cache.cc revision 12719:68a20fbd07a6
1/*
2 * Copyright (c) 2010-2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nathan Binkert
44 *          Steve Reinhardt
45 *          Ron Dreslinski
46 *          Andreas Sandberg
47 *          Nikos Nikoleris
48 */
49
50/**
51 * @file
52 * Cache definitions.
53 */
54
55#include "mem/cache/cache.hh"
56
57#include "base/logging.hh"
58#include "base/types.hh"
59#include "debug/Cache.hh"
60#include "debug/CachePort.hh"
61#include "debug/CacheTags.hh"
62#include "debug/CacheVerbose.hh"
63#include "mem/cache/blk.hh"
64#include "mem/cache/mshr.hh"
65#include "mem/cache/prefetch/base.hh"
66#include "sim/sim_exit.hh"
67
68Cache::Cache(const CacheParams *p)
69    : BaseCache(p, p->system->cacheLineSize()),
70      tags(p->tags),
71      prefetcher(p->prefetcher),
72      doFastWrites(true),
73      prefetchOnAccess(p->prefetch_on_access),
74      clusivity(p->clusivity),
75      writebackClean(p->writeback_clean),
76      tempBlockWriteback(nullptr),
77      writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
78                                    name(), false,
79                                    EventBase::Delayed_Writeback_Pri)
80{
81    tempBlock = new CacheBlk();
82    tempBlock->data = new uint8_t[blkSize];
83
84    cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
85                                  "CpuSidePort");
86    memSidePort = new MemSidePort(p->name + ".mem_side", this,
87                                  "MemSidePort");
88
89    tags->setCache(this);
90    if (prefetcher)
91        prefetcher->setCache(this);
92}
93
94Cache::~Cache()
95{
96    delete [] tempBlock->data;
97    delete tempBlock;
98
99    delete cpuSidePort;
100    delete memSidePort;
101}
102
103void
104Cache::regStats()
105{
106    BaseCache::regStats();
107}
108
109void
110Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
111{
112    assert(pkt->isRequest());
113
114    uint64_t overwrite_val;
115    bool overwrite_mem;
116    uint64_t condition_val64;
117    uint32_t condition_val32;
118
119    int offset = tags->extractBlkOffset(pkt->getAddr());
120    uint8_t *blk_data = blk->data + offset;
121
122    assert(sizeof(uint64_t) >= pkt->getSize());
123
124    overwrite_mem = true;
125    // keep a copy of our possible write value, and copy what is at the
126    // memory address into the packet
127    pkt->writeData((uint8_t *)&overwrite_val);
128    pkt->setData(blk_data);
129
130    if (pkt->req->isCondSwap()) {
131        if (pkt->getSize() == sizeof(uint64_t)) {
132            condition_val64 = pkt->req->getExtraData();
133            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
134                                         sizeof(uint64_t));
135        } else if (pkt->getSize() == sizeof(uint32_t)) {
136            condition_val32 = (uint32_t)pkt->req->getExtraData();
137            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
138                                         sizeof(uint32_t));
139        } else
140            panic("Invalid size for conditional read/write\n");
141    }
142
143    if (overwrite_mem) {
144        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
145        blk->status |= BlkDirty;
146    }
147}
148
149
150void
151Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
152                      bool deferred_response, bool pending_downgrade)
153{
154    assert(pkt->isRequest());
155
156    assert(blk && blk->isValid());
157    // Occasionally this is not true... if we are a lower-level cache
158    // satisfying a string of Read and ReadEx requests from
159    // upper-level caches, a Read will mark the block as shared but we
160    // can satisfy a following ReadEx anyway since we can rely on the
161    // Read requester(s) to have buffered the ReadEx snoop and to
162    // invalidate their blocks after receiving them.
163    // assert(!pkt->needsWritable() || blk->isWritable());
164    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
165
166    // Check RMW operations first since both isRead() and
167    // isWrite() will be true for them
168    if (pkt->cmd == MemCmd::SwapReq) {
169        cmpAndSwap(blk, pkt);
170    } else if (pkt->isWrite()) {
171        // we have the block in a writable state and can go ahead,
172        // note that the line may be also be considered writable in
173        // downstream caches along the path to memory, but always
174        // Exclusive, and never Modified
175        assert(blk->isWritable());
176        // Write or WriteLine at the first cache with block in writable state
177        if (blk->checkWrite(pkt)) {
178            pkt->writeDataToBlock(blk->data, blkSize);
179        }
180        // Always mark the line as dirty (and thus transition to the
181        // Modified state) even if we are a failed StoreCond so we
182        // supply data to any snoops that have appended themselves to
183        // this cache before knowing the store will fail.
184        blk->status |= BlkDirty;
185        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
186    } else if (pkt->isRead()) {
187        if (pkt->isLLSC()) {
188            blk->trackLoadLocked(pkt);
189        }
190
191        // all read responses have a data payload
192        assert(pkt->hasRespData());
193        pkt->setDataFromBlock(blk->data, blkSize);
194
195        // determine if this read is from a (coherent) cache or not
196        if (pkt->fromCache()) {
197            assert(pkt->getSize() == blkSize);
198            // special handling for coherent block requests from
199            // upper-level caches
200            if (pkt->needsWritable()) {
201                // sanity check
202                assert(pkt->cmd == MemCmd::ReadExReq ||
203                       pkt->cmd == MemCmd::SCUpgradeFailReq);
204                assert(!pkt->hasSharers());
205
206                // if we have a dirty copy, make sure the recipient
207                // keeps it marked dirty (in the modified state)
208                if (blk->isDirty()) {
209                    pkt->setCacheResponding();
210                    blk->status &= ~BlkDirty;
211                }
212            } else if (blk->isWritable() && !pending_downgrade &&
213                       !pkt->hasSharers() &&
214                       pkt->cmd != MemCmd::ReadCleanReq) {
215                // we can give the requester a writable copy on a read
216                // request if:
217                // - we have a writable copy at this level (& below)
218                // - we don't have a pending snoop from below
219                //   signaling another read request
220                // - no other cache above has a copy (otherwise it
221                //   would have set hasSharers flag when
222                //   snooping the packet)
223                // - the read has explicitly asked for a clean
224                //   copy of the line
225                if (blk->isDirty()) {
226                    // special considerations if we're owner:
227                    if (!deferred_response) {
228                        // respond with the line in Modified state
229                        // (cacheResponding set, hasSharers not set)
230                        pkt->setCacheResponding();
231
232                        // if this cache is mostly inclusive, we
233                        // keep the block in the Exclusive state,
234                        // and pass it upwards as Modified
235                        // (writable and dirty), hence we have
236                        // multiple caches, all on the same path
237                        // towards memory, all considering the
238                        // same block writable, but only one
239                        // considering it Modified
240
241                        // we get away with multiple caches (on
242                        // the same path to memory) considering
243                        // the block writeable as we always enter
244                        // the cache hierarchy through a cache,
245                        // and first snoop upwards in all other
246                        // branches
247                        blk->status &= ~BlkDirty;
248                    } else {
249                        // if we're responding after our own miss,
250                        // there's a window where the recipient didn't
251                        // know it was getting ownership and may not
252                        // have responded to snoops correctly, so we
253                        // have to respond with a shared line
254                        pkt->setHasSharers();
255                    }
256                }
257            } else {
258                // otherwise only respond with a shared copy
259                pkt->setHasSharers();
260            }
261        }
262    } else if (pkt->isUpgrade()) {
263        // sanity check
264        assert(!pkt->hasSharers());
265
266        if (blk->isDirty()) {
267            // we were in the Owned state, and a cache above us that
268            // has the line in Shared state needs to be made aware
269            // that the data it already has is in fact dirty
270            pkt->setCacheResponding();
271            blk->status &= ~BlkDirty;
272        }
273    } else {
274        assert(pkt->isInvalidate());
275        invalidateBlock(blk);
276        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
277                pkt->print());
278    }
279}
280
281/////////////////////////////////////////////////////
282//
283// Access path: requests coming in from the CPU side
284//
285/////////////////////////////////////////////////////
286
287bool
288Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
289              PacketList &writebacks)
290{
291    // sanity check
292    assert(pkt->isRequest());
293
294    chatty_assert(!(isReadOnly && pkt->isWrite()),
295                  "Should never see a write in a read-only cache %s\n",
296                  name());
297
298    DPRINTF(CacheVerbose, "%s for %s\n", __func__, pkt->print());
299
300    if (pkt->req->isUncacheable()) {
301        DPRINTF(Cache, "uncacheable: %s\n", pkt->print());
302
303        // flush and invalidate any existing block
304        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
305        if (old_blk && old_blk->isValid()) {
306            if (old_blk->isDirty() || writebackClean)
307                writebacks.push_back(writebackBlk(old_blk));
308            else
309                writebacks.push_back(cleanEvictBlk(old_blk));
310            invalidateBlock(old_blk);
311        }
312
313        blk = nullptr;
314        // lookupLatency is the latency in case the request is uncacheable.
315        lat = lookupLatency;
316        return false;
317    }
318
319    // Here lat is the value passed as parameter to accessBlock() function
320    // that can modify its value.
321    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
322
323    DPRINTF(Cache, "%s %s\n", pkt->print(),
324            blk ? "hit " + blk->print() : "miss");
325
326    if (pkt->req->isCacheMaintenance()) {
327        // A cache maintenance operation is always forwarded to the
328        // memory below even if the block is found in dirty state.
329
330        // We defer any changes to the state of the block until we
331        // create and mark as in service the mshr for the downstream
332        // packet.
333        return false;
334    }
335
336    if (pkt->isEviction()) {
337        // We check for presence of block in above caches before issuing
338        // Writeback or CleanEvict to write buffer. Therefore the only
339        // possible cases can be of a CleanEvict packet coming from above
340        // encountering a Writeback generated in this cache peer cache and
341        // waiting in the write buffer. Cases of upper level peer caches
342        // generating CleanEvict and Writeback or simply CleanEvict and
343        // CleanEvict almost simultaneously will be caught by snoops sent out
344        // by crossbar.
345        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
346                                                          pkt->isSecure());
347        if (wb_entry) {
348            assert(wb_entry->getNumTargets() == 1);
349            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
350            assert(wbPkt->isWriteback());
351
352            if (pkt->isCleanEviction()) {
353                // The CleanEvict and WritebackClean snoops into other
354                // peer caches of the same level while traversing the
355                // crossbar. If a copy of the block is found, the
356                // packet is deleted in the crossbar. Hence, none of
357                // the other upper level caches connected to this
358                // cache have the block, so we can clear the
359                // BLOCK_CACHED flag in the Writeback if set and
360                // discard the CleanEvict by returning true.
361                wbPkt->clearBlockCached();
362                return true;
363            } else {
364                assert(pkt->cmd == MemCmd::WritebackDirty);
365                // Dirty writeback from above trumps our clean
366                // writeback... discard here
367                // Note: markInService will remove entry from writeback buffer.
368                markInService(wb_entry);
369                delete wbPkt;
370            }
371        }
372    }
373
374    // Writeback handling is special case.  We can write the block into
375    // the cache without having a writeable copy (or any copy at all).
376    if (pkt->isWriteback()) {
377        assert(blkSize == pkt->getSize());
378
379        // we could get a clean writeback while we are having
380        // outstanding accesses to a block, do the simple thing for
381        // now and drop the clean writeback so that we do not upset
382        // any ordering/decisions about ownership already taken
383        if (pkt->cmd == MemCmd::WritebackClean &&
384            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
385            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
386                    "dropping\n", pkt->getAddr());
387            return true;
388        }
389
390        if (blk == nullptr) {
391            // need to do a replacement
392            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
393            if (blk == nullptr) {
394                // no replaceable block available: give up, fwd to next level.
395                incMissCount(pkt);
396                return false;
397            }
398            tags->insertBlock(pkt, blk);
399
400            blk->status |= (BlkValid | BlkReadable);
401        }
402        // only mark the block dirty if we got a writeback command,
403        // and leave it as is for a clean writeback
404        if (pkt->cmd == MemCmd::WritebackDirty) {
405            assert(!blk->isDirty());
406            blk->status |= BlkDirty;
407        }
408        // if the packet does not have sharers, it is passing
409        // writable, and we got the writeback in Modified or Exclusive
410        // state, if not we are in the Owned or Shared state
411        if (!pkt->hasSharers()) {
412            blk->status |= BlkWritable;
413        }
414        // nothing else to do; writeback doesn't expect response
415        assert(!pkt->needsResponse());
416        pkt->writeDataToBlock(blk->data, blkSize);
417        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
418        incHitCount(pkt);
419        // populate the time when the block will be ready to access.
420        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
421            pkt->payloadDelay;
422        return true;
423    } else if (pkt->cmd == MemCmd::CleanEvict) {
424        if (blk != nullptr) {
425            // Found the block in the tags, need to stop CleanEvict from
426            // propagating further down the hierarchy. Returning true will
427            // treat the CleanEvict like a satisfied write request and delete
428            // it.
429            return true;
430        }
431        // We didn't find the block here, propagate the CleanEvict further
432        // down the memory hierarchy. Returning false will treat the CleanEvict
433        // like a Writeback which could not find a replaceable block so has to
434        // go to next level.
435        return false;
436    } else if (pkt->cmd == MemCmd::WriteClean) {
437        // WriteClean handling is a special case. We can allocate a
438        // block directly if it doesn't exist and we can update the
439        // block immediately. The WriteClean transfers the ownership
440        // of the block as well.
441        assert(blkSize == pkt->getSize());
442
443        if (!blk) {
444            if (pkt->writeThrough()) {
445                // if this is a write through packet, we don't try to
446                // allocate if the block is not present
447                return false;
448            } else {
449                // a writeback that misses needs to allocate a new block
450                blk = allocateBlock(pkt->getAddr(), pkt->isSecure(),
451                                    writebacks);
452                if (!blk) {
453                    // no replaceable block available: give up, fwd to
454                    // next level.
455                    incMissCount(pkt);
456                    return false;
457                }
458                tags->insertBlock(pkt, blk);
459
460                blk->status |= (BlkValid | BlkReadable);
461            }
462        }
463
464        // at this point either this is a writeback or a write-through
465        // write clean operation and the block is already in this
466        // cache, we need to update the data and the block flags
467        assert(blk);
468        assert(!blk->isDirty());
469        if (!pkt->writeThrough()) {
470            blk->status |= BlkDirty;
471        }
472        // nothing else to do; writeback doesn't expect response
473        assert(!pkt->needsResponse());
474        pkt->writeDataToBlock(blk->data, blkSize);
475        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
476
477        incHitCount(pkt);
478        // populate the time when the block will be ready to access.
479        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
480            pkt->payloadDelay;
481        // if this a write-through packet it will be sent to cache
482        // below
483        return !pkt->writeThrough();
484    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
485                       blk->isReadable())) {
486        // OK to satisfy access
487        incHitCount(pkt);
488        satisfyRequest(pkt, blk);
489        maintainClusivity(pkt->fromCache(), blk);
490
491        return true;
492    }
493
494    // Can't satisfy access normally... either no block (blk == nullptr)
495    // or have block but need writable
496
497    incMissCount(pkt);
498
499    if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) {
500        // complete miss on store conditional... just give up now
501        pkt->req->setExtraData(0);
502        return true;
503    }
504
505    return false;
506}
507
508void
509Cache::maintainClusivity(bool from_cache, CacheBlk *blk)
510{
511    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
512        clusivity == Enums::mostly_excl) {
513        // if we have responded to a cache, and our block is still
514        // valid, but not dirty, and this cache is mostly exclusive
515        // with respect to the cache above, drop the block
516        invalidateBlock(blk);
517    }
518}
519
520void
521Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
522{
523    while (!writebacks.empty()) {
524        PacketPtr wbPkt = writebacks.front();
525        // We use forwardLatency here because we are copying writebacks to
526        // write buffer.
527
528        // Call isCachedAbove for Writebacks, CleanEvicts and
529        // WriteCleans to discover if the block is cached above.
530        if (isCachedAbove(wbPkt)) {
531            if (wbPkt->cmd == MemCmd::CleanEvict) {
532                // Delete CleanEvict because cached copies exist above. The
533                // packet destructor will delete the request object because
534                // this is a non-snoop request packet which does not require a
535                // response.
536                delete wbPkt;
537            } else if (wbPkt->cmd == MemCmd::WritebackClean) {
538                // clean writeback, do not send since the block is
539                // still cached above
540                assert(writebackClean);
541                delete wbPkt;
542            } else {
543                assert(wbPkt->cmd == MemCmd::WritebackDirty ||
544                       wbPkt->cmd == MemCmd::WriteClean);
545                // Set BLOCK_CACHED flag in Writeback and send below, so that
546                // the Writeback does not reset the bit corresponding to this
547                // address in the snoop filter below.
548                wbPkt->setBlockCached();
549                allocateWriteBuffer(wbPkt, forward_time);
550            }
551        } else {
552            // If the block is not cached above, send packet below. Both
553            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
554            // reset the bit corresponding to this address in the snoop filter
555            // below.
556            allocateWriteBuffer(wbPkt, forward_time);
557        }
558        writebacks.pop_front();
559    }
560}
561
562void
563Cache::doWritebacksAtomic(PacketList& writebacks)
564{
565    while (!writebacks.empty()) {
566        PacketPtr wbPkt = writebacks.front();
567        // Call isCachedAbove for both Writebacks and CleanEvicts. If
568        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
569        // and discard CleanEvicts.
570        if (isCachedAbove(wbPkt, false)) {
571            if (wbPkt->cmd == MemCmd::WritebackDirty ||
572                wbPkt->cmd == MemCmd::WriteClean) {
573                // Set BLOCK_CACHED flag in Writeback and send below,
574                // so that the Writeback does not reset the bit
575                // corresponding to this address in the snoop filter
576                // below. We can discard CleanEvicts because cached
577                // copies exist above. Atomic mode isCachedAbove
578                // modifies packet to set BLOCK_CACHED flag
579                memSidePort->sendAtomic(wbPkt);
580            }
581        } else {
582            // If the block is not cached above, send packet below. Both
583            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
584            // reset the bit corresponding to this address in the snoop filter
585            // below.
586            memSidePort->sendAtomic(wbPkt);
587        }
588        writebacks.pop_front();
589        // In case of CleanEvicts, the packet destructor will delete the
590        // request object because this is a non-snoop request packet which
591        // does not require a response.
592        delete wbPkt;
593    }
594}
595
596
597void
598Cache::recvTimingSnoopResp(PacketPtr pkt)
599{
600    DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
601
602    assert(pkt->isResponse());
603    assert(!system->bypassCaches());
604
605    // determine if the response is from a snoop request we created
606    // (in which case it should be in the outstandingSnoop), or if we
607    // merely forwarded someone else's snoop request
608    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
609        outstandingSnoop.end();
610
611    if (!forwardAsSnoop) {
612        // the packet came from this cache, so sink it here and do not
613        // forward it
614        assert(pkt->cmd == MemCmd::HardPFResp);
615
616        outstandingSnoop.erase(pkt->req);
617
618        DPRINTF(Cache, "Got prefetch response from above for addr "
619                "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
620        recvTimingResp(pkt);
621        return;
622    }
623
624    // forwardLatency is set here because there is a response from an
625    // upper level cache.
626    // To pay the delay that occurs if the packet comes from the bus,
627    // we charge also headerDelay.
628    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
629    // Reset the timing of the packet.
630    pkt->headerDelay = pkt->payloadDelay = 0;
631    memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
632}
633
634void
635Cache::promoteWholeLineWrites(PacketPtr pkt)
636{
637    // Cache line clearing instructions
638    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
639        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
640        pkt->cmd = MemCmd::WriteLineReq;
641        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
642    }
643}
644
645void
646Cache::recvTimingReq(PacketPtr pkt)
647{
648    DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print());
649
650    assert(pkt->isRequest());
651
652    // Just forward the packet if caches are disabled.
653    if (system->bypassCaches()) {
654        // @todo This should really enqueue the packet rather
655        bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
656        assert(success);
657        return;
658    }
659
660    promoteWholeLineWrites(pkt);
661
662    // Cache maintenance operations have to visit all the caches down
663    // to the specified xbar (PoC, PoU, etc.). Even if a cache above
664    // is responding we forward the packet to the memory below rather
665    // than creating an express snoop.
666    if (pkt->cacheResponding()) {
667        // a cache above us (but not where the packet came from) is
668        // responding to the request, in other words it has the line
669        // in Modified or Owned state
670        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
671                pkt->print());
672
673        // if the packet needs the block to be writable, and the cache
674        // that has promised to respond (setting the cache responding
675        // flag) is not providing writable (it is in Owned rather than
676        // the Modified state), we know that there may be other Shared
677        // copies in the system; go out and invalidate them all
678        assert(pkt->needsWritable() && !pkt->responderHadWritable());
679
680        // an upstream cache that had the line in Owned state
681        // (dirty, but not writable), is responding and thus
682        // transferring the dirty line from one branch of the
683        // cache hierarchy to another
684
685        // send out an express snoop and invalidate all other
686        // copies (snooping a packet that needs writable is the
687        // same as an invalidation), thus turning the Owned line
688        // into a Modified line, note that we don't invalidate the
689        // block in the current cache or any other cache on the
690        // path to memory
691
692        // create a downstream express snoop with cleared packet
693        // flags, there is no need to allocate any data as the
694        // packet is merely used to co-ordinate state transitions
695        Packet *snoop_pkt = new Packet(pkt, true, false);
696
697        // also reset the bus time that the original packet has
698        // not yet paid for
699        snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
700
701        // make this an instantaneous express snoop, and let the
702        // other caches in the system know that the another cache
703        // is responding, because we have found the authorative
704        // copy (Modified or Owned) that will supply the right
705        // data
706        snoop_pkt->setExpressSnoop();
707        snoop_pkt->setCacheResponding();
708
709        // this express snoop travels towards the memory, and at
710        // every crossbar it is snooped upwards thus reaching
711        // every cache in the system
712        bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
713        // express snoops always succeed
714        assert(success);
715
716        // main memory will delete the snoop packet
717
718        // queue for deletion, as opposed to immediate deletion, as
719        // the sending cache is still relying on the packet
720        pendingDelete.reset(pkt);
721
722        // no need to take any further action in this particular cache
723        // as an upstram cache has already committed to responding,
724        // and we have already sent out any express snoops in the
725        // section above to ensure all other copies in the system are
726        // invalidated
727        return;
728    }
729
730    // anything that is merely forwarded pays for the forward latency and
731    // the delay provided by the crossbar
732    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
733
734    // We use lookupLatency here because it is used to specify the latency
735    // to access.
736    Cycles lat = lookupLatency;
737    CacheBlk *blk = nullptr;
738    bool satisfied = false;
739    {
740        PacketList writebacks;
741        // Note that lat is passed by reference here. The function
742        // access() calls accessBlock() which can modify lat value.
743        satisfied = access(pkt, blk, lat, writebacks);
744
745        // copy writebacks to write buffer here to ensure they logically
746        // proceed anything happening below
747        doWritebacks(writebacks, forward_time);
748    }
749
750    // Here we charge the headerDelay that takes into account the latencies
751    // of the bus, if the packet comes from it.
752    // The latency charged it is just lat that is the value of lookupLatency
753    // modified by access() function, or if not just lookupLatency.
754    // In case of a hit we are neglecting response latency.
755    // In case of a miss we are neglecting forward latency.
756    Tick request_time = clockEdge(lat) + pkt->headerDelay;
757    // Here we reset the timing of the packet.
758    pkt->headerDelay = pkt->payloadDelay = 0;
759
760    // track time of availability of next prefetch, if any
761    Tick next_pf_time = MaxTick;
762
763    bool needsResponse = pkt->needsResponse();
764
765    if (satisfied) {
766        // should never be satisfying an uncacheable access as we
767        // flush and invalidate any existing block as part of the
768        // lookup
769        assert(!pkt->req->isUncacheable());
770
771        // hit (for all other request types)
772
773        if (prefetcher && (prefetchOnAccess ||
774                           (blk && blk->wasPrefetched()))) {
775            if (blk)
776                blk->status &= ~BlkHWPrefetched;
777
778            // Don't notify on SWPrefetch
779            if (!pkt->cmd.isSWPrefetch()) {
780                assert(!pkt->req->isCacheMaintenance());
781                next_pf_time = prefetcher->notify(pkt);
782            }
783        }
784
785        if (needsResponse) {
786            pkt->makeTimingResponse();
787            // @todo: Make someone pay for this
788            pkt->headerDelay = pkt->payloadDelay = 0;
789
790            // In this case we are considering request_time that takes
791            // into account the delay of the xbar, if any, and just
792            // lat, neglecting responseLatency, modelling hit latency
793            // just as lookupLatency or or the value of lat overriden
794            // by access(), that calls accessBlock() function.
795            cpuSidePort->schedTimingResp(pkt, request_time, true);
796        } else {
797            DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
798                    pkt->print());
799
800            // queue the packet for deletion, as the sending cache is
801            // still relying on it; if the block is found in access(),
802            // CleanEvict and Writeback messages will be deleted
803            // here as well
804            pendingDelete.reset(pkt);
805        }
806    } else {
807        // miss
808
809        Addr blk_addr = pkt->getBlockAddr(blkSize);
810
811        // ignore any existing MSHR if we are dealing with an
812        // uncacheable request
813        MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
814            mshrQueue.findMatch(blk_addr, pkt->isSecure());
815
816        // Software prefetch handling:
817        // To keep the core from waiting on data it won't look at
818        // anyway, send back a response with dummy data. Miss handling
819        // will continue asynchronously. Unfortunately, the core will
820        // insist upon freeing original Packet/Request, so we have to
821        // create a new pair with a different lifecycle. Note that this
822        // processing happens before any MSHR munging on the behalf of
823        // this request because this new Request will be the one stored
824        // into the MSHRs, not the original.
825        if (pkt->cmd.isSWPrefetch()) {
826            assert(needsResponse);
827            assert(pkt->req->hasPaddr());
828            assert(!pkt->req->isUncacheable());
829
830            // There's no reason to add a prefetch as an additional target
831            // to an existing MSHR. If an outstanding request is already
832            // in progress, there is nothing for the prefetch to do.
833            // If this is the case, we don't even create a request at all.
834            PacketPtr pf = nullptr;
835
836            if (!mshr) {
837                // copy the request and create a new SoftPFReq packet
838                RequestPtr req = new Request(pkt->req->getPaddr(),
839                                             pkt->req->getSize(),
840                                             pkt->req->getFlags(),
841                                             pkt->req->masterId());
842                pf = new Packet(req, pkt->cmd);
843                pf->allocate();
844                assert(pf->getAddr() == pkt->getAddr());
845                assert(pf->getSize() == pkt->getSize());
846            }
847
848            pkt->makeTimingResponse();
849
850            // request_time is used here, taking into account lat and the delay
851            // charged if the packet comes from the xbar.
852            cpuSidePort->schedTimingResp(pkt, request_time, true);
853
854            // If an outstanding request is in progress (we found an
855            // MSHR) this is set to null
856            pkt = pf;
857        }
858
859        if (mshr) {
860            /// MSHR hit
861            /// @note writebacks will be checked in getNextMSHR()
862            /// for any conflicting requests to the same block
863
864            //@todo remove hw_pf here
865
866            // Coalesce unless it was a software prefetch (see above).
867            if (pkt) {
868                assert(!pkt->isWriteback());
869                // CleanEvicts corresponding to blocks which have
870                // outstanding requests in MSHRs are simply sunk here
871                if (pkt->cmd == MemCmd::CleanEvict) {
872                    pendingDelete.reset(pkt);
873                } else if (pkt->cmd == MemCmd::WriteClean) {
874                    // A WriteClean should never coalesce with any
875                    // outstanding cache maintenance requests.
876
877                    // We use forward_time here because there is an
878                    // uncached memory write, forwarded to WriteBuffer.
879                    allocateWriteBuffer(pkt, forward_time);
880                } else {
881                    DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
882                            pkt->print());
883
884                    assert(pkt->req->masterId() < system->maxMasters());
885                    mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
886                    // We use forward_time here because it is the same
887                    // considering new targets. We have multiple
888                    // requests for the same address here. It
889                    // specifies the latency to allocate an internal
890                    // buffer and to schedule an event to the queued
891                    // port and also takes into account the additional
892                    // delay of the xbar.
893                    mshr->allocateTarget(pkt, forward_time, order++,
894                                         allocOnFill(pkt->cmd));
895                    if (mshr->getNumTargets() == numTarget) {
896                        noTargetMSHR = mshr;
897                        setBlocked(Blocked_NoTargets);
898                        // need to be careful with this... if this mshr isn't
899                        // ready yet (i.e. time > curTick()), we don't want to
900                        // move it ahead of mshrs that are ready
901                        // mshrQueue.moveToFront(mshr);
902                    }
903                }
904                // We should call the prefetcher reguardless if the request is
905                // satisfied or not, reguardless if the request is in the MSHR
906                // or not.  The request could be a ReadReq hit, but still not
907                // satisfied (potentially because of a prior write to the same
908                // cache line.  So, even when not satisfied, tehre is an MSHR
909                // already allocated for this, we need to let the prefetcher
910                // know about the request
911                if (prefetcher) {
912                    // Don't notify on SWPrefetch
913                    if (!pkt->cmd.isSWPrefetch() &&
914                        !pkt->req->isCacheMaintenance())
915                        next_pf_time = prefetcher->notify(pkt);
916                }
917            }
918        } else {
919            // no MSHR
920            assert(pkt->req->masterId() < system->maxMasters());
921            if (pkt->req->isUncacheable()) {
922                mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
923            } else {
924                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
925            }
926
927            if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
928                (pkt->req->isUncacheable() && pkt->isWrite())) {
929                // We use forward_time here because there is an
930                // uncached memory write, forwarded to WriteBuffer.
931                allocateWriteBuffer(pkt, forward_time);
932            } else {
933                if (blk && blk->isValid()) {
934                    // should have flushed and have no valid block
935                    assert(!pkt->req->isUncacheable());
936
937                    // If we have a write miss to a valid block, we
938                    // need to mark the block non-readable.  Otherwise
939                    // if we allow reads while there's an outstanding
940                    // write miss, the read could return stale data
941                    // out of the cache block... a more aggressive
942                    // system could detect the overlap (if any) and
943                    // forward data out of the MSHRs, but we don't do
944                    // that yet.  Note that we do need to leave the
945                    // block valid so that it stays in the cache, in
946                    // case we get an upgrade response (and hence no
947                    // new data) when the write miss completes.
948                    // As long as CPUs do proper store/load forwarding
949                    // internally, and have a sufficiently weak memory
950                    // model, this is probably unnecessary, but at some
951                    // point it must have seemed like we needed it...
952                    assert((pkt->needsWritable() && !blk->isWritable()) ||
953                           pkt->req->isCacheMaintenance());
954                    blk->status &= ~BlkReadable;
955                }
956                // Here we are using forward_time, modelling the latency of
957                // a miss (outbound) just as forwardLatency, neglecting the
958                // lookupLatency component.
959                allocateMissBuffer(pkt, forward_time);
960            }
961
962            if (prefetcher) {
963                // Don't notify on SWPrefetch
964                if (!pkt->cmd.isSWPrefetch() &&
965                    !pkt->req->isCacheMaintenance())
966                    next_pf_time = prefetcher->notify(pkt);
967            }
968        }
969    }
970
971    if (next_pf_time != MaxTick)
972        schedMemSideSendEvent(next_pf_time);
973}
974
975PacketPtr
976Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
977                        bool needsWritable) const
978{
979    // should never see evictions here
980    assert(!cpu_pkt->isEviction());
981
982    bool blkValid = blk && blk->isValid();
983
984    if (cpu_pkt->req->isUncacheable() ||
985        (!blkValid && cpu_pkt->isUpgrade()) ||
986        cpu_pkt->cmd == MemCmd::InvalidateReq || cpu_pkt->isClean()) {
987        // uncacheable requests and upgrades from upper-level caches
988        // that missed completely just go through as is
989        return nullptr;
990    }
991
992    assert(cpu_pkt->needsResponse());
993
994    MemCmd cmd;
995    // @TODO make useUpgrades a parameter.
996    // Note that ownership protocols require upgrade, otherwise a
997    // write miss on a shared owned block will generate a ReadExcl,
998    // which will clobber the owned copy.
999    const bool useUpgrades = true;
1000    if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
1001        assert(!blkValid || !blk->isWritable());
1002        // forward as invalidate to all other caches, this gives us
1003        // the line in Exclusive state, and invalidates all other
1004        // copies
1005        cmd = MemCmd::InvalidateReq;
1006    } else if (blkValid && useUpgrades) {
1007        // only reason to be here is that blk is read only and we need
1008        // it to be writable
1009        assert(needsWritable);
1010        assert(!blk->isWritable());
1011        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
1012    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
1013               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
1014        // Even though this SC will fail, we still need to send out the
1015        // request and get the data to supply it to other snoopers in the case
1016        // where the determination the StoreCond fails is delayed due to
1017        // all caches not being on the same local bus.
1018        cmd = MemCmd::SCUpgradeFailReq;
1019    } else {
1020        // block is invalid
1021
1022        // If the request does not need a writable there are two cases
1023        // where we need to ensure the response will not fetch the
1024        // block in dirty state:
1025        // * this cache is read only and it does not perform
1026        //   writebacks,
1027        // * this cache is mostly exclusive and will not fill (since
1028        //   it does not fill it will have to writeback the dirty data
1029        //   immediately which generates uneccesary writebacks).
1030        bool force_clean_rsp = isReadOnly || clusivity == Enums::mostly_excl;
1031        cmd = needsWritable ? MemCmd::ReadExReq :
1032            (force_clean_rsp ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
1033    }
1034    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
1035
1036    // if there are upstream caches that have already marked the
1037    // packet as having sharers (not passing writable), pass that info
1038    // downstream
1039    if (cpu_pkt->hasSharers() && !needsWritable) {
1040        // note that cpu_pkt may have spent a considerable time in the
1041        // MSHR queue and that the information could possibly be out
1042        // of date, however, there is no harm in conservatively
1043        // assuming the block has sharers
1044        pkt->setHasSharers();
1045        DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n",
1046                __func__, cpu_pkt->print(), pkt->print());
1047    }
1048
1049    // the packet should be block aligned
1050    assert(pkt->getAddr() == pkt->getBlockAddr(blkSize));
1051
1052    pkt->allocate();
1053    DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(),
1054            cpu_pkt->print());
1055    return pkt;
1056}
1057
1058
1059Tick
1060Cache::recvAtomic(PacketPtr pkt)
1061{
1062    // We are in atomic mode so we pay just for lookupLatency here.
1063    Cycles lat = lookupLatency;
1064
1065    // Forward the request if the system is in cache bypass mode.
1066    if (system->bypassCaches())
1067        return ticksToCycles(memSidePort->sendAtomic(pkt));
1068
1069    promoteWholeLineWrites(pkt);
1070
1071    // follow the same flow as in recvTimingReq, and check if a cache
1072    // above us is responding
1073    if (pkt->cacheResponding() && !pkt->isClean()) {
1074        assert(!pkt->req->isCacheInvalidate());
1075        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
1076                pkt->print());
1077
1078        // if a cache is responding, and it had the line in Owned
1079        // rather than Modified state, we need to invalidate any
1080        // copies that are not on the same path to memory
1081        assert(pkt->needsWritable() && !pkt->responderHadWritable());
1082        lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1083
1084        return lat * clockPeriod();
1085    }
1086
1087    // should assert here that there are no outstanding MSHRs or
1088    // writebacks... that would mean that someone used an atomic
1089    // access in timing mode
1090
1091    CacheBlk *blk = nullptr;
1092    PacketList writebacks;
1093    bool satisfied = access(pkt, blk, lat, writebacks);
1094
1095    if (pkt->isClean() && blk && blk->isDirty()) {
1096        // A cache clean opearation is looking for a dirty
1097        // block. If a dirty block is encountered a WriteClean
1098        // will update any copies to the path to the memory
1099        // until the point of reference.
1100        DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1101                __func__, pkt->print(), blk->print());
1102        PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
1103        writebacks.push_back(wb_pkt);
1104        pkt->setSatisfied();
1105    }
1106
1107    // handle writebacks resulting from the access here to ensure they
1108    // logically proceed anything happening below
1109    doWritebacksAtomic(writebacks);
1110
1111    if (!satisfied) {
1112        // MISS
1113
1114        // deal with the packets that go through the write path of
1115        // the cache, i.e. any evictions and writes
1116        if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
1117            (pkt->req->isUncacheable() && pkt->isWrite())) {
1118            lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1119            return lat * clockPeriod();
1120        }
1121        // only misses left
1122
1123        PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
1124
1125        bool is_forward = (bus_pkt == nullptr);
1126
1127        if (is_forward) {
1128            // just forwarding the same request to the next level
1129            // no local cache operation involved
1130            bus_pkt = pkt;
1131        }
1132
1133        DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__,
1134                bus_pkt->print());
1135
1136#if TRACING_ON
1137        CacheBlk::State old_state = blk ? blk->status : 0;
1138#endif
1139
1140        lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1141
1142        bool is_invalidate = bus_pkt->isInvalidate();
1143
1144        // We are now dealing with the response handling
1145        DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__,
1146                bus_pkt->print(), old_state);
1147
1148        // If packet was a forward, the response (if any) is already
1149        // in place in the bus_pkt == pkt structure, so we don't need
1150        // to do anything.  Otherwise, use the separate bus_pkt to
1151        // generate response to pkt and then delete it.
1152        if (!is_forward) {
1153            if (pkt->needsResponse()) {
1154                assert(bus_pkt->isResponse());
1155                if (bus_pkt->isError()) {
1156                    pkt->makeAtomicResponse();
1157                    pkt->copyError(bus_pkt);
1158                } else if (pkt->cmd == MemCmd::WriteLineReq) {
1159                    // note the use of pkt, not bus_pkt here.
1160
1161                    // write-line request to the cache that promoted
1162                    // the write to a whole line
1163                    blk = handleFill(pkt, blk, writebacks,
1164                                     allocOnFill(pkt->cmd));
1165                    assert(blk != NULL);
1166                    is_invalidate = false;
1167                    satisfyRequest(pkt, blk);
1168                } else if (bus_pkt->isRead() ||
1169                           bus_pkt->cmd == MemCmd::UpgradeResp) {
1170                    // we're updating cache state to allow us to
1171                    // satisfy the upstream request from the cache
1172                    blk = handleFill(bus_pkt, blk, writebacks,
1173                                     allocOnFill(pkt->cmd));
1174                    satisfyRequest(pkt, blk);
1175                    maintainClusivity(pkt->fromCache(), blk);
1176                } else {
1177                    // we're satisfying the upstream request without
1178                    // modifying cache state, e.g., a write-through
1179                    pkt->makeAtomicResponse();
1180                }
1181            }
1182            delete bus_pkt;
1183        }
1184
1185        if (is_invalidate && blk && blk->isValid()) {
1186            invalidateBlock(blk);
1187        }
1188    }
1189
1190    // Note that we don't invoke the prefetcher at all in atomic mode.
1191    // It's not clear how to do it properly, particularly for
1192    // prefetchers that aggressively generate prefetch candidates and
1193    // rely on bandwidth contention to throttle them; these will tend
1194    // to pollute the cache in atomic mode since there is no bandwidth
1195    // contention.  If we ever do want to enable prefetching in atomic
1196    // mode, though, this is the place to do it... see timingAccess()
1197    // for an example (though we'd want to issue the prefetch(es)
1198    // immediately rather than calling requestMemSideBus() as we do
1199    // there).
1200
1201    // do any writebacks resulting from the response handling
1202    doWritebacksAtomic(writebacks);
1203
1204    // if we used temp block, check to see if its valid and if so
1205    // clear it out, but only do so after the call to recvAtomic is
1206    // finished so that any downstream observers (such as a snoop
1207    // filter), first see the fill, and only then see the eviction
1208    if (blk == tempBlock && tempBlock->isValid()) {
1209        // the atomic CPU calls recvAtomic for fetch and load/store
1210        // sequentuially, and we may already have a tempBlock
1211        // writeback from the fetch that we have not yet sent
1212        if (tempBlockWriteback) {
1213            // if that is the case, write the prevoius one back, and
1214            // do not schedule any new event
1215            writebackTempBlockAtomic();
1216        } else {
1217            // the writeback/clean eviction happens after the call to
1218            // recvAtomic has finished (but before any successive
1219            // calls), so that the response handling from the fill is
1220            // allowed to happen first
1221            schedule(writebackTempBlockAtomicEvent, curTick());
1222        }
1223
1224        tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1225            writebackBlk(blk) : cleanEvictBlk(blk);
1226        invalidateBlock(blk);
1227    }
1228
1229    if (pkt->needsResponse()) {
1230        pkt->makeAtomicResponse();
1231    }
1232
1233    return lat * clockPeriod();
1234}
1235
1236
1237void
1238Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1239{
1240    if (system->bypassCaches()) {
1241        // Packets from the memory side are snoop request and
1242        // shouldn't happen in bypass mode.
1243        assert(fromCpuSide);
1244
1245        // The cache should be flushed if we are in cache bypass mode,
1246        // so we don't need to check if we need to update anything.
1247        memSidePort->sendFunctional(pkt);
1248        return;
1249    }
1250
1251    Addr blk_addr = pkt->getBlockAddr(blkSize);
1252    bool is_secure = pkt->isSecure();
1253    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1254    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1255
1256    pkt->pushLabel(name());
1257
1258    CacheBlkPrintWrapper cbpw(blk);
1259
1260    // Note that just because an L2/L3 has valid data doesn't mean an
1261    // L1 doesn't have a more up-to-date modified copy that still
1262    // needs to be found.  As a result we always update the request if
1263    // we have it, but only declare it satisfied if we are the owner.
1264
1265    // see if we have data at all (owned or otherwise)
1266    bool have_data = blk && blk->isValid()
1267        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1268                                blk->data);
1269
1270    // data we have is dirty if marked as such or if we have an
1271    // in-service MSHR that is pending a modified line
1272    bool have_dirty =
1273        have_data && (blk->isDirty() ||
1274                      (mshr && mshr->inService && mshr->isPendingModified()));
1275
1276    bool done = have_dirty
1277        || cpuSidePort->checkFunctional(pkt)
1278        || mshrQueue.checkFunctional(pkt, blk_addr)
1279        || writeBuffer.checkFunctional(pkt, blk_addr)
1280        || memSidePort->checkFunctional(pkt);
1281
1282    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
1283            (blk && blk->isValid()) ? "valid " : "",
1284            have_data ? "data " : "", done ? "done " : "");
1285
1286    // We're leaving the cache, so pop cache->name() label
1287    pkt->popLabel();
1288
1289    if (done) {
1290        pkt->makeResponse();
1291    } else {
1292        // if it came as a request from the CPU side then make sure it
1293        // continues towards the memory side
1294        if (fromCpuSide) {
1295            memSidePort->sendFunctional(pkt);
1296        } else if (cpuSidePort->isSnooping()) {
1297            // if it came from the memory side, it must be a snoop request
1298            // and we should only forward it if we are forwarding snoops
1299            cpuSidePort->sendFunctionalSnoop(pkt);
1300        }
1301    }
1302}
1303
1304
1305/////////////////////////////////////////////////////
1306//
1307// Response handling: responses from the memory side
1308//
1309/////////////////////////////////////////////////////
1310
1311
1312void
1313Cache::handleUncacheableWriteResp(PacketPtr pkt)
1314{
1315    Tick completion_time = clockEdge(responseLatency) +
1316        pkt->headerDelay + pkt->payloadDelay;
1317
1318    // Reset the bus additional time as it is now accounted for
1319    pkt->headerDelay = pkt->payloadDelay = 0;
1320
1321    cpuSidePort->schedTimingResp(pkt, completion_time, true);
1322}
1323
1324void
1325Cache::serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt, CacheBlk *blk,
1326                          PacketList &writebacks)
1327{
1328    MSHR::Target *initial_tgt = mshr->getTarget();
1329    // First offset for critical word first calculations
1330    const int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1331
1332    const bool is_error = pkt->isError();
1333    bool is_fill = !mshr->isForward &&
1334        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1335    // allow invalidation responses originating from write-line
1336    // requests to be discarded
1337    bool is_invalidate = pkt->isInvalidate();
1338
1339    MSHR::TargetList targets = mshr->extractServiceableTargets(pkt);
1340    for (auto &target: targets) {
1341        Packet *tgt_pkt = target.pkt;
1342        switch (target.source) {
1343          case MSHR::Target::FromCPU:
1344            Tick completion_time;
1345            // Here we charge on completion_time the delay of the xbar if the
1346            // packet comes from it, charged on headerDelay.
1347            completion_time = pkt->headerDelay;
1348
1349            // Software prefetch handling for cache closest to core
1350            if (tgt_pkt->cmd.isSWPrefetch()) {
1351                // a software prefetch would have already been ack'd
1352                // immediately with dummy data so the core would be able to
1353                // retire it. This request completes right here, so we
1354                // deallocate it.
1355                delete tgt_pkt->req;
1356                delete tgt_pkt;
1357                break; // skip response
1358            }
1359
1360            // unlike the other packet flows, where data is found in other
1361            // caches or memory and brought back, write-line requests always
1362            // have the data right away, so the above check for "is fill?"
1363            // cannot actually be determined until examining the stored MSHR
1364            // state. We "catch up" with that logic here, which is duplicated
1365            // from above.
1366            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1367                assert(!is_error);
1368                // we got the block in a writable state, so promote
1369                // any deferred targets if possible
1370                mshr->promoteWritable();
1371                // NB: we use the original packet here and not the response!
1372                blk = handleFill(tgt_pkt, blk, writebacks,
1373                                 targets.allocOnFill);
1374                assert(blk);
1375
1376                // treat as a fill, and discard the invalidation
1377                // response
1378                is_fill = true;
1379                is_invalidate = false;
1380            }
1381
1382            if (is_fill) {
1383                satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
1384
1385                // How many bytes past the first request is this one
1386                int transfer_offset =
1387                    tgt_pkt->getOffset(blkSize) - initial_offset;
1388                if (transfer_offset < 0) {
1389                    transfer_offset += blkSize;
1390                }
1391
1392                // If not critical word (offset) return payloadDelay.
1393                // responseLatency is the latency of the return path
1394                // from lower level caches/memory to an upper level cache or
1395                // the core.
1396                completion_time += clockEdge(responseLatency) +
1397                    (transfer_offset ? pkt->payloadDelay : 0);
1398
1399                assert(!tgt_pkt->req->isUncacheable());
1400
1401                assert(tgt_pkt->req->masterId() < system->maxMasters());
1402                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1403                    completion_time - target.recvTime;
1404            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1405                // failed StoreCond upgrade
1406                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1407                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1408                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1409                // responseLatency is the latency of the return path
1410                // from lower level caches/memory to an upper level cache or
1411                // the core.
1412                completion_time += clockEdge(responseLatency) +
1413                    pkt->payloadDelay;
1414                tgt_pkt->req->setExtraData(0);
1415            } else {
1416                // We are about to send a response to a cache above
1417                // that asked for an invalidation; we need to
1418                // invalidate our copy immediately as the most
1419                // up-to-date copy of the block will now be in the
1420                // cache above. It will also prevent this cache from
1421                // responding (if the block was previously dirty) to
1422                // snoops as they should snoop the caches above where
1423                // they will get the response from.
1424                if (is_invalidate && blk && blk->isValid()) {
1425                    invalidateBlock(blk);
1426                }
1427                // not a cache fill, just forwarding response
1428                // responseLatency is the latency of the return path
1429                // from lower level cahces/memory to the core.
1430                completion_time += clockEdge(responseLatency) +
1431                    pkt->payloadDelay;
1432                if (pkt->isRead() && !is_error) {
1433                    // sanity check
1434                    assert(pkt->getAddr() == tgt_pkt->getAddr());
1435                    assert(pkt->getSize() >= tgt_pkt->getSize());
1436
1437                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1438                }
1439            }
1440            tgt_pkt->makeTimingResponse();
1441            // if this packet is an error copy that to the new packet
1442            if (is_error)
1443                tgt_pkt->copyError(pkt);
1444            if (tgt_pkt->cmd == MemCmd::ReadResp &&
1445                (is_invalidate || mshr->hasPostInvalidate())) {
1446                // If intermediate cache got ReadRespWithInvalidate,
1447                // propagate that.  Response should not have
1448                // isInvalidate() set otherwise.
1449                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1450                DPRINTF(Cache, "%s: updated cmd to %s\n", __func__,
1451                        tgt_pkt->print());
1452            }
1453            // Reset the bus additional time as it is now accounted for
1454            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1455            cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1456            break;
1457
1458          case MSHR::Target::FromPrefetcher:
1459            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1460            if (blk)
1461                blk->status |= BlkHWPrefetched;
1462            delete tgt_pkt->req;
1463            delete tgt_pkt;
1464            break;
1465
1466          case MSHR::Target::FromSnoop:
1467            // I don't believe that a snoop can be in an error state
1468            assert(!is_error);
1469            // response to snoop request
1470            DPRINTF(Cache, "processing deferred snoop...\n");
1471            // If the response is invalidating, a snooping target can
1472            // be satisfied if it is also invalidating. If the reponse is, not
1473            // only invalidating, but more specifically an InvalidateResp and
1474            // the MSHR was created due to an InvalidateReq then a cache above
1475            // is waiting to satisfy a WriteLineReq. In this case even an
1476            // non-invalidating snoop is added as a target here since this is
1477            // the ordering point. When the InvalidateResp reaches this cache,
1478            // the snooping target will snoop further the cache above with the
1479            // WriteLineReq.
1480            assert(!is_invalidate || pkt->cmd == MemCmd::InvalidateResp ||
1481                   pkt->req->isCacheMaintenance() ||
1482                   mshr->hasPostInvalidate());
1483            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1484            break;
1485
1486          default:
1487            panic("Illegal target->source enum %d\n", target.source);
1488        }
1489    }
1490
1491    maintainClusivity(targets.hasFromCache, blk);
1492
1493    if (blk && blk->isValid()) {
1494        // an invalidate response stemming from a write line request
1495        // should not invalidate the block, so check if the
1496        // invalidation should be discarded
1497        if (is_invalidate || mshr->hasPostInvalidate()) {
1498            invalidateBlock(blk);
1499        } else if (mshr->hasPostDowngrade()) {
1500            blk->status &= ~BlkWritable;
1501        }
1502    }
1503}
1504
1505void
1506Cache::recvTimingResp(PacketPtr pkt)
1507{
1508    assert(pkt->isResponse());
1509
1510    // all header delay should be paid for by the crossbar, unless
1511    // this is a prefetch response from above
1512    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1513             "%s saw a non-zero packet delay\n", name());
1514
1515    const bool is_error = pkt->isError();
1516
1517    if (is_error) {
1518        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
1519                pkt->print());
1520    }
1521
1522    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
1523            pkt->print());
1524
1525    // if this is a write, we should be looking at an uncacheable
1526    // write
1527    if (pkt->isWrite()) {
1528        assert(pkt->req->isUncacheable());
1529        handleUncacheableWriteResp(pkt);
1530        return;
1531    }
1532
1533    // we have dealt with any (uncacheable) writes above, from here on
1534    // we know we are dealing with an MSHR due to a miss or a prefetch
1535    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
1536    assert(mshr);
1537
1538    if (mshr == noTargetMSHR) {
1539        // we always clear at least one target
1540        clearBlocked(Blocked_NoTargets);
1541        noTargetMSHR = nullptr;
1542    }
1543
1544    // Initial target is used just for stats
1545    MSHR::Target *initial_tgt = mshr->getTarget();
1546    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1547    Tick miss_latency = curTick() - initial_tgt->recvTime;
1548
1549    if (pkt->req->isUncacheable()) {
1550        assert(pkt->req->masterId() < system->maxMasters());
1551        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1552            miss_latency;
1553    } else {
1554        assert(pkt->req->masterId() < system->maxMasters());
1555        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1556            miss_latency;
1557    }
1558
1559    PacketList writebacks;
1560
1561    bool is_fill = !mshr->isForward &&
1562        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1563
1564    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1565
1566    if (is_fill && !is_error) {
1567        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1568                pkt->getAddr());
1569
1570        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
1571        assert(blk != nullptr);
1572    }
1573
1574    if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
1575        // The block was marked not readable while there was a pending
1576        // cache maintenance operation, restore its flag.
1577        blk->status |= BlkReadable;
1578    }
1579
1580    if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
1581        // If at this point the referenced block is writable and the
1582        // response is not a cache invalidate, we promote targets that
1583        // were deferred as we couldn't guarrantee a writable copy
1584        mshr->promoteWritable();
1585    }
1586
1587    serviceMSHRTargets(mshr, pkt, blk, writebacks);
1588
1589    if (mshr->promoteDeferredTargets()) {
1590        // avoid later read getting stale data while write miss is
1591        // outstanding.. see comment in timingAccess()
1592        if (blk) {
1593            blk->status &= ~BlkReadable;
1594        }
1595        mshrQueue.markPending(mshr);
1596        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1597    } else {
1598        // while we deallocate an mshr from the queue we still have to
1599        // check the isFull condition before and after as we might
1600        // have been using the reserved entries already
1601        const bool was_full = mshrQueue.isFull();
1602        mshrQueue.deallocate(mshr);
1603        if (was_full && !mshrQueue.isFull()) {
1604            clearBlocked(Blocked_NoMSHRs);
1605        }
1606
1607        // Request the bus for a prefetch if this deallocation freed enough
1608        // MSHRs for a prefetch to take place
1609        if (prefetcher && mshrQueue.canPrefetch()) {
1610            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1611                                         clockEdge());
1612            if (next_pf_time != MaxTick)
1613                schedMemSideSendEvent(next_pf_time);
1614        }
1615    }
1616
1617    // if we used temp block, check to see if its valid and then clear it out
1618    if (blk == tempBlock && tempBlock->isValid()) {
1619        PacketPtr wb_pkt = tempBlock->isDirty() || writebackClean ?
1620            writebackBlk(blk) : cleanEvictBlk(blk);
1621        writebacks.push_back(wb_pkt);
1622        invalidateBlock(tempBlock);
1623    }
1624
1625    const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1626    // copy writebacks to write buffer
1627    doWritebacks(writebacks, forward_time);
1628
1629    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
1630    delete pkt;
1631}
1632
1633PacketPtr
1634Cache::writebackBlk(CacheBlk *blk)
1635{
1636    chatty_assert(!isReadOnly || writebackClean,
1637                  "Writeback from read-only cache");
1638    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1639
1640    writebacks[Request::wbMasterId]++;
1641
1642    Request *req = new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
1643                               Request::wbMasterId);
1644    if (blk->isSecure())
1645        req->setFlags(Request::SECURE);
1646
1647    req->taskId(blk->task_id);
1648
1649    PacketPtr pkt =
1650        new Packet(req, blk->isDirty() ?
1651                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1652
1653    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1654            pkt->print(), blk->isWritable(), blk->isDirty());
1655
1656    if (blk->isWritable()) {
1657        // not asserting shared means we pass the block in modified
1658        // state, mark our own block non-writeable
1659        blk->status &= ~BlkWritable;
1660    } else {
1661        // we are in the Owned state, tell the receiver
1662        pkt->setHasSharers();
1663    }
1664
1665    // make sure the block is not marked dirty
1666    blk->status &= ~BlkDirty;
1667
1668    pkt->allocate();
1669    pkt->setDataFromBlock(blk->data, blkSize);
1670
1671    return pkt;
1672}
1673
1674PacketPtr
1675Cache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1676{
1677    Request *req = new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
1678                               Request::wbMasterId);
1679    if (blk->isSecure()) {
1680        req->setFlags(Request::SECURE);
1681    }
1682    req->taskId(blk->task_id);
1683
1684    PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1685
1686    if (dest) {
1687        req->setFlags(dest);
1688        pkt->setWriteThrough();
1689    }
1690
1691    DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1692            blk->isWritable(), blk->isDirty());
1693
1694    if (blk->isWritable()) {
1695        // not asserting shared means we pass the block in modified
1696        // state, mark our own block non-writeable
1697        blk->status &= ~BlkWritable;
1698    } else {
1699        // we are in the Owned state, tell the receiver
1700        pkt->setHasSharers();
1701    }
1702
1703    // make sure the block is not marked dirty
1704    blk->status &= ~BlkDirty;
1705
1706    pkt->allocate();
1707    pkt->setDataFromBlock(blk->data, blkSize);
1708
1709    return pkt;
1710}
1711
1712
1713PacketPtr
1714Cache::cleanEvictBlk(CacheBlk *blk)
1715{
1716    assert(!writebackClean);
1717    assert(blk && blk->isValid() && !blk->isDirty());
1718    // Creating a zero sized write, a message to the snoop filter
1719    Request *req =
1720        new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
1721                    Request::wbMasterId);
1722    if (blk->isSecure())
1723        req->setFlags(Request::SECURE);
1724
1725    req->taskId(blk->task_id);
1726
1727    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1728    pkt->allocate();
1729    DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print());
1730
1731    return pkt;
1732}
1733
1734void
1735Cache::memWriteback()
1736{
1737    CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1738    tags->forEachBlk(visitor);
1739}
1740
1741void
1742Cache::memInvalidate()
1743{
1744    CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1745    tags->forEachBlk(visitor);
1746}
1747
1748bool
1749Cache::isDirty() const
1750{
1751    CacheBlkIsDirtyVisitor visitor;
1752    tags->forEachBlk(visitor);
1753
1754    return visitor.isDirty();
1755}
1756
1757bool
1758Cache::writebackVisitor(CacheBlk &blk)
1759{
1760    if (blk.isDirty()) {
1761        assert(blk.isValid());
1762
1763        Request request(tags->regenerateBlkAddr(&blk), blkSize, 0,
1764                        Request::funcMasterId);
1765        request.taskId(blk.task_id);
1766        if (blk.isSecure()) {
1767            request.setFlags(Request::SECURE);
1768        }
1769
1770        Packet packet(&request, MemCmd::WriteReq);
1771        packet.dataStatic(blk.data);
1772
1773        memSidePort->sendFunctional(&packet);
1774
1775        blk.status &= ~BlkDirty;
1776    }
1777
1778    return true;
1779}
1780
1781bool
1782Cache::invalidateVisitor(CacheBlk &blk)
1783{
1784
1785    if (blk.isDirty())
1786        warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1787
1788    if (blk.isValid()) {
1789        assert(!blk.isDirty());
1790        invalidateBlock(&blk);
1791    }
1792
1793    return true;
1794}
1795
1796CacheBlk*
1797Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1798{
1799    // Find replacement victim
1800    CacheBlk *blk = tags->findVictim(addr);
1801
1802    // It is valid to return nullptr if there is no victim
1803    if (!blk)
1804        return nullptr;
1805
1806    if (blk->isValid()) {
1807        Addr repl_addr = tags->regenerateBlkAddr(blk);
1808        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1809        if (repl_mshr) {
1810            // must be an outstanding upgrade or clean request
1811            // on a block we're about to replace...
1812            assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1813                   repl_mshr->isCleaning());
1814            // too hard to replace block with transient state
1815            // allocation failed, block not inserted
1816            return nullptr;
1817        } else {
1818            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1819                    "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
1820                    addr, is_secure ? "s" : "ns",
1821                    blk->isDirty() ? "writeback" : "clean");
1822
1823            if (blk->wasPrefetched()) {
1824                unusedPrefetches++;
1825            }
1826            // Will send up Writeback/CleanEvict snoops via isCachedAbove
1827            // when pushing this writeback list into the write buffer.
1828            if (blk->isDirty() || writebackClean) {
1829                // Save writeback packet for handling by caller
1830                writebacks.push_back(writebackBlk(blk));
1831            } else {
1832                writebacks.push_back(cleanEvictBlk(blk));
1833            }
1834            replacements++;
1835        }
1836    }
1837
1838    return blk;
1839}
1840
1841void
1842Cache::invalidateBlock(CacheBlk *blk)
1843{
1844    if (blk != tempBlock)
1845        tags->invalidate(blk);
1846    blk->invalidate();
1847}
1848
1849// Note that the reason we return a list of writebacks rather than
1850// inserting them directly in the write buffer is that this function
1851// is called by both atomic and timing-mode accesses, and in atomic
1852// mode we don't mess with the write buffer (we just perform the
1853// writebacks atomically once the original request is complete).
1854CacheBlk*
1855Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1856                  bool allocate)
1857{
1858    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1859    Addr addr = pkt->getAddr();
1860    bool is_secure = pkt->isSecure();
1861#if TRACING_ON
1862    CacheBlk::State old_state = blk ? blk->status : 0;
1863#endif
1864
1865    // When handling a fill, we should have no writes to this line.
1866    assert(addr == pkt->getBlockAddr(blkSize));
1867    assert(!writeBuffer.findMatch(addr, is_secure));
1868
1869    if (blk == nullptr) {
1870        // better have read new data...
1871        assert(pkt->hasData());
1872
1873        // only read responses and write-line requests have data;
1874        // note that we don't write the data here for write-line - that
1875        // happens in the subsequent call to satisfyRequest
1876        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1877
1878        // need to do a replacement if allocating, otherwise we stick
1879        // with the temporary storage
1880        blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
1881
1882        if (blk == nullptr) {
1883            // No replaceable block or a mostly exclusive
1884            // cache... just use temporary storage to complete the
1885            // current request and then get rid of it
1886            assert(!tempBlock->isValid());
1887            blk = tempBlock;
1888            tempBlock->set = tags->extractSet(addr);
1889            tempBlock->tag = tags->extractTag(addr);
1890            if (is_secure) {
1891                tempBlock->status |= BlkSecure;
1892            }
1893            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1894                    is_secure ? "s" : "ns");
1895        } else {
1896            tags->insertBlock(pkt, blk);
1897        }
1898
1899        // we should never be overwriting a valid block
1900        assert(!blk->isValid());
1901    } else {
1902        // existing block... probably an upgrade
1903        assert(blk->tag == tags->extractTag(addr));
1904        // either we're getting new data or the block should already be valid
1905        assert(pkt->hasData() || blk->isValid());
1906        // don't clear block status... if block is already dirty we
1907        // don't want to lose that
1908    }
1909
1910    if (is_secure)
1911        blk->status |= BlkSecure;
1912    blk->status |= BlkValid | BlkReadable;
1913
1914    // sanity check for whole-line writes, which should always be
1915    // marked as writable as part of the fill, and then later marked
1916    // dirty as part of satisfyRequest
1917    if (pkt->cmd == MemCmd::WriteLineReq) {
1918        assert(!pkt->hasSharers());
1919    }
1920
1921    // here we deal with setting the appropriate state of the line,
1922    // and we start by looking at the hasSharers flag, and ignore the
1923    // cacheResponding flag (normally signalling dirty data) if the
1924    // packet has sharers, thus the line is never allocated as Owned
1925    // (dirty but not writable), and always ends up being either
1926    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1927    // for more details
1928    if (!pkt->hasSharers()) {
1929        // we could get a writable line from memory (rather than a
1930        // cache) even in a read-only cache, note that we set this bit
1931        // even for a read-only cache, possibly revisit this decision
1932        blk->status |= BlkWritable;
1933
1934        // check if we got this via cache-to-cache transfer (i.e., from a
1935        // cache that had the block in Modified or Owned state)
1936        if (pkt->cacheResponding()) {
1937            // we got the block in Modified state, and invalidated the
1938            // owners copy
1939            blk->status |= BlkDirty;
1940
1941            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1942                          "in read-only cache %s\n", name());
1943        }
1944    }
1945
1946    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1947            addr, is_secure ? "s" : "ns", old_state, blk->print());
1948
1949    // if we got new data, copy it in (checking for a read response
1950    // and a response that has data is the same in the end)
1951    if (pkt->isRead()) {
1952        // sanity checks
1953        assert(pkt->hasData());
1954        assert(pkt->getSize() == blkSize);
1955
1956        pkt->writeDataToBlock(blk->data, blkSize);
1957    }
1958    // We pay for fillLatency here.
1959    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1960        pkt->payloadDelay;
1961
1962    return blk;
1963}
1964
1965
1966/////////////////////////////////////////////////////
1967//
1968// Snoop path: requests coming in from the memory side
1969//
1970/////////////////////////////////////////////////////
1971
1972void
1973Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1974                              bool already_copied, bool pending_inval)
1975{
1976    // sanity check
1977    assert(req_pkt->isRequest());
1978    assert(req_pkt->needsResponse());
1979
1980    DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print());
1981    // timing-mode snoop responses require a new packet, unless we
1982    // already made a copy...
1983    PacketPtr pkt = req_pkt;
1984    if (!already_copied)
1985        // do not clear flags, and allocate space for data if the
1986        // packet needs it (the only packets that carry data are read
1987        // responses)
1988        pkt = new Packet(req_pkt, false, req_pkt->isRead());
1989
1990    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1991           pkt->hasSharers());
1992    pkt->makeTimingResponse();
1993    if (pkt->isRead()) {
1994        pkt->setDataFromBlock(blk_data, blkSize);
1995    }
1996    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1997        // Assume we defer a response to a read from a far-away cache
1998        // A, then later defer a ReadExcl from a cache B on the same
1999        // bus as us. We'll assert cacheResponding in both cases, but
2000        // in the latter case cacheResponding will keep the
2001        // invalidation from reaching cache A. This special response
2002        // tells cache A that it gets the block to satisfy its read,
2003        // but must immediately invalidate it.
2004        pkt->cmd = MemCmd::ReadRespWithInvalidate;
2005    }
2006    // Here we consider forward_time, paying for just forward latency and
2007    // also charging the delay provided by the xbar.
2008    // forward_time is used as send_time in next allocateWriteBuffer().
2009    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
2010    // Here we reset the timing of the packet.
2011    pkt->headerDelay = pkt->payloadDelay = 0;
2012    DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__,
2013            pkt->print(), forward_time);
2014    memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
2015}
2016
2017uint32_t
2018Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
2019                   bool is_deferred, bool pending_inval)
2020{
2021    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
2022    // deferred snoops can only happen in timing mode
2023    assert(!(is_deferred && !is_timing));
2024    // pending_inval only makes sense on deferred snoops
2025    assert(!(pending_inval && !is_deferred));
2026    assert(pkt->isRequest());
2027
2028    // the packet may get modified if we or a forwarded snooper
2029    // responds in atomic mode, so remember a few things about the
2030    // original packet up front
2031    bool invalidate = pkt->isInvalidate();
2032    bool M5_VAR_USED needs_writable = pkt->needsWritable();
2033
2034    // at the moment we could get an uncacheable write which does not
2035    // have the invalidate flag, and we need a suitable way of dealing
2036    // with this case
2037    panic_if(invalidate && pkt->req->isUncacheable(),
2038             "%s got an invalidating uncacheable snoop request %s",
2039             name(), pkt->print());
2040
2041    uint32_t snoop_delay = 0;
2042
2043    if (forwardSnoops) {
2044        // first propagate snoop upward to see if anyone above us wants to
2045        // handle it.  save & restore packet src since it will get
2046        // rewritten to be relative to cpu-side bus (if any)
2047        bool alreadyResponded = pkt->cacheResponding();
2048        if (is_timing) {
2049            // copy the packet so that we can clear any flags before
2050            // forwarding it upwards, we also allocate data (passing
2051            // the pointer along in case of static data), in case
2052            // there is a snoop hit in upper levels
2053            Packet snoopPkt(pkt, true, true);
2054            snoopPkt.setExpressSnoop();
2055            // the snoop packet does not need to wait any additional
2056            // time
2057            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
2058            cpuSidePort->sendTimingSnoopReq(&snoopPkt);
2059
2060            // add the header delay (including crossbar and snoop
2061            // delays) of the upward snoop to the snoop delay for this
2062            // cache
2063            snoop_delay += snoopPkt.headerDelay;
2064
2065            if (snoopPkt.cacheResponding()) {
2066                // cache-to-cache response from some upper cache
2067                assert(!alreadyResponded);
2068                pkt->setCacheResponding();
2069            }
2070            // upstream cache has the block, or has an outstanding
2071            // MSHR, pass the flag on
2072            if (snoopPkt.hasSharers()) {
2073                pkt->setHasSharers();
2074            }
2075            // If this request is a prefetch or clean evict and an upper level
2076            // signals block present, make sure to propagate the block
2077            // presence to the requester.
2078            if (snoopPkt.isBlockCached()) {
2079                pkt->setBlockCached();
2080            }
2081            // If the request was satisfied by snooping the cache
2082            // above, mark the original packet as satisfied too.
2083            if (snoopPkt.satisfied()) {
2084                pkt->setSatisfied();
2085            }
2086        } else {
2087            cpuSidePort->sendAtomicSnoop(pkt);
2088            if (!alreadyResponded && pkt->cacheResponding()) {
2089                // cache-to-cache response from some upper cache:
2090                // forward response to original requester
2091                assert(pkt->isResponse());
2092            }
2093        }
2094    }
2095
2096    bool respond = false;
2097    bool blk_valid = blk && blk->isValid();
2098    if (pkt->isClean()) {
2099        if (blk_valid && blk->isDirty()) {
2100            DPRINTF(CacheVerbose, "%s: packet (snoop) %s found block: %s\n",
2101                    __func__, pkt->print(), blk->print());
2102            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
2103            PacketList writebacks;
2104            writebacks.push_back(wb_pkt);
2105
2106            if (is_timing) {
2107                // anything that is merely forwarded pays for the forward
2108                // latency and the delay provided by the crossbar
2109                Tick forward_time = clockEdge(forwardLatency) +
2110                    pkt->headerDelay;
2111                doWritebacks(writebacks, forward_time);
2112            } else {
2113                doWritebacksAtomic(writebacks);
2114            }
2115            pkt->setSatisfied();
2116        }
2117    } else if (!blk_valid) {
2118        DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__,
2119                pkt->print());
2120        if (is_deferred) {
2121            // we no longer have the block, and will not respond, but a
2122            // packet was allocated in MSHR::handleSnoop and we have
2123            // to delete it
2124            assert(pkt->needsResponse());
2125
2126            // we have passed the block to a cache upstream, that
2127            // cache should be responding
2128            assert(pkt->cacheResponding());
2129
2130            delete pkt;
2131        }
2132        return snoop_delay;
2133    } else {
2134        DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__,
2135                pkt->print(), blk->print());
2136
2137        // We may end up modifying both the block state and the packet (if
2138        // we respond in atomic mode), so just figure out what to do now
2139        // and then do it later. We respond to all snoops that need
2140        // responses provided we have the block in dirty state. The
2141        // invalidation itself is taken care of below. We don't respond to
2142        // cache maintenance operations as this is done by the destination
2143        // xbar.
2144        respond = blk->isDirty() && pkt->needsResponse();
2145
2146        chatty_assert(!(isReadOnly && blk->isDirty()), "Should never have "
2147                      "a dirty block in a read-only cache %s\n", name());
2148    }
2149
2150    // Invalidate any prefetch's from below that would strip write permissions
2151    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
2152    // above and in it's own cache, a new MemCmd::ReadReq is created that
2153    // downstream caches observe.
2154    if (pkt->mustCheckAbove()) {
2155        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
2156                "from lower cache\n", pkt->getAddr(), pkt->print());
2157        pkt->setBlockCached();
2158        return snoop_delay;
2159    }
2160
2161    if (pkt->isRead() && !invalidate) {
2162        // reading without requiring the line in a writable state
2163        assert(!needs_writable);
2164        pkt->setHasSharers();
2165
2166        // if the requesting packet is uncacheable, retain the line in
2167        // the current state, otherwhise unset the writable flag,
2168        // which means we go from Modified to Owned (and will respond
2169        // below), remain in Owned (and will respond below), from
2170        // Exclusive to Shared, or remain in Shared
2171        if (!pkt->req->isUncacheable())
2172            blk->status &= ~BlkWritable;
2173        DPRINTF(Cache, "new state is %s\n", blk->print());
2174    }
2175
2176    if (respond) {
2177        // prevent anyone else from responding, cache as well as
2178        // memory, and also prevent any memory from even seeing the
2179        // request
2180        pkt->setCacheResponding();
2181        if (!pkt->isClean() && blk->isWritable()) {
2182            // inform the cache hierarchy that this cache had the line
2183            // in the Modified state so that we avoid unnecessary
2184            // invalidations (see Packet::setResponderHadWritable)
2185            pkt->setResponderHadWritable();
2186
2187            // in the case of an uncacheable request there is no point
2188            // in setting the responderHadWritable flag, but since the
2189            // recipient does not care there is no harm in doing so
2190        } else {
2191            // if the packet has needsWritable set we invalidate our
2192            // copy below and all other copies will be invalidates
2193            // through express snoops, and if needsWritable is not set
2194            // we already called setHasSharers above
2195        }
2196
2197        // if we are returning a writable and dirty (Modified) line,
2198        // we should be invalidating the line
2199        panic_if(!invalidate && !pkt->hasSharers(),
2200                 "%s is passing a Modified line through %s, "
2201                 "but keeping the block", name(), pkt->print());
2202
2203        if (is_timing) {
2204            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2205        } else {
2206            pkt->makeAtomicResponse();
2207            // packets such as upgrades do not actually have any data
2208            // payload
2209            if (pkt->hasData())
2210                pkt->setDataFromBlock(blk->data, blkSize);
2211        }
2212    }
2213
2214    if (!respond && is_deferred) {
2215        assert(pkt->needsResponse());
2216
2217        // if we copied the deferred packet with the intention to
2218        // respond, but are not responding, then a cache above us must
2219        // be, and we can use this as the indication of whether this
2220        // is a packet where we created a copy of the request or not
2221        if (!pkt->cacheResponding()) {
2222            delete pkt->req;
2223        }
2224
2225        delete pkt;
2226    }
2227
2228    // Do this last in case it deallocates block data or something
2229    // like that
2230    if (blk_valid && invalidate) {
2231        invalidateBlock(blk);
2232        DPRINTF(Cache, "new state is %s\n", blk->print());
2233    }
2234
2235    return snoop_delay;
2236}
2237
2238
2239void
2240Cache::recvTimingSnoopReq(PacketPtr pkt)
2241{
2242    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
2243
2244    // Snoops shouldn't happen when bypassing caches
2245    assert(!system->bypassCaches());
2246
2247    // no need to snoop requests that are not in range
2248    if (!inRange(pkt->getAddr())) {
2249        return;
2250    }
2251
2252    bool is_secure = pkt->isSecure();
2253    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2254
2255    Addr blk_addr = pkt->getBlockAddr(blkSize);
2256    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2257
2258    // Update the latency cost of the snoop so that the crossbar can
2259    // account for it. Do not overwrite what other neighbouring caches
2260    // have already done, rather take the maximum. The update is
2261    // tentative, for cases where we return before an upward snoop
2262    // happens below.
2263    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2264                                         lookupLatency * clockPeriod());
2265
2266    // Inform request(Prefetch, CleanEvict or Writeback) from below of
2267    // MSHR hit, set setBlockCached.
2268    if (mshr && pkt->mustCheckAbove()) {
2269        DPRINTF(Cache, "Setting block cached for %s from lower cache on "
2270                "mshr hit\n", pkt->print());
2271        pkt->setBlockCached();
2272        return;
2273    }
2274
2275    // Bypass any existing cache maintenance requests if the request
2276    // has been satisfied already (i.e., the dirty block has been
2277    // found).
2278    if (mshr && pkt->req->isCacheMaintenance() && pkt->satisfied()) {
2279        return;
2280    }
2281
2282    // Let the MSHR itself track the snoop and decide whether we want
2283    // to go ahead and do the regular cache snoop
2284    if (mshr && mshr->handleSnoop(pkt, order++)) {
2285        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2286                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2287                mshr->print());
2288
2289        if (mshr->getNumTargets() > numTarget)
2290            warn("allocating bonus target for snoop"); //handle later
2291        return;
2292    }
2293
2294    //We also need to check the writeback buffers and handle those
2295    WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
2296    if (wb_entry) {
2297        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2298                pkt->getAddr(), is_secure ? "s" : "ns");
2299        // Expect to see only Writebacks and/or CleanEvicts here, both of
2300        // which should not be generated for uncacheable data.
2301        assert(!wb_entry->isUncacheable());
2302        // There should only be a single request responsible for generating
2303        // Writebacks/CleanEvicts.
2304        assert(wb_entry->getNumTargets() == 1);
2305        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2306        assert(wb_pkt->isEviction() || wb_pkt->cmd == MemCmd::WriteClean);
2307
2308        if (pkt->isEviction()) {
2309            // if the block is found in the write queue, set the BLOCK_CACHED
2310            // flag for Writeback/CleanEvict snoop. On return the snoop will
2311            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2312            // any CleanEvicts from travelling down the memory hierarchy.
2313            pkt->setBlockCached();
2314            DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue "
2315                    "hit\n", __func__, pkt->print());
2316            return;
2317        }
2318
2319        // conceptually writebacks are no different to other blocks in
2320        // this cache, so the behaviour is modelled after handleSnoop,
2321        // the difference being that instead of querying the block
2322        // state to determine if it is dirty and writable, we use the
2323        // command and fields of the writeback packet
2324        bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
2325            pkt->needsResponse();
2326        bool have_writable = !wb_pkt->hasSharers();
2327        bool invalidate = pkt->isInvalidate();
2328
2329        if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
2330            assert(!pkt->needsWritable());
2331            pkt->setHasSharers();
2332            wb_pkt->setHasSharers();
2333        }
2334
2335        if (respond) {
2336            pkt->setCacheResponding();
2337
2338            if (have_writable) {
2339                pkt->setResponderHadWritable();
2340            }
2341
2342            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2343                                   false, false);
2344        }
2345
2346        if (invalidate && wb_pkt->cmd != MemCmd::WriteClean) {
2347            // Invalidation trumps our writeback... discard here
2348            // Note: markInService will remove entry from writeback buffer.
2349            markInService(wb_entry);
2350            delete wb_pkt;
2351        }
2352    }
2353
2354    // If this was a shared writeback, there may still be
2355    // other shared copies above that require invalidation.
2356    // We could be more selective and return here if the
2357    // request is non-exclusive or if the writeback is
2358    // exclusive.
2359    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2360
2361    // Override what we did when we first saw the snoop, as we now
2362    // also have the cost of the upwards snoops to account for
2363    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2364                                         lookupLatency * clockPeriod());
2365}
2366
2367bool
2368Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2369{
2370    // Express snoop responses from master to slave, e.g., from L1 to L2
2371    cache->recvTimingSnoopResp(pkt);
2372    return true;
2373}
2374
2375Tick
2376Cache::recvAtomicSnoop(PacketPtr pkt)
2377{
2378    // Snoops shouldn't happen when bypassing caches
2379    assert(!system->bypassCaches());
2380
2381    // no need to snoop requests that are not in range.
2382    if (!inRange(pkt->getAddr())) {
2383        return 0;
2384    }
2385
2386    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2387    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2388    return snoop_delay + lookupLatency * clockPeriod();
2389}
2390
2391
2392QueueEntry*
2393Cache::getNextQueueEntry()
2394{
2395    // Check both MSHR queue and write buffer for potential requests,
2396    // note that null does not mean there is no request, it could
2397    // simply be that it is not ready
2398    MSHR *miss_mshr  = mshrQueue.getNext();
2399    WriteQueueEntry *wq_entry = writeBuffer.getNext();
2400
2401    // If we got a write buffer request ready, first priority is a
2402    // full write buffer, otherwise we favour the miss requests
2403    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
2404        // need to search MSHR queue for conflicting earlier miss.
2405        MSHR *conflict_mshr =
2406            mshrQueue.findPending(wq_entry->blkAddr,
2407                                  wq_entry->isSecure);
2408
2409        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
2410            // Service misses in order until conflict is cleared.
2411            return conflict_mshr;
2412
2413            // @todo Note that we ignore the ready time of the conflict here
2414        }
2415
2416        // No conflicts; issue write
2417        return wq_entry;
2418    } else if (miss_mshr) {
2419        // need to check for conflicting earlier writeback
2420        WriteQueueEntry *conflict_mshr =
2421            writeBuffer.findPending(miss_mshr->blkAddr,
2422                                    miss_mshr->isSecure);
2423        if (conflict_mshr) {
2424            // not sure why we don't check order here... it was in the
2425            // original code but commented out.
2426
2427            // The only way this happens is if we are
2428            // doing a write and we didn't have permissions
2429            // then subsequently saw a writeback (owned got evicted)
2430            // We need to make sure to perform the writeback first
2431            // To preserve the dirty data, then we can issue the write
2432
2433            // should we return wq_entry here instead?  I.e. do we
2434            // have to flush writes in order?  I don't think so... not
2435            // for Alpha anyway.  Maybe for x86?
2436            return conflict_mshr;
2437
2438            // @todo Note that we ignore the ready time of the conflict here
2439        }
2440
2441        // No conflicts; issue read
2442        return miss_mshr;
2443    }
2444
2445    // fall through... no pending requests.  Try a prefetch.
2446    assert(!miss_mshr && !wq_entry);
2447    if (prefetcher && mshrQueue.canPrefetch()) {
2448        // If we have a miss queue slot, we can try a prefetch
2449        PacketPtr pkt = prefetcher->getPacket();
2450        if (pkt) {
2451            Addr pf_addr = pkt->getBlockAddr(blkSize);
2452            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2453                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2454                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2455                // Update statistic on number of prefetches issued
2456                // (hwpf_mshr_misses)
2457                assert(pkt->req->masterId() < system->maxMasters());
2458                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2459
2460                // allocate an MSHR and return it, note
2461                // that we send the packet straight away, so do not
2462                // schedule the send
2463                return allocateMissBuffer(pkt, curTick(), false);
2464            } else {
2465                // free the request and packet
2466                delete pkt->req;
2467                delete pkt;
2468            }
2469        }
2470    }
2471
2472    return nullptr;
2473}
2474
2475bool
2476Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2477{
2478    if (!forwardSnoops)
2479        return false;
2480    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2481    // Writeback snoops into upper level caches to check for copies of the
2482    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2483    // packet, the cache can inform the crossbar below of presence or absence
2484    // of the block.
2485    if (is_timing) {
2486        Packet snoop_pkt(pkt, true, false);
2487        snoop_pkt.setExpressSnoop();
2488        // Assert that packet is either Writeback or CleanEvict and not a
2489        // prefetch request because prefetch requests need an MSHR and may
2490        // generate a snoop response.
2491        assert(pkt->isEviction() || pkt->cmd == MemCmd::WriteClean);
2492        snoop_pkt.senderState = nullptr;
2493        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2494        // Writeback/CleanEvict snoops do not generate a snoop response.
2495        assert(!(snoop_pkt.cacheResponding()));
2496        return snoop_pkt.isBlockCached();
2497    } else {
2498        cpuSidePort->sendAtomicSnoop(pkt);
2499        return pkt->isBlockCached();
2500    }
2501}
2502
2503Tick
2504Cache::nextQueueReadyTime() const
2505{
2506    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
2507                              writeBuffer.nextReadyTime());
2508
2509    // Don't signal prefetch ready time if no MSHRs available
2510    // Will signal once enoguh MSHRs are deallocated
2511    if (prefetcher && mshrQueue.canPrefetch()) {
2512        nextReady = std::min(nextReady,
2513                             prefetcher->nextPrefetchReadyTime());
2514    }
2515
2516    return nextReady;
2517}
2518
2519bool
2520Cache::sendMSHRQueuePacket(MSHR* mshr)
2521{
2522    assert(mshr);
2523
2524    // use request from 1st target
2525    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2526
2527    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
2528
2529    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2530
2531    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2532        // we should never have hardware prefetches to allocated
2533        // blocks
2534        assert(blk == nullptr);
2535
2536        // We need to check the caches above us to verify that
2537        // they don't have a copy of this block in the dirty state
2538        // at the moment. Without this check we could get a stale
2539        // copy from memory that might get used in place of the
2540        // dirty one.
2541        Packet snoop_pkt(tgt_pkt, true, false);
2542        snoop_pkt.setExpressSnoop();
2543        // We are sending this packet upwards, but if it hits we will
2544        // get a snoop response that we end up treating just like a
2545        // normal response, hence it needs the MSHR as its sender
2546        // state
2547        snoop_pkt.senderState = mshr;
2548        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2549
2550        // Check to see if the prefetch was squashed by an upper cache (to
2551        // prevent us from grabbing the line) or if a Check to see if a
2552        // writeback arrived between the time the prefetch was placed in
2553        // the MSHRs and when it was selected to be sent or if the
2554        // prefetch was squashed by an upper cache.
2555
2556        // It is important to check cacheResponding before
2557        // prefetchSquashed. If another cache has committed to
2558        // responding, it will be sending a dirty response which will
2559        // arrive at the MSHR allocated for this request. Checking the
2560        // prefetchSquash first may result in the MSHR being
2561        // prematurely deallocated.
2562        if (snoop_pkt.cacheResponding()) {
2563            auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2564            assert(r.second);
2565
2566            // if we are getting a snoop response with no sharers it
2567            // will be allocated as Modified
2568            bool pending_modified_resp = !snoop_pkt.hasSharers();
2569            markInService(mshr, pending_modified_resp);
2570
2571            DPRINTF(Cache, "Upward snoop of prefetch for addr"
2572                    " %#x (%s) hit\n",
2573                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2574            return false;
2575        }
2576
2577        if (snoop_pkt.isBlockCached()) {
2578            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
2579                    "Deallocating mshr target %#x.\n",
2580                    mshr->blkAddr);
2581
2582            // Deallocate the mshr target
2583            if (mshrQueue.forceDeallocateTarget(mshr)) {
2584                // Clear block if this deallocation resulted freed an
2585                // mshr when all had previously been utilized
2586                clearBlocked(Blocked_NoMSHRs);
2587            }
2588
2589            // given that no response is expected, delete Request and Packet
2590            delete tgt_pkt->req;
2591            delete tgt_pkt;
2592
2593            return false;
2594        }
2595    }
2596
2597    // either a prefetch that is not present upstream, or a normal
2598    // MSHR request, proceed to get the packet to send downstream
2599    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
2600
2601    mshr->isForward = (pkt == nullptr);
2602
2603    if (mshr->isForward) {
2604        // not a cache block request, but a response is expected
2605        // make copy of current packet to forward, keep current
2606        // copy for response handling
2607        pkt = new Packet(tgt_pkt, false, true);
2608        assert(!pkt->isWrite());
2609    }
2610
2611    // play it safe and append (rather than set) the sender state,
2612    // as forwarded packets may already have existing state
2613    pkt->pushSenderState(mshr);
2614
2615    if (pkt->isClean() && blk && blk->isDirty()) {
2616        // A cache clean opearation is looking for a dirty block. Mark
2617        // the packet so that the destination xbar can determine that
2618        // there will be a follow-up write packet as well.
2619        pkt->setSatisfied();
2620    }
2621
2622    if (!memSidePort->sendTimingReq(pkt)) {
2623        // we are awaiting a retry, but we
2624        // delete the packet and will be creating a new packet
2625        // when we get the opportunity
2626        delete pkt;
2627
2628        // note that we have now masked any requestBus and
2629        // schedSendEvent (we will wait for a retry before
2630        // doing anything), and this is so even if we do not
2631        // care about this packet and might override it before
2632        // it gets retried
2633        return true;
2634    } else {
2635        // As part of the call to sendTimingReq the packet is
2636        // forwarded to all neighbouring caches (and any caches
2637        // above them) as a snoop. Thus at this point we know if
2638        // any of the neighbouring caches are responding, and if
2639        // so, we know it is dirty, and we can determine if it is
2640        // being passed as Modified, making our MSHR the ordering
2641        // point
2642        bool pending_modified_resp = !pkt->hasSharers() &&
2643            pkt->cacheResponding();
2644        markInService(mshr, pending_modified_resp);
2645        if (pkt->isClean() && blk && blk->isDirty()) {
2646            // A cache clean opearation is looking for a dirty
2647            // block. If a dirty block is encountered a WriteClean
2648            // will update any copies to the path to the memory
2649            // until the point of reference.
2650            DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
2651                    __func__, pkt->print(), blk->print());
2652            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
2653                                             pkt->id);
2654            PacketList writebacks;
2655            writebacks.push_back(wb_pkt);
2656            doWritebacks(writebacks, 0);
2657        }
2658
2659        return false;
2660    }
2661}
2662
2663bool
2664Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
2665{
2666    assert(wq_entry);
2667
2668    // always a single target for write queue entries
2669    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
2670
2671    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
2672
2673    // forward as is, both for evictions and uncacheable writes
2674    if (!memSidePort->sendTimingReq(tgt_pkt)) {
2675        // note that we have now masked any requestBus and
2676        // schedSendEvent (we will wait for a retry before
2677        // doing anything), and this is so even if we do not
2678        // care about this packet and might override it before
2679        // it gets retried
2680        return true;
2681    } else {
2682        markInService(wq_entry);
2683        return false;
2684    }
2685}
2686
2687void
2688Cache::serialize(CheckpointOut &cp) const
2689{
2690    bool dirty(isDirty());
2691
2692    if (dirty) {
2693        warn("*** The cache still contains dirty data. ***\n");
2694        warn("    Make sure to drain the system using the correct flags.\n");
2695        warn("    This checkpoint will not restore correctly and dirty data "
2696             "    in the cache will be lost!\n");
2697    }
2698
2699    // Since we don't checkpoint the data in the cache, any dirty data
2700    // will be lost when restoring from a checkpoint of a system that
2701    // wasn't drained properly. Flag the checkpoint as invalid if the
2702    // cache contains dirty data.
2703    bool bad_checkpoint(dirty);
2704    SERIALIZE_SCALAR(bad_checkpoint);
2705}
2706
2707void
2708Cache::unserialize(CheckpointIn &cp)
2709{
2710    bool bad_checkpoint;
2711    UNSERIALIZE_SCALAR(bad_checkpoint);
2712    if (bad_checkpoint) {
2713        fatal("Restoring from checkpoints with dirty caches is not supported "
2714              "in the classic memory system. Please remove any caches or "
2715              " drain them properly before taking checkpoints.\n");
2716    }
2717}
2718
2719///////////////
2720//
2721// CpuSidePort
2722//
2723///////////////
2724
2725AddrRangeList
2726Cache::CpuSidePort::getAddrRanges() const
2727{
2728    return cache->getAddrRanges();
2729}
2730
2731bool
2732Cache::CpuSidePort::tryTiming(PacketPtr pkt)
2733{
2734    assert(!cache->system->bypassCaches());
2735
2736    // always let express snoop packets through if even if blocked
2737    if (pkt->isExpressSnoop()) {
2738        return true;
2739    } else if (isBlocked() || mustSendRetry) {
2740        // either already committed to send a retry, or blocked
2741        mustSendRetry = true;
2742        return false;
2743    }
2744    mustSendRetry = false;
2745    return true;
2746}
2747
2748bool
2749Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2750{
2751    assert(!cache->system->bypassCaches());
2752
2753    // always let express snoop packets through if even if blocked
2754    if (pkt->isExpressSnoop() || tryTiming(pkt)) {
2755        cache->recvTimingReq(pkt);
2756        return true;
2757    }
2758    return false;
2759}
2760
2761Tick
2762Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2763{
2764    return cache->recvAtomic(pkt);
2765}
2766
2767void
2768Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2769{
2770    // functional request
2771    cache->functionalAccess(pkt, true);
2772}
2773
2774Cache::
2775CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2776                         const std::string &_label)
2777    : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2778{
2779}
2780
2781Cache*
2782CacheParams::create()
2783{
2784    assert(tags);
2785    assert(replacement_policy);
2786
2787    return new Cache(this);
2788}
2789///////////////
2790//
2791// MemSidePort
2792//
2793///////////////
2794
2795bool
2796Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2797{
2798    cache->recvTimingResp(pkt);
2799    return true;
2800}
2801
2802// Express snooping requests to memside port
2803void
2804Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2805{
2806    // handle snooping requests
2807    cache->recvTimingSnoopReq(pkt);
2808}
2809
2810Tick
2811Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2812{
2813    return cache->recvAtomicSnoop(pkt);
2814}
2815
2816void
2817Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2818{
2819    // functional snoop (note that in contrast to atomic we don't have
2820    // a specific functionalSnoop method, as they have the same
2821    // behaviour regardless)
2822    cache->functionalAccess(pkt, false);
2823}
2824
2825void
2826Cache::CacheReqPacketQueue::sendDeferredPacket()
2827{
2828    // sanity check
2829    assert(!waitingOnRetry);
2830
2831    // there should never be any deferred request packets in the
2832    // queue, instead we resly on the cache to provide the packets
2833    // from the MSHR queue or write queue
2834    assert(deferredPacketReadyTime() == MaxTick);
2835
2836    // check for request packets (requests & writebacks)
2837    QueueEntry* entry = cache.getNextQueueEntry();
2838
2839    if (!entry) {
2840        // can happen if e.g. we attempt a writeback and fail, but
2841        // before the retry, the writeback is eliminated because
2842        // we snoop another cache's ReadEx.
2843    } else {
2844        // let our snoop responses go first if there are responses to
2845        // the same addresses
2846        if (checkConflictingSnoop(entry->blkAddr)) {
2847            return;
2848        }
2849        waitingOnRetry = entry->sendPacket(cache);
2850    }
2851
2852    // if we succeeded and are not waiting for a retry, schedule the
2853    // next send considering when the next queue is ready, note that
2854    // snoop responses have their own packet queue and thus schedule
2855    // their own events
2856    if (!waitingOnRetry) {
2857        schedSendEvent(cache.nextQueueReadyTime());
2858    }
2859}
2860
2861Cache::
2862MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2863                         const std::string &_label)
2864    : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2865      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2866      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2867{
2868}
2869