cache.cc revision 13948
1/* 2 * Copyright (c) 2010-2019 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2002-2005 The Regents of The University of Michigan 15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc. 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Erik Hallnor 42 * Dave Greene 43 * Nathan Binkert 44 * Steve Reinhardt 45 * Ron Dreslinski 46 * Andreas Sandberg 47 * Nikos Nikoleris 48 */ 49 50/** 51 * @file 52 * Cache definitions. 53 */ 54 55#include "mem/cache/cache.hh" 56 57#include <cassert> 58 59#include "base/compiler.hh" 60#include "base/logging.hh" 61#include "base/trace.hh" 62#include "base/types.hh" 63#include "debug/Cache.hh" 64#include "debug/CacheTags.hh" 65#include "debug/CacheVerbose.hh" 66#include "enums/Clusivity.hh" 67#include "mem/cache/cache_blk.hh" 68#include "mem/cache/mshr.hh" 69#include "mem/cache/tags/base.hh" 70#include "mem/cache/write_queue_entry.hh" 71#include "mem/request.hh" 72#include "params/Cache.hh" 73 74Cache::Cache(const CacheParams *p) 75 : BaseCache(p, p->system->cacheLineSize()), 76 doFastWrites(true) 77{ 78} 79 80void 81Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, 82 bool deferred_response, bool pending_downgrade) 83{ 84 BaseCache::satisfyRequest(pkt, blk); 85 86 if (pkt->isRead()) { 87 // determine if this read is from a (coherent) cache or not 88 if (pkt->fromCache()) { 89 assert(pkt->getSize() == blkSize); 90 // special handling for coherent block requests from 91 // upper-level caches 92 if (pkt->needsWritable()) { 93 // sanity check 94 assert(pkt->cmd == MemCmd::ReadExReq || 95 pkt->cmd == MemCmd::SCUpgradeFailReq); 96 assert(!pkt->hasSharers()); 97 98 // if we have a dirty copy, make sure the recipient 99 // keeps it marked dirty (in the modified state) 100 if (blk->isDirty()) { 101 pkt->setCacheResponding(); 102 blk->status &= ~BlkDirty; 103 } 104 } else if (blk->isWritable() && !pending_downgrade && 105 !pkt->hasSharers() && 106 pkt->cmd != MemCmd::ReadCleanReq) { 107 // we can give the requester a writable copy on a read 108 // request if: 109 // - we have a writable copy at this level (& below) 110 // - we don't have a pending snoop from below 111 // signaling another read request 112 // - no other cache above has a copy (otherwise it 113 // would have set hasSharers flag when 114 // snooping the packet) 115 // - the read has explicitly asked for a clean 116 // copy of the line 117 if (blk->isDirty()) { 118 // special considerations if we're owner: 119 if (!deferred_response) { 120 // respond with the line in Modified state 121 // (cacheResponding set, hasSharers not set) 122 pkt->setCacheResponding(); 123 124 // if this cache is mostly inclusive, we 125 // keep the block in the Exclusive state, 126 // and pass it upwards as Modified 127 // (writable and dirty), hence we have 128 // multiple caches, all on the same path 129 // towards memory, all considering the 130 // same block writable, but only one 131 // considering it Modified 132 133 // we get away with multiple caches (on 134 // the same path to memory) considering 135 // the block writeable as we always enter 136 // the cache hierarchy through a cache, 137 // and first snoop upwards in all other 138 // branches 139 blk->status &= ~BlkDirty; 140 } else { 141 // if we're responding after our own miss, 142 // there's a window where the recipient didn't 143 // know it was getting ownership and may not 144 // have responded to snoops correctly, so we 145 // have to respond with a shared line 146 pkt->setHasSharers(); 147 } 148 } 149 } else { 150 // otherwise only respond with a shared copy 151 pkt->setHasSharers(); 152 } 153 } 154 } 155} 156 157///////////////////////////////////////////////////// 158// 159// Access path: requests coming in from the CPU side 160// 161///////////////////////////////////////////////////// 162 163bool 164Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat) 165{ 166 167 if (pkt->req->isUncacheable()) { 168 assert(pkt->isRequest()); 169 170 chatty_assert(!(isReadOnly && pkt->isWrite()), 171 "Should never see a write in a read-only cache %s\n", 172 name()); 173 174 DPRINTF(Cache, "%s for %s\n", __func__, pkt->print()); 175 176 // lookupLatency is the latency in case the request is uncacheable. 177 lat = lookupLatency; 178 179 // flush and invalidate any existing block 180 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure())); 181 if (old_blk && old_blk->isValid()) { 182 BaseCache::evictBlock(old_blk, clockEdge(lat + forwardLatency)); 183 } 184 185 blk = nullptr; 186 return false; 187 } 188 189 return BaseCache::access(pkt, blk, lat); 190} 191 192void 193Cache::doWritebacks(PacketPtr pkt, Tick forward_time) 194{ 195 // We use forwardLatency here because we are copying writebacks to 196 // write buffer. 197 198 // Call isCachedAbove for Writebacks, CleanEvicts and 199 // WriteCleans to discover if the block is cached above. 200 if (isCachedAbove(pkt)) { 201 if (pkt->cmd == MemCmd::CleanEvict) { 202 // Delete CleanEvict because cached copies exist above. The 203 // packet destructor will delete the request object because 204 // this is a non-snoop request packet which does not require a 205 // response. 206 delete pkt; 207 } else if (pkt->cmd == MemCmd::WritebackClean) { 208 // clean writeback, do not send since the block is 209 // still cached above 210 assert(writebackClean); 211 delete pkt; 212 } else { 213 assert(pkt->cmd == MemCmd::WritebackDirty || 214 pkt->cmd == MemCmd::WriteClean); 215 // Set BLOCK_CACHED flag in Writeback and send below, so that 216 // the Writeback does not reset the bit corresponding to this 217 // address in the snoop filter below. 218 pkt->setBlockCached(); 219 allocateWriteBuffer(pkt, forward_time); 220 } 221 } else { 222 // If the block is not cached above, send packet below. Both 223 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 224 // reset the bit corresponding to this address in the snoop filter 225 // below. 226 allocateWriteBuffer(pkt, forward_time); 227 } 228} 229 230void 231Cache::doWritebacksAtomic(PacketPtr pkt) 232{ 233 // Call isCachedAbove for both Writebacks and CleanEvicts. If 234 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks 235 // and discard CleanEvicts. 236 if (isCachedAbove(pkt, false)) { 237 if (pkt->cmd == MemCmd::WritebackDirty || 238 pkt->cmd == MemCmd::WriteClean) { 239 // Set BLOCK_CACHED flag in Writeback and send below, 240 // so that the Writeback does not reset the bit 241 // corresponding to this address in the snoop filter 242 // below. We can discard CleanEvicts because cached 243 // copies exist above. Atomic mode isCachedAbove 244 // modifies packet to set BLOCK_CACHED flag 245 memSidePort.sendAtomic(pkt); 246 } 247 } else { 248 // If the block is not cached above, send packet below. Both 249 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 250 // reset the bit corresponding to this address in the snoop filter 251 // below. 252 memSidePort.sendAtomic(pkt); 253 } 254 255 // In case of CleanEvicts, the packet destructor will delete the 256 // request object because this is a non-snoop request packet which 257 // does not require a response. 258 delete pkt; 259} 260 261void 262Cache::recvTimingSnoopResp(PacketPtr pkt) 263{ 264 DPRINTF(Cache, "%s for %s\n", __func__, pkt->print()); 265 266 // determine if the response is from a snoop request we created 267 // (in which case it should be in the outstandingSnoop), or if we 268 // merely forwarded someone else's snoop request 269 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 270 outstandingSnoop.end(); 271 272 if (!forwardAsSnoop) { 273 // the packet came from this cache, so sink it here and do not 274 // forward it 275 assert(pkt->cmd == MemCmd::HardPFResp); 276 277 outstandingSnoop.erase(pkt->req); 278 279 DPRINTF(Cache, "Got prefetch response from above for addr " 280 "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 281 recvTimingResp(pkt); 282 return; 283 } 284 285 // forwardLatency is set here because there is a response from an 286 // upper level cache. 287 // To pay the delay that occurs if the packet comes from the bus, 288 // we charge also headerDelay. 289 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay; 290 // Reset the timing of the packet. 291 pkt->headerDelay = pkt->payloadDelay = 0; 292 memSidePort.schedTimingSnoopResp(pkt, snoop_resp_time); 293} 294 295void 296Cache::promoteWholeLineWrites(PacketPtr pkt) 297{ 298 // Cache line clearing instructions 299 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) && 300 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) { 301 pkt->cmd = MemCmd::WriteLineReq; 302 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n"); 303 } 304} 305 306void 307Cache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time) 308{ 309 // should never be satisfying an uncacheable access as we 310 // flush and invalidate any existing block as part of the 311 // lookup 312 assert(!pkt->req->isUncacheable()); 313 314 BaseCache::handleTimingReqHit(pkt, blk, request_time); 315} 316 317void 318Cache::handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk, Tick forward_time, 319 Tick request_time) 320{ 321 if (pkt->req->isUncacheable()) { 322 // ignore any existing MSHR if we are dealing with an 323 // uncacheable request 324 325 // should have flushed and have no valid block 326 assert(!blk || !blk->isValid()); 327 328 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++; 329 330 if (pkt->isWrite()) { 331 allocateWriteBuffer(pkt, forward_time); 332 } else { 333 assert(pkt->isRead()); 334 335 // uncacheable accesses always allocate a new MSHR 336 337 // Here we are using forward_time, modelling the latency of 338 // a miss (outbound) just as forwardLatency, neglecting the 339 // lookupLatency component. 340 allocateMissBuffer(pkt, forward_time); 341 } 342 343 return; 344 } 345 346 Addr blk_addr = pkt->getBlockAddr(blkSize); 347 348 MSHR *mshr = mshrQueue.findMatch(blk_addr, pkt->isSecure()); 349 350 // Software prefetch handling: 351 // To keep the core from waiting on data it won't look at 352 // anyway, send back a response with dummy data. Miss handling 353 // will continue asynchronously. Unfortunately, the core will 354 // insist upon freeing original Packet/Request, so we have to 355 // create a new pair with a different lifecycle. Note that this 356 // processing happens before any MSHR munging on the behalf of 357 // this request because this new Request will be the one stored 358 // into the MSHRs, not the original. 359 if (pkt->cmd.isSWPrefetch()) { 360 assert(pkt->needsResponse()); 361 assert(pkt->req->hasPaddr()); 362 assert(!pkt->req->isUncacheable()); 363 364 // There's no reason to add a prefetch as an additional target 365 // to an existing MSHR. If an outstanding request is already 366 // in progress, there is nothing for the prefetch to do. 367 // If this is the case, we don't even create a request at all. 368 PacketPtr pf = nullptr; 369 370 if (!mshr) { 371 // copy the request and create a new SoftPFReq packet 372 RequestPtr req = std::make_shared<Request>(pkt->req->getPaddr(), 373 pkt->req->getSize(), 374 pkt->req->getFlags(), 375 pkt->req->masterId()); 376 pf = new Packet(req, pkt->cmd); 377 pf->allocate(); 378 assert(pf->matchAddr(pkt)); 379 assert(pf->getSize() == pkt->getSize()); 380 } 381 382 pkt->makeTimingResponse(); 383 384 // request_time is used here, taking into account lat and the delay 385 // charged if the packet comes from the xbar. 386 cpuSidePort.schedTimingResp(pkt, request_time); 387 388 // If an outstanding request is in progress (we found an 389 // MSHR) this is set to null 390 pkt = pf; 391 } 392 393 BaseCache::handleTimingReqMiss(pkt, mshr, blk, forward_time, request_time); 394} 395 396void 397Cache::recvTimingReq(PacketPtr pkt) 398{ 399 DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print()); 400 401 promoteWholeLineWrites(pkt); 402 403 if (pkt->cacheResponding()) { 404 // a cache above us (but not where the packet came from) is 405 // responding to the request, in other words it has the line 406 // in Modified or Owned state 407 DPRINTF(Cache, "Cache above responding to %s: not responding\n", 408 pkt->print()); 409 410 // if the packet needs the block to be writable, and the cache 411 // that has promised to respond (setting the cache responding 412 // flag) is not providing writable (it is in Owned rather than 413 // the Modified state), we know that there may be other Shared 414 // copies in the system; go out and invalidate them all 415 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 416 417 // an upstream cache that had the line in Owned state 418 // (dirty, but not writable), is responding and thus 419 // transferring the dirty line from one branch of the 420 // cache hierarchy to another 421 422 // send out an express snoop and invalidate all other 423 // copies (snooping a packet that needs writable is the 424 // same as an invalidation), thus turning the Owned line 425 // into a Modified line, note that we don't invalidate the 426 // block in the current cache or any other cache on the 427 // path to memory 428 429 // create a downstream express snoop with cleared packet 430 // flags, there is no need to allocate any data as the 431 // packet is merely used to co-ordinate state transitions 432 Packet *snoop_pkt = new Packet(pkt, true, false); 433 434 // also reset the bus time that the original packet has 435 // not yet paid for 436 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0; 437 438 // make this an instantaneous express snoop, and let the 439 // other caches in the system know that the another cache 440 // is responding, because we have found the authorative 441 // copy (Modified or Owned) that will supply the right 442 // data 443 snoop_pkt->setExpressSnoop(); 444 snoop_pkt->setCacheResponding(); 445 446 // this express snoop travels towards the memory, and at 447 // every crossbar it is snooped upwards thus reaching 448 // every cache in the system 449 bool M5_VAR_USED success = memSidePort.sendTimingReq(snoop_pkt); 450 // express snoops always succeed 451 assert(success); 452 453 // main memory will delete the snoop packet 454 455 // queue for deletion, as opposed to immediate deletion, as 456 // the sending cache is still relying on the packet 457 pendingDelete.reset(pkt); 458 459 // no need to take any further action in this particular cache 460 // as an upstram cache has already committed to responding, 461 // and we have already sent out any express snoops in the 462 // section above to ensure all other copies in the system are 463 // invalidated 464 return; 465 } 466 467 BaseCache::recvTimingReq(pkt); 468} 469 470PacketPtr 471Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk, 472 bool needsWritable, 473 bool is_whole_line_write) const 474{ 475 // should never see evictions here 476 assert(!cpu_pkt->isEviction()); 477 478 bool blkValid = blk && blk->isValid(); 479 480 if (cpu_pkt->req->isUncacheable() || 481 (!blkValid && cpu_pkt->isUpgrade()) || 482 cpu_pkt->cmd == MemCmd::InvalidateReq || cpu_pkt->isClean()) { 483 // uncacheable requests and upgrades from upper-level caches 484 // that missed completely just go through as is 485 return nullptr; 486 } 487 488 assert(cpu_pkt->needsResponse()); 489 490 MemCmd cmd; 491 // @TODO make useUpgrades a parameter. 492 // Note that ownership protocols require upgrade, otherwise a 493 // write miss on a shared owned block will generate a ReadExcl, 494 // which will clobber the owned copy. 495 const bool useUpgrades = true; 496 assert(cpu_pkt->cmd != MemCmd::WriteLineReq || is_whole_line_write); 497 if (is_whole_line_write) { 498 assert(!blkValid || !blk->isWritable()); 499 // forward as invalidate to all other caches, this gives us 500 // the line in Exclusive state, and invalidates all other 501 // copies 502 cmd = MemCmd::InvalidateReq; 503 } else if (blkValid && useUpgrades) { 504 // only reason to be here is that blk is read only and we need 505 // it to be writable 506 assert(needsWritable); 507 assert(!blk->isWritable()); 508 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq; 509 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq || 510 cpu_pkt->cmd == MemCmd::StoreCondFailReq) { 511 // Even though this SC will fail, we still need to send out the 512 // request and get the data to supply it to other snoopers in the case 513 // where the determination the StoreCond fails is delayed due to 514 // all caches not being on the same local bus. 515 cmd = MemCmd::SCUpgradeFailReq; 516 } else { 517 // block is invalid 518 519 // If the request does not need a writable there are two cases 520 // where we need to ensure the response will not fetch the 521 // block in dirty state: 522 // * this cache is read only and it does not perform 523 // writebacks, 524 // * this cache is mostly exclusive and will not fill (since 525 // it does not fill it will have to writeback the dirty data 526 // immediately which generates uneccesary writebacks). 527 bool force_clean_rsp = isReadOnly || clusivity == Enums::mostly_excl; 528 cmd = needsWritable ? MemCmd::ReadExReq : 529 (force_clean_rsp ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq); 530 } 531 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize); 532 533 // if there are upstream caches that have already marked the 534 // packet as having sharers (not passing writable), pass that info 535 // downstream 536 if (cpu_pkt->hasSharers() && !needsWritable) { 537 // note that cpu_pkt may have spent a considerable time in the 538 // MSHR queue and that the information could possibly be out 539 // of date, however, there is no harm in conservatively 540 // assuming the block has sharers 541 pkt->setHasSharers(); 542 DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n", 543 __func__, cpu_pkt->print(), pkt->print()); 544 } 545 546 // the packet should be block aligned 547 assert(pkt->getAddr() == pkt->getBlockAddr(blkSize)); 548 549 pkt->allocate(); 550 DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(), 551 cpu_pkt->print()); 552 return pkt; 553} 554 555 556Cycles 557Cache::handleAtomicReqMiss(PacketPtr pkt, CacheBlk *&blk) 558{ 559 // deal with the packets that go through the write path of 560 // the cache, i.e. any evictions and writes 561 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean || 562 (pkt->req->isUncacheable() && pkt->isWrite())) { 563 Cycles latency = ticksToCycles(memSidePort.sendAtomic(pkt)); 564 565 // at this point, if the request was an uncacheable write 566 // request, it has been satisfied by a memory below and the 567 // packet carries the response back 568 assert(!(pkt->req->isUncacheable() && pkt->isWrite()) || 569 pkt->isResponse()); 570 571 return latency; 572 } 573 574 // only misses left 575 576 PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable(), 577 pkt->isWholeLineWrite(blkSize)); 578 579 bool is_forward = (bus_pkt == nullptr); 580 581 if (is_forward) { 582 // just forwarding the same request to the next level 583 // no local cache operation involved 584 bus_pkt = pkt; 585 } 586 587 DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__, 588 bus_pkt->print()); 589 590#if TRACING_ON 591 CacheBlk::State old_state = blk ? blk->status : 0; 592#endif 593 594 Cycles latency = ticksToCycles(memSidePort.sendAtomic(bus_pkt)); 595 596 bool is_invalidate = bus_pkt->isInvalidate(); 597 598 // We are now dealing with the response handling 599 DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__, 600 bus_pkt->print(), old_state); 601 602 // If packet was a forward, the response (if any) is already 603 // in place in the bus_pkt == pkt structure, so we don't need 604 // to do anything. Otherwise, use the separate bus_pkt to 605 // generate response to pkt and then delete it. 606 if (!is_forward) { 607 if (pkt->needsResponse()) { 608 assert(bus_pkt->isResponse()); 609 if (bus_pkt->isError()) { 610 pkt->makeAtomicResponse(); 611 pkt->copyError(bus_pkt); 612 } else if (pkt->isWholeLineWrite(blkSize)) { 613 // note the use of pkt, not bus_pkt here. 614 615 // write-line request to the cache that promoted 616 // the write to a whole line 617 const bool allocate = allocOnFill(pkt->cmd) && 618 (!writeAllocator || writeAllocator->allocate()); 619 blk = handleFill(bus_pkt, blk, allocate); 620 assert(blk != NULL); 621 is_invalidate = false; 622 satisfyRequest(pkt, blk); 623 } else if (bus_pkt->isRead() || 624 bus_pkt->cmd == MemCmd::UpgradeResp) { 625 // we're updating cache state to allow us to 626 // satisfy the upstream request from the cache 627 blk = handleFill(bus_pkt, blk, allocOnFill(pkt->cmd)); 628 satisfyRequest(pkt, blk); 629 maintainClusivity(pkt->fromCache(), blk); 630 } else { 631 // we're satisfying the upstream request without 632 // modifying cache state, e.g., a write-through 633 pkt->makeAtomicResponse(); 634 } 635 } 636 delete bus_pkt; 637 } 638 639 if (is_invalidate && blk && blk->isValid()) { 640 invalidateBlock(blk); 641 } 642 643 return latency; 644} 645 646Tick 647Cache::recvAtomic(PacketPtr pkt) 648{ 649 promoteWholeLineWrites(pkt); 650 651 // follow the same flow as in recvTimingReq, and check if a cache 652 // above us is responding 653 if (pkt->cacheResponding()) { 654 assert(!pkt->req->isCacheInvalidate()); 655 DPRINTF(Cache, "Cache above responding to %s: not responding\n", 656 pkt->print()); 657 658 // if a cache is responding, and it had the line in Owned 659 // rather than Modified state, we need to invalidate any 660 // copies that are not on the same path to memory 661 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 662 663 return memSidePort.sendAtomic(pkt); 664 } 665 666 return BaseCache::recvAtomic(pkt); 667} 668 669 670///////////////////////////////////////////////////// 671// 672// Response handling: responses from the memory side 673// 674///////////////////////////////////////////////////// 675 676 677void 678Cache::serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt, CacheBlk *blk) 679{ 680 QueueEntry::Target *initial_tgt = mshr->getTarget(); 681 // First offset for critical word first calculations 682 const int initial_offset = initial_tgt->pkt->getOffset(blkSize); 683 684 const bool is_error = pkt->isError(); 685 // allow invalidation responses originating from write-line 686 // requests to be discarded 687 bool is_invalidate = pkt->isInvalidate() && 688 !mshr->wasWholeLineWrite; 689 690 MSHR::TargetList targets = mshr->extractServiceableTargets(pkt); 691 for (auto &target: targets) { 692 Packet *tgt_pkt = target.pkt; 693 switch (target.source) { 694 case MSHR::Target::FromCPU: 695 Tick completion_time; 696 // Here we charge on completion_time the delay of the xbar if the 697 // packet comes from it, charged on headerDelay. 698 completion_time = pkt->headerDelay; 699 700 // Software prefetch handling for cache closest to core 701 if (tgt_pkt->cmd.isSWPrefetch()) { 702 // a software prefetch would have already been ack'd 703 // immediately with dummy data so the core would be able to 704 // retire it. This request completes right here, so we 705 // deallocate it. 706 delete tgt_pkt; 707 break; // skip response 708 } 709 710 // unlike the other packet flows, where data is found in other 711 // caches or memory and brought back, write-line requests always 712 // have the data right away, so the above check for "is fill?" 713 // cannot actually be determined until examining the stored MSHR 714 // state. We "catch up" with that logic here, which is duplicated 715 // from above. 716 if (tgt_pkt->cmd == MemCmd::WriteLineReq) { 717 assert(!is_error); 718 assert(blk); 719 assert(blk->isWritable()); 720 } 721 722 if (blk && blk->isValid() && !mshr->isForward) { 723 satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade()); 724 725 // How many bytes past the first request is this one 726 int transfer_offset = 727 tgt_pkt->getOffset(blkSize) - initial_offset; 728 if (transfer_offset < 0) { 729 transfer_offset += blkSize; 730 } 731 732 // If not critical word (offset) return payloadDelay. 733 // responseLatency is the latency of the return path 734 // from lower level caches/memory to an upper level cache or 735 // the core. 736 completion_time += clockEdge(responseLatency) + 737 (transfer_offset ? pkt->payloadDelay : 0); 738 739 assert(!tgt_pkt->req->isUncacheable()); 740 741 assert(tgt_pkt->req->masterId() < system->maxMasters()); 742 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] += 743 completion_time - target.recvTime; 744 } else if (pkt->cmd == MemCmd::UpgradeFailResp) { 745 // failed StoreCond upgrade 746 assert(tgt_pkt->cmd == MemCmd::StoreCondReq || 747 tgt_pkt->cmd == MemCmd::StoreCondFailReq || 748 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq); 749 // responseLatency is the latency of the return path 750 // from lower level caches/memory to an upper level cache or 751 // the core. 752 completion_time += clockEdge(responseLatency) + 753 pkt->payloadDelay; 754 tgt_pkt->req->setExtraData(0); 755 } else { 756 // We are about to send a response to a cache above 757 // that asked for an invalidation; we need to 758 // invalidate our copy immediately as the most 759 // up-to-date copy of the block will now be in the 760 // cache above. It will also prevent this cache from 761 // responding (if the block was previously dirty) to 762 // snoops as they should snoop the caches above where 763 // they will get the response from. 764 if (is_invalidate && blk && blk->isValid()) { 765 invalidateBlock(blk); 766 } 767 // not a cache fill, just forwarding response 768 // responseLatency is the latency of the return path 769 // from lower level cahces/memory to the core. 770 completion_time += clockEdge(responseLatency) + 771 pkt->payloadDelay; 772 if (pkt->isRead() && !is_error) { 773 // sanity check 774 assert(pkt->matchAddr(tgt_pkt)); 775 assert(pkt->getSize() >= tgt_pkt->getSize()); 776 777 tgt_pkt->setData(pkt->getConstPtr<uint8_t>()); 778 } 779 780 // this response did not allocate here and therefore 781 // it was not consumed, make sure that any flags are 782 // carried over to cache above 783 tgt_pkt->copyResponderFlags(pkt); 784 } 785 tgt_pkt->makeTimingResponse(); 786 // if this packet is an error copy that to the new packet 787 if (is_error) 788 tgt_pkt->copyError(pkt); 789 if (tgt_pkt->cmd == MemCmd::ReadResp && 790 (is_invalidate || mshr->hasPostInvalidate())) { 791 // If intermediate cache got ReadRespWithInvalidate, 792 // propagate that. Response should not have 793 // isInvalidate() set otherwise. 794 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate; 795 DPRINTF(Cache, "%s: updated cmd to %s\n", __func__, 796 tgt_pkt->print()); 797 } 798 // Reset the bus additional time as it is now accounted for 799 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0; 800 cpuSidePort.schedTimingResp(tgt_pkt, completion_time); 801 break; 802 803 case MSHR::Target::FromPrefetcher: 804 assert(tgt_pkt->cmd == MemCmd::HardPFReq); 805 if (blk) 806 blk->status |= BlkHWPrefetched; 807 delete tgt_pkt; 808 break; 809 810 case MSHR::Target::FromSnoop: 811 // I don't believe that a snoop can be in an error state 812 assert(!is_error); 813 // response to snoop request 814 DPRINTF(Cache, "processing deferred snoop...\n"); 815 // If the response is invalidating, a snooping target can 816 // be satisfied if it is also invalidating. If the reponse is, not 817 // only invalidating, but more specifically an InvalidateResp and 818 // the MSHR was created due to an InvalidateReq then a cache above 819 // is waiting to satisfy a WriteLineReq. In this case even an 820 // non-invalidating snoop is added as a target here since this is 821 // the ordering point. When the InvalidateResp reaches this cache, 822 // the snooping target will snoop further the cache above with the 823 // WriteLineReq. 824 assert(!is_invalidate || pkt->cmd == MemCmd::InvalidateResp || 825 pkt->req->isCacheMaintenance() || 826 mshr->hasPostInvalidate()); 827 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate()); 828 break; 829 830 default: 831 panic("Illegal target->source enum %d\n", target.source); 832 } 833 } 834 835 maintainClusivity(targets.hasFromCache, blk); 836 837 if (blk && blk->isValid()) { 838 // an invalidate response stemming from a write line request 839 // should not invalidate the block, so check if the 840 // invalidation should be discarded 841 if (is_invalidate || mshr->hasPostInvalidate()) { 842 invalidateBlock(blk); 843 } else if (mshr->hasPostDowngrade()) { 844 blk->status &= ~BlkWritable; 845 } 846 } 847} 848 849PacketPtr 850Cache::evictBlock(CacheBlk *blk) 851{ 852 PacketPtr pkt = (blk->isDirty() || writebackClean) ? 853 writebackBlk(blk) : cleanEvictBlk(blk); 854 855 invalidateBlock(blk); 856 857 return pkt; 858} 859 860PacketPtr 861Cache::cleanEvictBlk(CacheBlk *blk) 862{ 863 assert(!writebackClean); 864 assert(blk && blk->isValid() && !blk->isDirty()); 865 866 // Creating a zero sized write, a message to the snoop filter 867 RequestPtr req = std::make_shared<Request>( 868 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId); 869 870 if (blk->isSecure()) 871 req->setFlags(Request::SECURE); 872 873 req->taskId(blk->task_id); 874 875 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict); 876 pkt->allocate(); 877 DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print()); 878 879 return pkt; 880} 881 882///////////////////////////////////////////////////// 883// 884// Snoop path: requests coming in from the memory side 885// 886///////////////////////////////////////////////////// 887 888void 889Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data, 890 bool already_copied, bool pending_inval) 891{ 892 // sanity check 893 assert(req_pkt->isRequest()); 894 assert(req_pkt->needsResponse()); 895 896 DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print()); 897 // timing-mode snoop responses require a new packet, unless we 898 // already made a copy... 899 PacketPtr pkt = req_pkt; 900 if (!already_copied) 901 // do not clear flags, and allocate space for data if the 902 // packet needs it (the only packets that carry data are read 903 // responses) 904 pkt = new Packet(req_pkt, false, req_pkt->isRead()); 905 906 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() || 907 pkt->hasSharers()); 908 pkt->makeTimingResponse(); 909 if (pkt->isRead()) { 910 pkt->setDataFromBlock(blk_data, blkSize); 911 } 912 if (pkt->cmd == MemCmd::ReadResp && pending_inval) { 913 // Assume we defer a response to a read from a far-away cache 914 // A, then later defer a ReadExcl from a cache B on the same 915 // bus as us. We'll assert cacheResponding in both cases, but 916 // in the latter case cacheResponding will keep the 917 // invalidation from reaching cache A. This special response 918 // tells cache A that it gets the block to satisfy its read, 919 // but must immediately invalidate it. 920 pkt->cmd = MemCmd::ReadRespWithInvalidate; 921 } 922 // Here we consider forward_time, paying for just forward latency and 923 // also charging the delay provided by the xbar. 924 // forward_time is used as send_time in next allocateWriteBuffer(). 925 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 926 // Here we reset the timing of the packet. 927 pkt->headerDelay = pkt->payloadDelay = 0; 928 DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__, 929 pkt->print(), forward_time); 930 memSidePort.schedTimingSnoopResp(pkt, forward_time); 931} 932 933uint32_t 934Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing, 935 bool is_deferred, bool pending_inval) 936{ 937 DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print()); 938 // deferred snoops can only happen in timing mode 939 assert(!(is_deferred && !is_timing)); 940 // pending_inval only makes sense on deferred snoops 941 assert(!(pending_inval && !is_deferred)); 942 assert(pkt->isRequest()); 943 944 // the packet may get modified if we or a forwarded snooper 945 // responds in atomic mode, so remember a few things about the 946 // original packet up front 947 bool invalidate = pkt->isInvalidate(); 948 bool M5_VAR_USED needs_writable = pkt->needsWritable(); 949 950 // at the moment we could get an uncacheable write which does not 951 // have the invalidate flag, and we need a suitable way of dealing 952 // with this case 953 panic_if(invalidate && pkt->req->isUncacheable(), 954 "%s got an invalidating uncacheable snoop request %s", 955 name(), pkt->print()); 956 957 uint32_t snoop_delay = 0; 958 959 if (forwardSnoops) { 960 // first propagate snoop upward to see if anyone above us wants to 961 // handle it. save & restore packet src since it will get 962 // rewritten to be relative to cpu-side bus (if any) 963 if (is_timing) { 964 // copy the packet so that we can clear any flags before 965 // forwarding it upwards, we also allocate data (passing 966 // the pointer along in case of static data), in case 967 // there is a snoop hit in upper levels 968 Packet snoopPkt(pkt, true, true); 969 snoopPkt.setExpressSnoop(); 970 // the snoop packet does not need to wait any additional 971 // time 972 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0; 973 cpuSidePort.sendTimingSnoopReq(&snoopPkt); 974 975 // add the header delay (including crossbar and snoop 976 // delays) of the upward snoop to the snoop delay for this 977 // cache 978 snoop_delay += snoopPkt.headerDelay; 979 980 // If this request is a prefetch or clean evict and an upper level 981 // signals block present, make sure to propagate the block 982 // presence to the requester. 983 if (snoopPkt.isBlockCached()) { 984 pkt->setBlockCached(); 985 } 986 // If the request was satisfied by snooping the cache 987 // above, mark the original packet as satisfied too. 988 if (snoopPkt.satisfied()) { 989 pkt->setSatisfied(); 990 } 991 992 // Copy over flags from the snoop response to make sure we 993 // inform the final destination 994 pkt->copyResponderFlags(&snoopPkt); 995 } else { 996 bool already_responded = pkt->cacheResponding(); 997 cpuSidePort.sendAtomicSnoop(pkt); 998 if (!already_responded && pkt->cacheResponding()) { 999 // cache-to-cache response from some upper cache: 1000 // forward response to original requester 1001 assert(pkt->isResponse()); 1002 } 1003 } 1004 } 1005 1006 bool respond = false; 1007 bool blk_valid = blk && blk->isValid(); 1008 if (pkt->isClean()) { 1009 if (blk_valid && blk->isDirty()) { 1010 DPRINTF(CacheVerbose, "%s: packet (snoop) %s found block: %s\n", 1011 __func__, pkt->print(), blk->print()); 1012 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id); 1013 1014 if (is_timing) { 1015 // anything that is merely forwarded pays for the forward 1016 // latency and the delay provided by the crossbar 1017 Tick forward_time = clockEdge(forwardLatency) + 1018 pkt->headerDelay; 1019 doWritebacks(wb_pkt, forward_time); 1020 } else { 1021 doWritebacksAtomic(wb_pkt); 1022 } 1023 pkt->setSatisfied(); 1024 } 1025 } else if (!blk_valid) { 1026 DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__, 1027 pkt->print()); 1028 if (is_deferred) { 1029 // we no longer have the block, and will not respond, but a 1030 // packet was allocated in MSHR::handleSnoop and we have 1031 // to delete it 1032 assert(pkt->needsResponse()); 1033 1034 // we have passed the block to a cache upstream, that 1035 // cache should be responding 1036 assert(pkt->cacheResponding()); 1037 1038 delete pkt; 1039 } 1040 return snoop_delay; 1041 } else { 1042 DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__, 1043 pkt->print(), blk->print()); 1044 1045 // We may end up modifying both the block state and the packet (if 1046 // we respond in atomic mode), so just figure out what to do now 1047 // and then do it later. We respond to all snoops that need 1048 // responses provided we have the block in dirty state. The 1049 // invalidation itself is taken care of below. We don't respond to 1050 // cache maintenance operations as this is done by the destination 1051 // xbar. 1052 respond = blk->isDirty() && pkt->needsResponse(); 1053 1054 chatty_assert(!(isReadOnly && blk->isDirty()), "Should never have " 1055 "a dirty block in a read-only cache %s\n", name()); 1056 } 1057 1058 // Invalidate any prefetch's from below that would strip write permissions 1059 // MemCmd::HardPFReq is only observed by upstream caches. After missing 1060 // above and in it's own cache, a new MemCmd::ReadReq is created that 1061 // downstream caches observe. 1062 if (pkt->mustCheckAbove()) { 1063 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s " 1064 "from lower cache\n", pkt->getAddr(), pkt->print()); 1065 pkt->setBlockCached(); 1066 return snoop_delay; 1067 } 1068 1069 if (pkt->isRead() && !invalidate) { 1070 // reading without requiring the line in a writable state 1071 assert(!needs_writable); 1072 pkt->setHasSharers(); 1073 1074 // if the requesting packet is uncacheable, retain the line in 1075 // the current state, otherwhise unset the writable flag, 1076 // which means we go from Modified to Owned (and will respond 1077 // below), remain in Owned (and will respond below), from 1078 // Exclusive to Shared, or remain in Shared 1079 if (!pkt->req->isUncacheable()) 1080 blk->status &= ~BlkWritable; 1081 DPRINTF(Cache, "new state is %s\n", blk->print()); 1082 } 1083 1084 if (respond) { 1085 // prevent anyone else from responding, cache as well as 1086 // memory, and also prevent any memory from even seeing the 1087 // request 1088 pkt->setCacheResponding(); 1089 if (!pkt->isClean() && blk->isWritable()) { 1090 // inform the cache hierarchy that this cache had the line 1091 // in the Modified state so that we avoid unnecessary 1092 // invalidations (see Packet::setResponderHadWritable) 1093 pkt->setResponderHadWritable(); 1094 1095 // in the case of an uncacheable request there is no point 1096 // in setting the responderHadWritable flag, but since the 1097 // recipient does not care there is no harm in doing so 1098 } else { 1099 // if the packet has needsWritable set we invalidate our 1100 // copy below and all other copies will be invalidates 1101 // through express snoops, and if needsWritable is not set 1102 // we already called setHasSharers above 1103 } 1104 1105 // if we are returning a writable and dirty (Modified) line, 1106 // we should be invalidating the line 1107 panic_if(!invalidate && !pkt->hasSharers(), 1108 "%s is passing a Modified line through %s, " 1109 "but keeping the block", name(), pkt->print()); 1110 1111 if (is_timing) { 1112 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval); 1113 } else { 1114 pkt->makeAtomicResponse(); 1115 // packets such as upgrades do not actually have any data 1116 // payload 1117 if (pkt->hasData()) 1118 pkt->setDataFromBlock(blk->data, blkSize); 1119 } 1120 1121 // When a block is compressed, it must first be decompressed before 1122 // being read, and this increases the snoop delay. 1123 if (compressor && pkt->isRead()) { 1124 snoop_delay += compressor->getDecompressionLatency(blk); 1125 } 1126 } 1127 1128 if (!respond && is_deferred) { 1129 assert(pkt->needsResponse()); 1130 delete pkt; 1131 } 1132 1133 // Do this last in case it deallocates block data or something 1134 // like that 1135 if (blk_valid && invalidate) { 1136 invalidateBlock(blk); 1137 DPRINTF(Cache, "new state is %s\n", blk->print()); 1138 } 1139 1140 return snoop_delay; 1141} 1142 1143 1144void 1145Cache::recvTimingSnoopReq(PacketPtr pkt) 1146{ 1147 DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print()); 1148 1149 // no need to snoop requests that are not in range 1150 if (!inRange(pkt->getAddr())) { 1151 return; 1152 } 1153 1154 bool is_secure = pkt->isSecure(); 1155 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 1156 1157 Addr blk_addr = pkt->getBlockAddr(blkSize); 1158 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 1159 1160 // Update the latency cost of the snoop so that the crossbar can 1161 // account for it. Do not overwrite what other neighbouring caches 1162 // have already done, rather take the maximum. The update is 1163 // tentative, for cases where we return before an upward snoop 1164 // happens below. 1165 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, 1166 lookupLatency * clockPeriod()); 1167 1168 // Inform request(Prefetch, CleanEvict or Writeback) from below of 1169 // MSHR hit, set setBlockCached. 1170 if (mshr && pkt->mustCheckAbove()) { 1171 DPRINTF(Cache, "Setting block cached for %s from lower cache on " 1172 "mshr hit\n", pkt->print()); 1173 pkt->setBlockCached(); 1174 return; 1175 } 1176 1177 // Let the MSHR itself track the snoop and decide whether we want 1178 // to go ahead and do the regular cache snoop 1179 if (mshr && mshr->handleSnoop(pkt, order++)) { 1180 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)." 1181 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns", 1182 mshr->print()); 1183 1184 if (mshr->getNumTargets() > numTarget) 1185 warn("allocating bonus target for snoop"); //handle later 1186 return; 1187 } 1188 1189 //We also need to check the writeback buffers and handle those 1190 WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure); 1191 if (wb_entry) { 1192 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n", 1193 pkt->getAddr(), is_secure ? "s" : "ns"); 1194 // Expect to see only Writebacks and/or CleanEvicts here, both of 1195 // which should not be generated for uncacheable data. 1196 assert(!wb_entry->isUncacheable()); 1197 // There should only be a single request responsible for generating 1198 // Writebacks/CleanEvicts. 1199 assert(wb_entry->getNumTargets() == 1); 1200 PacketPtr wb_pkt = wb_entry->getTarget()->pkt; 1201 assert(wb_pkt->isEviction() || wb_pkt->cmd == MemCmd::WriteClean); 1202 1203 if (pkt->isEviction()) { 1204 // if the block is found in the write queue, set the BLOCK_CACHED 1205 // flag for Writeback/CleanEvict snoop. On return the snoop will 1206 // propagate the BLOCK_CACHED flag in Writeback packets and prevent 1207 // any CleanEvicts from travelling down the memory hierarchy. 1208 pkt->setBlockCached(); 1209 DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue " 1210 "hit\n", __func__, pkt->print()); 1211 return; 1212 } 1213 1214 // conceptually writebacks are no different to other blocks in 1215 // this cache, so the behaviour is modelled after handleSnoop, 1216 // the difference being that instead of querying the block 1217 // state to determine if it is dirty and writable, we use the 1218 // command and fields of the writeback packet 1219 bool respond = wb_pkt->cmd == MemCmd::WritebackDirty && 1220 pkt->needsResponse(); 1221 bool have_writable = !wb_pkt->hasSharers(); 1222 bool invalidate = pkt->isInvalidate(); 1223 1224 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) { 1225 assert(!pkt->needsWritable()); 1226 pkt->setHasSharers(); 1227 wb_pkt->setHasSharers(); 1228 } 1229 1230 if (respond) { 1231 pkt->setCacheResponding(); 1232 1233 if (have_writable) { 1234 pkt->setResponderHadWritable(); 1235 } 1236 1237 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(), 1238 false, false); 1239 } 1240 1241 if (invalidate && wb_pkt->cmd != MemCmd::WriteClean) { 1242 // Invalidation trumps our writeback... discard here 1243 // Note: markInService will remove entry from writeback buffer. 1244 markInService(wb_entry); 1245 delete wb_pkt; 1246 } 1247 } 1248 1249 // If this was a shared writeback, there may still be 1250 // other shared copies above that require invalidation. 1251 // We could be more selective and return here if the 1252 // request is non-exclusive or if the writeback is 1253 // exclusive. 1254 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false); 1255 1256 // Override what we did when we first saw the snoop, as we now 1257 // also have the cost of the upwards snoops to account for 1258 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay + 1259 lookupLatency * clockPeriod()); 1260} 1261 1262Tick 1263Cache::recvAtomicSnoop(PacketPtr pkt) 1264{ 1265 // no need to snoop requests that are not in range. 1266 if (!inRange(pkt->getAddr())) { 1267 return 0; 1268 } 1269 1270 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 1271 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false); 1272 return snoop_delay + lookupLatency * clockPeriod(); 1273} 1274 1275bool 1276Cache::isCachedAbove(PacketPtr pkt, bool is_timing) 1277{ 1278 if (!forwardSnoops) 1279 return false; 1280 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and 1281 // Writeback snoops into upper level caches to check for copies of the 1282 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict 1283 // packet, the cache can inform the crossbar below of presence or absence 1284 // of the block. 1285 if (is_timing) { 1286 Packet snoop_pkt(pkt, true, false); 1287 snoop_pkt.setExpressSnoop(); 1288 // Assert that packet is either Writeback or CleanEvict and not a 1289 // prefetch request because prefetch requests need an MSHR and may 1290 // generate a snoop response. 1291 assert(pkt->isEviction() || pkt->cmd == MemCmd::WriteClean); 1292 snoop_pkt.senderState = nullptr; 1293 cpuSidePort.sendTimingSnoopReq(&snoop_pkt); 1294 // Writeback/CleanEvict snoops do not generate a snoop response. 1295 assert(!(snoop_pkt.cacheResponding())); 1296 return snoop_pkt.isBlockCached(); 1297 } else { 1298 cpuSidePort.sendAtomicSnoop(pkt); 1299 return pkt->isBlockCached(); 1300 } 1301} 1302 1303bool 1304Cache::sendMSHRQueuePacket(MSHR* mshr) 1305{ 1306 assert(mshr); 1307 1308 // use request from 1st target 1309 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 1310 1311 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) { 1312 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print()); 1313 1314 // we should never have hardware prefetches to allocated 1315 // blocks 1316 assert(!tags->findBlock(mshr->blkAddr, mshr->isSecure)); 1317 1318 // We need to check the caches above us to verify that 1319 // they don't have a copy of this block in the dirty state 1320 // at the moment. Without this check we could get a stale 1321 // copy from memory that might get used in place of the 1322 // dirty one. 1323 Packet snoop_pkt(tgt_pkt, true, false); 1324 snoop_pkt.setExpressSnoop(); 1325 // We are sending this packet upwards, but if it hits we will 1326 // get a snoop response that we end up treating just like a 1327 // normal response, hence it needs the MSHR as its sender 1328 // state 1329 snoop_pkt.senderState = mshr; 1330 cpuSidePort.sendTimingSnoopReq(&snoop_pkt); 1331 1332 // Check to see if the prefetch was squashed by an upper cache (to 1333 // prevent us from grabbing the line) or if a Check to see if a 1334 // writeback arrived between the time the prefetch was placed in 1335 // the MSHRs and when it was selected to be sent or if the 1336 // prefetch was squashed by an upper cache. 1337 1338 // It is important to check cacheResponding before 1339 // prefetchSquashed. If another cache has committed to 1340 // responding, it will be sending a dirty response which will 1341 // arrive at the MSHR allocated for this request. Checking the 1342 // prefetchSquash first may result in the MSHR being 1343 // prematurely deallocated. 1344 if (snoop_pkt.cacheResponding()) { 1345 auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req); 1346 assert(r.second); 1347 1348 // if we are getting a snoop response with no sharers it 1349 // will be allocated as Modified 1350 bool pending_modified_resp = !snoop_pkt.hasSharers(); 1351 markInService(mshr, pending_modified_resp); 1352 1353 DPRINTF(Cache, "Upward snoop of prefetch for addr" 1354 " %#x (%s) hit\n", 1355 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns"); 1356 return false; 1357 } 1358 1359 if (snoop_pkt.isBlockCached()) { 1360 DPRINTF(Cache, "Block present, prefetch squashed by cache. " 1361 "Deallocating mshr target %#x.\n", 1362 mshr->blkAddr); 1363 1364 // Deallocate the mshr target 1365 if (mshrQueue.forceDeallocateTarget(mshr)) { 1366 // Clear block if this deallocation resulted freed an 1367 // mshr when all had previously been utilized 1368 clearBlocked(Blocked_NoMSHRs); 1369 } 1370 1371 // given that no response is expected, delete Request and Packet 1372 delete tgt_pkt; 1373 1374 return false; 1375 } 1376 } 1377 1378 return BaseCache::sendMSHRQueuePacket(mshr); 1379} 1380 1381Cache* 1382CacheParams::create() 1383{ 1384 assert(tags); 1385 assert(replacement_policy); 1386 1387 return new Cache(this); 1388} 1389