
298    // have seen passing through the crossbar
299    assert(outstandingReq.find(pkt->req) != outstandingReq.end());
300
301    if (snoopFilter && !pkt->req->isUncacheable() && !system->bypassCaches()) {
302        // let the snoop filter inspect the response and update its state
303        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
304    }
305
306    // remove it as outstanding
307    outstandingReq.erase(pkt->req);
308
309    // send the packet through the destination slave port
310    bool success M5_VAR_USED = slavePorts[slave_port_id]->sendTimingResp(pkt);
311
312    // currently it is illegal to block responses... can lead to
313    // deadlock
314    assert(success);
315
316    respLayers[slave_port_id]->succeededTiming(packetFinishTime);
317
318    // stats updates
319    pktCount[slave_port_id][master_port_id]++;
320    pktSize[slave_port_id][master_port_id] += pkt_size;
321    transDist[pkt_cmd]++;
322
323    return true;
324}
325
326void
327CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
328{
329    DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n",
330            masterPorts[master_port_id]->name(), pkt->cmdString(),
331            pkt->getAddr());
332
333    // update stats here as we know the forwarding will succeed
334    transDist[pkt->cmdToIndex()]++;
335    snoops++;
336
337    // we should only see express snoops from caches
338    assert(pkt->isExpressSnoop());
339
340    // set the source port for routing of the response
341    pkt->setSrc(master_port_id);
342
343    if (snoopFilter) {
344        // let the Snoop Filter work its magic and guide probing
345        auto sf_res = snoopFilter->lookupSnoop(pkt);
346        // No timing here: packetFinishTime += sf_res.second * clockPeriod();
347        DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\
348                " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(),
349                pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
350                sf_res.second);
351
352        // forward to all snoopers
353        forwardTiming(pkt, InvalidPortID, sf_res.first);
354    } else {
355        forwardTiming(pkt, InvalidPortID);
356    }
357
358    // a snoop request came from a connected slave device (one of
359    // our master ports), and if it is not coming from the slave
360    // device responsible for the address range something is
361    // wrong, hence there is nothing further to do as the packet
362    // would be going back to where it came from
363    assert(master_port_id == findPort(pkt->getAddr()));
364}
365
366bool
367CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
368{
369    // determine the source port based on the id
370    SlavePort* src_port = slavePorts[slave_port_id];
371
372    // get the destination from the packet
373    PortID dest_port_id = pkt->getDest();
374    assert(dest_port_id != InvalidPortID);
375
376    // determine if the response is from a snoop request we
377    // created as the result of a normal request (in which case it
378    // should be in the outstandingReq), or if we merely forwarded
379    // someone else's snoop request
380    bool forwardAsSnoop = outstandingReq.find(pkt->req) ==
381        outstandingReq.end();
382
383    // test if the crossbar should be considered occupied for the
384    // current port, note that the check is bypassed if the response
385    // is being passed on as a normal response since this is occupying
386    // the response layer rather than the snoop response layer
387    if (forwardAsSnoop) {
388        assert(dest_port_id < snoopLayers.size());
389        if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
390            DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
391                    src_port->name(), pkt->cmdString(), pkt->getAddr());
392            return false;
393        }
394    } else {
395        // get the master port that mirrors this slave port internally
396        MasterPort* snoop_port = snoopRespPorts[slave_port_id];
397        assert(dest_port_id < respLayers.size());
398        if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
399            DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
400                    snoop_port->name(), pkt->cmdString(), pkt->getAddr());
401            return false;
402        }
403    }
404
405    DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n",
406            src_port->name(), pkt->cmdString(), pkt->getAddr());
407
408    // store size and command as they might be modified when
409    // forwarding the packet
410    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
411    unsigned int pkt_cmd = pkt->cmdToIndex();
412
413    // responses are never express snoops
414    assert(!pkt->isExpressSnoop());
415
416    calcPacketTiming(pkt);
417    Tick packetFinishTime = pkt->lastWordDelay + curTick();
418
419    // forward it either as a snoop response or a normal response
420    if (forwardAsSnoop) {
421        // this is a snoop response to a snoop request we forwarded,
422        // e.g. coming from the L1 and going to the L2, and it should
423        // be forwarded as a snoop response
424
425        if (snoopFilter) {
426            // update the probe filter so that it can properly track the line
427            snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
428                                            *masterPorts[dest_port_id]);
429        }
430
431        bool success M5_VAR_USED =
432            masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
433        pktCount[slave_port_id][dest_port_id]++;
434        pktSize[slave_port_id][dest_port_id] += pkt_size;
435        assert(success);
436
437        snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
438    } else {
439        // we got a snoop response on one of our slave ports,
440        // i.e. from a coherent master connected to the crossbar, and
441        // since we created the snoop request as part of recvTiming,
442        // this should now be a normal response again
443        outstandingReq.erase(pkt->req);
444
445        // this is a snoop response from a coherent master, with a
446        // destination field set on its way through the crossbar as
447        // request, hence it should never go back to where the snoop
448        // response came from, but instead to where the original
449        // request came from
450        assert(slave_port_id != dest_port_id);
451
452        if (snoopFilter) {
453            // update the probe filter so that it can properly track the line
454            snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
455                                    *slavePorts[dest_port_id]);
456        }
457
458        DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\
459                " FWD RESP\n", src_port->name(), pkt->cmdString(),
460                pkt->getAddr());
461
462        // as a normal response, it should go back to a master through
463        // one of our slave ports, at this point we are ignoring the
464        // fact that the response layer could be busy and do not touch
465        // its state
466        bool success M5_VAR_USED =
467            slavePorts[dest_port_id]->sendTimingResp(pkt);
468
469        // @todo Put the response in an internal FIFO and pass it on
470        // to the response layer from there
471
472        // currently it is illegal to block responses... can lead
473        // to deadlock
474        assert(success);
475
476        respLayers[dest_port_id]->succeededTiming(packetFinishTime);
477    }
478
479    // stats updates
480    transDist[pkt_cmd]++;
481    snoops++;
482
483    return true;
484}
485
486
487void
488CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
489                           const std::vector<SlavePort*>& dests)
490{
491    DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__,
492            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
493
494    // snoops should only happen if the system isn't bypassing caches
495    assert(!system->bypassCaches());
496
497    unsigned fanout = 0;
498
499    for (const auto& p: dests) {
500        // we could have gotten this request from a snooping master
501        // (corresponding to our own slave port that is also in
502        // snoopPorts) and should not send it back to where it came
503        // from
504        if (exclude_slave_port_id == InvalidPortID ||
505            p->getId() != exclude_slave_port_id) {
506            // cache is not allowed to refuse snoop
507            p->sendTimingSnoopReq(pkt);
508            fanout++;
509        }
510    }
511
512    // Stats for fanout of this forward operation
513    snoopFanout.sample(fanout);
514}
515
516void
517CoherentXBar::recvRetry(PortID master_port_id)
518{
519    // responses and snoop responses never block on forwarding them,
520    // so the retry will always be coming from a port to which we
521    // tried to forward a request
522    reqLayers[master_port_id]->recvRetry();
523}
524
525Tick
526CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
527{
528    DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n",
529            slavePorts[slave_port_id]->name(), pkt->getAddr(),
530            pkt->cmdString());
531
532    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
533    unsigned int pkt_cmd = pkt->cmdToIndex();
534
535    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
536    Tick snoop_response_latency = 0;
537
538    // uncacheable requests need never be snooped
539    if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
540        // forward to all snoopers but the source
541        std::pair<MemCmd, Tick> snoop_result;
542        if (snoopFilter) {
543            // check with the snoop filter where to forward this packet
544            auto sf_res =
545                snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
546            snoop_response_latency += sf_res.second * clockPeriod();
547            DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\
548                    " SF size: %i lat: %i\n", __func__,
549                    slavePorts[slave_port_id]->name(), pkt->cmdString(),
550                    pkt->getAddr(), sf_res.first.size(), sf_res.second);
551            snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
552                                         sf_res.first);
553        } else {
554            snoop_result = forwardAtomic(pkt, slave_port_id);
555        }
556        snoop_response_cmd = snoop_result.first;
557        snoop_response_latency += snoop_result.second;
558    }
559
560    // even if we had a snoop response, we must continue and also
561    // perform the actual request at the destination
562    PortID master_port_id = findPort(pkt->getAddr());
563
564    // stats updates for the request
565    pktCount[slave_port_id][master_port_id]++;
566    pktSize[slave_port_id][master_port_id] += pkt_size;
567    transDist[pkt_cmd]++;
568
569    // forward the request to the appropriate destination
570    Tick response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
571
572    // Lower levels have replied, tell the snoop filter
573    if (snoopFilter && !pkt->req->isUncacheable() && !system->bypassCaches() &&
574        pkt->isResponse()) {
575        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
576    }
577
578    // if we got a response from a snooper, restore it here
579    if (snoop_response_cmd != MemCmd::InvalidCmd) {
580        // no one else should have responded
581        assert(!pkt->isResponse());
582        pkt->cmd = snoop_response_cmd;
583        response_latency = snoop_response_latency;
584    }
585
586    // add the response data
587    if (pkt->isResponse()) {
588        pkt_size = pkt->hasData() ? pkt->getSize() : 0;
589        pkt_cmd = pkt->cmdToIndex();
590
591        // stats updates
592        pktCount[slave_port_id][master_port_id]++;
593        pktSize[slave_port_id][master_port_id] += pkt_size;
594        transDist[pkt_cmd]++;
595    }
596
597    // @todo: Not setting first-word time
598    pkt->lastWordDelay = response_latency;
599    return response_latency;
600}
601
602Tick
603CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
604{
605    DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n",
606            masterPorts[master_port_id]->name(), pkt->getAddr(),
607            pkt->cmdString());
608
609    // add the request snoop data
610    snoops++;
611
612    // forward to all snoopers
613    std::pair<MemCmd, Tick> snoop_result;
614    Tick snoop_response_latency = 0;
615    if (snoopFilter) {
616        auto sf_res = snoopFilter->lookupSnoop(pkt);
617        snoop_response_latency += sf_res.second * clockPeriod();
618        DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n",
619                __func__, masterPorts[master_port_id]->name(), pkt->cmdString(),
620                pkt->getAddr(), sf_res.first.size(), sf_res.second);
621        snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
622                                     sf_res.first);
623    } else {
624        snoop_result = forwardAtomic(pkt, InvalidPortID);
625    }
626    MemCmd snoop_response_cmd = snoop_result.first;
627    snoop_response_latency += snoop_result.second;
628
629    if (snoop_response_cmd != MemCmd::InvalidCmd)
630        pkt->cmd = snoop_response_cmd;
631
632    // add the response snoop data
633    if (pkt->isResponse()) {
634        snoops++;
635    }
636
637    // @todo: Not setting first-word time
638    pkt->lastWordDelay = snoop_response_latency;
639    return snoop_response_latency;
640}
641
642std::pair<MemCmd, Tick>
643CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
644                           PortID source_master_port_id,
645                           const std::vector<SlavePort*>& dests)
646{
647    // the packet may be changed on snoops, record the original
648    // command to enable us to restore it between snoops so that
649    // additional snoops can take place properly
650    MemCmd orig_cmd = pkt->cmd;
651    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
652    Tick snoop_response_latency = 0;
653
654    // snoops should only happen if the system isn't bypassing caches
655    assert(!system->bypassCaches());
656
657    unsigned fanout = 0;
658
659    for (const auto& p: dests) {
660        // we could have gotten this request from a snooping master
661        // (corresponding to our own slave port that is also in
662        // snoopPorts) and should not send it back to where it came
663        // from
664        if (exclude_slave_port_id != InvalidPortID &&
665            p->getId() == exclude_slave_port_id)
666            continue;
667
668        Tick latency = p->sendAtomicSnoop(pkt);
669        fanout++;
670
671        // in contrast to a functional access, we have to keep on
672        // going as all snoopers must be updated even if we get a
673        // response
674        if (!pkt->isResponse())
675            continue;
676
677        // response from snoop agent
678        assert(pkt->cmd != orig_cmd);
679        assert(pkt->memInhibitAsserted());
680        // should only happen once
681        assert(snoop_response_cmd == MemCmd::InvalidCmd);
682        // save response state
683        snoop_response_cmd = pkt->cmd;
684        snoop_response_latency = latency;
685
686        if (snoopFilter) {
687            // Handle responses by the snoopers and differentiate between
688            // responses to requests from above and snoops from below
689            if (source_master_port_id != InvalidPortID) {
690                // Getting a response for a snoop from below
691                assert(exclude_slave_port_id == InvalidPortID);
692                snoopFilter->updateSnoopForward(pkt, *p,
693                             *masterPorts[source_master_port_id]);
694            } else {
695                // Getting a response for a request from above
696                assert(source_master_port_id == InvalidPortID);
697                snoopFilter->updateSnoopResponse(pkt, *p,
698                             *slavePorts[exclude_slave_port_id]);
699            }
700        }
701        // restore original packet state for remaining snoopers
702        pkt->cmd = orig_cmd;
703    }
704
705    // Stats for fanout
706    snoopFanout.sample(fanout);
707
708    // the packet is restored as part of the loop and any potential
709    // snoop response is part of the returned pair
710    return std::make_pair(snoop_response_cmd, snoop_response_latency);
711}
712
713void
714CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
715{
716    if (!pkt->isPrint()) {
717        // don't do DPRINTFs on PrintReq as it clutters up the output
718        DPRINTF(CoherentXBar,
719                "recvFunctional: packet src %s addr 0x%x cmd %s\n",
720                slavePorts[slave_port_id]->name(), pkt->getAddr(),
721                pkt->cmdString());
722    }
723
724    // uncacheable requests need never be snooped
725    if (!pkt->req->isUncacheable() && !system->bypassCaches()) {
726        // forward to all snoopers but the source
727        forwardFunctional(pkt, slave_port_id);
728    }
729
730    // there is no need to continue if the snooping has found what we
731    // were looking for and the packet is already a response
732    if (!pkt->isResponse()) {
733        PortID dest_id = findPort(pkt->getAddr());
734
735        masterPorts[dest_id]->sendFunctional(pkt);
736    }
737}
738
739void
740CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
741{
742    if (!pkt->isPrint()) {
743        // don't do DPRINTFs on PrintReq as it clutters up the output
744        DPRINTF(CoherentXBar,
745                "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n",
746                masterPorts[master_port_id]->name(), pkt->getAddr(),
747                pkt->cmdString());
748    }
749
750    // forward to all snoopers
751    forwardFunctional(pkt, InvalidPortID);
752}
753
754void
755CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
756{
757    // snoops should only happen if the system isn't bypassing caches
758    assert(!system->bypassCaches());
759
760    for (const auto& p: snoopPorts) {
761        // we could have gotten this request from a snooping master
762        // (corresponding to our own slave port that is also in
763        // snoopPorts) and should not send it back to where it came
764        // from
765        if (exclude_slave_port_id == InvalidPortID ||
766            p->getId() != exclude_slave_port_id)
767            p->sendFunctionalSnoop(pkt);
768
769        // if we get a response we are done
770        if (pkt->isResponse()) {
771            break;
772        }
773    }
774}
775
776unsigned int
777CoherentXBar::drain(DrainManager *dm)
778{
779    // sum up the individual layers
780    unsigned int total = 0;
781    for (auto l: reqLayers)
782        total += l->drain(dm);
783    for (auto l: respLayers)
784        total += l->drain(dm);
785    for (auto l: snoopLayers)
786        total += l->drain(dm);
787    return total;
788}
789
790void
791CoherentXBar::regStats()
792{
793    // register the stats of the base class and our layers
794    BaseXBar::regStats();
795    for (auto l: reqLayers)
796        l->regStats();
797    for (auto l: respLayers)
798        l->regStats();
799    for (auto l: snoopLayers)
800        l->regStats();
801
802    snoops
803        .name(name() + ".snoops")
804        .desc("Total snoops (count)")
805    ;
806
807    snoopFanout
808        .init(0, snoopPorts.size(), 1)
809        .name(name() + ".snoop_fanout")
810        .desc("Request fanout histogram")
811    ;
812}
813
814CoherentXBar *
815CoherentXBarParams::create()
816{
817    return new CoherentXBar(this);
818}
819