cache.cc revision 12425
1/* 2 * Copyright (c) 2010-2017 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2002-2005 The Regents of The University of Michigan 15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc. 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Erik Hallnor 42 * Dave Greene 43 * Nathan Binkert 44 * Steve Reinhardt 45 * Ron Dreslinski 46 * Andreas Sandberg 47 * Nikos Nikoleris 48 */ 49 50/** 51 * @file 52 * Cache definitions. 53 */ 54 55#include "mem/cache/cache.hh" 56 57#include "base/logging.hh" 58#include "base/types.hh" 59#include "debug/Cache.hh" 60#include "debug/CachePort.hh" 61#include "debug/CacheTags.hh" 62#include "debug/CacheVerbose.hh" 63#include "mem/cache/blk.hh" 64#include "mem/cache/mshr.hh" 65#include "mem/cache/prefetch/base.hh" 66#include "sim/sim_exit.hh" 67 68Cache::Cache(const CacheParams *p) 69 : BaseCache(p, p->system->cacheLineSize()), 70 tags(p->tags), 71 prefetcher(p->prefetcher), 72 doFastWrites(true), 73 prefetchOnAccess(p->prefetch_on_access), 74 clusivity(p->clusivity), 75 writebackClean(p->writeback_clean), 76 tempBlockWriteback(nullptr), 77 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); }, 78 name(), false, 79 EventBase::Delayed_Writeback_Pri) 80{ 81 tempBlock = new CacheBlk(); 82 tempBlock->data = new uint8_t[blkSize]; 83 84 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this, 85 "CpuSidePort"); 86 memSidePort = new MemSidePort(p->name + ".mem_side", this, 87 "MemSidePort"); 88 89 tags->setCache(this); 90 if (prefetcher) 91 prefetcher->setCache(this); 92} 93 94Cache::~Cache() 95{ 96 delete [] tempBlock->data; 97 delete tempBlock; 98 99 delete cpuSidePort; 100 delete memSidePort; 101} 102 103void 104Cache::regStats() 105{ 106 BaseCache::regStats(); 107} 108 109void 110Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) 111{ 112 assert(pkt->isRequest()); 113 114 uint64_t overwrite_val; 115 bool overwrite_mem; 116 uint64_t condition_val64; 117 uint32_t condition_val32; 118 119 int offset = tags->extractBlkOffset(pkt->getAddr()); 120 uint8_t *blk_data = blk->data + offset; 121 122 assert(sizeof(uint64_t) >= pkt->getSize()); 123 124 overwrite_mem = true; 125 // keep a copy of our possible write value, and copy what is at the 126 // memory address into the packet 127 pkt->writeData((uint8_t *)&overwrite_val); 128 pkt->setData(blk_data); 129 130 if (pkt->req->isCondSwap()) { 131 if (pkt->getSize() == sizeof(uint64_t)) { 132 condition_val64 = pkt->req->getExtraData(); 133 overwrite_mem = !std::memcmp(&condition_val64, blk_data, 134 sizeof(uint64_t)); 135 } else if (pkt->getSize() == sizeof(uint32_t)) { 136 condition_val32 = (uint32_t)pkt->req->getExtraData(); 137 overwrite_mem = !std::memcmp(&condition_val32, blk_data, 138 sizeof(uint32_t)); 139 } else 140 panic("Invalid size for conditional read/write\n"); 141 } 142 143 if (overwrite_mem) { 144 std::memcpy(blk_data, &overwrite_val, pkt->getSize()); 145 blk->status |= BlkDirty; 146 } 147} 148 149 150void 151Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, 152 bool deferred_response, bool pending_downgrade) 153{ 154 assert(pkt->isRequest()); 155 156 assert(blk && blk->isValid()); 157 // Occasionally this is not true... if we are a lower-level cache 158 // satisfying a string of Read and ReadEx requests from 159 // upper-level caches, a Read will mark the block as shared but we 160 // can satisfy a following ReadEx anyway since we can rely on the 161 // Read requester(s) to have buffered the ReadEx snoop and to 162 // invalidate their blocks after receiving them. 163 // assert(!pkt->needsWritable() || blk->isWritable()); 164 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); 165 166 // Check RMW operations first since both isRead() and 167 // isWrite() will be true for them 168 if (pkt->cmd == MemCmd::SwapReq) { 169 cmpAndSwap(blk, pkt); 170 } else if (pkt->isWrite()) { 171 // we have the block in a writable state and can go ahead, 172 // note that the line may be also be considered writable in 173 // downstream caches along the path to memory, but always 174 // Exclusive, and never Modified 175 assert(blk->isWritable()); 176 // Write or WriteLine at the first cache with block in writable state 177 if (blk->checkWrite(pkt)) { 178 pkt->writeDataToBlock(blk->data, blkSize); 179 } 180 // Always mark the line as dirty (and thus transition to the 181 // Modified state) even if we are a failed StoreCond so we 182 // supply data to any snoops that have appended themselves to 183 // this cache before knowing the store will fail. 184 blk->status |= BlkDirty; 185 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print()); 186 } else if (pkt->isRead()) { 187 if (pkt->isLLSC()) { 188 blk->trackLoadLocked(pkt); 189 } 190 191 // all read responses have a data payload 192 assert(pkt->hasRespData()); 193 pkt->setDataFromBlock(blk->data, blkSize); 194 195 // determine if this read is from a (coherent) cache or not 196 if (pkt->fromCache()) { 197 assert(pkt->getSize() == blkSize); 198 // special handling for coherent block requests from 199 // upper-level caches 200 if (pkt->needsWritable()) { 201 // sanity check 202 assert(pkt->cmd == MemCmd::ReadExReq || 203 pkt->cmd == MemCmd::SCUpgradeFailReq); 204 assert(!pkt->hasSharers()); 205 206 // if we have a dirty copy, make sure the recipient 207 // keeps it marked dirty (in the modified state) 208 if (blk->isDirty()) { 209 pkt->setCacheResponding(); 210 blk->status &= ~BlkDirty; 211 } 212 } else if (blk->isWritable() && !pending_downgrade && 213 !pkt->hasSharers() && 214 pkt->cmd != MemCmd::ReadCleanReq) { 215 // we can give the requester a writable copy on a read 216 // request if: 217 // - we have a writable copy at this level (& below) 218 // - we don't have a pending snoop from below 219 // signaling another read request 220 // - no other cache above has a copy (otherwise it 221 // would have set hasSharers flag when 222 // snooping the packet) 223 // - the read has explicitly asked for a clean 224 // copy of the line 225 if (blk->isDirty()) { 226 // special considerations if we're owner: 227 if (!deferred_response) { 228 // respond with the line in Modified state 229 // (cacheResponding set, hasSharers not set) 230 pkt->setCacheResponding(); 231 232 // if this cache is mostly inclusive, we 233 // keep the block in the Exclusive state, 234 // and pass it upwards as Modified 235 // (writable and dirty), hence we have 236 // multiple caches, all on the same path 237 // towards memory, all considering the 238 // same block writable, but only one 239 // considering it Modified 240 241 // we get away with multiple caches (on 242 // the same path to memory) considering 243 // the block writeable as we always enter 244 // the cache hierarchy through a cache, 245 // and first snoop upwards in all other 246 // branches 247 blk->status &= ~BlkDirty; 248 } else { 249 // if we're responding after our own miss, 250 // there's a window where the recipient didn't 251 // know it was getting ownership and may not 252 // have responded to snoops correctly, so we 253 // have to respond with a shared line 254 pkt->setHasSharers(); 255 } 256 } 257 } else { 258 // otherwise only respond with a shared copy 259 pkt->setHasSharers(); 260 } 261 } 262 } else if (pkt->isUpgrade()) { 263 // sanity check 264 assert(!pkt->hasSharers()); 265 266 if (blk->isDirty()) { 267 // we were in the Owned state, and a cache above us that 268 // has the line in Shared state needs to be made aware 269 // that the data it already has is in fact dirty 270 pkt->setCacheResponding(); 271 blk->status &= ~BlkDirty; 272 } 273 } else { 274 assert(pkt->isInvalidate()); 275 invalidateBlock(blk); 276 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__, 277 pkt->print()); 278 } 279} 280 281///////////////////////////////////////////////////// 282// 283// Access path: requests coming in from the CPU side 284// 285///////////////////////////////////////////////////// 286 287bool 288Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 289 PacketList &writebacks) 290{ 291 // sanity check 292 assert(pkt->isRequest()); 293 294 chatty_assert(!(isReadOnly && pkt->isWrite()), 295 "Should never see a write in a read-only cache %s\n", 296 name()); 297 298 DPRINTF(CacheVerbose, "%s for %s\n", __func__, pkt->print()); 299 300 if (pkt->req->isUncacheable()) { 301 DPRINTF(Cache, "uncacheable: %s\n", pkt->print()); 302 303 // flush and invalidate any existing block 304 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure())); 305 if (old_blk && old_blk->isValid()) { 306 if (old_blk->isDirty() || writebackClean) 307 writebacks.push_back(writebackBlk(old_blk)); 308 else 309 writebacks.push_back(cleanEvictBlk(old_blk)); 310 invalidateBlock(old_blk); 311 } 312 313 blk = nullptr; 314 // lookupLatency is the latency in case the request is uncacheable. 315 lat = lookupLatency; 316 return false; 317 } 318 319 // Here lat is the value passed as parameter to accessBlock() function 320 // that can modify its value. 321 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat); 322 323 DPRINTF(Cache, "%s %s\n", pkt->print(), 324 blk ? "hit " + blk->print() : "miss"); 325 326 if (pkt->req->isCacheMaintenance()) { 327 // A cache maintenance operation is always forwarded to the 328 // memory below even if the block is found in dirty state. 329 330 // We defer any changes to the state of the block until we 331 // create and mark as in service the mshr for the downstream 332 // packet. 333 return false; 334 } 335 336 if (pkt->isEviction()) { 337 // We check for presence of block in above caches before issuing 338 // Writeback or CleanEvict to write buffer. Therefore the only 339 // possible cases can be of a CleanEvict packet coming from above 340 // encountering a Writeback generated in this cache peer cache and 341 // waiting in the write buffer. Cases of upper level peer caches 342 // generating CleanEvict and Writeback or simply CleanEvict and 343 // CleanEvict almost simultaneously will be caught by snoops sent out 344 // by crossbar. 345 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(), 346 pkt->isSecure()); 347 if (wb_entry) { 348 assert(wb_entry->getNumTargets() == 1); 349 PacketPtr wbPkt = wb_entry->getTarget()->pkt; 350 assert(wbPkt->isWriteback()); 351 352 if (pkt->isCleanEviction()) { 353 // The CleanEvict and WritebackClean snoops into other 354 // peer caches of the same level while traversing the 355 // crossbar. If a copy of the block is found, the 356 // packet is deleted in the crossbar. Hence, none of 357 // the other upper level caches connected to this 358 // cache have the block, so we can clear the 359 // BLOCK_CACHED flag in the Writeback if set and 360 // discard the CleanEvict by returning true. 361 wbPkt->clearBlockCached(); 362 return true; 363 } else { 364 assert(pkt->cmd == MemCmd::WritebackDirty); 365 // Dirty writeback from above trumps our clean 366 // writeback... discard here 367 // Note: markInService will remove entry from writeback buffer. 368 markInService(wb_entry); 369 delete wbPkt; 370 } 371 } 372 } 373 374 // Writeback handling is special case. We can write the block into 375 // the cache without having a writeable copy (or any copy at all). 376 if (pkt->isWriteback()) { 377 assert(blkSize == pkt->getSize()); 378 379 // we could get a clean writeback while we are having 380 // outstanding accesses to a block, do the simple thing for 381 // now and drop the clean writeback so that we do not upset 382 // any ordering/decisions about ownership already taken 383 if (pkt->cmd == MemCmd::WritebackClean && 384 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) { 385 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, " 386 "dropping\n", pkt->getAddr()); 387 return true; 388 } 389 390 if (blk == nullptr) { 391 // need to do a replacement 392 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks); 393 if (blk == nullptr) { 394 // no replaceable block available: give up, fwd to next level. 395 incMissCount(pkt); 396 return false; 397 } 398 tags->insertBlock(pkt, blk); 399 400 blk->status = (BlkValid | BlkReadable); 401 if (pkt->isSecure()) { 402 blk->status |= BlkSecure; 403 } 404 } 405 // only mark the block dirty if we got a writeback command, 406 // and leave it as is for a clean writeback 407 if (pkt->cmd == MemCmd::WritebackDirty) { 408 blk->status |= BlkDirty; 409 } 410 // if the packet does not have sharers, it is passing 411 // writable, and we got the writeback in Modified or Exclusive 412 // state, if not we are in the Owned or Shared state 413 if (!pkt->hasSharers()) { 414 blk->status |= BlkWritable; 415 } 416 // nothing else to do; writeback doesn't expect response 417 assert(!pkt->needsResponse()); 418 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize); 419 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 420 incHitCount(pkt); 421 return true; 422 } else if (pkt->cmd == MemCmd::CleanEvict) { 423 if (blk != nullptr) { 424 // Found the block in the tags, need to stop CleanEvict from 425 // propagating further down the hierarchy. Returning true will 426 // treat the CleanEvict like a satisfied write request and delete 427 // it. 428 return true; 429 } 430 // We didn't find the block here, propagate the CleanEvict further 431 // down the memory hierarchy. Returning false will treat the CleanEvict 432 // like a Writeback which could not find a replaceable block so has to 433 // go to next level. 434 return false; 435 } else if (pkt->cmd == MemCmd::WriteClean) { 436 // WriteClean handling is a special case. We can allocate a 437 // block directly if it doesn't exist and we can update the 438 // block immediately. The WriteClean transfers the ownership 439 // of the block as well. 440 assert(blkSize == pkt->getSize()); 441 442 if (!blk) { 443 if (pkt->writeThrough()) { 444 // if this is a write through packet, we don't try to 445 // allocate if the block is not present 446 return false; 447 } else { 448 // a writeback that misses needs to allocate a new block 449 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), 450 writebacks); 451 if (!blk) { 452 // no replaceable block available: give up, fwd to 453 // next level. 454 incMissCount(pkt); 455 return false; 456 } 457 tags->insertBlock(pkt, blk); 458 459 blk->status = (BlkValid | BlkReadable); 460 if (pkt->isSecure()) { 461 blk->status |= BlkSecure; 462 } 463 } 464 } 465 466 // at this point either this is a writeback or a write-through 467 // write clean operation and the block is already in this 468 // cache, we need to update the data and the block flags 469 assert(blk); 470 if (!pkt->writeThrough()) { 471 blk->status |= BlkDirty; 472 } 473 // nothing else to do; writeback doesn't expect response 474 assert(!pkt->needsResponse()); 475 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize); 476 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 477 478 incHitCount(pkt); 479 // populate the time when the block will be ready to access. 480 blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay + 481 pkt->payloadDelay; 482 // if this a write-through packet it will be sent to cache 483 // below 484 return !pkt->writeThrough(); 485 } else if (blk && (pkt->needsWritable() ? blk->isWritable() : 486 blk->isReadable())) { 487 // OK to satisfy access 488 incHitCount(pkt); 489 satisfyRequest(pkt, blk); 490 maintainClusivity(pkt->fromCache(), blk); 491 492 return true; 493 } 494 495 // Can't satisfy access normally... either no block (blk == nullptr) 496 // or have block but need writable 497 498 incMissCount(pkt); 499 500 if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) { 501 // complete miss on store conditional... just give up now 502 pkt->req->setExtraData(0); 503 return true; 504 } 505 506 return false; 507} 508 509void 510Cache::maintainClusivity(bool from_cache, CacheBlk *blk) 511{ 512 if (from_cache && blk && blk->isValid() && !blk->isDirty() && 513 clusivity == Enums::mostly_excl) { 514 // if we have responded to a cache, and our block is still 515 // valid, but not dirty, and this cache is mostly exclusive 516 // with respect to the cache above, drop the block 517 invalidateBlock(blk); 518 } 519} 520 521void 522Cache::doWritebacks(PacketList& writebacks, Tick forward_time) 523{ 524 while (!writebacks.empty()) { 525 PacketPtr wbPkt = writebacks.front(); 526 // We use forwardLatency here because we are copying writebacks to 527 // write buffer. 528 529 // Call isCachedAbove for Writebacks, CleanEvicts and 530 // WriteCleans to discover if the block is cached above. 531 if (isCachedAbove(wbPkt)) { 532 if (wbPkt->cmd == MemCmd::CleanEvict) { 533 // Delete CleanEvict because cached copies exist above. The 534 // packet destructor will delete the request object because 535 // this is a non-snoop request packet which does not require a 536 // response. 537 delete wbPkt; 538 } else if (wbPkt->cmd == MemCmd::WritebackClean) { 539 // clean writeback, do not send since the block is 540 // still cached above 541 assert(writebackClean); 542 delete wbPkt; 543 } else { 544 assert(wbPkt->cmd == MemCmd::WritebackDirty || 545 wbPkt->cmd == MemCmd::WriteClean); 546 // Set BLOCK_CACHED flag in Writeback and send below, so that 547 // the Writeback does not reset the bit corresponding to this 548 // address in the snoop filter below. 549 wbPkt->setBlockCached(); 550 allocateWriteBuffer(wbPkt, forward_time); 551 } 552 } else { 553 // If the block is not cached above, send packet below. Both 554 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 555 // reset the bit corresponding to this address in the snoop filter 556 // below. 557 allocateWriteBuffer(wbPkt, forward_time); 558 } 559 writebacks.pop_front(); 560 } 561} 562 563void 564Cache::doWritebacksAtomic(PacketList& writebacks) 565{ 566 while (!writebacks.empty()) { 567 PacketPtr wbPkt = writebacks.front(); 568 // Call isCachedAbove for both Writebacks and CleanEvicts. If 569 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks 570 // and discard CleanEvicts. 571 if (isCachedAbove(wbPkt, false)) { 572 if (wbPkt->cmd == MemCmd::WritebackDirty || 573 wbPkt->cmd == MemCmd::WriteClean) { 574 // Set BLOCK_CACHED flag in Writeback and send below, 575 // so that the Writeback does not reset the bit 576 // corresponding to this address in the snoop filter 577 // below. We can discard CleanEvicts because cached 578 // copies exist above. Atomic mode isCachedAbove 579 // modifies packet to set BLOCK_CACHED flag 580 memSidePort->sendAtomic(wbPkt); 581 } 582 } else { 583 // If the block is not cached above, send packet below. Both 584 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 585 // reset the bit corresponding to this address in the snoop filter 586 // below. 587 memSidePort->sendAtomic(wbPkt); 588 } 589 writebacks.pop_front(); 590 // In case of CleanEvicts, the packet destructor will delete the 591 // request object because this is a non-snoop request packet which 592 // does not require a response. 593 delete wbPkt; 594 } 595} 596 597 598void 599Cache::recvTimingSnoopResp(PacketPtr pkt) 600{ 601 DPRINTF(Cache, "%s for %s\n", __func__, pkt->print()); 602 603 assert(pkt->isResponse()); 604 assert(!system->bypassCaches()); 605 606 // determine if the response is from a snoop request we created 607 // (in which case it should be in the outstandingSnoop), or if we 608 // merely forwarded someone else's snoop request 609 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 610 outstandingSnoop.end(); 611 612 if (!forwardAsSnoop) { 613 // the packet came from this cache, so sink it here and do not 614 // forward it 615 assert(pkt->cmd == MemCmd::HardPFResp); 616 617 outstandingSnoop.erase(pkt->req); 618 619 DPRINTF(Cache, "Got prefetch response from above for addr " 620 "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 621 recvTimingResp(pkt); 622 return; 623 } 624 625 // forwardLatency is set here because there is a response from an 626 // upper level cache. 627 // To pay the delay that occurs if the packet comes from the bus, 628 // we charge also headerDelay. 629 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay; 630 // Reset the timing of the packet. 631 pkt->headerDelay = pkt->payloadDelay = 0; 632 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time); 633} 634 635void 636Cache::promoteWholeLineWrites(PacketPtr pkt) 637{ 638 // Cache line clearing instructions 639 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) && 640 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) { 641 pkt->cmd = MemCmd::WriteLineReq; 642 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n"); 643 } 644} 645 646bool 647Cache::recvTimingReq(PacketPtr pkt) 648{ 649 DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print()); 650 651 assert(pkt->isRequest()); 652 653 // Just forward the packet if caches are disabled. 654 if (system->bypassCaches()) { 655 // @todo This should really enqueue the packet rather 656 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt); 657 assert(success); 658 return true; 659 } 660 661 promoteWholeLineWrites(pkt); 662 663 // Cache maintenance operations have to visit all the caches down 664 // to the specified xbar (PoC, PoU, etc.). Even if a cache above 665 // is responding we forward the packet to the memory below rather 666 // than creating an express snoop. 667 if (pkt->cacheResponding()) { 668 // a cache above us (but not where the packet came from) is 669 // responding to the request, in other words it has the line 670 // in Modified or Owned state 671 DPRINTF(Cache, "Cache above responding to %s: not responding\n", 672 pkt->print()); 673 674 // if the packet needs the block to be writable, and the cache 675 // that has promised to respond (setting the cache responding 676 // flag) is not providing writable (it is in Owned rather than 677 // the Modified state), we know that there may be other Shared 678 // copies in the system; go out and invalidate them all 679 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 680 681 // an upstream cache that had the line in Owned state 682 // (dirty, but not writable), is responding and thus 683 // transferring the dirty line from one branch of the 684 // cache hierarchy to another 685 686 // send out an express snoop and invalidate all other 687 // copies (snooping a packet that needs writable is the 688 // same as an invalidation), thus turning the Owned line 689 // into a Modified line, note that we don't invalidate the 690 // block in the current cache or any other cache on the 691 // path to memory 692 693 // create a downstream express snoop with cleared packet 694 // flags, there is no need to allocate any data as the 695 // packet is merely used to co-ordinate state transitions 696 Packet *snoop_pkt = new Packet(pkt, true, false); 697 698 // also reset the bus time that the original packet has 699 // not yet paid for 700 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0; 701 702 // make this an instantaneous express snoop, and let the 703 // other caches in the system know that the another cache 704 // is responding, because we have found the authorative 705 // copy (Modified or Owned) that will supply the right 706 // data 707 snoop_pkt->setExpressSnoop(); 708 snoop_pkt->setCacheResponding(); 709 710 // this express snoop travels towards the memory, and at 711 // every crossbar it is snooped upwards thus reaching 712 // every cache in the system 713 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt); 714 // express snoops always succeed 715 assert(success); 716 717 // main memory will delete the snoop packet 718 719 // queue for deletion, as opposed to immediate deletion, as 720 // the sending cache is still relying on the packet 721 pendingDelete.reset(pkt); 722 723 // no need to take any further action in this particular cache 724 // as an upstram cache has already committed to responding, 725 // and we have already sent out any express snoops in the 726 // section above to ensure all other copies in the system are 727 // invalidated 728 return true; 729 } 730 731 // anything that is merely forwarded pays for the forward latency and 732 // the delay provided by the crossbar 733 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 734 735 // We use lookupLatency here because it is used to specify the latency 736 // to access. 737 Cycles lat = lookupLatency; 738 CacheBlk *blk = nullptr; 739 bool satisfied = false; 740 { 741 PacketList writebacks; 742 // Note that lat is passed by reference here. The function 743 // access() calls accessBlock() which can modify lat value. 744 satisfied = access(pkt, blk, lat, writebacks); 745 746 // copy writebacks to write buffer here to ensure they logically 747 // proceed anything happening below 748 doWritebacks(writebacks, forward_time); 749 } 750 751 // Here we charge the headerDelay that takes into account the latencies 752 // of the bus, if the packet comes from it. 753 // The latency charged it is just lat that is the value of lookupLatency 754 // modified by access() function, or if not just lookupLatency. 755 // In case of a hit we are neglecting response latency. 756 // In case of a miss we are neglecting forward latency. 757 Tick request_time = clockEdge(lat) + pkt->headerDelay; 758 // Here we reset the timing of the packet. 759 pkt->headerDelay = pkt->payloadDelay = 0; 760 761 // track time of availability of next prefetch, if any 762 Tick next_pf_time = MaxTick; 763 764 bool needsResponse = pkt->needsResponse(); 765 766 if (satisfied) { 767 // should never be satisfying an uncacheable access as we 768 // flush and invalidate any existing block as part of the 769 // lookup 770 assert(!pkt->req->isUncacheable()); 771 772 // hit (for all other request types) 773 774 if (prefetcher && (prefetchOnAccess || 775 (blk && blk->wasPrefetched()))) { 776 if (blk) 777 blk->status &= ~BlkHWPrefetched; 778 779 // Don't notify on SWPrefetch 780 if (!pkt->cmd.isSWPrefetch()) { 781 assert(!pkt->req->isCacheMaintenance()); 782 next_pf_time = prefetcher->notify(pkt); 783 } 784 } 785 786 if (needsResponse) { 787 pkt->makeTimingResponse(); 788 // @todo: Make someone pay for this 789 pkt->headerDelay = pkt->payloadDelay = 0; 790 791 // In this case we are considering request_time that takes 792 // into account the delay of the xbar, if any, and just 793 // lat, neglecting responseLatency, modelling hit latency 794 // just as lookupLatency or or the value of lat overriden 795 // by access(), that calls accessBlock() function. 796 cpuSidePort->schedTimingResp(pkt, request_time, true); 797 } else { 798 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__, 799 pkt->print()); 800 801 // queue the packet for deletion, as the sending cache is 802 // still relying on it; if the block is found in access(), 803 // CleanEvict and Writeback messages will be deleted 804 // here as well 805 pendingDelete.reset(pkt); 806 } 807 } else { 808 // miss 809 810 Addr blk_addr = pkt->getBlockAddr(blkSize); 811 812 // ignore any existing MSHR if we are dealing with an 813 // uncacheable request 814 MSHR *mshr = pkt->req->isUncacheable() ? nullptr : 815 mshrQueue.findMatch(blk_addr, pkt->isSecure()); 816 817 // Software prefetch handling: 818 // To keep the core from waiting on data it won't look at 819 // anyway, send back a response with dummy data. Miss handling 820 // will continue asynchronously. Unfortunately, the core will 821 // insist upon freeing original Packet/Request, so we have to 822 // create a new pair with a different lifecycle. Note that this 823 // processing happens before any MSHR munging on the behalf of 824 // this request because this new Request will be the one stored 825 // into the MSHRs, not the original. 826 if (pkt->cmd.isSWPrefetch()) { 827 assert(needsResponse); 828 assert(pkt->req->hasPaddr()); 829 assert(!pkt->req->isUncacheable()); 830 831 // There's no reason to add a prefetch as an additional target 832 // to an existing MSHR. If an outstanding request is already 833 // in progress, there is nothing for the prefetch to do. 834 // If this is the case, we don't even create a request at all. 835 PacketPtr pf = nullptr; 836 837 if (!mshr) { 838 // copy the request and create a new SoftPFReq packet 839 RequestPtr req = new Request(pkt->req->getPaddr(), 840 pkt->req->getSize(), 841 pkt->req->getFlags(), 842 pkt->req->masterId()); 843 pf = new Packet(req, pkt->cmd); 844 pf->allocate(); 845 assert(pf->getAddr() == pkt->getAddr()); 846 assert(pf->getSize() == pkt->getSize()); 847 } 848 849 pkt->makeTimingResponse(); 850 851 // request_time is used here, taking into account lat and the delay 852 // charged if the packet comes from the xbar. 853 cpuSidePort->schedTimingResp(pkt, request_time, true); 854 855 // If an outstanding request is in progress (we found an 856 // MSHR) this is set to null 857 pkt = pf; 858 } 859 860 if (mshr) { 861 /// MSHR hit 862 /// @note writebacks will be checked in getNextMSHR() 863 /// for any conflicting requests to the same block 864 865 //@todo remove hw_pf here 866 867 // Coalesce unless it was a software prefetch (see above). 868 if (pkt) { 869 assert(!pkt->isWriteback()); 870 // CleanEvicts corresponding to blocks which have 871 // outstanding requests in MSHRs are simply sunk here 872 if (pkt->cmd == MemCmd::CleanEvict) { 873 pendingDelete.reset(pkt); 874 } else if (pkt->cmd == MemCmd::WriteClean) { 875 // A WriteClean should never coalesce with any 876 // outstanding cache maintenance requests. 877 878 // We use forward_time here because there is an 879 // uncached memory write, forwarded to WriteBuffer. 880 allocateWriteBuffer(pkt, forward_time); 881 } else { 882 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__, 883 pkt->print()); 884 885 assert(pkt->req->masterId() < system->maxMasters()); 886 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 887 // We use forward_time here because it is the same 888 // considering new targets. We have multiple 889 // requests for the same address here. It 890 // specifies the latency to allocate an internal 891 // buffer and to schedule an event to the queued 892 // port and also takes into account the additional 893 // delay of the xbar. 894 mshr->allocateTarget(pkt, forward_time, order++, 895 allocOnFill(pkt->cmd)); 896 if (mshr->getNumTargets() == numTarget) { 897 noTargetMSHR = mshr; 898 setBlocked(Blocked_NoTargets); 899 // need to be careful with this... if this mshr isn't 900 // ready yet (i.e. time > curTick()), we don't want to 901 // move it ahead of mshrs that are ready 902 // mshrQueue.moveToFront(mshr); 903 } 904 } 905 // We should call the prefetcher reguardless if the request is 906 // satisfied or not, reguardless if the request is in the MSHR 907 // or not. The request could be a ReadReq hit, but still not 908 // satisfied (potentially because of a prior write to the same 909 // cache line. So, even when not satisfied, tehre is an MSHR 910 // already allocated for this, we need to let the prefetcher 911 // know about the request 912 if (prefetcher) { 913 // Don't notify on SWPrefetch 914 if (!pkt->cmd.isSWPrefetch() && 915 !pkt->req->isCacheMaintenance()) 916 next_pf_time = prefetcher->notify(pkt); 917 } 918 } 919 } else { 920 // no MSHR 921 assert(pkt->req->masterId() < system->maxMasters()); 922 if (pkt->req->isUncacheable()) { 923 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++; 924 } else { 925 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 926 } 927 928 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean || 929 (pkt->req->isUncacheable() && pkt->isWrite())) { 930 // We use forward_time here because there is an 931 // uncached memory write, forwarded to WriteBuffer. 932 allocateWriteBuffer(pkt, forward_time); 933 } else { 934 if (blk && blk->isValid()) { 935 // should have flushed and have no valid block 936 assert(!pkt->req->isUncacheable()); 937 938 // If we have a write miss to a valid block, we 939 // need to mark the block non-readable. Otherwise 940 // if we allow reads while there's an outstanding 941 // write miss, the read could return stale data 942 // out of the cache block... a more aggressive 943 // system could detect the overlap (if any) and 944 // forward data out of the MSHRs, but we don't do 945 // that yet. Note that we do need to leave the 946 // block valid so that it stays in the cache, in 947 // case we get an upgrade response (and hence no 948 // new data) when the write miss completes. 949 // As long as CPUs do proper store/load forwarding 950 // internally, and have a sufficiently weak memory 951 // model, this is probably unnecessary, but at some 952 // point it must have seemed like we needed it... 953 assert((pkt->needsWritable() && !blk->isWritable()) || 954 pkt->req->isCacheMaintenance()); 955 blk->status &= ~BlkReadable; 956 } 957 // Here we are using forward_time, modelling the latency of 958 // a miss (outbound) just as forwardLatency, neglecting the 959 // lookupLatency component. 960 allocateMissBuffer(pkt, forward_time); 961 } 962 963 if (prefetcher) { 964 // Don't notify on SWPrefetch 965 if (!pkt->cmd.isSWPrefetch() && 966 !pkt->req->isCacheMaintenance()) 967 next_pf_time = prefetcher->notify(pkt); 968 } 969 } 970 } 971 972 if (next_pf_time != MaxTick) 973 schedMemSideSendEvent(next_pf_time); 974 975 return true; 976} 977 978PacketPtr 979Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk, 980 bool needsWritable) const 981{ 982 // should never see evictions here 983 assert(!cpu_pkt->isEviction()); 984 985 bool blkValid = blk && blk->isValid(); 986 987 if (cpu_pkt->req->isUncacheable() || 988 (!blkValid && cpu_pkt->isUpgrade()) || 989 cpu_pkt->cmd == MemCmd::InvalidateReq || cpu_pkt->isClean()) { 990 // uncacheable requests and upgrades from upper-level caches 991 // that missed completely just go through as is 992 return nullptr; 993 } 994 995 assert(cpu_pkt->needsResponse()); 996 997 MemCmd cmd; 998 // @TODO make useUpgrades a parameter. 999 // Note that ownership protocols require upgrade, otherwise a 1000 // write miss on a shared owned block will generate a ReadExcl, 1001 // which will clobber the owned copy. 1002 const bool useUpgrades = true; 1003 if (cpu_pkt->cmd == MemCmd::WriteLineReq) { 1004 assert(!blkValid || !blk->isWritable()); 1005 // forward as invalidate to all other caches, this gives us 1006 // the line in Exclusive state, and invalidates all other 1007 // copies 1008 cmd = MemCmd::InvalidateReq; 1009 } else if (blkValid && useUpgrades) { 1010 // only reason to be here is that blk is read only and we need 1011 // it to be writable 1012 assert(needsWritable); 1013 assert(!blk->isWritable()); 1014 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq; 1015 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq || 1016 cpu_pkt->cmd == MemCmd::StoreCondFailReq) { 1017 // Even though this SC will fail, we still need to send out the 1018 // request and get the data to supply it to other snoopers in the case 1019 // where the determination the StoreCond fails is delayed due to 1020 // all caches not being on the same local bus. 1021 cmd = MemCmd::SCUpgradeFailReq; 1022 } else { 1023 // block is invalid 1024 1025 // If the request does not need a writable there are two cases 1026 // where we need to ensure the response will not fetch the 1027 // block in dirty state: 1028 // * this cache is read only and it does not perform 1029 // writebacks, 1030 // * this cache is mostly exclusive and will not fill (since 1031 // it does not fill it will have to writeback the dirty data 1032 // immediately which generates uneccesary writebacks). 1033 bool force_clean_rsp = isReadOnly || clusivity == Enums::mostly_excl; 1034 cmd = needsWritable ? MemCmd::ReadExReq : 1035 (force_clean_rsp ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq); 1036 } 1037 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize); 1038 1039 // if there are upstream caches that have already marked the 1040 // packet as having sharers (not passing writable), pass that info 1041 // downstream 1042 if (cpu_pkt->hasSharers() && !needsWritable) { 1043 // note that cpu_pkt may have spent a considerable time in the 1044 // MSHR queue and that the information could possibly be out 1045 // of date, however, there is no harm in conservatively 1046 // assuming the block has sharers 1047 pkt->setHasSharers(); 1048 DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n", 1049 __func__, cpu_pkt->print(), pkt->print()); 1050 } 1051 1052 // the packet should be block aligned 1053 assert(pkt->getAddr() == pkt->getBlockAddr(blkSize)); 1054 1055 pkt->allocate(); 1056 DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(), 1057 cpu_pkt->print()); 1058 return pkt; 1059} 1060 1061 1062Tick 1063Cache::recvAtomic(PacketPtr pkt) 1064{ 1065 // We are in atomic mode so we pay just for lookupLatency here. 1066 Cycles lat = lookupLatency; 1067 1068 // Forward the request if the system is in cache bypass mode. 1069 if (system->bypassCaches()) 1070 return ticksToCycles(memSidePort->sendAtomic(pkt)); 1071 1072 promoteWholeLineWrites(pkt); 1073 1074 // follow the same flow as in recvTimingReq, and check if a cache 1075 // above us is responding 1076 if (pkt->cacheResponding() && !pkt->isClean()) { 1077 assert(!pkt->req->isCacheInvalidate()); 1078 DPRINTF(Cache, "Cache above responding to %s: not responding\n", 1079 pkt->print()); 1080 1081 // if a cache is responding, and it had the line in Owned 1082 // rather than Modified state, we need to invalidate any 1083 // copies that are not on the same path to memory 1084 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 1085 lat += ticksToCycles(memSidePort->sendAtomic(pkt)); 1086 1087 return lat * clockPeriod(); 1088 } 1089 1090 // should assert here that there are no outstanding MSHRs or 1091 // writebacks... that would mean that someone used an atomic 1092 // access in timing mode 1093 1094 CacheBlk *blk = nullptr; 1095 PacketList writebacks; 1096 bool satisfied = access(pkt, blk, lat, writebacks); 1097 1098 if (pkt->isClean() && blk && blk->isDirty()) { 1099 // A cache clean opearation is looking for a dirty 1100 // block. If a dirty block is encountered a WriteClean 1101 // will update any copies to the path to the memory 1102 // until the point of reference. 1103 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 1104 __func__, pkt->print(), blk->print()); 1105 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id); 1106 writebacks.push_back(wb_pkt); 1107 pkt->setSatisfied(); 1108 } 1109 1110 // handle writebacks resulting from the access here to ensure they 1111 // logically proceed anything happening below 1112 doWritebacksAtomic(writebacks); 1113 1114 if (!satisfied) { 1115 // MISS 1116 1117 // deal with the packets that go through the write path of 1118 // the cache, i.e. any evictions and writes 1119 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean || 1120 (pkt->req->isUncacheable() && pkt->isWrite())) { 1121 lat += ticksToCycles(memSidePort->sendAtomic(pkt)); 1122 return lat * clockPeriod(); 1123 } 1124 // only misses left 1125 1126 PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable()); 1127 1128 bool is_forward = (bus_pkt == nullptr); 1129 1130 if (is_forward) { 1131 // just forwarding the same request to the next level 1132 // no local cache operation involved 1133 bus_pkt = pkt; 1134 } 1135 1136 DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__, 1137 bus_pkt->print()); 1138 1139#if TRACING_ON 1140 CacheBlk::State old_state = blk ? blk->status : 0; 1141#endif 1142 1143 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt)); 1144 1145 bool is_invalidate = bus_pkt->isInvalidate(); 1146 1147 // We are now dealing with the response handling 1148 DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__, 1149 bus_pkt->print(), old_state); 1150 1151 // If packet was a forward, the response (if any) is already 1152 // in place in the bus_pkt == pkt structure, so we don't need 1153 // to do anything. Otherwise, use the separate bus_pkt to 1154 // generate response to pkt and then delete it. 1155 if (!is_forward) { 1156 if (pkt->needsResponse()) { 1157 assert(bus_pkt->isResponse()); 1158 if (bus_pkt->isError()) { 1159 pkt->makeAtomicResponse(); 1160 pkt->copyError(bus_pkt); 1161 } else if (pkt->cmd == MemCmd::WriteLineReq) { 1162 // note the use of pkt, not bus_pkt here. 1163 1164 // write-line request to the cache that promoted 1165 // the write to a whole line 1166 blk = handleFill(pkt, blk, writebacks, 1167 allocOnFill(pkt->cmd)); 1168 assert(blk != NULL); 1169 is_invalidate = false; 1170 satisfyRequest(pkt, blk); 1171 } else if (bus_pkt->isRead() || 1172 bus_pkt->cmd == MemCmd::UpgradeResp) { 1173 // we're updating cache state to allow us to 1174 // satisfy the upstream request from the cache 1175 blk = handleFill(bus_pkt, blk, writebacks, 1176 allocOnFill(pkt->cmd)); 1177 satisfyRequest(pkt, blk); 1178 maintainClusivity(pkt->fromCache(), blk); 1179 } else { 1180 // we're satisfying the upstream request without 1181 // modifying cache state, e.g., a write-through 1182 pkt->makeAtomicResponse(); 1183 } 1184 } 1185 delete bus_pkt; 1186 } 1187 1188 if (is_invalidate && blk && blk->isValid()) { 1189 invalidateBlock(blk); 1190 } 1191 } 1192 1193 // Note that we don't invoke the prefetcher at all in atomic mode. 1194 // It's not clear how to do it properly, particularly for 1195 // prefetchers that aggressively generate prefetch candidates and 1196 // rely on bandwidth contention to throttle them; these will tend 1197 // to pollute the cache in atomic mode since there is no bandwidth 1198 // contention. If we ever do want to enable prefetching in atomic 1199 // mode, though, this is the place to do it... see timingAccess() 1200 // for an example (though we'd want to issue the prefetch(es) 1201 // immediately rather than calling requestMemSideBus() as we do 1202 // there). 1203 1204 // do any writebacks resulting from the response handling 1205 doWritebacksAtomic(writebacks); 1206 1207 // if we used temp block, check to see if its valid and if so 1208 // clear it out, but only do so after the call to recvAtomic is 1209 // finished so that any downstream observers (such as a snoop 1210 // filter), first see the fill, and only then see the eviction 1211 if (blk == tempBlock && tempBlock->isValid()) { 1212 // the atomic CPU calls recvAtomic for fetch and load/store 1213 // sequentuially, and we may already have a tempBlock 1214 // writeback from the fetch that we have not yet sent 1215 if (tempBlockWriteback) { 1216 // if that is the case, write the prevoius one back, and 1217 // do not schedule any new event 1218 writebackTempBlockAtomic(); 1219 } else { 1220 // the writeback/clean eviction happens after the call to 1221 // recvAtomic has finished (but before any successive 1222 // calls), so that the response handling from the fill is 1223 // allowed to happen first 1224 schedule(writebackTempBlockAtomicEvent, curTick()); 1225 } 1226 1227 tempBlockWriteback = (blk->isDirty() || writebackClean) ? 1228 writebackBlk(blk) : cleanEvictBlk(blk); 1229 invalidateBlock(blk); 1230 } 1231 1232 if (pkt->needsResponse()) { 1233 pkt->makeAtomicResponse(); 1234 } 1235 1236 return lat * clockPeriod(); 1237} 1238 1239 1240void 1241Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide) 1242{ 1243 if (system->bypassCaches()) { 1244 // Packets from the memory side are snoop request and 1245 // shouldn't happen in bypass mode. 1246 assert(fromCpuSide); 1247 1248 // The cache should be flushed if we are in cache bypass mode, 1249 // so we don't need to check if we need to update anything. 1250 memSidePort->sendFunctional(pkt); 1251 return; 1252 } 1253 1254 Addr blk_addr = pkt->getBlockAddr(blkSize); 1255 bool is_secure = pkt->isSecure(); 1256 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 1257 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 1258 1259 pkt->pushLabel(name()); 1260 1261 CacheBlkPrintWrapper cbpw(blk); 1262 1263 // Note that just because an L2/L3 has valid data doesn't mean an 1264 // L1 doesn't have a more up-to-date modified copy that still 1265 // needs to be found. As a result we always update the request if 1266 // we have it, but only declare it satisfied if we are the owner. 1267 1268 // see if we have data at all (owned or otherwise) 1269 bool have_data = blk && blk->isValid() 1270 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize, 1271 blk->data); 1272 1273 // data we have is dirty if marked as such or if we have an 1274 // in-service MSHR that is pending a modified line 1275 bool have_dirty = 1276 have_data && (blk->isDirty() || 1277 (mshr && mshr->inService && mshr->isPendingModified())); 1278 1279 bool done = have_dirty 1280 || cpuSidePort->checkFunctional(pkt) 1281 || mshrQueue.checkFunctional(pkt, blk_addr) 1282 || writeBuffer.checkFunctional(pkt, blk_addr) 1283 || memSidePort->checkFunctional(pkt); 1284 1285 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(), 1286 (blk && blk->isValid()) ? "valid " : "", 1287 have_data ? "data " : "", done ? "done " : ""); 1288 1289 // We're leaving the cache, so pop cache->name() label 1290 pkt->popLabel(); 1291 1292 if (done) { 1293 pkt->makeResponse(); 1294 } else { 1295 // if it came as a request from the CPU side then make sure it 1296 // continues towards the memory side 1297 if (fromCpuSide) { 1298 memSidePort->sendFunctional(pkt); 1299 } else if (cpuSidePort->isSnooping()) { 1300 // if it came from the memory side, it must be a snoop request 1301 // and we should only forward it if we are forwarding snoops 1302 cpuSidePort->sendFunctionalSnoop(pkt); 1303 } 1304 } 1305} 1306 1307 1308///////////////////////////////////////////////////// 1309// 1310// Response handling: responses from the memory side 1311// 1312///////////////////////////////////////////////////// 1313 1314 1315void 1316Cache::handleUncacheableWriteResp(PacketPtr pkt) 1317{ 1318 Tick completion_time = clockEdge(responseLatency) + 1319 pkt->headerDelay + pkt->payloadDelay; 1320 1321 // Reset the bus additional time as it is now accounted for 1322 pkt->headerDelay = pkt->payloadDelay = 0; 1323 1324 cpuSidePort->schedTimingResp(pkt, completion_time, true); 1325} 1326 1327void 1328Cache::recvTimingResp(PacketPtr pkt) 1329{ 1330 assert(pkt->isResponse()); 1331 1332 // all header delay should be paid for by the crossbar, unless 1333 // this is a prefetch response from above 1334 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp, 1335 "%s saw a non-zero packet delay\n", name()); 1336 1337 bool is_error = pkt->isError(); 1338 1339 if (is_error) { 1340 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__, 1341 pkt->print()); 1342 } 1343 1344 DPRINTF(Cache, "%s: Handling response %s\n", __func__, 1345 pkt->print()); 1346 1347 // if this is a write, we should be looking at an uncacheable 1348 // write 1349 if (pkt->isWrite()) { 1350 assert(pkt->req->isUncacheable()); 1351 handleUncacheableWriteResp(pkt); 1352 return; 1353 } 1354 1355 // we have dealt with any (uncacheable) writes above, from here on 1356 // we know we are dealing with an MSHR due to a miss or a prefetch 1357 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState()); 1358 assert(mshr); 1359 1360 if (mshr == noTargetMSHR) { 1361 // we always clear at least one target 1362 clearBlocked(Blocked_NoTargets); 1363 noTargetMSHR = nullptr; 1364 } 1365 1366 // Initial target is used just for stats 1367 MSHR::Target *initial_tgt = mshr->getTarget(); 1368 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); 1369 Tick miss_latency = curTick() - initial_tgt->recvTime; 1370 1371 if (pkt->req->isUncacheable()) { 1372 assert(pkt->req->masterId() < system->maxMasters()); 1373 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += 1374 miss_latency; 1375 } else { 1376 assert(pkt->req->masterId() < system->maxMasters()); 1377 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += 1378 miss_latency; 1379 } 1380 1381 bool wasFull = mshrQueue.isFull(); 1382 1383 PacketList writebacks; 1384 1385 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 1386 1387 bool is_fill = !mshr->isForward && 1388 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp); 1389 1390 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 1391 const bool valid_blk = blk && blk->isValid(); 1392 // If the response indicates that there are no sharers and we 1393 // either had the block already or the response is filling we can 1394 // promote our copy to writable 1395 if (!pkt->hasSharers() && 1396 (is_fill || (valid_blk && !pkt->req->isCacheInvalidate()))) { 1397 mshr->promoteWritable(); 1398 } 1399 1400 if (is_fill && !is_error) { 1401 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", 1402 pkt->getAddr()); 1403 1404 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill()); 1405 assert(blk != nullptr); 1406 } 1407 1408 // allow invalidation responses originating from write-line 1409 // requests to be discarded 1410 bool is_invalidate = pkt->isInvalidate(); 1411 1412 // The block was marked as not readable while there was a pending 1413 // cache maintenance operation, restore its flag. 1414 if (pkt->isClean() && !is_invalidate && valid_blk) { 1415 blk->status |= BlkReadable; 1416 } 1417 1418 // First offset for critical word first calculations 1419 int initial_offset = initial_tgt->pkt->getOffset(blkSize); 1420 1421 bool from_cache = false; 1422 MSHR::TargetList targets = mshr->extractServiceableTargets(pkt); 1423 for (auto &target: targets) { 1424 Packet *tgt_pkt = target.pkt; 1425 switch (target.source) { 1426 case MSHR::Target::FromCPU: 1427 Tick completion_time; 1428 // Here we charge on completion_time the delay of the xbar if the 1429 // packet comes from it, charged on headerDelay. 1430 completion_time = pkt->headerDelay; 1431 1432 // Software prefetch handling for cache closest to core 1433 if (tgt_pkt->cmd.isSWPrefetch()) { 1434 // a software prefetch would have already been ack'd 1435 // immediately with dummy data so the core would be able to 1436 // retire it. This request completes right here, so we 1437 // deallocate it. 1438 delete tgt_pkt->req; 1439 delete tgt_pkt; 1440 break; // skip response 1441 } 1442 1443 // keep track of whether we have responded to another 1444 // cache 1445 from_cache = from_cache || tgt_pkt->fromCache(); 1446 1447 // unlike the other packet flows, where data is found in other 1448 // caches or memory and brought back, write-line requests always 1449 // have the data right away, so the above check for "is fill?" 1450 // cannot actually be determined until examining the stored MSHR 1451 // state. We "catch up" with that logic here, which is duplicated 1452 // from above. 1453 if (tgt_pkt->cmd == MemCmd::WriteLineReq) { 1454 assert(!is_error); 1455 // we got the block in a writable state, so promote 1456 // any deferred targets if possible 1457 mshr->promoteWritable(); 1458 // NB: we use the original packet here and not the response! 1459 blk = handleFill(tgt_pkt, blk, writebacks, 1460 targets.allocOnFill); 1461 assert(blk != nullptr); 1462 1463 // treat as a fill, and discard the invalidation 1464 // response 1465 is_fill = true; 1466 is_invalidate = false; 1467 } 1468 1469 if (is_fill) { 1470 satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade()); 1471 1472 // How many bytes past the first request is this one 1473 int transfer_offset = 1474 tgt_pkt->getOffset(blkSize) - initial_offset; 1475 if (transfer_offset < 0) { 1476 transfer_offset += blkSize; 1477 } 1478 1479 // If not critical word (offset) return payloadDelay. 1480 // responseLatency is the latency of the return path 1481 // from lower level caches/memory to an upper level cache or 1482 // the core. 1483 completion_time += clockEdge(responseLatency) + 1484 (transfer_offset ? pkt->payloadDelay : 0); 1485 1486 assert(!tgt_pkt->req->isUncacheable()); 1487 1488 assert(tgt_pkt->req->masterId() < system->maxMasters()); 1489 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] += 1490 completion_time - target.recvTime; 1491 } else if (pkt->cmd == MemCmd::UpgradeFailResp) { 1492 // failed StoreCond upgrade 1493 assert(tgt_pkt->cmd == MemCmd::StoreCondReq || 1494 tgt_pkt->cmd == MemCmd::StoreCondFailReq || 1495 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq); 1496 // responseLatency is the latency of the return path 1497 // from lower level caches/memory to an upper level cache or 1498 // the core. 1499 completion_time += clockEdge(responseLatency) + 1500 pkt->payloadDelay; 1501 tgt_pkt->req->setExtraData(0); 1502 } else { 1503 // We are about to send a response to a cache above 1504 // that asked for an invalidation; we need to 1505 // invalidate our copy immediately as the most 1506 // up-to-date copy of the block will now be in the 1507 // cache above. It will also prevent this cache from 1508 // responding (if the block was previously dirty) to 1509 // snoops as they should snoop the caches above where 1510 // they will get the response from. 1511 if (is_invalidate && blk && blk->isValid()) { 1512 invalidateBlock(blk); 1513 } 1514 // not a cache fill, just forwarding response 1515 // responseLatency is the latency of the return path 1516 // from lower level cahces/memory to the core. 1517 completion_time += clockEdge(responseLatency) + 1518 pkt->payloadDelay; 1519 if (pkt->isRead() && !is_error) { 1520 // sanity check 1521 assert(pkt->getAddr() == tgt_pkt->getAddr()); 1522 assert(pkt->getSize() >= tgt_pkt->getSize()); 1523 1524 tgt_pkt->setData(pkt->getConstPtr<uint8_t>()); 1525 } 1526 } 1527 tgt_pkt->makeTimingResponse(); 1528 // if this packet is an error copy that to the new packet 1529 if (is_error) 1530 tgt_pkt->copyError(pkt); 1531 if (tgt_pkt->cmd == MemCmd::ReadResp && 1532 (is_invalidate || mshr->hasPostInvalidate())) { 1533 // If intermediate cache got ReadRespWithInvalidate, 1534 // propagate that. Response should not have 1535 // isInvalidate() set otherwise. 1536 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate; 1537 DPRINTF(Cache, "%s: updated cmd to %s\n", __func__, 1538 tgt_pkt->print()); 1539 } 1540 // Reset the bus additional time as it is now accounted for 1541 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0; 1542 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true); 1543 break; 1544 1545 case MSHR::Target::FromPrefetcher: 1546 assert(tgt_pkt->cmd == MemCmd::HardPFReq); 1547 if (blk) 1548 blk->status |= BlkHWPrefetched; 1549 delete tgt_pkt->req; 1550 delete tgt_pkt; 1551 break; 1552 1553 case MSHR::Target::FromSnoop: 1554 // I don't believe that a snoop can be in an error state 1555 assert(!is_error); 1556 // response to snoop request 1557 DPRINTF(Cache, "processing deferred snoop...\n"); 1558 // If the response is invalidating, a snooping target can 1559 // be satisfied if it is also invalidating. If the reponse is, not 1560 // only invalidating, but more specifically an InvalidateResp and 1561 // the MSHR was created due to an InvalidateReq then a cache above 1562 // is waiting to satisfy a WriteLineReq. In this case even an 1563 // non-invalidating snoop is added as a target here since this is 1564 // the ordering point. When the InvalidateResp reaches this cache, 1565 // the snooping target will snoop further the cache above with the 1566 // WriteLineReq. 1567 assert(!is_invalidate || pkt->cmd == MemCmd::InvalidateResp || 1568 pkt->req->isCacheMaintenance() || 1569 mshr->hasPostInvalidate()); 1570 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate()); 1571 break; 1572 1573 default: 1574 panic("Illegal target->source enum %d\n", target.source); 1575 } 1576 } 1577 1578 maintainClusivity(from_cache, blk); 1579 1580 if (blk && blk->isValid()) { 1581 // an invalidate response stemming from a write line request 1582 // should not invalidate the block, so check if the 1583 // invalidation should be discarded 1584 if (is_invalidate || mshr->hasPostInvalidate()) { 1585 invalidateBlock(blk); 1586 } else if (mshr->hasPostDowngrade()) { 1587 blk->status &= ~BlkWritable; 1588 } 1589 } 1590 1591 if (mshr->promoteDeferredTargets()) { 1592 // avoid later read getting stale data while write miss is 1593 // outstanding.. see comment in timingAccess() 1594 if (blk) { 1595 blk->status &= ~BlkReadable; 1596 } 1597 mshrQueue.markPending(mshr); 1598 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay); 1599 } else { 1600 mshrQueue.deallocate(mshr); 1601 if (wasFull && !mshrQueue.isFull()) { 1602 clearBlocked(Blocked_NoMSHRs); 1603 } 1604 1605 // Request the bus for a prefetch if this deallocation freed enough 1606 // MSHRs for a prefetch to take place 1607 if (prefetcher && mshrQueue.canPrefetch()) { 1608 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), 1609 clockEdge()); 1610 if (next_pf_time != MaxTick) 1611 schedMemSideSendEvent(next_pf_time); 1612 } 1613 } 1614 // reset the xbar additional timinig as it is now accounted for 1615 pkt->headerDelay = pkt->payloadDelay = 0; 1616 1617 // copy writebacks to write buffer 1618 doWritebacks(writebacks, forward_time); 1619 1620 // if we used temp block, check to see if its valid and then clear it out 1621 if (blk == tempBlock && tempBlock->isValid()) { 1622 // We use forwardLatency here because we are copying 1623 // Writebacks/CleanEvicts to write buffer. It specifies the latency to 1624 // allocate an internal buffer and to schedule an event to the 1625 // queued port. 1626 if (blk->isDirty() || writebackClean) { 1627 PacketPtr wbPkt = writebackBlk(blk); 1628 allocateWriteBuffer(wbPkt, forward_time); 1629 // Set BLOCK_CACHED flag if cached above. 1630 if (isCachedAbove(wbPkt)) 1631 wbPkt->setBlockCached(); 1632 } else { 1633 PacketPtr wcPkt = cleanEvictBlk(blk); 1634 // Check to see if block is cached above. If not allocate 1635 // write buffer 1636 if (isCachedAbove(wcPkt)) 1637 delete wcPkt; 1638 else 1639 allocateWriteBuffer(wcPkt, forward_time); 1640 } 1641 invalidateBlock(blk); 1642 } 1643 1644 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print()); 1645 delete pkt; 1646} 1647 1648PacketPtr 1649Cache::writebackBlk(CacheBlk *blk) 1650{ 1651 chatty_assert(!isReadOnly || writebackClean, 1652 "Writeback from read-only cache"); 1653 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean)); 1654 1655 writebacks[Request::wbMasterId]++; 1656 1657 Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set), 1658 blkSize, 0, Request::wbMasterId); 1659 if (blk->isSecure()) 1660 req->setFlags(Request::SECURE); 1661 1662 req->taskId(blk->task_id); 1663 blk->task_id= ContextSwitchTaskId::Unknown; 1664 blk->tickInserted = curTick(); 1665 1666 PacketPtr pkt = 1667 new Packet(req, blk->isDirty() ? 1668 MemCmd::WritebackDirty : MemCmd::WritebackClean); 1669 1670 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n", 1671 pkt->print(), blk->isWritable(), blk->isDirty()); 1672 1673 if (blk->isWritable()) { 1674 // not asserting shared means we pass the block in modified 1675 // state, mark our own block non-writeable 1676 blk->status &= ~BlkWritable; 1677 } else { 1678 // we are in the Owned state, tell the receiver 1679 pkt->setHasSharers(); 1680 } 1681 1682 // make sure the block is not marked dirty 1683 blk->status &= ~BlkDirty; 1684 1685 pkt->allocate(); 1686 std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize); 1687 1688 return pkt; 1689} 1690 1691PacketPtr 1692Cache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id) 1693{ 1694 Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set), 1695 blkSize, 0, Request::wbMasterId); 1696 if (blk->isSecure()) { 1697 req->setFlags(Request::SECURE); 1698 } 1699 req->taskId(blk->task_id); 1700 blk->task_id = ContextSwitchTaskId::Unknown; 1701 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id); 1702 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(), 1703 blk->isWritable(), blk->isDirty()); 1704 // make sure the block is not marked dirty 1705 blk->status &= ~BlkDirty; 1706 pkt->allocate(); 1707 // We inform the cache below that the block has sharers in the 1708 // system as we retain our copy. 1709 pkt->setHasSharers(); 1710 if (dest) { 1711 req->setFlags(dest); 1712 pkt->setWriteThrough(); 1713 } 1714 std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize); 1715 return pkt; 1716} 1717 1718 1719PacketPtr 1720Cache::cleanEvictBlk(CacheBlk *blk) 1721{ 1722 assert(!writebackClean); 1723 assert(blk && blk->isValid() && !blk->isDirty()); 1724 // Creating a zero sized write, a message to the snoop filter 1725 Request *req = 1726 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0, 1727 Request::wbMasterId); 1728 if (blk->isSecure()) 1729 req->setFlags(Request::SECURE); 1730 1731 req->taskId(blk->task_id); 1732 blk->task_id = ContextSwitchTaskId::Unknown; 1733 blk->tickInserted = curTick(); 1734 1735 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict); 1736 pkt->allocate(); 1737 DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print()); 1738 1739 return pkt; 1740} 1741 1742void 1743Cache::memWriteback() 1744{ 1745 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor); 1746 tags->forEachBlk(visitor); 1747} 1748 1749void 1750Cache::memInvalidate() 1751{ 1752 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor); 1753 tags->forEachBlk(visitor); 1754} 1755 1756bool 1757Cache::isDirty() const 1758{ 1759 CacheBlkIsDirtyVisitor visitor; 1760 tags->forEachBlk(visitor); 1761 1762 return visitor.isDirty(); 1763} 1764 1765bool 1766Cache::writebackVisitor(CacheBlk &blk) 1767{ 1768 if (blk.isDirty()) { 1769 assert(blk.isValid()); 1770 1771 Request request(tags->regenerateBlkAddr(blk.tag, blk.set), 1772 blkSize, 0, Request::funcMasterId); 1773 request.taskId(blk.task_id); 1774 if (blk.isSecure()) { 1775 request.setFlags(Request::SECURE); 1776 } 1777 1778 Packet packet(&request, MemCmd::WriteReq); 1779 packet.dataStatic(blk.data); 1780 1781 memSidePort->sendFunctional(&packet); 1782 1783 blk.status &= ~BlkDirty; 1784 } 1785 1786 return true; 1787} 1788 1789bool 1790Cache::invalidateVisitor(CacheBlk &blk) 1791{ 1792 1793 if (blk.isDirty()) 1794 warn_once("Invalidating dirty cache lines. Expect things to break.\n"); 1795 1796 if (blk.isValid()) { 1797 assert(!blk.isDirty()); 1798 invalidateBlock(&blk); 1799 } 1800 1801 return true; 1802} 1803 1804CacheBlk* 1805Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks) 1806{ 1807 CacheBlk *blk = tags->findVictim(addr); 1808 1809 // It is valid to return nullptr if there is no victim 1810 if (!blk) 1811 return nullptr; 1812 1813 if (blk->isValid()) { 1814 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set); 1815 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); 1816 if (repl_mshr) { 1817 // must be an outstanding upgrade request 1818 // on a block we're about to replace... 1819 assert(!blk->isWritable() || blk->isDirty()); 1820 assert(repl_mshr->needsWritable()); 1821 // too hard to replace block with transient state 1822 // allocation failed, block not inserted 1823 return nullptr; 1824 } else { 1825 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx " 1826 "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns", 1827 addr, is_secure ? "s" : "ns", 1828 blk->isDirty() ? "writeback" : "clean"); 1829 1830 if (blk->wasPrefetched()) { 1831 unusedPrefetches++; 1832 } 1833 // Will send up Writeback/CleanEvict snoops via isCachedAbove 1834 // when pushing this writeback list into the write buffer. 1835 if (blk->isDirty() || writebackClean) { 1836 // Save writeback packet for handling by caller 1837 writebacks.push_back(writebackBlk(blk)); 1838 } else { 1839 writebacks.push_back(cleanEvictBlk(blk)); 1840 } 1841 } 1842 } 1843 1844 return blk; 1845} 1846 1847void 1848Cache::invalidateBlock(CacheBlk *blk) 1849{ 1850 if (blk != tempBlock) 1851 tags->invalidate(blk); 1852 blk->invalidate(); 1853} 1854 1855// Note that the reason we return a list of writebacks rather than 1856// inserting them directly in the write buffer is that this function 1857// is called by both atomic and timing-mode accesses, and in atomic 1858// mode we don't mess with the write buffer (we just perform the 1859// writebacks atomically once the original request is complete). 1860CacheBlk* 1861Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks, 1862 bool allocate) 1863{ 1864 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq); 1865 Addr addr = pkt->getAddr(); 1866 bool is_secure = pkt->isSecure(); 1867#if TRACING_ON 1868 CacheBlk::State old_state = blk ? blk->status : 0; 1869#endif 1870 1871 // When handling a fill, we should have no writes to this line. 1872 assert(addr == pkt->getBlockAddr(blkSize)); 1873 assert(!writeBuffer.findMatch(addr, is_secure)); 1874 1875 if (blk == nullptr) { 1876 // better have read new data... 1877 assert(pkt->hasData()); 1878 1879 // only read responses and write-line requests have data; 1880 // note that we don't write the data here for write-line - that 1881 // happens in the subsequent call to satisfyRequest 1882 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq); 1883 1884 // need to do a replacement if allocating, otherwise we stick 1885 // with the temporary storage 1886 blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr; 1887 1888 if (blk == nullptr) { 1889 // No replaceable block or a mostly exclusive 1890 // cache... just use temporary storage to complete the 1891 // current request and then get rid of it 1892 assert(!tempBlock->isValid()); 1893 blk = tempBlock; 1894 tempBlock->set = tags->extractSet(addr); 1895 tempBlock->tag = tags->extractTag(addr); 1896 // @todo: set security state as well... 1897 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, 1898 is_secure ? "s" : "ns"); 1899 } else { 1900 tags->insertBlock(pkt, blk); 1901 } 1902 1903 // we should never be overwriting a valid block 1904 assert(!blk->isValid()); 1905 } else { 1906 // existing block... probably an upgrade 1907 assert(blk->tag == tags->extractTag(addr)); 1908 // either we're getting new data or the block should already be valid 1909 assert(pkt->hasData() || blk->isValid()); 1910 // don't clear block status... if block is already dirty we 1911 // don't want to lose that 1912 } 1913 1914 if (is_secure) 1915 blk->status |= BlkSecure; 1916 blk->status |= BlkValid | BlkReadable; 1917 1918 // sanity check for whole-line writes, which should always be 1919 // marked as writable as part of the fill, and then later marked 1920 // dirty as part of satisfyRequest 1921 if (pkt->cmd == MemCmd::WriteLineReq) { 1922 assert(!pkt->hasSharers()); 1923 } 1924 1925 // here we deal with setting the appropriate state of the line, 1926 // and we start by looking at the hasSharers flag, and ignore the 1927 // cacheResponding flag (normally signalling dirty data) if the 1928 // packet has sharers, thus the line is never allocated as Owned 1929 // (dirty but not writable), and always ends up being either 1930 // Shared, Exclusive or Modified, see Packet::setCacheResponding 1931 // for more details 1932 if (!pkt->hasSharers()) { 1933 // we could get a writable line from memory (rather than a 1934 // cache) even in a read-only cache, note that we set this bit 1935 // even for a read-only cache, possibly revisit this decision 1936 blk->status |= BlkWritable; 1937 1938 // check if we got this via cache-to-cache transfer (i.e., from a 1939 // cache that had the block in Modified or Owned state) 1940 if (pkt->cacheResponding()) { 1941 // we got the block in Modified state, and invalidated the 1942 // owners copy 1943 blk->status |= BlkDirty; 1944 1945 chatty_assert(!isReadOnly, "Should never see dirty snoop response " 1946 "in read-only cache %s\n", name()); 1947 } 1948 } 1949 1950 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", 1951 addr, is_secure ? "s" : "ns", old_state, blk->print()); 1952 1953 // if we got new data, copy it in (checking for a read response 1954 // and a response that has data is the same in the end) 1955 if (pkt->isRead()) { 1956 // sanity checks 1957 assert(pkt->hasData()); 1958 assert(pkt->getSize() == blkSize); 1959 1960 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize); 1961 } 1962 // We pay for fillLatency here. 1963 blk->whenReady = clockEdge() + fillLatency * clockPeriod() + 1964 pkt->payloadDelay; 1965 1966 return blk; 1967} 1968 1969 1970///////////////////////////////////////////////////// 1971// 1972// Snoop path: requests coming in from the memory side 1973// 1974///////////////////////////////////////////////////// 1975 1976void 1977Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data, 1978 bool already_copied, bool pending_inval) 1979{ 1980 // sanity check 1981 assert(req_pkt->isRequest()); 1982 assert(req_pkt->needsResponse()); 1983 1984 DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print()); 1985 // timing-mode snoop responses require a new packet, unless we 1986 // already made a copy... 1987 PacketPtr pkt = req_pkt; 1988 if (!already_copied) 1989 // do not clear flags, and allocate space for data if the 1990 // packet needs it (the only packets that carry data are read 1991 // responses) 1992 pkt = new Packet(req_pkt, false, req_pkt->isRead()); 1993 1994 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() || 1995 pkt->hasSharers()); 1996 pkt->makeTimingResponse(); 1997 if (pkt->isRead()) { 1998 pkt->setDataFromBlock(blk_data, blkSize); 1999 } 2000 if (pkt->cmd == MemCmd::ReadResp && pending_inval) { 2001 // Assume we defer a response to a read from a far-away cache 2002 // A, then later defer a ReadExcl from a cache B on the same 2003 // bus as us. We'll assert cacheResponding in both cases, but 2004 // in the latter case cacheResponding will keep the 2005 // invalidation from reaching cache A. This special response 2006 // tells cache A that it gets the block to satisfy its read, 2007 // but must immediately invalidate it. 2008 pkt->cmd = MemCmd::ReadRespWithInvalidate; 2009 } 2010 // Here we consider forward_time, paying for just forward latency and 2011 // also charging the delay provided by the xbar. 2012 // forward_time is used as send_time in next allocateWriteBuffer(). 2013 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 2014 // Here we reset the timing of the packet. 2015 pkt->headerDelay = pkt->payloadDelay = 0; 2016 DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__, 2017 pkt->print(), forward_time); 2018 memSidePort->schedTimingSnoopResp(pkt, forward_time, true); 2019} 2020 2021uint32_t 2022Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing, 2023 bool is_deferred, bool pending_inval) 2024{ 2025 DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print()); 2026 // deferred snoops can only happen in timing mode 2027 assert(!(is_deferred && !is_timing)); 2028 // pending_inval only makes sense on deferred snoops 2029 assert(!(pending_inval && !is_deferred)); 2030 assert(pkt->isRequest()); 2031 2032 // the packet may get modified if we or a forwarded snooper 2033 // responds in atomic mode, so remember a few things about the 2034 // original packet up front 2035 bool invalidate = pkt->isInvalidate(); 2036 bool M5_VAR_USED needs_writable = pkt->needsWritable(); 2037 2038 // at the moment we could get an uncacheable write which does not 2039 // have the invalidate flag, and we need a suitable way of dealing 2040 // with this case 2041 panic_if(invalidate && pkt->req->isUncacheable(), 2042 "%s got an invalidating uncacheable snoop request %s", 2043 name(), pkt->print()); 2044 2045 uint32_t snoop_delay = 0; 2046 2047 if (forwardSnoops) { 2048 // first propagate snoop upward to see if anyone above us wants to 2049 // handle it. save & restore packet src since it will get 2050 // rewritten to be relative to cpu-side bus (if any) 2051 bool alreadyResponded = pkt->cacheResponding(); 2052 if (is_timing) { 2053 // copy the packet so that we can clear any flags before 2054 // forwarding it upwards, we also allocate data (passing 2055 // the pointer along in case of static data), in case 2056 // there is a snoop hit in upper levels 2057 Packet snoopPkt(pkt, true, true); 2058 snoopPkt.setExpressSnoop(); 2059 // the snoop packet does not need to wait any additional 2060 // time 2061 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0; 2062 cpuSidePort->sendTimingSnoopReq(&snoopPkt); 2063 2064 // add the header delay (including crossbar and snoop 2065 // delays) of the upward snoop to the snoop delay for this 2066 // cache 2067 snoop_delay += snoopPkt.headerDelay; 2068 2069 if (snoopPkt.cacheResponding()) { 2070 // cache-to-cache response from some upper cache 2071 assert(!alreadyResponded); 2072 pkt->setCacheResponding(); 2073 } 2074 // upstream cache has the block, or has an outstanding 2075 // MSHR, pass the flag on 2076 if (snoopPkt.hasSharers()) { 2077 pkt->setHasSharers(); 2078 } 2079 // If this request is a prefetch or clean evict and an upper level 2080 // signals block present, make sure to propagate the block 2081 // presence to the requester. 2082 if (snoopPkt.isBlockCached()) { 2083 pkt->setBlockCached(); 2084 } 2085 // If the request was satisfied by snooping the cache 2086 // above, mark the original packet as satisfied too. 2087 if (snoopPkt.satisfied()) { 2088 pkt->setSatisfied(); 2089 } 2090 } else { 2091 cpuSidePort->sendAtomicSnoop(pkt); 2092 if (!alreadyResponded && pkt->cacheResponding()) { 2093 // cache-to-cache response from some upper cache: 2094 // forward response to original requester 2095 assert(pkt->isResponse()); 2096 } 2097 } 2098 } 2099 2100 bool respond = false; 2101 bool blk_valid = blk && blk->isValid(); 2102 if (pkt->isClean()) { 2103 if (blk_valid && blk->isDirty()) { 2104 DPRINTF(CacheVerbose, "%s: packet (snoop) %s found block: %s\n", 2105 __func__, pkt->print(), blk->print()); 2106 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id); 2107 PacketList writebacks; 2108 writebacks.push_back(wb_pkt); 2109 2110 if (is_timing) { 2111 // anything that is merely forwarded pays for the forward 2112 // latency and the delay provided by the crossbar 2113 Tick forward_time = clockEdge(forwardLatency) + 2114 pkt->headerDelay; 2115 doWritebacks(writebacks, forward_time); 2116 } else { 2117 doWritebacksAtomic(writebacks); 2118 } 2119 pkt->setSatisfied(); 2120 } 2121 } else if (!blk_valid) { 2122 DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__, 2123 pkt->print()); 2124 if (is_deferred) { 2125 // we no longer have the block, and will not respond, but a 2126 // packet was allocated in MSHR::handleSnoop and we have 2127 // to delete it 2128 assert(pkt->needsResponse()); 2129 2130 // we have passed the block to a cache upstream, that 2131 // cache should be responding 2132 assert(pkt->cacheResponding()); 2133 2134 delete pkt; 2135 } 2136 return snoop_delay; 2137 } else { 2138 DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__, 2139 pkt->print(), blk->print()); 2140 2141 // We may end up modifying both the block state and the packet (if 2142 // we respond in atomic mode), so just figure out what to do now 2143 // and then do it later. We respond to all snoops that need 2144 // responses provided we have the block in dirty state. The 2145 // invalidation itself is taken care of below. We don't respond to 2146 // cache maintenance operations as this is done by the destination 2147 // xbar. 2148 respond = blk->isDirty() && pkt->needsResponse(); 2149 2150 chatty_assert(!(isReadOnly && blk->isDirty()), "Should never have " 2151 "a dirty block in a read-only cache %s\n", name()); 2152 } 2153 2154 // Invalidate any prefetch's from below that would strip write permissions 2155 // MemCmd::HardPFReq is only observed by upstream caches. After missing 2156 // above and in it's own cache, a new MemCmd::ReadReq is created that 2157 // downstream caches observe. 2158 if (pkt->mustCheckAbove()) { 2159 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s " 2160 "from lower cache\n", pkt->getAddr(), pkt->print()); 2161 pkt->setBlockCached(); 2162 return snoop_delay; 2163 } 2164 2165 if (pkt->isRead() && !invalidate) { 2166 // reading without requiring the line in a writable state 2167 assert(!needs_writable); 2168 pkt->setHasSharers(); 2169 2170 // if the requesting packet is uncacheable, retain the line in 2171 // the current state, otherwhise unset the writable flag, 2172 // which means we go from Modified to Owned (and will respond 2173 // below), remain in Owned (and will respond below), from 2174 // Exclusive to Shared, or remain in Shared 2175 if (!pkt->req->isUncacheable()) 2176 blk->status &= ~BlkWritable; 2177 DPRINTF(Cache, "new state is %s\n", blk->print()); 2178 } 2179 2180 if (respond) { 2181 // prevent anyone else from responding, cache as well as 2182 // memory, and also prevent any memory from even seeing the 2183 // request 2184 pkt->setCacheResponding(); 2185 if (!pkt->isClean() && blk->isWritable()) { 2186 // inform the cache hierarchy that this cache had the line 2187 // in the Modified state so that we avoid unnecessary 2188 // invalidations (see Packet::setResponderHadWritable) 2189 pkt->setResponderHadWritable(); 2190 2191 // in the case of an uncacheable request there is no point 2192 // in setting the responderHadWritable flag, but since the 2193 // recipient does not care there is no harm in doing so 2194 } else { 2195 // if the packet has needsWritable set we invalidate our 2196 // copy below and all other copies will be invalidates 2197 // through express snoops, and if needsWritable is not set 2198 // we already called setHasSharers above 2199 } 2200 2201 // if we are returning a writable and dirty (Modified) line, 2202 // we should be invalidating the line 2203 panic_if(!invalidate && !pkt->hasSharers(), 2204 "%s is passing a Modified line through %s, " 2205 "but keeping the block", name(), pkt->print()); 2206 2207 if (is_timing) { 2208 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval); 2209 } else { 2210 pkt->makeAtomicResponse(); 2211 // packets such as upgrades do not actually have any data 2212 // payload 2213 if (pkt->hasData()) 2214 pkt->setDataFromBlock(blk->data, blkSize); 2215 } 2216 } 2217 2218 if (!respond && is_deferred) { 2219 assert(pkt->needsResponse()); 2220 2221 // if we copied the deferred packet with the intention to 2222 // respond, but are not responding, then a cache above us must 2223 // be, and we can use this as the indication of whether this 2224 // is a packet where we created a copy of the request or not 2225 if (!pkt->cacheResponding()) { 2226 delete pkt->req; 2227 } 2228 2229 delete pkt; 2230 } 2231 2232 // Do this last in case it deallocates block data or something 2233 // like that 2234 if (blk_valid && invalidate) { 2235 invalidateBlock(blk); 2236 DPRINTF(Cache, "new state is %s\n", blk->print()); 2237 } 2238 2239 return snoop_delay; 2240} 2241 2242 2243void 2244Cache::recvTimingSnoopReq(PacketPtr pkt) 2245{ 2246 DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print()); 2247 2248 // Snoops shouldn't happen when bypassing caches 2249 assert(!system->bypassCaches()); 2250 2251 // no need to snoop requests that are not in range 2252 if (!inRange(pkt->getAddr())) { 2253 return; 2254 } 2255 2256 bool is_secure = pkt->isSecure(); 2257 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 2258 2259 Addr blk_addr = pkt->getBlockAddr(blkSize); 2260 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 2261 2262 // Update the latency cost of the snoop so that the crossbar can 2263 // account for it. Do not overwrite what other neighbouring caches 2264 // have already done, rather take the maximum. The update is 2265 // tentative, for cases where we return before an upward snoop 2266 // happens below. 2267 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, 2268 lookupLatency * clockPeriod()); 2269 2270 // Inform request(Prefetch, CleanEvict or Writeback) from below of 2271 // MSHR hit, set setBlockCached. 2272 if (mshr && pkt->mustCheckAbove()) { 2273 DPRINTF(Cache, "Setting block cached for %s from lower cache on " 2274 "mshr hit\n", pkt->print()); 2275 pkt->setBlockCached(); 2276 return; 2277 } 2278 2279 // Bypass any existing cache maintenance requests if the request 2280 // has been satisfied already (i.e., the dirty block has been 2281 // found). 2282 if (mshr && pkt->req->isCacheMaintenance() && pkt->satisfied()) { 2283 return; 2284 } 2285 2286 // Let the MSHR itself track the snoop and decide whether we want 2287 // to go ahead and do the regular cache snoop 2288 if (mshr && mshr->handleSnoop(pkt, order++)) { 2289 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)." 2290 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns", 2291 mshr->print()); 2292 2293 if (mshr->getNumTargets() > numTarget) 2294 warn("allocating bonus target for snoop"); //handle later 2295 return; 2296 } 2297 2298 //We also need to check the writeback buffers and handle those 2299 WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure); 2300 if (wb_entry) { 2301 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n", 2302 pkt->getAddr(), is_secure ? "s" : "ns"); 2303 // Expect to see only Writebacks and/or CleanEvicts here, both of 2304 // which should not be generated for uncacheable data. 2305 assert(!wb_entry->isUncacheable()); 2306 // There should only be a single request responsible for generating 2307 // Writebacks/CleanEvicts. 2308 assert(wb_entry->getNumTargets() == 1); 2309 PacketPtr wb_pkt = wb_entry->getTarget()->pkt; 2310 assert(wb_pkt->isEviction() || wb_pkt->cmd == MemCmd::WriteClean); 2311 2312 if (pkt->isEviction()) { 2313 // if the block is found in the write queue, set the BLOCK_CACHED 2314 // flag for Writeback/CleanEvict snoop. On return the snoop will 2315 // propagate the BLOCK_CACHED flag in Writeback packets and prevent 2316 // any CleanEvicts from travelling down the memory hierarchy. 2317 pkt->setBlockCached(); 2318 DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue " 2319 "hit\n", __func__, pkt->print()); 2320 return; 2321 } 2322 2323 // conceptually writebacks are no different to other blocks in 2324 // this cache, so the behaviour is modelled after handleSnoop, 2325 // the difference being that instead of querying the block 2326 // state to determine if it is dirty and writable, we use the 2327 // command and fields of the writeback packet 2328 bool respond = wb_pkt->cmd == MemCmd::WritebackDirty && 2329 pkt->needsResponse(); 2330 bool have_writable = !wb_pkt->hasSharers(); 2331 bool invalidate = pkt->isInvalidate(); 2332 2333 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) { 2334 assert(!pkt->needsWritable()); 2335 pkt->setHasSharers(); 2336 wb_pkt->setHasSharers(); 2337 } 2338 2339 if (respond) { 2340 pkt->setCacheResponding(); 2341 2342 if (have_writable) { 2343 pkt->setResponderHadWritable(); 2344 } 2345 2346 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(), 2347 false, false); 2348 } 2349 2350 if (invalidate && wb_pkt->cmd != MemCmd::WriteClean) { 2351 // Invalidation trumps our writeback... discard here 2352 // Note: markInService will remove entry from writeback buffer. 2353 markInService(wb_entry); 2354 delete wb_pkt; 2355 } 2356 } 2357 2358 // If this was a shared writeback, there may still be 2359 // other shared copies above that require invalidation. 2360 // We could be more selective and return here if the 2361 // request is non-exclusive or if the writeback is 2362 // exclusive. 2363 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false); 2364 2365 // Override what we did when we first saw the snoop, as we now 2366 // also have the cost of the upwards snoops to account for 2367 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay + 2368 lookupLatency * clockPeriod()); 2369} 2370 2371bool 2372Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) 2373{ 2374 // Express snoop responses from master to slave, e.g., from L1 to L2 2375 cache->recvTimingSnoopResp(pkt); 2376 return true; 2377} 2378 2379Tick 2380Cache::recvAtomicSnoop(PacketPtr pkt) 2381{ 2382 // Snoops shouldn't happen when bypassing caches 2383 assert(!system->bypassCaches()); 2384 2385 // no need to snoop requests that are not in range. 2386 if (!inRange(pkt->getAddr())) { 2387 return 0; 2388 } 2389 2390 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 2391 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false); 2392 return snoop_delay + lookupLatency * clockPeriod(); 2393} 2394 2395 2396QueueEntry* 2397Cache::getNextQueueEntry() 2398{ 2399 // Check both MSHR queue and write buffer for potential requests, 2400 // note that null does not mean there is no request, it could 2401 // simply be that it is not ready 2402 MSHR *miss_mshr = mshrQueue.getNext(); 2403 WriteQueueEntry *wq_entry = writeBuffer.getNext(); 2404 2405 // If we got a write buffer request ready, first priority is a 2406 // full write buffer, otherwise we favour the miss requests 2407 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) { 2408 // need to search MSHR queue for conflicting earlier miss. 2409 MSHR *conflict_mshr = 2410 mshrQueue.findPending(wq_entry->blkAddr, 2411 wq_entry->isSecure); 2412 2413 if (conflict_mshr && conflict_mshr->order < wq_entry->order) { 2414 // Service misses in order until conflict is cleared. 2415 return conflict_mshr; 2416 2417 // @todo Note that we ignore the ready time of the conflict here 2418 } 2419 2420 // No conflicts; issue write 2421 return wq_entry; 2422 } else if (miss_mshr) { 2423 // need to check for conflicting earlier writeback 2424 WriteQueueEntry *conflict_mshr = 2425 writeBuffer.findPending(miss_mshr->blkAddr, 2426 miss_mshr->isSecure); 2427 if (conflict_mshr) { 2428 // not sure why we don't check order here... it was in the 2429 // original code but commented out. 2430 2431 // The only way this happens is if we are 2432 // doing a write and we didn't have permissions 2433 // then subsequently saw a writeback (owned got evicted) 2434 // We need to make sure to perform the writeback first 2435 // To preserve the dirty data, then we can issue the write 2436 2437 // should we return wq_entry here instead? I.e. do we 2438 // have to flush writes in order? I don't think so... not 2439 // for Alpha anyway. Maybe for x86? 2440 return conflict_mshr; 2441 2442 // @todo Note that we ignore the ready time of the conflict here 2443 } 2444 2445 // No conflicts; issue read 2446 return miss_mshr; 2447 } 2448 2449 // fall through... no pending requests. Try a prefetch. 2450 assert(!miss_mshr && !wq_entry); 2451 if (prefetcher && mshrQueue.canPrefetch()) { 2452 // If we have a miss queue slot, we can try a prefetch 2453 PacketPtr pkt = prefetcher->getPacket(); 2454 if (pkt) { 2455 Addr pf_addr = pkt->getBlockAddr(blkSize); 2456 if (!tags->findBlock(pf_addr, pkt->isSecure()) && 2457 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && 2458 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { 2459 // Update statistic on number of prefetches issued 2460 // (hwpf_mshr_misses) 2461 assert(pkt->req->masterId() < system->maxMasters()); 2462 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 2463 2464 // allocate an MSHR and return it, note 2465 // that we send the packet straight away, so do not 2466 // schedule the send 2467 return allocateMissBuffer(pkt, curTick(), false); 2468 } else { 2469 // free the request and packet 2470 delete pkt->req; 2471 delete pkt; 2472 } 2473 } 2474 } 2475 2476 return nullptr; 2477} 2478 2479bool 2480Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const 2481{ 2482 if (!forwardSnoops) 2483 return false; 2484 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and 2485 // Writeback snoops into upper level caches to check for copies of the 2486 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict 2487 // packet, the cache can inform the crossbar below of presence or absence 2488 // of the block. 2489 if (is_timing) { 2490 Packet snoop_pkt(pkt, true, false); 2491 snoop_pkt.setExpressSnoop(); 2492 // Assert that packet is either Writeback or CleanEvict and not a 2493 // prefetch request because prefetch requests need an MSHR and may 2494 // generate a snoop response. 2495 assert(pkt->isEviction() || pkt->cmd == MemCmd::WriteClean); 2496 snoop_pkt.senderState = nullptr; 2497 cpuSidePort->sendTimingSnoopReq(&snoop_pkt); 2498 // Writeback/CleanEvict snoops do not generate a snoop response. 2499 assert(!(snoop_pkt.cacheResponding())); 2500 return snoop_pkt.isBlockCached(); 2501 } else { 2502 cpuSidePort->sendAtomicSnoop(pkt); 2503 return pkt->isBlockCached(); 2504 } 2505} 2506 2507Tick 2508Cache::nextQueueReadyTime() const 2509{ 2510 Tick nextReady = std::min(mshrQueue.nextReadyTime(), 2511 writeBuffer.nextReadyTime()); 2512 2513 // Don't signal prefetch ready time if no MSHRs available 2514 // Will signal once enoguh MSHRs are deallocated 2515 if (prefetcher && mshrQueue.canPrefetch()) { 2516 nextReady = std::min(nextReady, 2517 prefetcher->nextPrefetchReadyTime()); 2518 } 2519 2520 return nextReady; 2521} 2522 2523bool 2524Cache::sendMSHRQueuePacket(MSHR* mshr) 2525{ 2526 assert(mshr); 2527 2528 // use request from 1st target 2529 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 2530 2531 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print()); 2532 2533 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); 2534 2535 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) { 2536 // we should never have hardware prefetches to allocated 2537 // blocks 2538 assert(blk == nullptr); 2539 2540 // We need to check the caches above us to verify that 2541 // they don't have a copy of this block in the dirty state 2542 // at the moment. Without this check we could get a stale 2543 // copy from memory that might get used in place of the 2544 // dirty one. 2545 Packet snoop_pkt(tgt_pkt, true, false); 2546 snoop_pkt.setExpressSnoop(); 2547 // We are sending this packet upwards, but if it hits we will 2548 // get a snoop response that we end up treating just like a 2549 // normal response, hence it needs the MSHR as its sender 2550 // state 2551 snoop_pkt.senderState = mshr; 2552 cpuSidePort->sendTimingSnoopReq(&snoop_pkt); 2553 2554 // Check to see if the prefetch was squashed by an upper cache (to 2555 // prevent us from grabbing the line) or if a Check to see if a 2556 // writeback arrived between the time the prefetch was placed in 2557 // the MSHRs and when it was selected to be sent or if the 2558 // prefetch was squashed by an upper cache. 2559 2560 // It is important to check cacheResponding before 2561 // prefetchSquashed. If another cache has committed to 2562 // responding, it will be sending a dirty response which will 2563 // arrive at the MSHR allocated for this request. Checking the 2564 // prefetchSquash first may result in the MSHR being 2565 // prematurely deallocated. 2566 if (snoop_pkt.cacheResponding()) { 2567 auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req); 2568 assert(r.second); 2569 2570 // if we are getting a snoop response with no sharers it 2571 // will be allocated as Modified 2572 bool pending_modified_resp = !snoop_pkt.hasSharers(); 2573 markInService(mshr, pending_modified_resp); 2574 2575 DPRINTF(Cache, "Upward snoop of prefetch for addr" 2576 " %#x (%s) hit\n", 2577 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns"); 2578 return false; 2579 } 2580 2581 if (snoop_pkt.isBlockCached()) { 2582 DPRINTF(Cache, "Block present, prefetch squashed by cache. " 2583 "Deallocating mshr target %#x.\n", 2584 mshr->blkAddr); 2585 2586 // Deallocate the mshr target 2587 if (mshrQueue.forceDeallocateTarget(mshr)) { 2588 // Clear block if this deallocation resulted freed an 2589 // mshr when all had previously been utilized 2590 clearBlocked(Blocked_NoMSHRs); 2591 } 2592 2593 // given that no response is expected, delete Request and Packet 2594 delete tgt_pkt->req; 2595 delete tgt_pkt; 2596 2597 return false; 2598 } 2599 } 2600 2601 // either a prefetch that is not present upstream, or a normal 2602 // MSHR request, proceed to get the packet to send downstream 2603 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable()); 2604 2605 mshr->isForward = (pkt == nullptr); 2606 2607 if (mshr->isForward) { 2608 // not a cache block request, but a response is expected 2609 // make copy of current packet to forward, keep current 2610 // copy for response handling 2611 pkt = new Packet(tgt_pkt, false, true); 2612 assert(!pkt->isWrite()); 2613 } 2614 2615 // play it safe and append (rather than set) the sender state, 2616 // as forwarded packets may already have existing state 2617 pkt->pushSenderState(mshr); 2618 2619 if (pkt->isClean() && blk && blk->isDirty()) { 2620 // A cache clean opearation is looking for a dirty block. Mark 2621 // the packet so that the destination xbar can determine that 2622 // there will be a follow-up write packet as well. 2623 pkt->setSatisfied(); 2624 } 2625 2626 if (!memSidePort->sendTimingReq(pkt)) { 2627 // we are awaiting a retry, but we 2628 // delete the packet and will be creating a new packet 2629 // when we get the opportunity 2630 delete pkt; 2631 2632 // note that we have now masked any requestBus and 2633 // schedSendEvent (we will wait for a retry before 2634 // doing anything), and this is so even if we do not 2635 // care about this packet and might override it before 2636 // it gets retried 2637 return true; 2638 } else { 2639 // As part of the call to sendTimingReq the packet is 2640 // forwarded to all neighbouring caches (and any caches 2641 // above them) as a snoop. Thus at this point we know if 2642 // any of the neighbouring caches are responding, and if 2643 // so, we know it is dirty, and we can determine if it is 2644 // being passed as Modified, making our MSHR the ordering 2645 // point 2646 bool pending_modified_resp = !pkt->hasSharers() && 2647 pkt->cacheResponding(); 2648 markInService(mshr, pending_modified_resp); 2649 if (pkt->isClean() && blk && blk->isDirty()) { 2650 // A cache clean opearation is looking for a dirty 2651 // block. If a dirty block is encountered a WriteClean 2652 // will update any copies to the path to the memory 2653 // until the point of reference. 2654 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 2655 __func__, pkt->print(), blk->print()); 2656 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), 2657 pkt->id); 2658 PacketList writebacks; 2659 writebacks.push_back(wb_pkt); 2660 doWritebacks(writebacks, 0); 2661 } 2662 2663 return false; 2664 } 2665} 2666 2667bool 2668Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry) 2669{ 2670 assert(wq_entry); 2671 2672 // always a single target for write queue entries 2673 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt; 2674 2675 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print()); 2676 2677 // forward as is, both for evictions and uncacheable writes 2678 if (!memSidePort->sendTimingReq(tgt_pkt)) { 2679 // note that we have now masked any requestBus and 2680 // schedSendEvent (we will wait for a retry before 2681 // doing anything), and this is so even if we do not 2682 // care about this packet and might override it before 2683 // it gets retried 2684 return true; 2685 } else { 2686 markInService(wq_entry); 2687 return false; 2688 } 2689} 2690 2691void 2692Cache::serialize(CheckpointOut &cp) const 2693{ 2694 bool dirty(isDirty()); 2695 2696 if (dirty) { 2697 warn("*** The cache still contains dirty data. ***\n"); 2698 warn(" Make sure to drain the system using the correct flags.\n"); 2699 warn(" This checkpoint will not restore correctly and dirty data " 2700 " in the cache will be lost!\n"); 2701 } 2702 2703 // Since we don't checkpoint the data in the cache, any dirty data 2704 // will be lost when restoring from a checkpoint of a system that 2705 // wasn't drained properly. Flag the checkpoint as invalid if the 2706 // cache contains dirty data. 2707 bool bad_checkpoint(dirty); 2708 SERIALIZE_SCALAR(bad_checkpoint); 2709} 2710 2711void 2712Cache::unserialize(CheckpointIn &cp) 2713{ 2714 bool bad_checkpoint; 2715 UNSERIALIZE_SCALAR(bad_checkpoint); 2716 if (bad_checkpoint) { 2717 fatal("Restoring from checkpoints with dirty caches is not supported " 2718 "in the classic memory system. Please remove any caches or " 2719 " drain them properly before taking checkpoints.\n"); 2720 } 2721} 2722 2723/////////////// 2724// 2725// CpuSidePort 2726// 2727/////////////// 2728 2729AddrRangeList 2730Cache::CpuSidePort::getAddrRanges() const 2731{ 2732 return cache->getAddrRanges(); 2733} 2734 2735bool 2736Cache::CpuSidePort::tryTiming(PacketPtr pkt) 2737{ 2738 assert(!cache->system->bypassCaches()); 2739 2740 // always let express snoop packets through if even if blocked 2741 if (pkt->isExpressSnoop()) { 2742 return true; 2743 } else if (isBlocked() || mustSendRetry) { 2744 // either already committed to send a retry, or blocked 2745 mustSendRetry = true; 2746 return false; 2747 } 2748 mustSendRetry = false; 2749 return true; 2750} 2751 2752bool 2753Cache::CpuSidePort::recvTimingReq(PacketPtr pkt) 2754{ 2755 assert(!cache->system->bypassCaches()); 2756 2757 // always let express snoop packets through if even if blocked 2758 if (pkt->isExpressSnoop()) { 2759 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt); 2760 assert(bypass_success); 2761 return true; 2762 } 2763 2764 return tryTiming(pkt) && cache->recvTimingReq(pkt); 2765} 2766 2767Tick 2768Cache::CpuSidePort::recvAtomic(PacketPtr pkt) 2769{ 2770 return cache->recvAtomic(pkt); 2771} 2772 2773void 2774Cache::CpuSidePort::recvFunctional(PacketPtr pkt) 2775{ 2776 // functional request 2777 cache->functionalAccess(pkt, true); 2778} 2779 2780Cache:: 2781CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache, 2782 const std::string &_label) 2783 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache) 2784{ 2785} 2786 2787Cache* 2788CacheParams::create() 2789{ 2790 assert(tags); 2791 2792 return new Cache(this); 2793} 2794/////////////// 2795// 2796// MemSidePort 2797// 2798/////////////// 2799 2800bool 2801Cache::MemSidePort::recvTimingResp(PacketPtr pkt) 2802{ 2803 cache->recvTimingResp(pkt); 2804 return true; 2805} 2806 2807// Express snooping requests to memside port 2808void 2809Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) 2810{ 2811 // handle snooping requests 2812 cache->recvTimingSnoopReq(pkt); 2813} 2814 2815Tick 2816Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) 2817{ 2818 return cache->recvAtomicSnoop(pkt); 2819} 2820 2821void 2822Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) 2823{ 2824 // functional snoop (note that in contrast to atomic we don't have 2825 // a specific functionalSnoop method, as they have the same 2826 // behaviour regardless) 2827 cache->functionalAccess(pkt, false); 2828} 2829 2830void 2831Cache::CacheReqPacketQueue::sendDeferredPacket() 2832{ 2833 // sanity check 2834 assert(!waitingOnRetry); 2835 2836 // there should never be any deferred request packets in the 2837 // queue, instead we resly on the cache to provide the packets 2838 // from the MSHR queue or write queue 2839 assert(deferredPacketReadyTime() == MaxTick); 2840 2841 // check for request packets (requests & writebacks) 2842 QueueEntry* entry = cache.getNextQueueEntry(); 2843 2844 if (!entry) { 2845 // can happen if e.g. we attempt a writeback and fail, but 2846 // before the retry, the writeback is eliminated because 2847 // we snoop another cache's ReadEx. 2848 } else { 2849 // let our snoop responses go first if there are responses to 2850 // the same addresses 2851 if (checkConflictingSnoop(entry->blkAddr)) { 2852 return; 2853 } 2854 waitingOnRetry = entry->sendPacket(cache); 2855 } 2856 2857 // if we succeeded and are not waiting for a retry, schedule the 2858 // next send considering when the next queue is ready, note that 2859 // snoop responses have their own packet queue and thus schedule 2860 // their own events 2861 if (!waitingOnRetry) { 2862 schedSendEvent(cache.nextQueueReadyTime()); 2863 } 2864} 2865 2866Cache:: 2867MemSidePort::MemSidePort(const std::string &_name, Cache *_cache, 2868 const std::string &_label) 2869 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), 2870 _reqQueue(*_cache, *this, _snoopRespQueue, _label), 2871 _snoopRespQueue(*_cache, *this, _label), cache(_cache) 2872{ 2873} 2874