cache.cc revision 13358
1/* 2 * Copyright (c) 2010-2018 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2002-2005 The Regents of The University of Michigan 15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc. 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Erik Hallnor 42 * Dave Greene 43 * Nathan Binkert 44 * Steve Reinhardt 45 * Ron Dreslinski 46 * Andreas Sandberg 47 * Nikos Nikoleris 48 */ 49 50/** 51 * @file 52 * Cache definitions. 53 */ 54 55#include "mem/cache/cache.hh" 56 57#include <cassert> 58 59#include "base/compiler.hh" 60#include "base/logging.hh" 61#include "base/trace.hh" 62#include "base/types.hh" 63#include "debug/Cache.hh" 64#include "debug/CacheTags.hh" 65#include "debug/CacheVerbose.hh" 66#include "enums/Clusivity.hh" 67#include "mem/cache/cache_blk.hh" 68#include "mem/cache/mshr.hh" 69#include "mem/cache/tags/base.hh" 70#include "mem/cache/write_queue_entry.hh" 71#include "mem/request.hh" 72#include "params/Cache.hh" 73 74Cache::Cache(const CacheParams *p) 75 : BaseCache(p, p->system->cacheLineSize()), 76 doFastWrites(true) 77{ 78} 79 80void 81Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, 82 bool deferred_response, bool pending_downgrade) 83{ 84 BaseCache::satisfyRequest(pkt, blk); 85 86 if (pkt->isRead()) { 87 // determine if this read is from a (coherent) cache or not 88 if (pkt->fromCache()) { 89 assert(pkt->getSize() == blkSize); 90 // special handling for coherent block requests from 91 // upper-level caches 92 if (pkt->needsWritable()) { 93 // sanity check 94 assert(pkt->cmd == MemCmd::ReadExReq || 95 pkt->cmd == MemCmd::SCUpgradeFailReq); 96 assert(!pkt->hasSharers()); 97 98 // if we have a dirty copy, make sure the recipient 99 // keeps it marked dirty (in the modified state) 100 if (blk->isDirty()) { 101 pkt->setCacheResponding(); 102 blk->status &= ~BlkDirty; 103 } 104 } else if (blk->isWritable() && !pending_downgrade && 105 !pkt->hasSharers() && 106 pkt->cmd != MemCmd::ReadCleanReq) { 107 // we can give the requester a writable copy on a read 108 // request if: 109 // - we have a writable copy at this level (& below) 110 // - we don't have a pending snoop from below 111 // signaling another read request 112 // - no other cache above has a copy (otherwise it 113 // would have set hasSharers flag when 114 // snooping the packet) 115 // - the read has explicitly asked for a clean 116 // copy of the line 117 if (blk->isDirty()) { 118 // special considerations if we're owner: 119 if (!deferred_response) { 120 // respond with the line in Modified state 121 // (cacheResponding set, hasSharers not set) 122 pkt->setCacheResponding(); 123 124 // if this cache is mostly inclusive, we 125 // keep the block in the Exclusive state, 126 // and pass it upwards as Modified 127 // (writable and dirty), hence we have 128 // multiple caches, all on the same path 129 // towards memory, all considering the 130 // same block writable, but only one 131 // considering it Modified 132 133 // we get away with multiple caches (on 134 // the same path to memory) considering 135 // the block writeable as we always enter 136 // the cache hierarchy through a cache, 137 // and first snoop upwards in all other 138 // branches 139 blk->status &= ~BlkDirty; 140 } else { 141 // if we're responding after our own miss, 142 // there's a window where the recipient didn't 143 // know it was getting ownership and may not 144 // have responded to snoops correctly, so we 145 // have to respond with a shared line 146 pkt->setHasSharers(); 147 } 148 } 149 } else { 150 // otherwise only respond with a shared copy 151 pkt->setHasSharers(); 152 } 153 } 154 } 155} 156 157///////////////////////////////////////////////////// 158// 159// Access path: requests coming in from the CPU side 160// 161///////////////////////////////////////////////////// 162 163bool 164Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 165 PacketList &writebacks) 166{ 167 168 if (pkt->req->isUncacheable()) { 169 assert(pkt->isRequest()); 170 171 chatty_assert(!(isReadOnly && pkt->isWrite()), 172 "Should never see a write in a read-only cache %s\n", 173 name()); 174 175 DPRINTF(Cache, "%s for %s\n", __func__, pkt->print()); 176 177 // flush and invalidate any existing block 178 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure())); 179 if (old_blk && old_blk->isValid()) { 180 BaseCache::evictBlock(old_blk, writebacks); 181 } 182 183 blk = nullptr; 184 // lookupLatency is the latency in case the request is uncacheable. 185 lat = lookupLatency; 186 return false; 187 } 188 189 return BaseCache::access(pkt, blk, lat, writebacks); 190} 191 192void 193Cache::doWritebacks(PacketList& writebacks, Tick forward_time) 194{ 195 while (!writebacks.empty()) { 196 PacketPtr wbPkt = writebacks.front(); 197 // We use forwardLatency here because we are copying writebacks to 198 // write buffer. 199 200 // Call isCachedAbove for Writebacks, CleanEvicts and 201 // WriteCleans to discover if the block is cached above. 202 if (isCachedAbove(wbPkt)) { 203 if (wbPkt->cmd == MemCmd::CleanEvict) { 204 // Delete CleanEvict because cached copies exist above. The 205 // packet destructor will delete the request object because 206 // this is a non-snoop request packet which does not require a 207 // response. 208 delete wbPkt; 209 } else if (wbPkt->cmd == MemCmd::WritebackClean) { 210 // clean writeback, do not send since the block is 211 // still cached above 212 assert(writebackClean); 213 delete wbPkt; 214 } else { 215 assert(wbPkt->cmd == MemCmd::WritebackDirty || 216 wbPkt->cmd == MemCmd::WriteClean); 217 // Set BLOCK_CACHED flag in Writeback and send below, so that 218 // the Writeback does not reset the bit corresponding to this 219 // address in the snoop filter below. 220 wbPkt->setBlockCached(); 221 allocateWriteBuffer(wbPkt, forward_time); 222 } 223 } else { 224 // If the block is not cached above, send packet below. Both 225 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 226 // reset the bit corresponding to this address in the snoop filter 227 // below. 228 allocateWriteBuffer(wbPkt, forward_time); 229 } 230 writebacks.pop_front(); 231 } 232} 233 234void 235Cache::doWritebacksAtomic(PacketList& writebacks) 236{ 237 while (!writebacks.empty()) { 238 PacketPtr wbPkt = writebacks.front(); 239 // Call isCachedAbove for both Writebacks and CleanEvicts. If 240 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks 241 // and discard CleanEvicts. 242 if (isCachedAbove(wbPkt, false)) { 243 if (wbPkt->cmd == MemCmd::WritebackDirty || 244 wbPkt->cmd == MemCmd::WriteClean) { 245 // Set BLOCK_CACHED flag in Writeback and send below, 246 // so that the Writeback does not reset the bit 247 // corresponding to this address in the snoop filter 248 // below. We can discard CleanEvicts because cached 249 // copies exist above. Atomic mode isCachedAbove 250 // modifies packet to set BLOCK_CACHED flag 251 memSidePort.sendAtomic(wbPkt); 252 } 253 } else { 254 // If the block is not cached above, send packet below. Both 255 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 256 // reset the bit corresponding to this address in the snoop filter 257 // below. 258 memSidePort.sendAtomic(wbPkt); 259 } 260 writebacks.pop_front(); 261 // In case of CleanEvicts, the packet destructor will delete the 262 // request object because this is a non-snoop request packet which 263 // does not require a response. 264 delete wbPkt; 265 } 266} 267 268 269void 270Cache::recvTimingSnoopResp(PacketPtr pkt) 271{ 272 DPRINTF(Cache, "%s for %s\n", __func__, pkt->print()); 273 274 // determine if the response is from a snoop request we created 275 // (in which case it should be in the outstandingSnoop), or if we 276 // merely forwarded someone else's snoop request 277 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 278 outstandingSnoop.end(); 279 280 if (!forwardAsSnoop) { 281 // the packet came from this cache, so sink it here and do not 282 // forward it 283 assert(pkt->cmd == MemCmd::HardPFResp); 284 285 outstandingSnoop.erase(pkt->req); 286 287 DPRINTF(Cache, "Got prefetch response from above for addr " 288 "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 289 recvTimingResp(pkt); 290 return; 291 } 292 293 // forwardLatency is set here because there is a response from an 294 // upper level cache. 295 // To pay the delay that occurs if the packet comes from the bus, 296 // we charge also headerDelay. 297 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay; 298 // Reset the timing of the packet. 299 pkt->headerDelay = pkt->payloadDelay = 0; 300 memSidePort.schedTimingSnoopResp(pkt, snoop_resp_time); 301} 302 303void 304Cache::promoteWholeLineWrites(PacketPtr pkt) 305{ 306 // Cache line clearing instructions 307 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) && 308 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) { 309 pkt->cmd = MemCmd::WriteLineReq; 310 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n"); 311 } 312} 313 314void 315Cache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time) 316{ 317 // should never be satisfying an uncacheable access as we 318 // flush and invalidate any existing block as part of the 319 // lookup 320 assert(!pkt->req->isUncacheable()); 321 322 BaseCache::handleTimingReqHit(pkt, blk, request_time); 323} 324 325void 326Cache::handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk, Tick forward_time, 327 Tick request_time) 328{ 329 if (pkt->req->isUncacheable()) { 330 // ignore any existing MSHR if we are dealing with an 331 // uncacheable request 332 333 // should have flushed and have no valid block 334 assert(!blk || !blk->isValid()); 335 336 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++; 337 338 if (pkt->isWrite()) { 339 allocateWriteBuffer(pkt, forward_time); 340 } else { 341 assert(pkt->isRead()); 342 343 // uncacheable accesses always allocate a new MSHR 344 345 // Here we are using forward_time, modelling the latency of 346 // a miss (outbound) just as forwardLatency, neglecting the 347 // lookupLatency component. 348 allocateMissBuffer(pkt, forward_time); 349 } 350 351 return; 352 } 353 354 Addr blk_addr = pkt->getBlockAddr(blkSize); 355 356 MSHR *mshr = mshrQueue.findMatch(blk_addr, pkt->isSecure()); 357 358 // Software prefetch handling: 359 // To keep the core from waiting on data it won't look at 360 // anyway, send back a response with dummy data. Miss handling 361 // will continue asynchronously. Unfortunately, the core will 362 // insist upon freeing original Packet/Request, so we have to 363 // create a new pair with a different lifecycle. Note that this 364 // processing happens before any MSHR munging on the behalf of 365 // this request because this new Request will be the one stored 366 // into the MSHRs, not the original. 367 if (pkt->cmd.isSWPrefetch()) { 368 assert(pkt->needsResponse()); 369 assert(pkt->req->hasPaddr()); 370 assert(!pkt->req->isUncacheable()); 371 372 // There's no reason to add a prefetch as an additional target 373 // to an existing MSHR. If an outstanding request is already 374 // in progress, there is nothing for the prefetch to do. 375 // If this is the case, we don't even create a request at all. 376 PacketPtr pf = nullptr; 377 378 if (!mshr) { 379 // copy the request and create a new SoftPFReq packet 380 RequestPtr req = std::make_shared<Request>(pkt->req->getPaddr(), 381 pkt->req->getSize(), 382 pkt->req->getFlags(), 383 pkt->req->masterId()); 384 pf = new Packet(req, pkt->cmd); 385 pf->allocate(); 386 assert(pf->getAddr() == pkt->getAddr()); 387 assert(pf->getSize() == pkt->getSize()); 388 } 389 390 pkt->makeTimingResponse(); 391 392 // request_time is used here, taking into account lat and the delay 393 // charged if the packet comes from the xbar. 394 cpuSidePort.schedTimingResp(pkt, request_time, true); 395 396 // If an outstanding request is in progress (we found an 397 // MSHR) this is set to null 398 pkt = pf; 399 } 400 401 BaseCache::handleTimingReqMiss(pkt, mshr, blk, forward_time, request_time); 402} 403 404void 405Cache::recvTimingReq(PacketPtr pkt) 406{ 407 DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print()); 408 409 promoteWholeLineWrites(pkt); 410 411 if (pkt->cacheResponding()) { 412 // a cache above us (but not where the packet came from) is 413 // responding to the request, in other words it has the line 414 // in Modified or Owned state 415 DPRINTF(Cache, "Cache above responding to %s: not responding\n", 416 pkt->print()); 417 418 // if the packet needs the block to be writable, and the cache 419 // that has promised to respond (setting the cache responding 420 // flag) is not providing writable (it is in Owned rather than 421 // the Modified state), we know that there may be other Shared 422 // copies in the system; go out and invalidate them all 423 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 424 425 // an upstream cache that had the line in Owned state 426 // (dirty, but not writable), is responding and thus 427 // transferring the dirty line from one branch of the 428 // cache hierarchy to another 429 430 // send out an express snoop and invalidate all other 431 // copies (snooping a packet that needs writable is the 432 // same as an invalidation), thus turning the Owned line 433 // into a Modified line, note that we don't invalidate the 434 // block in the current cache or any other cache on the 435 // path to memory 436 437 // create a downstream express snoop with cleared packet 438 // flags, there is no need to allocate any data as the 439 // packet is merely used to co-ordinate state transitions 440 Packet *snoop_pkt = new Packet(pkt, true, false); 441 442 // also reset the bus time that the original packet has 443 // not yet paid for 444 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0; 445 446 // make this an instantaneous express snoop, and let the 447 // other caches in the system know that the another cache 448 // is responding, because we have found the authorative 449 // copy (Modified or Owned) that will supply the right 450 // data 451 snoop_pkt->setExpressSnoop(); 452 snoop_pkt->setCacheResponding(); 453 454 // this express snoop travels towards the memory, and at 455 // every crossbar it is snooped upwards thus reaching 456 // every cache in the system 457 bool M5_VAR_USED success = memSidePort.sendTimingReq(snoop_pkt); 458 // express snoops always succeed 459 assert(success); 460 461 // main memory will delete the snoop packet 462 463 // queue for deletion, as opposed to immediate deletion, as 464 // the sending cache is still relying on the packet 465 pendingDelete.reset(pkt); 466 467 // no need to take any further action in this particular cache 468 // as an upstram cache has already committed to responding, 469 // and we have already sent out any express snoops in the 470 // section above to ensure all other copies in the system are 471 // invalidated 472 return; 473 } 474 475 BaseCache::recvTimingReq(pkt); 476} 477 478PacketPtr 479Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk, 480 bool needsWritable, 481 bool is_whole_line_write) const 482{ 483 // should never see evictions here 484 assert(!cpu_pkt->isEviction()); 485 486 bool blkValid = blk && blk->isValid(); 487 488 if (cpu_pkt->req->isUncacheable() || 489 (!blkValid && cpu_pkt->isUpgrade()) || 490 cpu_pkt->cmd == MemCmd::InvalidateReq || cpu_pkt->isClean()) { 491 // uncacheable requests and upgrades from upper-level caches 492 // that missed completely just go through as is 493 return nullptr; 494 } 495 496 assert(cpu_pkt->needsResponse()); 497 498 MemCmd cmd; 499 // @TODO make useUpgrades a parameter. 500 // Note that ownership protocols require upgrade, otherwise a 501 // write miss on a shared owned block will generate a ReadExcl, 502 // which will clobber the owned copy. 503 const bool useUpgrades = true; 504 assert(cpu_pkt->cmd != MemCmd::WriteLineReq || is_whole_line_write); 505 if (is_whole_line_write) { 506 assert(!blkValid || !blk->isWritable()); 507 // forward as invalidate to all other caches, this gives us 508 // the line in Exclusive state, and invalidates all other 509 // copies 510 cmd = MemCmd::InvalidateReq; 511 } else if (blkValid && useUpgrades) { 512 // only reason to be here is that blk is read only and we need 513 // it to be writable 514 assert(needsWritable); 515 assert(!blk->isWritable()); 516 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq; 517 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq || 518 cpu_pkt->cmd == MemCmd::StoreCondFailReq) { 519 // Even though this SC will fail, we still need to send out the 520 // request and get the data to supply it to other snoopers in the case 521 // where the determination the StoreCond fails is delayed due to 522 // all caches not being on the same local bus. 523 cmd = MemCmd::SCUpgradeFailReq; 524 } else { 525 // block is invalid 526 527 // If the request does not need a writable there are two cases 528 // where we need to ensure the response will not fetch the 529 // block in dirty state: 530 // * this cache is read only and it does not perform 531 // writebacks, 532 // * this cache is mostly exclusive and will not fill (since 533 // it does not fill it will have to writeback the dirty data 534 // immediately which generates uneccesary writebacks). 535 bool force_clean_rsp = isReadOnly || clusivity == Enums::mostly_excl; 536 cmd = needsWritable ? MemCmd::ReadExReq : 537 (force_clean_rsp ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq); 538 } 539 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize); 540 541 // if there are upstream caches that have already marked the 542 // packet as having sharers (not passing writable), pass that info 543 // downstream 544 if (cpu_pkt->hasSharers() && !needsWritable) { 545 // note that cpu_pkt may have spent a considerable time in the 546 // MSHR queue and that the information could possibly be out 547 // of date, however, there is no harm in conservatively 548 // assuming the block has sharers 549 pkt->setHasSharers(); 550 DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n", 551 __func__, cpu_pkt->print(), pkt->print()); 552 } 553 554 // the packet should be block aligned 555 assert(pkt->getAddr() == pkt->getBlockAddr(blkSize)); 556 557 pkt->allocate(); 558 DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(), 559 cpu_pkt->print()); 560 return pkt; 561} 562 563 564Cycles 565Cache::handleAtomicReqMiss(PacketPtr pkt, CacheBlk *&blk, 566 PacketList &writebacks) 567{ 568 // deal with the packets that go through the write path of 569 // the cache, i.e. any evictions and writes 570 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean || 571 (pkt->req->isUncacheable() && pkt->isWrite())) { 572 Cycles latency = ticksToCycles(memSidePort.sendAtomic(pkt)); 573 574 // at this point, if the request was an uncacheable write 575 // request, it has been satisfied by a memory below and the 576 // packet carries the response back 577 assert(!(pkt->req->isUncacheable() && pkt->isWrite()) || 578 pkt->isResponse()); 579 580 return latency; 581 } 582 583 // only misses left 584 585 PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable(), 586 pkt->isWholeLineWrite(blkSize)); 587 588 bool is_forward = (bus_pkt == nullptr); 589 590 if (is_forward) { 591 // just forwarding the same request to the next level 592 // no local cache operation involved 593 bus_pkt = pkt; 594 } 595 596 DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__, 597 bus_pkt->print()); 598 599#if TRACING_ON 600 CacheBlk::State old_state = blk ? blk->status : 0; 601#endif 602 603 Cycles latency = ticksToCycles(memSidePort.sendAtomic(bus_pkt)); 604 605 bool is_invalidate = bus_pkt->isInvalidate(); 606 607 // We are now dealing with the response handling 608 DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__, 609 bus_pkt->print(), old_state); 610 611 // If packet was a forward, the response (if any) is already 612 // in place in the bus_pkt == pkt structure, so we don't need 613 // to do anything. Otherwise, use the separate bus_pkt to 614 // generate response to pkt and then delete it. 615 if (!is_forward) { 616 if (pkt->needsResponse()) { 617 assert(bus_pkt->isResponse()); 618 if (bus_pkt->isError()) { 619 pkt->makeAtomicResponse(); 620 pkt->copyError(bus_pkt); 621 } else if (pkt->isWholeLineWrite(blkSize)) { 622 // note the use of pkt, not bus_pkt here. 623 624 // write-line request to the cache that promoted 625 // the write to a whole line 626 const bool allocate = allocOnFill(pkt->cmd) && 627 (!writeAllocator || writeAllocator->allocate()); 628 blk = handleFill(bus_pkt, blk, writebacks, allocate); 629 assert(blk != NULL); 630 is_invalidate = false; 631 satisfyRequest(pkt, blk); 632 } else if (bus_pkt->isRead() || 633 bus_pkt->cmd == MemCmd::UpgradeResp) { 634 // we're updating cache state to allow us to 635 // satisfy the upstream request from the cache 636 blk = handleFill(bus_pkt, blk, writebacks, 637 allocOnFill(pkt->cmd)); 638 satisfyRequest(pkt, blk); 639 maintainClusivity(pkt->fromCache(), blk); 640 } else { 641 // we're satisfying the upstream request without 642 // modifying cache state, e.g., a write-through 643 pkt->makeAtomicResponse(); 644 } 645 } 646 delete bus_pkt; 647 } 648 649 if (is_invalidate && blk && blk->isValid()) { 650 invalidateBlock(blk); 651 } 652 653 return latency; 654} 655 656Tick 657Cache::recvAtomic(PacketPtr pkt) 658{ 659 promoteWholeLineWrites(pkt); 660 661 return BaseCache::recvAtomic(pkt); 662} 663 664 665///////////////////////////////////////////////////// 666// 667// Response handling: responses from the memory side 668// 669///////////////////////////////////////////////////// 670 671 672void 673Cache::serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt, CacheBlk *blk, 674 PacketList &writebacks) 675{ 676 MSHR::Target *initial_tgt = mshr->getTarget(); 677 // First offset for critical word first calculations 678 const int initial_offset = initial_tgt->pkt->getOffset(blkSize); 679 680 const bool is_error = pkt->isError(); 681 // allow invalidation responses originating from write-line 682 // requests to be discarded 683 bool is_invalidate = pkt->isInvalidate() && 684 !mshr->wasWholeLineWrite; 685 686 MSHR::TargetList targets = mshr->extractServiceableTargets(pkt); 687 for (auto &target: targets) { 688 Packet *tgt_pkt = target.pkt; 689 switch (target.source) { 690 case MSHR::Target::FromCPU: 691 Tick completion_time; 692 // Here we charge on completion_time the delay of the xbar if the 693 // packet comes from it, charged on headerDelay. 694 completion_time = pkt->headerDelay; 695 696 // Software prefetch handling for cache closest to core 697 if (tgt_pkt->cmd.isSWPrefetch()) { 698 // a software prefetch would have already been ack'd 699 // immediately with dummy data so the core would be able to 700 // retire it. This request completes right here, so we 701 // deallocate it. 702 delete tgt_pkt; 703 break; // skip response 704 } 705 706 // unlike the other packet flows, where data is found in other 707 // caches or memory and brought back, write-line requests always 708 // have the data right away, so the above check for "is fill?" 709 // cannot actually be determined until examining the stored MSHR 710 // state. We "catch up" with that logic here, which is duplicated 711 // from above. 712 if (tgt_pkt->cmd == MemCmd::WriteLineReq) { 713 assert(!is_error); 714 assert(blk); 715 assert(blk->isWritable()); 716 } 717 718 if (blk && blk->isValid() && !mshr->isForward) { 719 satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade()); 720 721 // How many bytes past the first request is this one 722 int transfer_offset = 723 tgt_pkt->getOffset(blkSize) - initial_offset; 724 if (transfer_offset < 0) { 725 transfer_offset += blkSize; 726 } 727 728 // If not critical word (offset) return payloadDelay. 729 // responseLatency is the latency of the return path 730 // from lower level caches/memory to an upper level cache or 731 // the core. 732 completion_time += clockEdge(responseLatency) + 733 (transfer_offset ? pkt->payloadDelay : 0); 734 735 assert(!tgt_pkt->req->isUncacheable()); 736 737 assert(tgt_pkt->req->masterId() < system->maxMasters()); 738 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] += 739 completion_time - target.recvTime; 740 } else if (pkt->cmd == MemCmd::UpgradeFailResp) { 741 // failed StoreCond upgrade 742 assert(tgt_pkt->cmd == MemCmd::StoreCondReq || 743 tgt_pkt->cmd == MemCmd::StoreCondFailReq || 744 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq); 745 // responseLatency is the latency of the return path 746 // from lower level caches/memory to an upper level cache or 747 // the core. 748 completion_time += clockEdge(responseLatency) + 749 pkt->payloadDelay; 750 tgt_pkt->req->setExtraData(0); 751 } else { 752 // We are about to send a response to a cache above 753 // that asked for an invalidation; we need to 754 // invalidate our copy immediately as the most 755 // up-to-date copy of the block will now be in the 756 // cache above. It will also prevent this cache from 757 // responding (if the block was previously dirty) to 758 // snoops as they should snoop the caches above where 759 // they will get the response from. 760 if (is_invalidate && blk && blk->isValid()) { 761 invalidateBlock(blk); 762 } 763 // not a cache fill, just forwarding response 764 // responseLatency is the latency of the return path 765 // from lower level cahces/memory to the core. 766 completion_time += clockEdge(responseLatency) + 767 pkt->payloadDelay; 768 if (pkt->isRead() && !is_error) { 769 // sanity check 770 assert(pkt->getAddr() == tgt_pkt->getAddr()); 771 assert(pkt->getSize() >= tgt_pkt->getSize()); 772 773 tgt_pkt->setData(pkt->getConstPtr<uint8_t>()); 774 } 775 } 776 tgt_pkt->makeTimingResponse(); 777 // if this packet is an error copy that to the new packet 778 if (is_error) 779 tgt_pkt->copyError(pkt); 780 if (tgt_pkt->cmd == MemCmd::ReadResp && 781 (is_invalidate || mshr->hasPostInvalidate())) { 782 // If intermediate cache got ReadRespWithInvalidate, 783 // propagate that. Response should not have 784 // isInvalidate() set otherwise. 785 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate; 786 DPRINTF(Cache, "%s: updated cmd to %s\n", __func__, 787 tgt_pkt->print()); 788 } 789 // Reset the bus additional time as it is now accounted for 790 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0; 791 cpuSidePort.schedTimingResp(tgt_pkt, completion_time, true); 792 break; 793 794 case MSHR::Target::FromPrefetcher: 795 assert(tgt_pkt->cmd == MemCmd::HardPFReq); 796 if (blk) 797 blk->status |= BlkHWPrefetched; 798 delete tgt_pkt; 799 break; 800 801 case MSHR::Target::FromSnoop: 802 // I don't believe that a snoop can be in an error state 803 assert(!is_error); 804 // response to snoop request 805 DPRINTF(Cache, "processing deferred snoop...\n"); 806 // If the response is invalidating, a snooping target can 807 // be satisfied if it is also invalidating. If the reponse is, not 808 // only invalidating, but more specifically an InvalidateResp and 809 // the MSHR was created due to an InvalidateReq then a cache above 810 // is waiting to satisfy a WriteLineReq. In this case even an 811 // non-invalidating snoop is added as a target here since this is 812 // the ordering point. When the InvalidateResp reaches this cache, 813 // the snooping target will snoop further the cache above with the 814 // WriteLineReq. 815 assert(!is_invalidate || pkt->cmd == MemCmd::InvalidateResp || 816 pkt->req->isCacheMaintenance() || 817 mshr->hasPostInvalidate()); 818 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate()); 819 break; 820 821 default: 822 panic("Illegal target->source enum %d\n", target.source); 823 } 824 } 825 826 maintainClusivity(targets.hasFromCache, blk); 827 828 if (blk && blk->isValid()) { 829 // an invalidate response stemming from a write line request 830 // should not invalidate the block, so check if the 831 // invalidation should be discarded 832 if (is_invalidate || mshr->hasPostInvalidate()) { 833 invalidateBlock(blk); 834 } else if (mshr->hasPostDowngrade()) { 835 blk->status &= ~BlkWritable; 836 } 837 } 838} 839 840PacketPtr 841Cache::evictBlock(CacheBlk *blk) 842{ 843 PacketPtr pkt = (blk->isDirty() || writebackClean) ? 844 writebackBlk(blk) : cleanEvictBlk(blk); 845 846 invalidateBlock(blk); 847 848 return pkt; 849} 850 851PacketPtr 852Cache::cleanEvictBlk(CacheBlk *blk) 853{ 854 assert(!writebackClean); 855 assert(blk && blk->isValid() && !blk->isDirty()); 856 857 // Creating a zero sized write, a message to the snoop filter 858 RequestPtr req = std::make_shared<Request>( 859 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId); 860 861 if (blk->isSecure()) 862 req->setFlags(Request::SECURE); 863 864 req->taskId(blk->task_id); 865 866 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict); 867 pkt->allocate(); 868 DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print()); 869 870 return pkt; 871} 872 873///////////////////////////////////////////////////// 874// 875// Snoop path: requests coming in from the memory side 876// 877///////////////////////////////////////////////////// 878 879void 880Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data, 881 bool already_copied, bool pending_inval) 882{ 883 // sanity check 884 assert(req_pkt->isRequest()); 885 assert(req_pkt->needsResponse()); 886 887 DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print()); 888 // timing-mode snoop responses require a new packet, unless we 889 // already made a copy... 890 PacketPtr pkt = req_pkt; 891 if (!already_copied) 892 // do not clear flags, and allocate space for data if the 893 // packet needs it (the only packets that carry data are read 894 // responses) 895 pkt = new Packet(req_pkt, false, req_pkt->isRead()); 896 897 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() || 898 pkt->hasSharers()); 899 pkt->makeTimingResponse(); 900 if (pkt->isRead()) { 901 pkt->setDataFromBlock(blk_data, blkSize); 902 } 903 if (pkt->cmd == MemCmd::ReadResp && pending_inval) { 904 // Assume we defer a response to a read from a far-away cache 905 // A, then later defer a ReadExcl from a cache B on the same 906 // bus as us. We'll assert cacheResponding in both cases, but 907 // in the latter case cacheResponding will keep the 908 // invalidation from reaching cache A. This special response 909 // tells cache A that it gets the block to satisfy its read, 910 // but must immediately invalidate it. 911 pkt->cmd = MemCmd::ReadRespWithInvalidate; 912 } 913 // Here we consider forward_time, paying for just forward latency and 914 // also charging the delay provided by the xbar. 915 // forward_time is used as send_time in next allocateWriteBuffer(). 916 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 917 // Here we reset the timing of the packet. 918 pkt->headerDelay = pkt->payloadDelay = 0; 919 DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__, 920 pkt->print(), forward_time); 921 memSidePort.schedTimingSnoopResp(pkt, forward_time, true); 922} 923 924uint32_t 925Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing, 926 bool is_deferred, bool pending_inval) 927{ 928 DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print()); 929 // deferred snoops can only happen in timing mode 930 assert(!(is_deferred && !is_timing)); 931 // pending_inval only makes sense on deferred snoops 932 assert(!(pending_inval && !is_deferred)); 933 assert(pkt->isRequest()); 934 935 // the packet may get modified if we or a forwarded snooper 936 // responds in atomic mode, so remember a few things about the 937 // original packet up front 938 bool invalidate = pkt->isInvalidate(); 939 bool M5_VAR_USED needs_writable = pkt->needsWritable(); 940 941 // at the moment we could get an uncacheable write which does not 942 // have the invalidate flag, and we need a suitable way of dealing 943 // with this case 944 panic_if(invalidate && pkt->req->isUncacheable(), 945 "%s got an invalidating uncacheable snoop request %s", 946 name(), pkt->print()); 947 948 uint32_t snoop_delay = 0; 949 950 if (forwardSnoops) { 951 // first propagate snoop upward to see if anyone above us wants to 952 // handle it. save & restore packet src since it will get 953 // rewritten to be relative to cpu-side bus (if any) 954 bool alreadyResponded = pkt->cacheResponding(); 955 if (is_timing) { 956 // copy the packet so that we can clear any flags before 957 // forwarding it upwards, we also allocate data (passing 958 // the pointer along in case of static data), in case 959 // there is a snoop hit in upper levels 960 Packet snoopPkt(pkt, true, true); 961 snoopPkt.setExpressSnoop(); 962 // the snoop packet does not need to wait any additional 963 // time 964 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0; 965 cpuSidePort.sendTimingSnoopReq(&snoopPkt); 966 967 // add the header delay (including crossbar and snoop 968 // delays) of the upward snoop to the snoop delay for this 969 // cache 970 snoop_delay += snoopPkt.headerDelay; 971 972 if (snoopPkt.cacheResponding()) { 973 // cache-to-cache response from some upper cache 974 assert(!alreadyResponded); 975 pkt->setCacheResponding(); 976 } 977 // upstream cache has the block, or has an outstanding 978 // MSHR, pass the flag on 979 if (snoopPkt.hasSharers()) { 980 pkt->setHasSharers(); 981 } 982 // If this request is a prefetch or clean evict and an upper level 983 // signals block present, make sure to propagate the block 984 // presence to the requester. 985 if (snoopPkt.isBlockCached()) { 986 pkt->setBlockCached(); 987 } 988 // If the request was satisfied by snooping the cache 989 // above, mark the original packet as satisfied too. 990 if (snoopPkt.satisfied()) { 991 pkt->setSatisfied(); 992 } 993 } else { 994 cpuSidePort.sendAtomicSnoop(pkt); 995 if (!alreadyResponded && pkt->cacheResponding()) { 996 // cache-to-cache response from some upper cache: 997 // forward response to original requester 998 assert(pkt->isResponse()); 999 } 1000 } 1001 } 1002 1003 bool respond = false; 1004 bool blk_valid = blk && blk->isValid(); 1005 if (pkt->isClean()) { 1006 if (blk_valid && blk->isDirty()) { 1007 DPRINTF(CacheVerbose, "%s: packet (snoop) %s found block: %s\n", 1008 __func__, pkt->print(), blk->print()); 1009 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id); 1010 PacketList writebacks; 1011 writebacks.push_back(wb_pkt); 1012 1013 if (is_timing) { 1014 // anything that is merely forwarded pays for the forward 1015 // latency and the delay provided by the crossbar 1016 Tick forward_time = clockEdge(forwardLatency) + 1017 pkt->headerDelay; 1018 doWritebacks(writebacks, forward_time); 1019 } else { 1020 doWritebacksAtomic(writebacks); 1021 } 1022 pkt->setSatisfied(); 1023 } 1024 } else if (!blk_valid) { 1025 DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__, 1026 pkt->print()); 1027 if (is_deferred) { 1028 // we no longer have the block, and will not respond, but a 1029 // packet was allocated in MSHR::handleSnoop and we have 1030 // to delete it 1031 assert(pkt->needsResponse()); 1032 1033 // we have passed the block to a cache upstream, that 1034 // cache should be responding 1035 assert(pkt->cacheResponding()); 1036 1037 delete pkt; 1038 } 1039 return snoop_delay; 1040 } else { 1041 DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__, 1042 pkt->print(), blk->print()); 1043 1044 // We may end up modifying both the block state and the packet (if 1045 // we respond in atomic mode), so just figure out what to do now 1046 // and then do it later. We respond to all snoops that need 1047 // responses provided we have the block in dirty state. The 1048 // invalidation itself is taken care of below. We don't respond to 1049 // cache maintenance operations as this is done by the destination 1050 // xbar. 1051 respond = blk->isDirty() && pkt->needsResponse(); 1052 1053 chatty_assert(!(isReadOnly && blk->isDirty()), "Should never have " 1054 "a dirty block in a read-only cache %s\n", name()); 1055 } 1056 1057 // Invalidate any prefetch's from below that would strip write permissions 1058 // MemCmd::HardPFReq is only observed by upstream caches. After missing 1059 // above and in it's own cache, a new MemCmd::ReadReq is created that 1060 // downstream caches observe. 1061 if (pkt->mustCheckAbove()) { 1062 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s " 1063 "from lower cache\n", pkt->getAddr(), pkt->print()); 1064 pkt->setBlockCached(); 1065 return snoop_delay; 1066 } 1067 1068 if (pkt->isRead() && !invalidate) { 1069 // reading without requiring the line in a writable state 1070 assert(!needs_writable); 1071 pkt->setHasSharers(); 1072 1073 // if the requesting packet is uncacheable, retain the line in 1074 // the current state, otherwhise unset the writable flag, 1075 // which means we go from Modified to Owned (and will respond 1076 // below), remain in Owned (and will respond below), from 1077 // Exclusive to Shared, or remain in Shared 1078 if (!pkt->req->isUncacheable()) 1079 blk->status &= ~BlkWritable; 1080 DPRINTF(Cache, "new state is %s\n", blk->print()); 1081 } 1082 1083 if (respond) { 1084 // prevent anyone else from responding, cache as well as 1085 // memory, and also prevent any memory from even seeing the 1086 // request 1087 pkt->setCacheResponding(); 1088 if (!pkt->isClean() && blk->isWritable()) { 1089 // inform the cache hierarchy that this cache had the line 1090 // in the Modified state so that we avoid unnecessary 1091 // invalidations (see Packet::setResponderHadWritable) 1092 pkt->setResponderHadWritable(); 1093 1094 // in the case of an uncacheable request there is no point 1095 // in setting the responderHadWritable flag, but since the 1096 // recipient does not care there is no harm in doing so 1097 } else { 1098 // if the packet has needsWritable set we invalidate our 1099 // copy below and all other copies will be invalidates 1100 // through express snoops, and if needsWritable is not set 1101 // we already called setHasSharers above 1102 } 1103 1104 // if we are returning a writable and dirty (Modified) line, 1105 // we should be invalidating the line 1106 panic_if(!invalidate && !pkt->hasSharers(), 1107 "%s is passing a Modified line through %s, " 1108 "but keeping the block", name(), pkt->print()); 1109 1110 if (is_timing) { 1111 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval); 1112 } else { 1113 pkt->makeAtomicResponse(); 1114 // packets such as upgrades do not actually have any data 1115 // payload 1116 if (pkt->hasData()) 1117 pkt->setDataFromBlock(blk->data, blkSize); 1118 } 1119 } 1120 1121 if (!respond && is_deferred) { 1122 assert(pkt->needsResponse()); 1123 delete pkt; 1124 } 1125 1126 // Do this last in case it deallocates block data or something 1127 // like that 1128 if (blk_valid && invalidate) { 1129 invalidateBlock(blk); 1130 DPRINTF(Cache, "new state is %s\n", blk->print()); 1131 } 1132 1133 return snoop_delay; 1134} 1135 1136 1137void 1138Cache::recvTimingSnoopReq(PacketPtr pkt) 1139{ 1140 DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print()); 1141 1142 // no need to snoop requests that are not in range 1143 if (!inRange(pkt->getAddr())) { 1144 return; 1145 } 1146 1147 bool is_secure = pkt->isSecure(); 1148 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 1149 1150 Addr blk_addr = pkt->getBlockAddr(blkSize); 1151 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 1152 1153 // Update the latency cost of the snoop so that the crossbar can 1154 // account for it. Do not overwrite what other neighbouring caches 1155 // have already done, rather take the maximum. The update is 1156 // tentative, for cases where we return before an upward snoop 1157 // happens below. 1158 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, 1159 lookupLatency * clockPeriod()); 1160 1161 // Inform request(Prefetch, CleanEvict or Writeback) from below of 1162 // MSHR hit, set setBlockCached. 1163 if (mshr && pkt->mustCheckAbove()) { 1164 DPRINTF(Cache, "Setting block cached for %s from lower cache on " 1165 "mshr hit\n", pkt->print()); 1166 pkt->setBlockCached(); 1167 return; 1168 } 1169 1170 // Bypass any existing cache maintenance requests if the request 1171 // has been satisfied already (i.e., the dirty block has been 1172 // found). 1173 if (mshr && pkt->req->isCacheMaintenance() && pkt->satisfied()) { 1174 return; 1175 } 1176 1177 // Let the MSHR itself track the snoop and decide whether we want 1178 // to go ahead and do the regular cache snoop 1179 if (mshr && mshr->handleSnoop(pkt, order++)) { 1180 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)." 1181 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns", 1182 mshr->print()); 1183 1184 if (mshr->getNumTargets() > numTarget) 1185 warn("allocating bonus target for snoop"); //handle later 1186 return; 1187 } 1188 1189 //We also need to check the writeback buffers and handle those 1190 WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure); 1191 if (wb_entry) { 1192 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n", 1193 pkt->getAddr(), is_secure ? "s" : "ns"); 1194 // Expect to see only Writebacks and/or CleanEvicts here, both of 1195 // which should not be generated for uncacheable data. 1196 assert(!wb_entry->isUncacheable()); 1197 // There should only be a single request responsible for generating 1198 // Writebacks/CleanEvicts. 1199 assert(wb_entry->getNumTargets() == 1); 1200 PacketPtr wb_pkt = wb_entry->getTarget()->pkt; 1201 assert(wb_pkt->isEviction() || wb_pkt->cmd == MemCmd::WriteClean); 1202 1203 if (pkt->isEviction()) { 1204 // if the block is found in the write queue, set the BLOCK_CACHED 1205 // flag for Writeback/CleanEvict snoop. On return the snoop will 1206 // propagate the BLOCK_CACHED flag in Writeback packets and prevent 1207 // any CleanEvicts from travelling down the memory hierarchy. 1208 pkt->setBlockCached(); 1209 DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue " 1210 "hit\n", __func__, pkt->print()); 1211 return; 1212 } 1213 1214 // conceptually writebacks are no different to other blocks in 1215 // this cache, so the behaviour is modelled after handleSnoop, 1216 // the difference being that instead of querying the block 1217 // state to determine if it is dirty and writable, we use the 1218 // command and fields of the writeback packet 1219 bool respond = wb_pkt->cmd == MemCmd::WritebackDirty && 1220 pkt->needsResponse(); 1221 bool have_writable = !wb_pkt->hasSharers(); 1222 bool invalidate = pkt->isInvalidate(); 1223 1224 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) { 1225 assert(!pkt->needsWritable()); 1226 pkt->setHasSharers(); 1227 wb_pkt->setHasSharers(); 1228 } 1229 1230 if (respond) { 1231 pkt->setCacheResponding(); 1232 1233 if (have_writable) { 1234 pkt->setResponderHadWritable(); 1235 } 1236 1237 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(), 1238 false, false); 1239 } 1240 1241 if (invalidate && wb_pkt->cmd != MemCmd::WriteClean) { 1242 // Invalidation trumps our writeback... discard here 1243 // Note: markInService will remove entry from writeback buffer. 1244 markInService(wb_entry); 1245 delete wb_pkt; 1246 } 1247 } 1248 1249 // If this was a shared writeback, there may still be 1250 // other shared copies above that require invalidation. 1251 // We could be more selective and return here if the 1252 // request is non-exclusive or if the writeback is 1253 // exclusive. 1254 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false); 1255 1256 // Override what we did when we first saw the snoop, as we now 1257 // also have the cost of the upwards snoops to account for 1258 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay + 1259 lookupLatency * clockPeriod()); 1260} 1261 1262Tick 1263Cache::recvAtomicSnoop(PacketPtr pkt) 1264{ 1265 // no need to snoop requests that are not in range. 1266 if (!inRange(pkt->getAddr())) { 1267 return 0; 1268 } 1269 1270 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 1271 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false); 1272 return snoop_delay + lookupLatency * clockPeriod(); 1273} 1274 1275bool 1276Cache::isCachedAbove(PacketPtr pkt, bool is_timing) 1277{ 1278 if (!forwardSnoops) 1279 return false; 1280 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and 1281 // Writeback snoops into upper level caches to check for copies of the 1282 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict 1283 // packet, the cache can inform the crossbar below of presence or absence 1284 // of the block. 1285 if (is_timing) { 1286 Packet snoop_pkt(pkt, true, false); 1287 snoop_pkt.setExpressSnoop(); 1288 // Assert that packet is either Writeback or CleanEvict and not a 1289 // prefetch request because prefetch requests need an MSHR and may 1290 // generate a snoop response. 1291 assert(pkt->isEviction() || pkt->cmd == MemCmd::WriteClean); 1292 snoop_pkt.senderState = nullptr; 1293 cpuSidePort.sendTimingSnoopReq(&snoop_pkt); 1294 // Writeback/CleanEvict snoops do not generate a snoop response. 1295 assert(!(snoop_pkt.cacheResponding())); 1296 return snoop_pkt.isBlockCached(); 1297 } else { 1298 cpuSidePort.sendAtomicSnoop(pkt); 1299 return pkt->isBlockCached(); 1300 } 1301} 1302 1303bool 1304Cache::sendMSHRQueuePacket(MSHR* mshr) 1305{ 1306 assert(mshr); 1307 1308 // use request from 1st target 1309 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 1310 1311 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) { 1312 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print()); 1313 1314 // we should never have hardware prefetches to allocated 1315 // blocks 1316 assert(!tags->findBlock(mshr->blkAddr, mshr->isSecure)); 1317 1318 // We need to check the caches above us to verify that 1319 // they don't have a copy of this block in the dirty state 1320 // at the moment. Without this check we could get a stale 1321 // copy from memory that might get used in place of the 1322 // dirty one. 1323 Packet snoop_pkt(tgt_pkt, true, false); 1324 snoop_pkt.setExpressSnoop(); 1325 // We are sending this packet upwards, but if it hits we will 1326 // get a snoop response that we end up treating just like a 1327 // normal response, hence it needs the MSHR as its sender 1328 // state 1329 snoop_pkt.senderState = mshr; 1330 cpuSidePort.sendTimingSnoopReq(&snoop_pkt); 1331 1332 // Check to see if the prefetch was squashed by an upper cache (to 1333 // prevent us from grabbing the line) or if a Check to see if a 1334 // writeback arrived between the time the prefetch was placed in 1335 // the MSHRs and when it was selected to be sent or if the 1336 // prefetch was squashed by an upper cache. 1337 1338 // It is important to check cacheResponding before 1339 // prefetchSquashed. If another cache has committed to 1340 // responding, it will be sending a dirty response which will 1341 // arrive at the MSHR allocated for this request. Checking the 1342 // prefetchSquash first may result in the MSHR being 1343 // prematurely deallocated. 1344 if (snoop_pkt.cacheResponding()) { 1345 auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req); 1346 assert(r.second); 1347 1348 // if we are getting a snoop response with no sharers it 1349 // will be allocated as Modified 1350 bool pending_modified_resp = !snoop_pkt.hasSharers(); 1351 markInService(mshr, pending_modified_resp); 1352 1353 DPRINTF(Cache, "Upward snoop of prefetch for addr" 1354 " %#x (%s) hit\n", 1355 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns"); 1356 return false; 1357 } 1358 1359 if (snoop_pkt.isBlockCached()) { 1360 DPRINTF(Cache, "Block present, prefetch squashed by cache. " 1361 "Deallocating mshr target %#x.\n", 1362 mshr->blkAddr); 1363 1364 // Deallocate the mshr target 1365 if (mshrQueue.forceDeallocateTarget(mshr)) { 1366 // Clear block if this deallocation resulted freed an 1367 // mshr when all had previously been utilized 1368 clearBlocked(Blocked_NoMSHRs); 1369 } 1370 1371 // given that no response is expected, delete Request and Packet 1372 delete tgt_pkt; 1373 1374 return false; 1375 } 1376 } 1377 1378 return BaseCache::sendMSHRQueuePacket(mshr); 1379} 1380 1381Cache* 1382CacheParams::create() 1383{ 1384 assert(tags); 1385 assert(replacement_policy); 1386 1387 return new Cache(this); 1388} 1389