cache.cc revision 12349:47f454120200
1/*
2 * Copyright (c) 2010-2017 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nathan Binkert
44 *          Steve Reinhardt
45 *          Ron Dreslinski
46 *          Andreas Sandberg
47 *          Nikos Nikoleris
48 */
49
50/**
51 * @file
52 * Cache definitions.
53 */
54
55#include "mem/cache/cache.hh"
56
57#include "base/logging.hh"
58#include "base/types.hh"
59#include "debug/Cache.hh"
60#include "debug/CachePort.hh"
61#include "debug/CacheTags.hh"
62#include "debug/CacheVerbose.hh"
63#include "mem/cache/blk.hh"
64#include "mem/cache/mshr.hh"
65#include "mem/cache/prefetch/base.hh"
66#include "sim/sim_exit.hh"
67
68Cache::Cache(const CacheParams *p)
69    : BaseCache(p, p->system->cacheLineSize()),
70      tags(p->tags),
71      prefetcher(p->prefetcher),
72      doFastWrites(true),
73      prefetchOnAccess(p->prefetch_on_access),
74      clusivity(p->clusivity),
75      writebackClean(p->writeback_clean),
76      tempBlockWriteback(nullptr),
77      writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
78                                    name(), false,
79                                    EventBase::Delayed_Writeback_Pri)
80{
81    tempBlock = new CacheBlk();
82    tempBlock->data = new uint8_t[blkSize];
83
84    cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
85                                  "CpuSidePort");
86    memSidePort = new MemSidePort(p->name + ".mem_side", this,
87                                  "MemSidePort");
88
89    tags->setCache(this);
90    if (prefetcher)
91        prefetcher->setCache(this);
92}
93
94Cache::~Cache()
95{
96    delete [] tempBlock->data;
97    delete tempBlock;
98
99    delete cpuSidePort;
100    delete memSidePort;
101}
102
103void
104Cache::regStats()
105{
106    BaseCache::regStats();
107}
108
109void
110Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
111{
112    assert(pkt->isRequest());
113
114    uint64_t overwrite_val;
115    bool overwrite_mem;
116    uint64_t condition_val64;
117    uint32_t condition_val32;
118
119    int offset = tags->extractBlkOffset(pkt->getAddr());
120    uint8_t *blk_data = blk->data + offset;
121
122    assert(sizeof(uint64_t) >= pkt->getSize());
123
124    overwrite_mem = true;
125    // keep a copy of our possible write value, and copy what is at the
126    // memory address into the packet
127    pkt->writeData((uint8_t *)&overwrite_val);
128    pkt->setData(blk_data);
129
130    if (pkt->req->isCondSwap()) {
131        if (pkt->getSize() == sizeof(uint64_t)) {
132            condition_val64 = pkt->req->getExtraData();
133            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
134                                         sizeof(uint64_t));
135        } else if (pkt->getSize() == sizeof(uint32_t)) {
136            condition_val32 = (uint32_t)pkt->req->getExtraData();
137            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
138                                         sizeof(uint32_t));
139        } else
140            panic("Invalid size for conditional read/write\n");
141    }
142
143    if (overwrite_mem) {
144        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
145        blk->status |= BlkDirty;
146    }
147}
148
149
150void
151Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
152                      bool deferred_response, bool pending_downgrade)
153{
154    assert(pkt->isRequest());
155
156    assert(blk && blk->isValid());
157    // Occasionally this is not true... if we are a lower-level cache
158    // satisfying a string of Read and ReadEx requests from
159    // upper-level caches, a Read will mark the block as shared but we
160    // can satisfy a following ReadEx anyway since we can rely on the
161    // Read requester(s) to have buffered the ReadEx snoop and to
162    // invalidate their blocks after receiving them.
163    // assert(!pkt->needsWritable() || blk->isWritable());
164    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
165
166    // Check RMW operations first since both isRead() and
167    // isWrite() will be true for them
168    if (pkt->cmd == MemCmd::SwapReq) {
169        cmpAndSwap(blk, pkt);
170    } else if (pkt->isWrite()) {
171        // we have the block in a writable state and can go ahead,
172        // note that the line may be also be considered writable in
173        // downstream caches along the path to memory, but always
174        // Exclusive, and never Modified
175        assert(blk->isWritable());
176        // Write or WriteLine at the first cache with block in writable state
177        if (blk->checkWrite(pkt)) {
178            pkt->writeDataToBlock(blk->data, blkSize);
179        }
180        // Always mark the line as dirty (and thus transition to the
181        // Modified state) even if we are a failed StoreCond so we
182        // supply data to any snoops that have appended themselves to
183        // this cache before knowing the store will fail.
184        blk->status |= BlkDirty;
185        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
186    } else if (pkt->isRead()) {
187        if (pkt->isLLSC()) {
188            blk->trackLoadLocked(pkt);
189        }
190
191        // all read responses have a data payload
192        assert(pkt->hasRespData());
193        pkt->setDataFromBlock(blk->data, blkSize);
194
195        // determine if this read is from a (coherent) cache or not
196        if (pkt->fromCache()) {
197            assert(pkt->getSize() == blkSize);
198            // special handling for coherent block requests from
199            // upper-level caches
200            if (pkt->needsWritable()) {
201                // sanity check
202                assert(pkt->cmd == MemCmd::ReadExReq ||
203                       pkt->cmd == MemCmd::SCUpgradeFailReq);
204                assert(!pkt->hasSharers());
205
206                // if we have a dirty copy, make sure the recipient
207                // keeps it marked dirty (in the modified state)
208                if (blk->isDirty()) {
209                    pkt->setCacheResponding();
210                    blk->status &= ~BlkDirty;
211                }
212            } else if (blk->isWritable() && !pending_downgrade &&
213                       !pkt->hasSharers() &&
214                       pkt->cmd != MemCmd::ReadCleanReq) {
215                // we can give the requester a writable copy on a read
216                // request if:
217                // - we have a writable copy at this level (& below)
218                // - we don't have a pending snoop from below
219                //   signaling another read request
220                // - no other cache above has a copy (otherwise it
221                //   would have set hasSharers flag when
222                //   snooping the packet)
223                // - the read has explicitly asked for a clean
224                //   copy of the line
225                if (blk->isDirty()) {
226                    // special considerations if we're owner:
227                    if (!deferred_response) {
228                        // respond with the line in Modified state
229                        // (cacheResponding set, hasSharers not set)
230                        pkt->setCacheResponding();
231
232                        // if this cache is mostly inclusive, we
233                        // keep the block in the Exclusive state,
234                        // and pass it upwards as Modified
235                        // (writable and dirty), hence we have
236                        // multiple caches, all on the same path
237                        // towards memory, all considering the
238                        // same block writable, but only one
239                        // considering it Modified
240
241                        // we get away with multiple caches (on
242                        // the same path to memory) considering
243                        // the block writeable as we always enter
244                        // the cache hierarchy through a cache,
245                        // and first snoop upwards in all other
246                        // branches
247                        blk->status &= ~BlkDirty;
248                    } else {
249                        // if we're responding after our own miss,
250                        // there's a window where the recipient didn't
251                        // know it was getting ownership and may not
252                        // have responded to snoops correctly, so we
253                        // have to respond with a shared line
254                        pkt->setHasSharers();
255                    }
256                }
257            } else {
258                // otherwise only respond with a shared copy
259                pkt->setHasSharers();
260            }
261        }
262    } else if (pkt->isUpgrade()) {
263        // sanity check
264        assert(!pkt->hasSharers());
265
266        if (blk->isDirty()) {
267            // we were in the Owned state, and a cache above us that
268            // has the line in Shared state needs to be made aware
269            // that the data it already has is in fact dirty
270            pkt->setCacheResponding();
271            blk->status &= ~BlkDirty;
272        }
273    } else {
274        assert(pkt->isInvalidate());
275        invalidateBlock(blk);
276        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
277                pkt->print());
278    }
279}
280
281/////////////////////////////////////////////////////
282//
283// Access path: requests coming in from the CPU side
284//
285/////////////////////////////////////////////////////
286
287bool
288Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
289              PacketList &writebacks)
290{
291    // sanity check
292    assert(pkt->isRequest());
293
294    chatty_assert(!(isReadOnly && pkt->isWrite()),
295                  "Should never see a write in a read-only cache %s\n",
296                  name());
297
298    DPRINTF(CacheVerbose, "%s for %s\n", __func__, pkt->print());
299
300    if (pkt->req->isUncacheable()) {
301        DPRINTF(Cache, "uncacheable: %s\n", pkt->print());
302
303        // flush and invalidate any existing block
304        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
305        if (old_blk && old_blk->isValid()) {
306            if (old_blk->isDirty() || writebackClean)
307                writebacks.push_back(writebackBlk(old_blk));
308            else
309                writebacks.push_back(cleanEvictBlk(old_blk));
310            invalidateBlock(old_blk);
311        }
312
313        blk = nullptr;
314        // lookupLatency is the latency in case the request is uncacheable.
315        lat = lookupLatency;
316        return false;
317    }
318
319    // Here lat is the value passed as parameter to accessBlock() function
320    // that can modify its value.
321    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
322
323    DPRINTF(Cache, "%s %s\n", pkt->print(),
324            blk ? "hit " + blk->print() : "miss");
325
326    if (pkt->req->isCacheMaintenance()) {
327        // A cache maintenance operation is always forwarded to the
328        // memory below even if the block is found in dirty state.
329
330        // We defer any changes to the state of the block until we
331        // create and mark as in service the mshr for the downstream
332        // packet.
333        return false;
334    }
335
336    if (pkt->isEviction()) {
337        // We check for presence of block in above caches before issuing
338        // Writeback or CleanEvict to write buffer. Therefore the only
339        // possible cases can be of a CleanEvict packet coming from above
340        // encountering a Writeback generated in this cache peer cache and
341        // waiting in the write buffer. Cases of upper level peer caches
342        // generating CleanEvict and Writeback or simply CleanEvict and
343        // CleanEvict almost simultaneously will be caught by snoops sent out
344        // by crossbar.
345        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
346                                                          pkt->isSecure());
347        if (wb_entry) {
348            assert(wb_entry->getNumTargets() == 1);
349            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
350            assert(wbPkt->isWriteback());
351
352            if (pkt->isCleanEviction()) {
353                // The CleanEvict and WritebackClean snoops into other
354                // peer caches of the same level while traversing the
355                // crossbar. If a copy of the block is found, the
356                // packet is deleted in the crossbar. Hence, none of
357                // the other upper level caches connected to this
358                // cache have the block, so we can clear the
359                // BLOCK_CACHED flag in the Writeback if set and
360                // discard the CleanEvict by returning true.
361                wbPkt->clearBlockCached();
362                return true;
363            } else {
364                assert(pkt->cmd == MemCmd::WritebackDirty);
365                // Dirty writeback from above trumps our clean
366                // writeback... discard here
367                // Note: markInService will remove entry from writeback buffer.
368                markInService(wb_entry);
369                delete wbPkt;
370            }
371        }
372    }
373
374    // Writeback handling is special case.  We can write the block into
375    // the cache without having a writeable copy (or any copy at all).
376    if (pkt->isWriteback()) {
377        assert(blkSize == pkt->getSize());
378
379        // we could get a clean writeback while we are having
380        // outstanding accesses to a block, do the simple thing for
381        // now and drop the clean writeback so that we do not upset
382        // any ordering/decisions about ownership already taken
383        if (pkt->cmd == MemCmd::WritebackClean &&
384            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
385            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
386                    "dropping\n", pkt->getAddr());
387            return true;
388        }
389
390        if (blk == nullptr) {
391            // need to do a replacement
392            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
393            if (blk == nullptr) {
394                // no replaceable block available: give up, fwd to next level.
395                incMissCount(pkt);
396                return false;
397            }
398            tags->insertBlock(pkt, blk);
399
400            blk->status = (BlkValid | BlkReadable);
401            if (pkt->isSecure()) {
402                blk->status |= BlkSecure;
403            }
404        }
405        // only mark the block dirty if we got a writeback command,
406        // and leave it as is for a clean writeback
407        if (pkt->cmd == MemCmd::WritebackDirty) {
408            blk->status |= BlkDirty;
409        }
410        // if the packet does not have sharers, it is passing
411        // writable, and we got the writeback in Modified or Exclusive
412        // state, if not we are in the Owned or Shared state
413        if (!pkt->hasSharers()) {
414            blk->status |= BlkWritable;
415        }
416        // nothing else to do; writeback doesn't expect response
417        assert(!pkt->needsResponse());
418        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
419        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
420        incHitCount(pkt);
421        return true;
422    } else if (pkt->cmd == MemCmd::CleanEvict) {
423        if (blk != nullptr) {
424            // Found the block in the tags, need to stop CleanEvict from
425            // propagating further down the hierarchy. Returning true will
426            // treat the CleanEvict like a satisfied write request and delete
427            // it.
428            return true;
429        }
430        // We didn't find the block here, propagate the CleanEvict further
431        // down the memory hierarchy. Returning false will treat the CleanEvict
432        // like a Writeback which could not find a replaceable block so has to
433        // go to next level.
434        return false;
435    } else if (pkt->cmd == MemCmd::WriteClean) {
436        // WriteClean handling is a special case. We can allocate a
437        // block directly if it doesn't exist and we can update the
438        // block immediately. The WriteClean transfers the ownership
439        // of the block as well.
440        assert(blkSize == pkt->getSize());
441
442        if (!blk) {
443            if (pkt->writeThrough()) {
444                // if this is a write through packet, we don't try to
445                // allocate if the block is not present
446                return false;
447            } else {
448                // a writeback that misses needs to allocate a new block
449                blk = allocateBlock(pkt->getAddr(), pkt->isSecure(),
450                                    writebacks);
451                if (!blk) {
452                    // no replaceable block available: give up, fwd to
453                    // next level.
454                    incMissCount(pkt);
455                    return false;
456                }
457                tags->insertBlock(pkt, blk);
458
459                blk->status = (BlkValid | BlkReadable);
460                if (pkt->isSecure()) {
461                    blk->status |= BlkSecure;
462                }
463            }
464        }
465
466        // at this point either this is a writeback or a write-through
467        // write clean operation and the block is already in this
468        // cache, we need to update the data and the block flags
469        assert(blk);
470        if (!pkt->writeThrough()) {
471            blk->status |= BlkDirty;
472        }
473        // nothing else to do; writeback doesn't expect response
474        assert(!pkt->needsResponse());
475        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
476        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
477
478        incHitCount(pkt);
479        // populate the time when the block will be ready to access.
480        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
481            pkt->payloadDelay;
482        // if this a write-through packet it will be sent to cache
483        // below
484        return !pkt->writeThrough();
485    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
486                       blk->isReadable())) {
487        // OK to satisfy access
488        incHitCount(pkt);
489        satisfyRequest(pkt, blk);
490        maintainClusivity(pkt->fromCache(), blk);
491
492        return true;
493    }
494
495    // Can't satisfy access normally... either no block (blk == nullptr)
496    // or have block but need writable
497
498    incMissCount(pkt);
499
500    if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) {
501        // complete miss on store conditional... just give up now
502        pkt->req->setExtraData(0);
503        return true;
504    }
505
506    return false;
507}
508
509void
510Cache::maintainClusivity(bool from_cache, CacheBlk *blk)
511{
512    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
513        clusivity == Enums::mostly_excl) {
514        // if we have responded to a cache, and our block is still
515        // valid, but not dirty, and this cache is mostly exclusive
516        // with respect to the cache above, drop the block
517        invalidateBlock(blk);
518    }
519}
520
521void
522Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
523{
524    while (!writebacks.empty()) {
525        PacketPtr wbPkt = writebacks.front();
526        // We use forwardLatency here because we are copying writebacks to
527        // write buffer.
528
529        // Call isCachedAbove for Writebacks, CleanEvicts and
530        // WriteCleans to discover if the block is cached above.
531        if (isCachedAbove(wbPkt)) {
532            if (wbPkt->cmd == MemCmd::CleanEvict) {
533                // Delete CleanEvict because cached copies exist above. The
534                // packet destructor will delete the request object because
535                // this is a non-snoop request packet which does not require a
536                // response.
537                delete wbPkt;
538            } else if (wbPkt->cmd == MemCmd::WritebackClean) {
539                // clean writeback, do not send since the block is
540                // still cached above
541                assert(writebackClean);
542                delete wbPkt;
543            } else {
544                assert(wbPkt->cmd == MemCmd::WritebackDirty ||
545                       wbPkt->cmd == MemCmd::WriteClean);
546                // Set BLOCK_CACHED flag in Writeback and send below, so that
547                // the Writeback does not reset the bit corresponding to this
548                // address in the snoop filter below.
549                wbPkt->setBlockCached();
550                allocateWriteBuffer(wbPkt, forward_time);
551            }
552        } else {
553            // If the block is not cached above, send packet below. Both
554            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
555            // reset the bit corresponding to this address in the snoop filter
556            // below.
557            allocateWriteBuffer(wbPkt, forward_time);
558        }
559        writebacks.pop_front();
560    }
561}
562
563void
564Cache::doWritebacksAtomic(PacketList& writebacks)
565{
566    while (!writebacks.empty()) {
567        PacketPtr wbPkt = writebacks.front();
568        // Call isCachedAbove for both Writebacks and CleanEvicts. If
569        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
570        // and discard CleanEvicts.
571        if (isCachedAbove(wbPkt, false)) {
572            if (wbPkt->cmd == MemCmd::WritebackDirty ||
573                wbPkt->cmd == MemCmd::WriteClean) {
574                // Set BLOCK_CACHED flag in Writeback and send below,
575                // so that the Writeback does not reset the bit
576                // corresponding to this address in the snoop filter
577                // below. We can discard CleanEvicts because cached
578                // copies exist above. Atomic mode isCachedAbove
579                // modifies packet to set BLOCK_CACHED flag
580                memSidePort->sendAtomic(wbPkt);
581            }
582        } else {
583            // If the block is not cached above, send packet below. Both
584            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
585            // reset the bit corresponding to this address in the snoop filter
586            // below.
587            memSidePort->sendAtomic(wbPkt);
588        }
589        writebacks.pop_front();
590        // In case of CleanEvicts, the packet destructor will delete the
591        // request object because this is a non-snoop request packet which
592        // does not require a response.
593        delete wbPkt;
594    }
595}
596
597
598void
599Cache::recvTimingSnoopResp(PacketPtr pkt)
600{
601    DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
602
603    assert(pkt->isResponse());
604    assert(!system->bypassCaches());
605
606    // determine if the response is from a snoop request we created
607    // (in which case it should be in the outstandingSnoop), or if we
608    // merely forwarded someone else's snoop request
609    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
610        outstandingSnoop.end();
611
612    if (!forwardAsSnoop) {
613        // the packet came from this cache, so sink it here and do not
614        // forward it
615        assert(pkt->cmd == MemCmd::HardPFResp);
616
617        outstandingSnoop.erase(pkt->req);
618
619        DPRINTF(Cache, "Got prefetch response from above for addr "
620                "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
621        recvTimingResp(pkt);
622        return;
623    }
624
625    // forwardLatency is set here because there is a response from an
626    // upper level cache.
627    // To pay the delay that occurs if the packet comes from the bus,
628    // we charge also headerDelay.
629    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
630    // Reset the timing of the packet.
631    pkt->headerDelay = pkt->payloadDelay = 0;
632    memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
633}
634
635void
636Cache::promoteWholeLineWrites(PacketPtr pkt)
637{
638    // Cache line clearing instructions
639    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
640        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
641        pkt->cmd = MemCmd::WriteLineReq;
642        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
643    }
644}
645
646bool
647Cache::recvTimingReq(PacketPtr pkt)
648{
649    DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print());
650
651    assert(pkt->isRequest());
652
653    // Just forward the packet if caches are disabled.
654    if (system->bypassCaches()) {
655        // @todo This should really enqueue the packet rather
656        bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
657        assert(success);
658        return true;
659    }
660
661    promoteWholeLineWrites(pkt);
662
663    // Cache maintenance operations have to visit all the caches down
664    // to the specified xbar (PoC, PoU, etc.). Even if a cache above
665    // is responding we forward the packet to the memory below rather
666    // than creating an express snoop.
667    if (pkt->cacheResponding()) {
668        // a cache above us (but not where the packet came from) is
669        // responding to the request, in other words it has the line
670        // in Modified or Owned state
671        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
672                pkt->print());
673
674        // if the packet needs the block to be writable, and the cache
675        // that has promised to respond (setting the cache responding
676        // flag) is not providing writable (it is in Owned rather than
677        // the Modified state), we know that there may be other Shared
678        // copies in the system; go out and invalidate them all
679        assert(pkt->needsWritable() && !pkt->responderHadWritable());
680
681        // an upstream cache that had the line in Owned state
682        // (dirty, but not writable), is responding and thus
683        // transferring the dirty line from one branch of the
684        // cache hierarchy to another
685
686        // send out an express snoop and invalidate all other
687        // copies (snooping a packet that needs writable is the
688        // same as an invalidation), thus turning the Owned line
689        // into a Modified line, note that we don't invalidate the
690        // block in the current cache or any other cache on the
691        // path to memory
692
693        // create a downstream express snoop with cleared packet
694        // flags, there is no need to allocate any data as the
695        // packet is merely used to co-ordinate state transitions
696        Packet *snoop_pkt = new Packet(pkt, true, false);
697
698        // also reset the bus time that the original packet has
699        // not yet paid for
700        snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
701
702        // make this an instantaneous express snoop, and let the
703        // other caches in the system know that the another cache
704        // is responding, because we have found the authorative
705        // copy (Modified or Owned) that will supply the right
706        // data
707        snoop_pkt->setExpressSnoop();
708        snoop_pkt->setCacheResponding();
709
710        // this express snoop travels towards the memory, and at
711        // every crossbar it is snooped upwards thus reaching
712        // every cache in the system
713        bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
714        // express snoops always succeed
715        assert(success);
716
717        // main memory will delete the snoop packet
718
719        // queue for deletion, as opposed to immediate deletion, as
720        // the sending cache is still relying on the packet
721        pendingDelete.reset(pkt);
722
723        // no need to take any further action in this particular cache
724        // as an upstram cache has already committed to responding,
725        // and we have already sent out any express snoops in the
726        // section above to ensure all other copies in the system are
727        // invalidated
728        return true;
729    }
730
731    // anything that is merely forwarded pays for the forward latency and
732    // the delay provided by the crossbar
733    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
734
735    // We use lookupLatency here because it is used to specify the latency
736    // to access.
737    Cycles lat = lookupLatency;
738    CacheBlk *blk = nullptr;
739    bool satisfied = false;
740    {
741        PacketList writebacks;
742        // Note that lat is passed by reference here. The function
743        // access() calls accessBlock() which can modify lat value.
744        satisfied = access(pkt, blk, lat, writebacks);
745
746        // copy writebacks to write buffer here to ensure they logically
747        // proceed anything happening below
748        doWritebacks(writebacks, forward_time);
749    }
750
751    // Here we charge the headerDelay that takes into account the latencies
752    // of the bus, if the packet comes from it.
753    // The latency charged it is just lat that is the value of lookupLatency
754    // modified by access() function, or if not just lookupLatency.
755    // In case of a hit we are neglecting response latency.
756    // In case of a miss we are neglecting forward latency.
757    Tick request_time = clockEdge(lat) + pkt->headerDelay;
758    // Here we reset the timing of the packet.
759    pkt->headerDelay = pkt->payloadDelay = 0;
760
761    // track time of availability of next prefetch, if any
762    Tick next_pf_time = MaxTick;
763
764    bool needsResponse = pkt->needsResponse();
765
766    if (satisfied) {
767        // should never be satisfying an uncacheable access as we
768        // flush and invalidate any existing block as part of the
769        // lookup
770        assert(!pkt->req->isUncacheable());
771
772        // hit (for all other request types)
773
774        if (prefetcher && (prefetchOnAccess ||
775                           (blk && blk->wasPrefetched()))) {
776            if (blk)
777                blk->status &= ~BlkHWPrefetched;
778
779            // Don't notify on SWPrefetch
780            if (!pkt->cmd.isSWPrefetch()) {
781                assert(!pkt->req->isCacheMaintenance());
782                next_pf_time = prefetcher->notify(pkt);
783            }
784        }
785
786        if (needsResponse) {
787            pkt->makeTimingResponse();
788            // @todo: Make someone pay for this
789            pkt->headerDelay = pkt->payloadDelay = 0;
790
791            // In this case we are considering request_time that takes
792            // into account the delay of the xbar, if any, and just
793            // lat, neglecting responseLatency, modelling hit latency
794            // just as lookupLatency or or the value of lat overriden
795            // by access(), that calls accessBlock() function.
796            cpuSidePort->schedTimingResp(pkt, request_time, true);
797        } else {
798            DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
799                    pkt->print());
800
801            // queue the packet for deletion, as the sending cache is
802            // still relying on it; if the block is found in access(),
803            // CleanEvict and Writeback messages will be deleted
804            // here as well
805            pendingDelete.reset(pkt);
806        }
807    } else {
808        // miss
809
810        Addr blk_addr = pkt->getBlockAddr(blkSize);
811
812        // ignore any existing MSHR if we are dealing with an
813        // uncacheable request
814        MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
815            mshrQueue.findMatch(blk_addr, pkt->isSecure());
816
817        // Software prefetch handling:
818        // To keep the core from waiting on data it won't look at
819        // anyway, send back a response with dummy data. Miss handling
820        // will continue asynchronously. Unfortunately, the core will
821        // insist upon freeing original Packet/Request, so we have to
822        // create a new pair with a different lifecycle. Note that this
823        // processing happens before any MSHR munging on the behalf of
824        // this request because this new Request will be the one stored
825        // into the MSHRs, not the original.
826        if (pkt->cmd.isSWPrefetch()) {
827            assert(needsResponse);
828            assert(pkt->req->hasPaddr());
829            assert(!pkt->req->isUncacheable());
830
831            // There's no reason to add a prefetch as an additional target
832            // to an existing MSHR. If an outstanding request is already
833            // in progress, there is nothing for the prefetch to do.
834            // If this is the case, we don't even create a request at all.
835            PacketPtr pf = nullptr;
836
837            if (!mshr) {
838                // copy the request and create a new SoftPFReq packet
839                RequestPtr req = new Request(pkt->req->getPaddr(),
840                                             pkt->req->getSize(),
841                                             pkt->req->getFlags(),
842                                             pkt->req->masterId());
843                pf = new Packet(req, pkt->cmd);
844                pf->allocate();
845                assert(pf->getAddr() == pkt->getAddr());
846                assert(pf->getSize() == pkt->getSize());
847            }
848
849            pkt->makeTimingResponse();
850
851            // request_time is used here, taking into account lat and the delay
852            // charged if the packet comes from the xbar.
853            cpuSidePort->schedTimingResp(pkt, request_time, true);
854
855            // If an outstanding request is in progress (we found an
856            // MSHR) this is set to null
857            pkt = pf;
858        }
859
860        if (mshr) {
861            /// MSHR hit
862            /// @note writebacks will be checked in getNextMSHR()
863            /// for any conflicting requests to the same block
864
865            //@todo remove hw_pf here
866
867            // Coalesce unless it was a software prefetch (see above).
868            if (pkt) {
869                assert(!pkt->isWriteback());
870                // CleanEvicts corresponding to blocks which have
871                // outstanding requests in MSHRs are simply sunk here
872                if (pkt->cmd == MemCmd::CleanEvict) {
873                    pendingDelete.reset(pkt);
874                } else if (pkt->cmd == MemCmd::WriteClean) {
875                    // A WriteClean should never coalesce with any
876                    // outstanding cache maintenance requests.
877
878                    // We use forward_time here because there is an
879                    // uncached memory write, forwarded to WriteBuffer.
880                    allocateWriteBuffer(pkt, forward_time);
881                } else {
882                    DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
883                            pkt->print());
884
885                    assert(pkt->req->masterId() < system->maxMasters());
886                    mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
887                    // We use forward_time here because it is the same
888                    // considering new targets. We have multiple
889                    // requests for the same address here. It
890                    // specifies the latency to allocate an internal
891                    // buffer and to schedule an event to the queued
892                    // port and also takes into account the additional
893                    // delay of the xbar.
894                    mshr->allocateTarget(pkt, forward_time, order++,
895                                         allocOnFill(pkt->cmd));
896                    if (mshr->getNumTargets() == numTarget) {
897                        noTargetMSHR = mshr;
898                        setBlocked(Blocked_NoTargets);
899                        // need to be careful with this... if this mshr isn't
900                        // ready yet (i.e. time > curTick()), we don't want to
901                        // move it ahead of mshrs that are ready
902                        // mshrQueue.moveToFront(mshr);
903                    }
904                }
905                // We should call the prefetcher reguardless if the request is
906                // satisfied or not, reguardless if the request is in the MSHR
907                // or not.  The request could be a ReadReq hit, but still not
908                // satisfied (potentially because of a prior write to the same
909                // cache line.  So, even when not satisfied, tehre is an MSHR
910                // already allocated for this, we need to let the prefetcher
911                // know about the request
912                if (prefetcher) {
913                    // Don't notify on SWPrefetch
914                    if (!pkt->cmd.isSWPrefetch() &&
915                        !pkt->req->isCacheMaintenance())
916                        next_pf_time = prefetcher->notify(pkt);
917                }
918            }
919        } else {
920            // no MSHR
921            assert(pkt->req->masterId() < system->maxMasters());
922            if (pkt->req->isUncacheable()) {
923                mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
924            } else {
925                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
926            }
927
928            if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
929                (pkt->req->isUncacheable() && pkt->isWrite())) {
930                // We use forward_time here because there is an
931                // uncached memory write, forwarded to WriteBuffer.
932                allocateWriteBuffer(pkt, forward_time);
933            } else {
934                if (blk && blk->isValid()) {
935                    // should have flushed and have no valid block
936                    assert(!pkt->req->isUncacheable());
937
938                    // If we have a write miss to a valid block, we
939                    // need to mark the block non-readable.  Otherwise
940                    // if we allow reads while there's an outstanding
941                    // write miss, the read could return stale data
942                    // out of the cache block... a more aggressive
943                    // system could detect the overlap (if any) and
944                    // forward data out of the MSHRs, but we don't do
945                    // that yet.  Note that we do need to leave the
946                    // block valid so that it stays in the cache, in
947                    // case we get an upgrade response (and hence no
948                    // new data) when the write miss completes.
949                    // As long as CPUs do proper store/load forwarding
950                    // internally, and have a sufficiently weak memory
951                    // model, this is probably unnecessary, but at some
952                    // point it must have seemed like we needed it...
953                    assert((pkt->needsWritable() && !blk->isWritable()) ||
954                           pkt->req->isCacheMaintenance());
955                    blk->status &= ~BlkReadable;
956                }
957                // Here we are using forward_time, modelling the latency of
958                // a miss (outbound) just as forwardLatency, neglecting the
959                // lookupLatency component.
960                allocateMissBuffer(pkt, forward_time);
961            }
962
963            if (prefetcher) {
964                // Don't notify on SWPrefetch
965                if (!pkt->cmd.isSWPrefetch() &&
966                    !pkt->req->isCacheMaintenance())
967                    next_pf_time = prefetcher->notify(pkt);
968            }
969        }
970    }
971
972    if (next_pf_time != MaxTick)
973        schedMemSideSendEvent(next_pf_time);
974
975    return true;
976}
977
978PacketPtr
979Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
980                        bool needsWritable) const
981{
982    // should never see evictions here
983    assert(!cpu_pkt->isEviction());
984
985    bool blkValid = blk && blk->isValid();
986
987    if (cpu_pkt->req->isUncacheable() ||
988        (!blkValid && cpu_pkt->isUpgrade()) ||
989        cpu_pkt->cmd == MemCmd::InvalidateReq || cpu_pkt->isClean()) {
990        // uncacheable requests and upgrades from upper-level caches
991        // that missed completely just go through as is
992        return nullptr;
993    }
994
995    assert(cpu_pkt->needsResponse());
996
997    MemCmd cmd;
998    // @TODO make useUpgrades a parameter.
999    // Note that ownership protocols require upgrade, otherwise a
1000    // write miss on a shared owned block will generate a ReadExcl,
1001    // which will clobber the owned copy.
1002    const bool useUpgrades = true;
1003    if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
1004        assert(!blkValid || !blk->isWritable());
1005        // forward as invalidate to all other caches, this gives us
1006        // the line in Exclusive state, and invalidates all other
1007        // copies
1008        cmd = MemCmd::InvalidateReq;
1009    } else if (blkValid && useUpgrades) {
1010        // only reason to be here is that blk is read only and we need
1011        // it to be writable
1012        assert(needsWritable);
1013        assert(!blk->isWritable());
1014        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
1015    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
1016               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
1017        // Even though this SC will fail, we still need to send out the
1018        // request and get the data to supply it to other snoopers in the case
1019        // where the determination the StoreCond fails is delayed due to
1020        // all caches not being on the same local bus.
1021        cmd = MemCmd::SCUpgradeFailReq;
1022    } else {
1023        // block is invalid
1024        cmd = needsWritable ? MemCmd::ReadExReq :
1025            (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
1026    }
1027    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
1028
1029    // if there are upstream caches that have already marked the
1030    // packet as having sharers (not passing writable), pass that info
1031    // downstream
1032    if (cpu_pkt->hasSharers() && !needsWritable) {
1033        // note that cpu_pkt may have spent a considerable time in the
1034        // MSHR queue and that the information could possibly be out
1035        // of date, however, there is no harm in conservatively
1036        // assuming the block has sharers
1037        pkt->setHasSharers();
1038        DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n",
1039                __func__, cpu_pkt->print(), pkt->print());
1040    }
1041
1042    // the packet should be block aligned
1043    assert(pkt->getAddr() == pkt->getBlockAddr(blkSize));
1044
1045    pkt->allocate();
1046    DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(),
1047            cpu_pkt->print());
1048    return pkt;
1049}
1050
1051
1052Tick
1053Cache::recvAtomic(PacketPtr pkt)
1054{
1055    // We are in atomic mode so we pay just for lookupLatency here.
1056    Cycles lat = lookupLatency;
1057
1058    // Forward the request if the system is in cache bypass mode.
1059    if (system->bypassCaches())
1060        return ticksToCycles(memSidePort->sendAtomic(pkt));
1061
1062    promoteWholeLineWrites(pkt);
1063
1064    // follow the same flow as in recvTimingReq, and check if a cache
1065    // above us is responding
1066    if (pkt->cacheResponding() && !pkt->isClean()) {
1067        assert(!pkt->req->isCacheInvalidate());
1068        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
1069                pkt->print());
1070
1071        // if a cache is responding, and it had the line in Owned
1072        // rather than Modified state, we need to invalidate any
1073        // copies that are not on the same path to memory
1074        assert(pkt->needsWritable() && !pkt->responderHadWritable());
1075        lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1076
1077        return lat * clockPeriod();
1078    }
1079
1080    // should assert here that there are no outstanding MSHRs or
1081    // writebacks... that would mean that someone used an atomic
1082    // access in timing mode
1083
1084    CacheBlk *blk = nullptr;
1085    PacketList writebacks;
1086    bool satisfied = access(pkt, blk, lat, writebacks);
1087
1088    if (pkt->isClean() && blk && blk->isDirty()) {
1089        // A cache clean opearation is looking for a dirty
1090        // block. If a dirty block is encountered a WriteClean
1091        // will update any copies to the path to the memory
1092        // until the point of reference.
1093        DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1094                __func__, pkt->print(), blk->print());
1095        PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest());
1096        writebacks.push_back(wb_pkt);
1097        pkt->setSatisfied();
1098    }
1099
1100    // handle writebacks resulting from the access here to ensure they
1101    // logically proceed anything happening below
1102    doWritebacksAtomic(writebacks);
1103
1104    if (!satisfied) {
1105        // MISS
1106
1107        // deal with the packets that go through the write path of
1108        // the cache, i.e. any evictions and writes
1109        if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
1110            (pkt->req->isUncacheable() && pkt->isWrite())) {
1111            lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1112            return lat * clockPeriod();
1113        }
1114        // only misses left
1115
1116        PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
1117
1118        bool is_forward = (bus_pkt == nullptr);
1119
1120        if (is_forward) {
1121            // just forwarding the same request to the next level
1122            // no local cache operation involved
1123            bus_pkt = pkt;
1124        }
1125
1126        DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__,
1127                bus_pkt->print());
1128
1129#if TRACING_ON
1130        CacheBlk::State old_state = blk ? blk->status : 0;
1131#endif
1132
1133        lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1134
1135        bool is_invalidate = bus_pkt->isInvalidate();
1136
1137        // We are now dealing with the response handling
1138        DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__,
1139                bus_pkt->print(), old_state);
1140
1141        // If packet was a forward, the response (if any) is already
1142        // in place in the bus_pkt == pkt structure, so we don't need
1143        // to do anything.  Otherwise, use the separate bus_pkt to
1144        // generate response to pkt and then delete it.
1145        if (!is_forward) {
1146            if (pkt->needsResponse()) {
1147                assert(bus_pkt->isResponse());
1148                if (bus_pkt->isError()) {
1149                    pkt->makeAtomicResponse();
1150                    pkt->copyError(bus_pkt);
1151                } else if (pkt->cmd == MemCmd::WriteLineReq) {
1152                    // note the use of pkt, not bus_pkt here.
1153
1154                    // write-line request to the cache that promoted
1155                    // the write to a whole line
1156                    blk = handleFill(pkt, blk, writebacks,
1157                                     allocOnFill(pkt->cmd));
1158                    assert(blk != NULL);
1159                    is_invalidate = false;
1160                    satisfyRequest(pkt, blk);
1161                } else if (bus_pkt->isRead() ||
1162                           bus_pkt->cmd == MemCmd::UpgradeResp) {
1163                    // we're updating cache state to allow us to
1164                    // satisfy the upstream request from the cache
1165                    blk = handleFill(bus_pkt, blk, writebacks,
1166                                     allocOnFill(pkt->cmd));
1167                    satisfyRequest(pkt, blk);
1168                    maintainClusivity(pkt->fromCache(), blk);
1169                } else {
1170                    // we're satisfying the upstream request without
1171                    // modifying cache state, e.g., a write-through
1172                    pkt->makeAtomicResponse();
1173                }
1174            }
1175            delete bus_pkt;
1176        }
1177
1178        if (is_invalidate && blk && blk->isValid()) {
1179            invalidateBlock(blk);
1180        }
1181    }
1182
1183    // Note that we don't invoke the prefetcher at all in atomic mode.
1184    // It's not clear how to do it properly, particularly for
1185    // prefetchers that aggressively generate prefetch candidates and
1186    // rely on bandwidth contention to throttle them; these will tend
1187    // to pollute the cache in atomic mode since there is no bandwidth
1188    // contention.  If we ever do want to enable prefetching in atomic
1189    // mode, though, this is the place to do it... see timingAccess()
1190    // for an example (though we'd want to issue the prefetch(es)
1191    // immediately rather than calling requestMemSideBus() as we do
1192    // there).
1193
1194    // do any writebacks resulting from the response handling
1195    doWritebacksAtomic(writebacks);
1196
1197    // if we used temp block, check to see if its valid and if so
1198    // clear it out, but only do so after the call to recvAtomic is
1199    // finished so that any downstream observers (such as a snoop
1200    // filter), first see the fill, and only then see the eviction
1201    if (blk == tempBlock && tempBlock->isValid()) {
1202        // the atomic CPU calls recvAtomic for fetch and load/store
1203        // sequentuially, and we may already have a tempBlock
1204        // writeback from the fetch that we have not yet sent
1205        if (tempBlockWriteback) {
1206            // if that is the case, write the prevoius one back, and
1207            // do not schedule any new event
1208            writebackTempBlockAtomic();
1209        } else {
1210            // the writeback/clean eviction happens after the call to
1211            // recvAtomic has finished (but before any successive
1212            // calls), so that the response handling from the fill is
1213            // allowed to happen first
1214            schedule(writebackTempBlockAtomicEvent, curTick());
1215        }
1216
1217        tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1218            writebackBlk(blk) : cleanEvictBlk(blk);
1219        invalidateBlock(blk);
1220    }
1221
1222    if (pkt->needsResponse()) {
1223        pkt->makeAtomicResponse();
1224    }
1225
1226    return lat * clockPeriod();
1227}
1228
1229
1230void
1231Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1232{
1233    if (system->bypassCaches()) {
1234        // Packets from the memory side are snoop request and
1235        // shouldn't happen in bypass mode.
1236        assert(fromCpuSide);
1237
1238        // The cache should be flushed if we are in cache bypass mode,
1239        // so we don't need to check if we need to update anything.
1240        memSidePort->sendFunctional(pkt);
1241        return;
1242    }
1243
1244    Addr blk_addr = pkt->getBlockAddr(blkSize);
1245    bool is_secure = pkt->isSecure();
1246    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1247    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1248
1249    pkt->pushLabel(name());
1250
1251    CacheBlkPrintWrapper cbpw(blk);
1252
1253    // Note that just because an L2/L3 has valid data doesn't mean an
1254    // L1 doesn't have a more up-to-date modified copy that still
1255    // needs to be found.  As a result we always update the request if
1256    // we have it, but only declare it satisfied if we are the owner.
1257
1258    // see if we have data at all (owned or otherwise)
1259    bool have_data = blk && blk->isValid()
1260        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1261                                blk->data);
1262
1263    // data we have is dirty if marked as such or if we have an
1264    // in-service MSHR that is pending a modified line
1265    bool have_dirty =
1266        have_data && (blk->isDirty() ||
1267                      (mshr && mshr->inService && mshr->isPendingModified()));
1268
1269    bool done = have_dirty
1270        || cpuSidePort->checkFunctional(pkt)
1271        || mshrQueue.checkFunctional(pkt, blk_addr)
1272        || writeBuffer.checkFunctional(pkt, blk_addr)
1273        || memSidePort->checkFunctional(pkt);
1274
1275    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
1276            (blk && blk->isValid()) ? "valid " : "",
1277            have_data ? "data " : "", done ? "done " : "");
1278
1279    // We're leaving the cache, so pop cache->name() label
1280    pkt->popLabel();
1281
1282    if (done) {
1283        pkt->makeResponse();
1284    } else {
1285        // if it came as a request from the CPU side then make sure it
1286        // continues towards the memory side
1287        if (fromCpuSide) {
1288            memSidePort->sendFunctional(pkt);
1289        } else if (cpuSidePort->isSnooping()) {
1290            // if it came from the memory side, it must be a snoop request
1291            // and we should only forward it if we are forwarding snoops
1292            cpuSidePort->sendFunctionalSnoop(pkt);
1293        }
1294    }
1295}
1296
1297
1298/////////////////////////////////////////////////////
1299//
1300// Response handling: responses from the memory side
1301//
1302/////////////////////////////////////////////////////
1303
1304
1305void
1306Cache::handleUncacheableWriteResp(PacketPtr pkt)
1307{
1308    Tick completion_time = clockEdge(responseLatency) +
1309        pkt->headerDelay + pkt->payloadDelay;
1310
1311    // Reset the bus additional time as it is now accounted for
1312    pkt->headerDelay = pkt->payloadDelay = 0;
1313
1314    cpuSidePort->schedTimingResp(pkt, completion_time, true);
1315}
1316
1317void
1318Cache::recvTimingResp(PacketPtr pkt)
1319{
1320    assert(pkt->isResponse());
1321
1322    // all header delay should be paid for by the crossbar, unless
1323    // this is a prefetch response from above
1324    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1325             "%s saw a non-zero packet delay\n", name());
1326
1327    bool is_error = pkt->isError();
1328
1329    if (is_error) {
1330        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
1331                pkt->print());
1332    }
1333
1334    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
1335            pkt->print());
1336
1337    // if this is a write, we should be looking at an uncacheable
1338    // write
1339    if (pkt->isWrite()) {
1340        assert(pkt->req->isUncacheable());
1341        handleUncacheableWriteResp(pkt);
1342        return;
1343    }
1344
1345    // we have dealt with any (uncacheable) writes above, from here on
1346    // we know we are dealing with an MSHR due to a miss or a prefetch
1347    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
1348    assert(mshr);
1349
1350    if (mshr == noTargetMSHR) {
1351        // we always clear at least one target
1352        clearBlocked(Blocked_NoTargets);
1353        noTargetMSHR = nullptr;
1354    }
1355
1356    // Initial target is used just for stats
1357    MSHR::Target *initial_tgt = mshr->getTarget();
1358    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1359    Tick miss_latency = curTick() - initial_tgt->recvTime;
1360
1361    if (pkt->req->isUncacheable()) {
1362        assert(pkt->req->masterId() < system->maxMasters());
1363        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1364            miss_latency;
1365    } else {
1366        assert(pkt->req->masterId() < system->maxMasters());
1367        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1368            miss_latency;
1369    }
1370
1371    bool wasFull = mshrQueue.isFull();
1372
1373    PacketList writebacks;
1374
1375    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1376
1377    bool is_fill = !mshr->isForward &&
1378        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1379
1380    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1381    const bool valid_blk = blk && blk->isValid();
1382    // If the response indicates that there are no sharers and we
1383    // either had the block already or the response is filling we can
1384    // promote our copy to writable
1385    if (!pkt->hasSharers() &&
1386        (is_fill || (valid_blk && !pkt->req->isCacheInvalidate()))) {
1387        mshr->promoteWritable();
1388    }
1389
1390    if (is_fill && !is_error) {
1391        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1392                pkt->getAddr());
1393
1394        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
1395        assert(blk != nullptr);
1396    }
1397
1398    // allow invalidation responses originating from write-line
1399    // requests to be discarded
1400    bool is_invalidate = pkt->isInvalidate();
1401
1402    // The block was marked as not readable while there was a pending
1403    // cache maintenance operation, restore its flag.
1404    if (pkt->isClean() && !is_invalidate && valid_blk) {
1405        blk->status |= BlkReadable;
1406    }
1407
1408    // First offset for critical word first calculations
1409    int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1410
1411    bool from_cache = false;
1412    MSHR::TargetList targets = mshr->extractServiceableTargets(pkt);
1413    for (auto &target: targets) {
1414        Packet *tgt_pkt = target.pkt;
1415        switch (target.source) {
1416          case MSHR::Target::FromCPU:
1417            Tick completion_time;
1418            // Here we charge on completion_time the delay of the xbar if the
1419            // packet comes from it, charged on headerDelay.
1420            completion_time = pkt->headerDelay;
1421
1422            // Software prefetch handling for cache closest to core
1423            if (tgt_pkt->cmd.isSWPrefetch()) {
1424                // a software prefetch would have already been ack'd
1425                // immediately with dummy data so the core would be able to
1426                // retire it. This request completes right here, so we
1427                // deallocate it.
1428                delete tgt_pkt->req;
1429                delete tgt_pkt;
1430                break; // skip response
1431            }
1432
1433            // keep track of whether we have responded to another
1434            // cache
1435            from_cache = from_cache || tgt_pkt->fromCache();
1436
1437            // unlike the other packet flows, where data is found in other
1438            // caches or memory and brought back, write-line requests always
1439            // have the data right away, so the above check for "is fill?"
1440            // cannot actually be determined until examining the stored MSHR
1441            // state. We "catch up" with that logic here, which is duplicated
1442            // from above.
1443            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1444                assert(!is_error);
1445                // we got the block in a writable state, so promote
1446                // any deferred targets if possible
1447                mshr->promoteWritable();
1448                // NB: we use the original packet here and not the response!
1449                blk = handleFill(tgt_pkt, blk, writebacks,
1450                                 targets.allocOnFill);
1451                assert(blk != nullptr);
1452
1453                // treat as a fill, and discard the invalidation
1454                // response
1455                is_fill = true;
1456                is_invalidate = false;
1457            }
1458
1459            if (is_fill) {
1460                satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
1461
1462                // How many bytes past the first request is this one
1463                int transfer_offset =
1464                    tgt_pkt->getOffset(blkSize) - initial_offset;
1465                if (transfer_offset < 0) {
1466                    transfer_offset += blkSize;
1467                }
1468
1469                // If not critical word (offset) return payloadDelay.
1470                // responseLatency is the latency of the return path
1471                // from lower level caches/memory to an upper level cache or
1472                // the core.
1473                completion_time += clockEdge(responseLatency) +
1474                    (transfer_offset ? pkt->payloadDelay : 0);
1475
1476                assert(!tgt_pkt->req->isUncacheable());
1477
1478                assert(tgt_pkt->req->masterId() < system->maxMasters());
1479                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1480                    completion_time - target.recvTime;
1481            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1482                // failed StoreCond upgrade
1483                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1484                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1485                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1486                // responseLatency is the latency of the return path
1487                // from lower level caches/memory to an upper level cache or
1488                // the core.
1489                completion_time += clockEdge(responseLatency) +
1490                    pkt->payloadDelay;
1491                tgt_pkt->req->setExtraData(0);
1492            } else {
1493                // We are about to send a response to a cache above
1494                // that asked for an invalidation; we need to
1495                // invalidate our copy immediately as the most
1496                // up-to-date copy of the block will now be in the
1497                // cache above. It will also prevent this cache from
1498                // responding (if the block was previously dirty) to
1499                // snoops as they should snoop the caches above where
1500                // they will get the response from.
1501                if (is_invalidate && blk && blk->isValid()) {
1502                    invalidateBlock(blk);
1503                }
1504                // not a cache fill, just forwarding response
1505                // responseLatency is the latency of the return path
1506                // from lower level cahces/memory to the core.
1507                completion_time += clockEdge(responseLatency) +
1508                    pkt->payloadDelay;
1509                if (pkt->isRead() && !is_error) {
1510                    // sanity check
1511                    assert(pkt->getAddr() == tgt_pkt->getAddr());
1512                    assert(pkt->getSize() >= tgt_pkt->getSize());
1513
1514                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1515                }
1516            }
1517            tgt_pkt->makeTimingResponse();
1518            // if this packet is an error copy that to the new packet
1519            if (is_error)
1520                tgt_pkt->copyError(pkt);
1521            if (tgt_pkt->cmd == MemCmd::ReadResp &&
1522                (is_invalidate || mshr->hasPostInvalidate())) {
1523                // If intermediate cache got ReadRespWithInvalidate,
1524                // propagate that.  Response should not have
1525                // isInvalidate() set otherwise.
1526                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1527                DPRINTF(Cache, "%s: updated cmd to %s\n", __func__,
1528                        tgt_pkt->print());
1529            }
1530            // Reset the bus additional time as it is now accounted for
1531            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1532            cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1533            break;
1534
1535          case MSHR::Target::FromPrefetcher:
1536            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1537            if (blk)
1538                blk->status |= BlkHWPrefetched;
1539            delete tgt_pkt->req;
1540            delete tgt_pkt;
1541            break;
1542
1543          case MSHR::Target::FromSnoop:
1544            // I don't believe that a snoop can be in an error state
1545            assert(!is_error);
1546            // response to snoop request
1547            DPRINTF(Cache, "processing deferred snoop...\n");
1548            // If the response is invalidating, a snooping target can
1549            // be satisfied if it is also invalidating. If the reponse is, not
1550            // only invalidating, but more specifically an InvalidateResp and
1551            // the MSHR was created due to an InvalidateReq then a cache above
1552            // is waiting to satisfy a WriteLineReq. In this case even an
1553            // non-invalidating snoop is added as a target here since this is
1554            // the ordering point. When the InvalidateResp reaches this cache,
1555            // the snooping target will snoop further the cache above with the
1556            // WriteLineReq.
1557            assert(!is_invalidate || pkt->cmd == MemCmd::InvalidateResp ||
1558                   pkt->req->isCacheMaintenance() ||
1559                   mshr->hasPostInvalidate());
1560            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1561            break;
1562
1563          default:
1564            panic("Illegal target->source enum %d\n", target.source);
1565        }
1566    }
1567
1568    maintainClusivity(from_cache, blk);
1569
1570    if (blk && blk->isValid()) {
1571        // an invalidate response stemming from a write line request
1572        // should not invalidate the block, so check if the
1573        // invalidation should be discarded
1574        if (is_invalidate || mshr->hasPostInvalidate()) {
1575            invalidateBlock(blk);
1576        } else if (mshr->hasPostDowngrade()) {
1577            blk->status &= ~BlkWritable;
1578        }
1579    }
1580
1581    if (mshr->promoteDeferredTargets()) {
1582        // avoid later read getting stale data while write miss is
1583        // outstanding.. see comment in timingAccess()
1584        if (blk) {
1585            blk->status &= ~BlkReadable;
1586        }
1587        mshrQueue.markPending(mshr);
1588        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1589    } else {
1590        mshrQueue.deallocate(mshr);
1591        if (wasFull && !mshrQueue.isFull()) {
1592            clearBlocked(Blocked_NoMSHRs);
1593        }
1594
1595        // Request the bus for a prefetch if this deallocation freed enough
1596        // MSHRs for a prefetch to take place
1597        if (prefetcher && mshrQueue.canPrefetch()) {
1598            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1599                                         clockEdge());
1600            if (next_pf_time != MaxTick)
1601                schedMemSideSendEvent(next_pf_time);
1602        }
1603    }
1604    // reset the xbar additional timinig  as it is now accounted for
1605    pkt->headerDelay = pkt->payloadDelay = 0;
1606
1607    // copy writebacks to write buffer
1608    doWritebacks(writebacks, forward_time);
1609
1610    // if we used temp block, check to see if its valid and then clear it out
1611    if (blk == tempBlock && tempBlock->isValid()) {
1612        // We use forwardLatency here because we are copying
1613        // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1614        // allocate an internal buffer and to schedule an event to the
1615        // queued port.
1616        if (blk->isDirty() || writebackClean) {
1617            PacketPtr wbPkt = writebackBlk(blk);
1618            allocateWriteBuffer(wbPkt, forward_time);
1619            // Set BLOCK_CACHED flag if cached above.
1620            if (isCachedAbove(wbPkt))
1621                wbPkt->setBlockCached();
1622        } else {
1623            PacketPtr wcPkt = cleanEvictBlk(blk);
1624            // Check to see if block is cached above. If not allocate
1625            // write buffer
1626            if (isCachedAbove(wcPkt))
1627                delete wcPkt;
1628            else
1629                allocateWriteBuffer(wcPkt, forward_time);
1630        }
1631        invalidateBlock(blk);
1632    }
1633
1634    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
1635    delete pkt;
1636}
1637
1638PacketPtr
1639Cache::writebackBlk(CacheBlk *blk)
1640{
1641    chatty_assert(!isReadOnly || writebackClean,
1642                  "Writeback from read-only cache");
1643    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1644
1645    writebacks[Request::wbMasterId]++;
1646
1647    Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1648                               blkSize, 0, Request::wbMasterId);
1649    if (blk->isSecure())
1650        req->setFlags(Request::SECURE);
1651
1652    req->taskId(blk->task_id);
1653    blk->task_id= ContextSwitchTaskId::Unknown;
1654    blk->tickInserted = curTick();
1655
1656    PacketPtr pkt =
1657        new Packet(req, blk->isDirty() ?
1658                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1659
1660    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1661            pkt->print(), blk->isWritable(), blk->isDirty());
1662
1663    if (blk->isWritable()) {
1664        // not asserting shared means we pass the block in modified
1665        // state, mark our own block non-writeable
1666        blk->status &= ~BlkWritable;
1667    } else {
1668        // we are in the Owned state, tell the receiver
1669        pkt->setHasSharers();
1670    }
1671
1672    // make sure the block is not marked dirty
1673    blk->status &= ~BlkDirty;
1674
1675    pkt->allocate();
1676    std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1677
1678    return pkt;
1679}
1680
1681PacketPtr
1682Cache::writecleanBlk(CacheBlk *blk, Request::Flags dest)
1683{
1684    Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1685                               blkSize, 0, Request::wbMasterId);
1686    if (blk->isSecure()) {
1687        req->setFlags(Request::SECURE);
1688    }
1689    req->taskId(blk->task_id);
1690    blk->task_id = ContextSwitchTaskId::Unknown;
1691    PacketPtr pkt = new Packet(req, MemCmd::WriteClean);
1692    DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1693            blk->isWritable(), blk->isDirty());
1694    // make sure the block is not marked dirty
1695    blk->status &= ~BlkDirty;
1696    pkt->allocate();
1697    // We inform the cache below that the block has sharers in the
1698    // system as we retain our copy.
1699    pkt->setHasSharers();
1700    if (dest) {
1701        req->setFlags(dest);
1702        pkt->setWriteThrough();
1703    }
1704    std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1705    return pkt;
1706}
1707
1708
1709PacketPtr
1710Cache::cleanEvictBlk(CacheBlk *blk)
1711{
1712    assert(!writebackClean);
1713    assert(blk && blk->isValid() && !blk->isDirty());
1714    // Creating a zero sized write, a message to the snoop filter
1715    Request *req =
1716        new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1717                    Request::wbMasterId);
1718    if (blk->isSecure())
1719        req->setFlags(Request::SECURE);
1720
1721    req->taskId(blk->task_id);
1722    blk->task_id = ContextSwitchTaskId::Unknown;
1723    blk->tickInserted = curTick();
1724
1725    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1726    pkt->allocate();
1727    DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print());
1728
1729    return pkt;
1730}
1731
1732void
1733Cache::memWriteback()
1734{
1735    CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1736    tags->forEachBlk(visitor);
1737}
1738
1739void
1740Cache::memInvalidate()
1741{
1742    CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1743    tags->forEachBlk(visitor);
1744}
1745
1746bool
1747Cache::isDirty() const
1748{
1749    CacheBlkIsDirtyVisitor visitor;
1750    tags->forEachBlk(visitor);
1751
1752    return visitor.isDirty();
1753}
1754
1755bool
1756Cache::writebackVisitor(CacheBlk &blk)
1757{
1758    if (blk.isDirty()) {
1759        assert(blk.isValid());
1760
1761        Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1762                        blkSize, 0, Request::funcMasterId);
1763        request.taskId(blk.task_id);
1764        if (blk.isSecure()) {
1765            request.setFlags(Request::SECURE);
1766        }
1767
1768        Packet packet(&request, MemCmd::WriteReq);
1769        packet.dataStatic(blk.data);
1770
1771        memSidePort->sendFunctional(&packet);
1772
1773        blk.status &= ~BlkDirty;
1774    }
1775
1776    return true;
1777}
1778
1779bool
1780Cache::invalidateVisitor(CacheBlk &blk)
1781{
1782
1783    if (blk.isDirty())
1784        warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1785
1786    if (blk.isValid()) {
1787        assert(!blk.isDirty());
1788        invalidateBlock(&blk);
1789    }
1790
1791    return true;
1792}
1793
1794CacheBlk*
1795Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1796{
1797    CacheBlk *blk = tags->findVictim(addr);
1798
1799    // It is valid to return nullptr if there is no victim
1800    if (!blk)
1801        return nullptr;
1802
1803    if (blk->isValid()) {
1804        Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1805        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1806        if (repl_mshr) {
1807            // must be an outstanding upgrade request
1808            // on a block we're about to replace...
1809            assert(!blk->isWritable() || blk->isDirty());
1810            assert(repl_mshr->needsWritable());
1811            // too hard to replace block with transient state
1812            // allocation failed, block not inserted
1813            return nullptr;
1814        } else {
1815            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1816                    "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
1817                    addr, is_secure ? "s" : "ns",
1818                    blk->isDirty() ? "writeback" : "clean");
1819
1820            if (blk->wasPrefetched()) {
1821                unusedPrefetches++;
1822            }
1823            // Will send up Writeback/CleanEvict snoops via isCachedAbove
1824            // when pushing this writeback list into the write buffer.
1825            if (blk->isDirty() || writebackClean) {
1826                // Save writeback packet for handling by caller
1827                writebacks.push_back(writebackBlk(blk));
1828            } else {
1829                writebacks.push_back(cleanEvictBlk(blk));
1830            }
1831        }
1832    }
1833
1834    return blk;
1835}
1836
1837void
1838Cache::invalidateBlock(CacheBlk *blk)
1839{
1840    if (blk != tempBlock)
1841        tags->invalidate(blk);
1842    blk->invalidate();
1843}
1844
1845// Note that the reason we return a list of writebacks rather than
1846// inserting them directly in the write buffer is that this function
1847// is called by both atomic and timing-mode accesses, and in atomic
1848// mode we don't mess with the write buffer (we just perform the
1849// writebacks atomically once the original request is complete).
1850CacheBlk*
1851Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1852                  bool allocate)
1853{
1854    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1855    Addr addr = pkt->getAddr();
1856    bool is_secure = pkt->isSecure();
1857#if TRACING_ON
1858    CacheBlk::State old_state = blk ? blk->status : 0;
1859#endif
1860
1861    // When handling a fill, we should have no writes to this line.
1862    assert(addr == pkt->getBlockAddr(blkSize));
1863    assert(!writeBuffer.findMatch(addr, is_secure));
1864
1865    if (blk == nullptr) {
1866        // better have read new data...
1867        assert(pkt->hasData());
1868
1869        // only read responses and write-line requests have data;
1870        // note that we don't write the data here for write-line - that
1871        // happens in the subsequent call to satisfyRequest
1872        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1873
1874        // need to do a replacement if allocating, otherwise we stick
1875        // with the temporary storage
1876        blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
1877
1878        if (blk == nullptr) {
1879            // No replaceable block or a mostly exclusive
1880            // cache... just use temporary storage to complete the
1881            // current request and then get rid of it
1882            assert(!tempBlock->isValid());
1883            blk = tempBlock;
1884            tempBlock->set = tags->extractSet(addr);
1885            tempBlock->tag = tags->extractTag(addr);
1886            // @todo: set security state as well...
1887            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1888                    is_secure ? "s" : "ns");
1889        } else {
1890            tags->insertBlock(pkt, blk);
1891        }
1892
1893        // we should never be overwriting a valid block
1894        assert(!blk->isValid());
1895    } else {
1896        // existing block... probably an upgrade
1897        assert(blk->tag == tags->extractTag(addr));
1898        // either we're getting new data or the block should already be valid
1899        assert(pkt->hasData() || blk->isValid());
1900        // don't clear block status... if block is already dirty we
1901        // don't want to lose that
1902    }
1903
1904    if (is_secure)
1905        blk->status |= BlkSecure;
1906    blk->status |= BlkValid | BlkReadable;
1907
1908    // sanity check for whole-line writes, which should always be
1909    // marked as writable as part of the fill, and then later marked
1910    // dirty as part of satisfyRequest
1911    if (pkt->cmd == MemCmd::WriteLineReq) {
1912        assert(!pkt->hasSharers());
1913    }
1914
1915    // here we deal with setting the appropriate state of the line,
1916    // and we start by looking at the hasSharers flag, and ignore the
1917    // cacheResponding flag (normally signalling dirty data) if the
1918    // packet has sharers, thus the line is never allocated as Owned
1919    // (dirty but not writable), and always ends up being either
1920    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1921    // for more details
1922    if (!pkt->hasSharers()) {
1923        // we could get a writable line from memory (rather than a
1924        // cache) even in a read-only cache, note that we set this bit
1925        // even for a read-only cache, possibly revisit this decision
1926        blk->status |= BlkWritable;
1927
1928        // check if we got this via cache-to-cache transfer (i.e., from a
1929        // cache that had the block in Modified or Owned state)
1930        if (pkt->cacheResponding()) {
1931            // we got the block in Modified state, and invalidated the
1932            // owners copy
1933            blk->status |= BlkDirty;
1934
1935            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1936                          "in read-only cache %s\n", name());
1937        }
1938    }
1939
1940    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1941            addr, is_secure ? "s" : "ns", old_state, blk->print());
1942
1943    // if we got new data, copy it in (checking for a read response
1944    // and a response that has data is the same in the end)
1945    if (pkt->isRead()) {
1946        // sanity checks
1947        assert(pkt->hasData());
1948        assert(pkt->getSize() == blkSize);
1949
1950        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1951    }
1952    // We pay for fillLatency here.
1953    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1954        pkt->payloadDelay;
1955
1956    return blk;
1957}
1958
1959
1960/////////////////////////////////////////////////////
1961//
1962// Snoop path: requests coming in from the memory side
1963//
1964/////////////////////////////////////////////////////
1965
1966void
1967Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1968                              bool already_copied, bool pending_inval)
1969{
1970    // sanity check
1971    assert(req_pkt->isRequest());
1972    assert(req_pkt->needsResponse());
1973
1974    DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print());
1975    // timing-mode snoop responses require a new packet, unless we
1976    // already made a copy...
1977    PacketPtr pkt = req_pkt;
1978    if (!already_copied)
1979        // do not clear flags, and allocate space for data if the
1980        // packet needs it (the only packets that carry data are read
1981        // responses)
1982        pkt = new Packet(req_pkt, false, req_pkt->isRead());
1983
1984    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1985           pkt->hasSharers());
1986    pkt->makeTimingResponse();
1987    if (pkt->isRead()) {
1988        pkt->setDataFromBlock(blk_data, blkSize);
1989    }
1990    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1991        // Assume we defer a response to a read from a far-away cache
1992        // A, then later defer a ReadExcl from a cache B on the same
1993        // bus as us. We'll assert cacheResponding in both cases, but
1994        // in the latter case cacheResponding will keep the
1995        // invalidation from reaching cache A. This special response
1996        // tells cache A that it gets the block to satisfy its read,
1997        // but must immediately invalidate it.
1998        pkt->cmd = MemCmd::ReadRespWithInvalidate;
1999    }
2000    // Here we consider forward_time, paying for just forward latency and
2001    // also charging the delay provided by the xbar.
2002    // forward_time is used as send_time in next allocateWriteBuffer().
2003    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
2004    // Here we reset the timing of the packet.
2005    pkt->headerDelay = pkt->payloadDelay = 0;
2006    DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__,
2007            pkt->print(), forward_time);
2008    memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
2009}
2010
2011uint32_t
2012Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
2013                   bool is_deferred, bool pending_inval)
2014{
2015    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
2016    // deferred snoops can only happen in timing mode
2017    assert(!(is_deferred && !is_timing));
2018    // pending_inval only makes sense on deferred snoops
2019    assert(!(pending_inval && !is_deferred));
2020    assert(pkt->isRequest());
2021
2022    // the packet may get modified if we or a forwarded snooper
2023    // responds in atomic mode, so remember a few things about the
2024    // original packet up front
2025    bool invalidate = pkt->isInvalidate();
2026    bool M5_VAR_USED needs_writable = pkt->needsWritable();
2027
2028    // at the moment we could get an uncacheable write which does not
2029    // have the invalidate flag, and we need a suitable way of dealing
2030    // with this case
2031    panic_if(invalidate && pkt->req->isUncacheable(),
2032             "%s got an invalidating uncacheable snoop request %s",
2033             name(), pkt->print());
2034
2035    uint32_t snoop_delay = 0;
2036
2037    if (forwardSnoops) {
2038        // first propagate snoop upward to see if anyone above us wants to
2039        // handle it.  save & restore packet src since it will get
2040        // rewritten to be relative to cpu-side bus (if any)
2041        bool alreadyResponded = pkt->cacheResponding();
2042        if (is_timing) {
2043            // copy the packet so that we can clear any flags before
2044            // forwarding it upwards, we also allocate data (passing
2045            // the pointer along in case of static data), in case
2046            // there is a snoop hit in upper levels
2047            Packet snoopPkt(pkt, true, true);
2048            snoopPkt.setExpressSnoop();
2049            // the snoop packet does not need to wait any additional
2050            // time
2051            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
2052            cpuSidePort->sendTimingSnoopReq(&snoopPkt);
2053
2054            // add the header delay (including crossbar and snoop
2055            // delays) of the upward snoop to the snoop delay for this
2056            // cache
2057            snoop_delay += snoopPkt.headerDelay;
2058
2059            if (snoopPkt.cacheResponding()) {
2060                // cache-to-cache response from some upper cache
2061                assert(!alreadyResponded);
2062                pkt->setCacheResponding();
2063            }
2064            // upstream cache has the block, or has an outstanding
2065            // MSHR, pass the flag on
2066            if (snoopPkt.hasSharers()) {
2067                pkt->setHasSharers();
2068            }
2069            // If this request is a prefetch or clean evict and an upper level
2070            // signals block present, make sure to propagate the block
2071            // presence to the requester.
2072            if (snoopPkt.isBlockCached()) {
2073                pkt->setBlockCached();
2074            }
2075            // If the request was satisfied by snooping the cache
2076            // above, mark the original packet as satisfied too.
2077            if (snoopPkt.satisfied()) {
2078                pkt->setSatisfied();
2079            }
2080        } else {
2081            cpuSidePort->sendAtomicSnoop(pkt);
2082            if (!alreadyResponded && pkt->cacheResponding()) {
2083                // cache-to-cache response from some upper cache:
2084                // forward response to original requester
2085                assert(pkt->isResponse());
2086            }
2087        }
2088    }
2089
2090    bool respond = false;
2091    bool blk_valid = blk && blk->isValid();
2092    if (pkt->isClean()) {
2093        if (blk_valid && blk->isDirty()) {
2094            DPRINTF(CacheVerbose, "%s: packet (snoop) %s found block: %s\n",
2095                    __func__, pkt->print(), blk->print());
2096            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest());
2097            PacketList writebacks;
2098            writebacks.push_back(wb_pkt);
2099
2100            if (is_timing) {
2101                // anything that is merely forwarded pays for the forward
2102                // latency and the delay provided by the crossbar
2103                Tick forward_time = clockEdge(forwardLatency) +
2104                    pkt->headerDelay;
2105                doWritebacks(writebacks, forward_time);
2106            } else {
2107                doWritebacksAtomic(writebacks);
2108            }
2109            pkt->setSatisfied();
2110        }
2111    } else if (!blk_valid) {
2112        DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__,
2113                pkt->print());
2114        if (is_deferred) {
2115            // we no longer have the block, and will not respond, but a
2116            // packet was allocated in MSHR::handleSnoop and we have
2117            // to delete it
2118            assert(pkt->needsResponse());
2119
2120            // we have passed the block to a cache upstream, that
2121            // cache should be responding
2122            assert(pkt->cacheResponding());
2123
2124            delete pkt;
2125        }
2126        return snoop_delay;
2127    } else {
2128        DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__,
2129                pkt->print(), blk->print());
2130
2131        // We may end up modifying both the block state and the packet (if
2132        // we respond in atomic mode), so just figure out what to do now
2133        // and then do it later. We respond to all snoops that need
2134        // responses provided we have the block in dirty state. The
2135        // invalidation itself is taken care of below. We don't respond to
2136        // cache maintenance operations as this is done by the destination
2137        // xbar.
2138        respond = blk->isDirty() && pkt->needsResponse();
2139
2140        chatty_assert(!(isReadOnly && blk->isDirty()), "Should never have "
2141                      "a dirty block in a read-only cache %s\n", name());
2142    }
2143
2144    // Invalidate any prefetch's from below that would strip write permissions
2145    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
2146    // above and in it's own cache, a new MemCmd::ReadReq is created that
2147    // downstream caches observe.
2148    if (pkt->mustCheckAbove()) {
2149        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
2150                "from lower cache\n", pkt->getAddr(), pkt->print());
2151        pkt->setBlockCached();
2152        return snoop_delay;
2153    }
2154
2155    if (pkt->isRead() && !invalidate) {
2156        // reading without requiring the line in a writable state
2157        assert(!needs_writable);
2158        pkt->setHasSharers();
2159
2160        // if the requesting packet is uncacheable, retain the line in
2161        // the current state, otherwhise unset the writable flag,
2162        // which means we go from Modified to Owned (and will respond
2163        // below), remain in Owned (and will respond below), from
2164        // Exclusive to Shared, or remain in Shared
2165        if (!pkt->req->isUncacheable())
2166            blk->status &= ~BlkWritable;
2167        DPRINTF(Cache, "new state is %s\n", blk->print());
2168    }
2169
2170    if (respond) {
2171        // prevent anyone else from responding, cache as well as
2172        // memory, and also prevent any memory from even seeing the
2173        // request
2174        pkt->setCacheResponding();
2175        if (!pkt->isClean() && blk->isWritable()) {
2176            // inform the cache hierarchy that this cache had the line
2177            // in the Modified state so that we avoid unnecessary
2178            // invalidations (see Packet::setResponderHadWritable)
2179            pkt->setResponderHadWritable();
2180
2181            // in the case of an uncacheable request there is no point
2182            // in setting the responderHadWritable flag, but since the
2183            // recipient does not care there is no harm in doing so
2184        } else {
2185            // if the packet has needsWritable set we invalidate our
2186            // copy below and all other copies will be invalidates
2187            // through express snoops, and if needsWritable is not set
2188            // we already called setHasSharers above
2189        }
2190
2191        // if we are returning a writable and dirty (Modified) line,
2192        // we should be invalidating the line
2193        panic_if(!invalidate && !pkt->hasSharers(),
2194                 "%s is passing a Modified line through %s, "
2195                 "but keeping the block", name(), pkt->print());
2196
2197        if (is_timing) {
2198            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2199        } else {
2200            pkt->makeAtomicResponse();
2201            // packets such as upgrades do not actually have any data
2202            // payload
2203            if (pkt->hasData())
2204                pkt->setDataFromBlock(blk->data, blkSize);
2205        }
2206    }
2207
2208    if (!respond && is_deferred) {
2209        assert(pkt->needsResponse());
2210
2211        // if we copied the deferred packet with the intention to
2212        // respond, but are not responding, then a cache above us must
2213        // be, and we can use this as the indication of whether this
2214        // is a packet where we created a copy of the request or not
2215        if (!pkt->cacheResponding()) {
2216            delete pkt->req;
2217        }
2218
2219        delete pkt;
2220    }
2221
2222    // Do this last in case it deallocates block data or something
2223    // like that
2224    if (blk_valid && invalidate) {
2225        invalidateBlock(blk);
2226        DPRINTF(Cache, "new state is %s\n", blk->print());
2227    }
2228
2229    return snoop_delay;
2230}
2231
2232
2233void
2234Cache::recvTimingSnoopReq(PacketPtr pkt)
2235{
2236    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
2237
2238    // Snoops shouldn't happen when bypassing caches
2239    assert(!system->bypassCaches());
2240
2241    // no need to snoop requests that are not in range
2242    if (!inRange(pkt->getAddr())) {
2243        return;
2244    }
2245
2246    bool is_secure = pkt->isSecure();
2247    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2248
2249    Addr blk_addr = pkt->getBlockAddr(blkSize);
2250    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2251
2252    // Update the latency cost of the snoop so that the crossbar can
2253    // account for it. Do not overwrite what other neighbouring caches
2254    // have already done, rather take the maximum. The update is
2255    // tentative, for cases where we return before an upward snoop
2256    // happens below.
2257    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2258                                         lookupLatency * clockPeriod());
2259
2260    // Inform request(Prefetch, CleanEvict or Writeback) from below of
2261    // MSHR hit, set setBlockCached.
2262    if (mshr && pkt->mustCheckAbove()) {
2263        DPRINTF(Cache, "Setting block cached for %s from lower cache on "
2264                "mshr hit\n", pkt->print());
2265        pkt->setBlockCached();
2266        return;
2267    }
2268
2269    // Bypass any existing cache maintenance requests if the request
2270    // has been satisfied already (i.e., the dirty block has been
2271    // found).
2272    if (mshr && pkt->req->isCacheMaintenance() && pkt->satisfied()) {
2273        return;
2274    }
2275
2276    // Let the MSHR itself track the snoop and decide whether we want
2277    // to go ahead and do the regular cache snoop
2278    if (mshr && mshr->handleSnoop(pkt, order++)) {
2279        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2280                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2281                mshr->print());
2282
2283        if (mshr->getNumTargets() > numTarget)
2284            warn("allocating bonus target for snoop"); //handle later
2285        return;
2286    }
2287
2288    //We also need to check the writeback buffers and handle those
2289    WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
2290    if (wb_entry) {
2291        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2292                pkt->getAddr(), is_secure ? "s" : "ns");
2293        // Expect to see only Writebacks and/or CleanEvicts here, both of
2294        // which should not be generated for uncacheable data.
2295        assert(!wb_entry->isUncacheable());
2296        // There should only be a single request responsible for generating
2297        // Writebacks/CleanEvicts.
2298        assert(wb_entry->getNumTargets() == 1);
2299        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2300        assert(wb_pkt->isEviction() || wb_pkt->cmd == MemCmd::WriteClean);
2301
2302        if (pkt->isEviction()) {
2303            // if the block is found in the write queue, set the BLOCK_CACHED
2304            // flag for Writeback/CleanEvict snoop. On return the snoop will
2305            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2306            // any CleanEvicts from travelling down the memory hierarchy.
2307            pkt->setBlockCached();
2308            DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue "
2309                    "hit\n", __func__, pkt->print());
2310            return;
2311        }
2312
2313        // conceptually writebacks are no different to other blocks in
2314        // this cache, so the behaviour is modelled after handleSnoop,
2315        // the difference being that instead of querying the block
2316        // state to determine if it is dirty and writable, we use the
2317        // command and fields of the writeback packet
2318        bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
2319            pkt->needsResponse();
2320        bool have_writable = !wb_pkt->hasSharers();
2321        bool invalidate = pkt->isInvalidate();
2322
2323        if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
2324            assert(!pkt->needsWritable());
2325            pkt->setHasSharers();
2326            wb_pkt->setHasSharers();
2327        }
2328
2329        if (respond) {
2330            pkt->setCacheResponding();
2331
2332            if (have_writable) {
2333                pkt->setResponderHadWritable();
2334            }
2335
2336            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2337                                   false, false);
2338        }
2339
2340        if (invalidate && wb_pkt->cmd != MemCmd::WriteClean) {
2341            // Invalidation trumps our writeback... discard here
2342            // Note: markInService will remove entry from writeback buffer.
2343            markInService(wb_entry);
2344            delete wb_pkt;
2345        }
2346    }
2347
2348    // If this was a shared writeback, there may still be
2349    // other shared copies above that require invalidation.
2350    // We could be more selective and return here if the
2351    // request is non-exclusive or if the writeback is
2352    // exclusive.
2353    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2354
2355    // Override what we did when we first saw the snoop, as we now
2356    // also have the cost of the upwards snoops to account for
2357    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2358                                         lookupLatency * clockPeriod());
2359}
2360
2361bool
2362Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2363{
2364    // Express snoop responses from master to slave, e.g., from L1 to L2
2365    cache->recvTimingSnoopResp(pkt);
2366    return true;
2367}
2368
2369Tick
2370Cache::recvAtomicSnoop(PacketPtr pkt)
2371{
2372    // Snoops shouldn't happen when bypassing caches
2373    assert(!system->bypassCaches());
2374
2375    // no need to snoop requests that are not in range.
2376    if (!inRange(pkt->getAddr())) {
2377        return 0;
2378    }
2379
2380    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2381    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2382    return snoop_delay + lookupLatency * clockPeriod();
2383}
2384
2385
2386QueueEntry*
2387Cache::getNextQueueEntry()
2388{
2389    // Check both MSHR queue and write buffer for potential requests,
2390    // note that null does not mean there is no request, it could
2391    // simply be that it is not ready
2392    MSHR *miss_mshr  = mshrQueue.getNext();
2393    WriteQueueEntry *wq_entry = writeBuffer.getNext();
2394
2395    // If we got a write buffer request ready, first priority is a
2396    // full write buffer, otherwise we favour the miss requests
2397    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
2398        // need to search MSHR queue for conflicting earlier miss.
2399        MSHR *conflict_mshr =
2400            mshrQueue.findPending(wq_entry->blkAddr,
2401                                  wq_entry->isSecure);
2402
2403        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
2404            // Service misses in order until conflict is cleared.
2405            return conflict_mshr;
2406
2407            // @todo Note that we ignore the ready time of the conflict here
2408        }
2409
2410        // No conflicts; issue write
2411        return wq_entry;
2412    } else if (miss_mshr) {
2413        // need to check for conflicting earlier writeback
2414        WriteQueueEntry *conflict_mshr =
2415            writeBuffer.findPending(miss_mshr->blkAddr,
2416                                    miss_mshr->isSecure);
2417        if (conflict_mshr) {
2418            // not sure why we don't check order here... it was in the
2419            // original code but commented out.
2420
2421            // The only way this happens is if we are
2422            // doing a write and we didn't have permissions
2423            // then subsequently saw a writeback (owned got evicted)
2424            // We need to make sure to perform the writeback first
2425            // To preserve the dirty data, then we can issue the write
2426
2427            // should we return wq_entry here instead?  I.e. do we
2428            // have to flush writes in order?  I don't think so... not
2429            // for Alpha anyway.  Maybe for x86?
2430            return conflict_mshr;
2431
2432            // @todo Note that we ignore the ready time of the conflict here
2433        }
2434
2435        // No conflicts; issue read
2436        return miss_mshr;
2437    }
2438
2439    // fall through... no pending requests.  Try a prefetch.
2440    assert(!miss_mshr && !wq_entry);
2441    if (prefetcher && mshrQueue.canPrefetch()) {
2442        // If we have a miss queue slot, we can try a prefetch
2443        PacketPtr pkt = prefetcher->getPacket();
2444        if (pkt) {
2445            Addr pf_addr = pkt->getBlockAddr(blkSize);
2446            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2447                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2448                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2449                // Update statistic on number of prefetches issued
2450                // (hwpf_mshr_misses)
2451                assert(pkt->req->masterId() < system->maxMasters());
2452                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2453
2454                // allocate an MSHR and return it, note
2455                // that we send the packet straight away, so do not
2456                // schedule the send
2457                return allocateMissBuffer(pkt, curTick(), false);
2458            } else {
2459                // free the request and packet
2460                delete pkt->req;
2461                delete pkt;
2462            }
2463        }
2464    }
2465
2466    return nullptr;
2467}
2468
2469bool
2470Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2471{
2472    if (!forwardSnoops)
2473        return false;
2474    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2475    // Writeback snoops into upper level caches to check for copies of the
2476    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2477    // packet, the cache can inform the crossbar below of presence or absence
2478    // of the block.
2479    if (is_timing) {
2480        Packet snoop_pkt(pkt, true, false);
2481        snoop_pkt.setExpressSnoop();
2482        // Assert that packet is either Writeback or CleanEvict and not a
2483        // prefetch request because prefetch requests need an MSHR and may
2484        // generate a snoop response.
2485        assert(pkt->isEviction() || pkt->cmd == MemCmd::WriteClean);
2486        snoop_pkt.senderState = nullptr;
2487        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2488        // Writeback/CleanEvict snoops do not generate a snoop response.
2489        assert(!(snoop_pkt.cacheResponding()));
2490        return snoop_pkt.isBlockCached();
2491    } else {
2492        cpuSidePort->sendAtomicSnoop(pkt);
2493        return pkt->isBlockCached();
2494    }
2495}
2496
2497Tick
2498Cache::nextQueueReadyTime() const
2499{
2500    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
2501                              writeBuffer.nextReadyTime());
2502
2503    // Don't signal prefetch ready time if no MSHRs available
2504    // Will signal once enoguh MSHRs are deallocated
2505    if (prefetcher && mshrQueue.canPrefetch()) {
2506        nextReady = std::min(nextReady,
2507                             prefetcher->nextPrefetchReadyTime());
2508    }
2509
2510    return nextReady;
2511}
2512
2513bool
2514Cache::sendMSHRQueuePacket(MSHR* mshr)
2515{
2516    assert(mshr);
2517
2518    // use request from 1st target
2519    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2520
2521    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
2522
2523    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2524
2525    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2526        // we should never have hardware prefetches to allocated
2527        // blocks
2528        assert(blk == nullptr);
2529
2530        // We need to check the caches above us to verify that
2531        // they don't have a copy of this block in the dirty state
2532        // at the moment. Without this check we could get a stale
2533        // copy from memory that might get used in place of the
2534        // dirty one.
2535        Packet snoop_pkt(tgt_pkt, true, false);
2536        snoop_pkt.setExpressSnoop();
2537        // We are sending this packet upwards, but if it hits we will
2538        // get a snoop response that we end up treating just like a
2539        // normal response, hence it needs the MSHR as its sender
2540        // state
2541        snoop_pkt.senderState = mshr;
2542        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2543
2544        // Check to see if the prefetch was squashed by an upper cache (to
2545        // prevent us from grabbing the line) or if a Check to see if a
2546        // writeback arrived between the time the prefetch was placed in
2547        // the MSHRs and when it was selected to be sent or if the
2548        // prefetch was squashed by an upper cache.
2549
2550        // It is important to check cacheResponding before
2551        // prefetchSquashed. If another cache has committed to
2552        // responding, it will be sending a dirty response which will
2553        // arrive at the MSHR allocated for this request. Checking the
2554        // prefetchSquash first may result in the MSHR being
2555        // prematurely deallocated.
2556        if (snoop_pkt.cacheResponding()) {
2557            auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2558            assert(r.second);
2559
2560            // if we are getting a snoop response with no sharers it
2561            // will be allocated as Modified
2562            bool pending_modified_resp = !snoop_pkt.hasSharers();
2563            markInService(mshr, pending_modified_resp);
2564
2565            DPRINTF(Cache, "Upward snoop of prefetch for addr"
2566                    " %#x (%s) hit\n",
2567                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2568            return false;
2569        }
2570
2571        if (snoop_pkt.isBlockCached()) {
2572            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
2573                    "Deallocating mshr target %#x.\n",
2574                    mshr->blkAddr);
2575
2576            // Deallocate the mshr target
2577            if (mshrQueue.forceDeallocateTarget(mshr)) {
2578                // Clear block if this deallocation resulted freed an
2579                // mshr when all had previously been utilized
2580                clearBlocked(Blocked_NoMSHRs);
2581            }
2582
2583            // given that no response is expected, delete Request and Packet
2584            delete tgt_pkt->req;
2585            delete tgt_pkt;
2586
2587            return false;
2588        }
2589    }
2590
2591    // either a prefetch that is not present upstream, or a normal
2592    // MSHR request, proceed to get the packet to send downstream
2593    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
2594
2595    mshr->isForward = (pkt == nullptr);
2596
2597    if (mshr->isForward) {
2598        // not a cache block request, but a response is expected
2599        // make copy of current packet to forward, keep current
2600        // copy for response handling
2601        pkt = new Packet(tgt_pkt, false, true);
2602        assert(!pkt->isWrite());
2603    }
2604
2605    // play it safe and append (rather than set) the sender state,
2606    // as forwarded packets may already have existing state
2607    pkt->pushSenderState(mshr);
2608
2609    if (pkt->isClean() && blk && blk->isDirty()) {
2610        // A cache clean opearation is looking for a dirty block. Mark
2611        // the packet so that the destination xbar can determine that
2612        // there will be a follow-up write packet as well.
2613        pkt->setSatisfied();
2614    }
2615
2616    if (!memSidePort->sendTimingReq(pkt)) {
2617        // we are awaiting a retry, but we
2618        // delete the packet and will be creating a new packet
2619        // when we get the opportunity
2620        delete pkt;
2621
2622        // note that we have now masked any requestBus and
2623        // schedSendEvent (we will wait for a retry before
2624        // doing anything), and this is so even if we do not
2625        // care about this packet and might override it before
2626        // it gets retried
2627        return true;
2628    } else {
2629        // As part of the call to sendTimingReq the packet is
2630        // forwarded to all neighbouring caches (and any caches
2631        // above them) as a snoop. Thus at this point we know if
2632        // any of the neighbouring caches are responding, and if
2633        // so, we know it is dirty, and we can determine if it is
2634        // being passed as Modified, making our MSHR the ordering
2635        // point
2636        bool pending_modified_resp = !pkt->hasSharers() &&
2637            pkt->cacheResponding();
2638        markInService(mshr, pending_modified_resp);
2639        if (pkt->isClean() && blk && blk->isDirty()) {
2640            // A cache clean opearation is looking for a dirty
2641            // block. If a dirty block is encountered a WriteClean
2642            // will update any copies to the path to the memory
2643            // until the point of reference.
2644            DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
2645                    __func__, pkt->print(), blk->print());
2646            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest());
2647            PacketList writebacks;
2648            writebacks.push_back(wb_pkt);
2649            doWritebacks(writebacks, 0);
2650        }
2651
2652        return false;
2653    }
2654}
2655
2656bool
2657Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
2658{
2659    assert(wq_entry);
2660
2661    // always a single target for write queue entries
2662    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
2663
2664    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
2665
2666    // forward as is, both for evictions and uncacheable writes
2667    if (!memSidePort->sendTimingReq(tgt_pkt)) {
2668        // note that we have now masked any requestBus and
2669        // schedSendEvent (we will wait for a retry before
2670        // doing anything), and this is so even if we do not
2671        // care about this packet and might override it before
2672        // it gets retried
2673        return true;
2674    } else {
2675        markInService(wq_entry);
2676        return false;
2677    }
2678}
2679
2680void
2681Cache::serialize(CheckpointOut &cp) const
2682{
2683    bool dirty(isDirty());
2684
2685    if (dirty) {
2686        warn("*** The cache still contains dirty data. ***\n");
2687        warn("    Make sure to drain the system using the correct flags.\n");
2688        warn("    This checkpoint will not restore correctly and dirty data "
2689             "    in the cache will be lost!\n");
2690    }
2691
2692    // Since we don't checkpoint the data in the cache, any dirty data
2693    // will be lost when restoring from a checkpoint of a system that
2694    // wasn't drained properly. Flag the checkpoint as invalid if the
2695    // cache contains dirty data.
2696    bool bad_checkpoint(dirty);
2697    SERIALIZE_SCALAR(bad_checkpoint);
2698}
2699
2700void
2701Cache::unserialize(CheckpointIn &cp)
2702{
2703    bool bad_checkpoint;
2704    UNSERIALIZE_SCALAR(bad_checkpoint);
2705    if (bad_checkpoint) {
2706        fatal("Restoring from checkpoints with dirty caches is not supported "
2707              "in the classic memory system. Please remove any caches or "
2708              " drain them properly before taking checkpoints.\n");
2709    }
2710}
2711
2712///////////////
2713//
2714// CpuSidePort
2715//
2716///////////////
2717
2718AddrRangeList
2719Cache::CpuSidePort::getAddrRanges() const
2720{
2721    return cache->getAddrRanges();
2722}
2723
2724bool
2725Cache::CpuSidePort::tryTiming(PacketPtr pkt)
2726{
2727    assert(!cache->system->bypassCaches());
2728
2729    // always let express snoop packets through if even if blocked
2730    if (pkt->isExpressSnoop()) {
2731        return true;
2732    } else if (isBlocked() || mustSendRetry) {
2733        // either already committed to send a retry, or blocked
2734        mustSendRetry = true;
2735        return false;
2736    }
2737    mustSendRetry = false;
2738    return true;
2739}
2740
2741bool
2742Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2743{
2744    assert(!cache->system->bypassCaches());
2745
2746    // always let express snoop packets through if even if blocked
2747    if (pkt->isExpressSnoop()) {
2748        bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2749        assert(bypass_success);
2750        return true;
2751    }
2752
2753    return tryTiming(pkt) && cache->recvTimingReq(pkt);
2754}
2755
2756Tick
2757Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2758{
2759    return cache->recvAtomic(pkt);
2760}
2761
2762void
2763Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2764{
2765    // functional request
2766    cache->functionalAccess(pkt, true);
2767}
2768
2769Cache::
2770CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2771                         const std::string &_label)
2772    : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2773{
2774}
2775
2776Cache*
2777CacheParams::create()
2778{
2779    assert(tags);
2780
2781    return new Cache(this);
2782}
2783///////////////
2784//
2785// MemSidePort
2786//
2787///////////////
2788
2789bool
2790Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2791{
2792    cache->recvTimingResp(pkt);
2793    return true;
2794}
2795
2796// Express snooping requests to memside port
2797void
2798Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2799{
2800    // handle snooping requests
2801    cache->recvTimingSnoopReq(pkt);
2802}
2803
2804Tick
2805Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2806{
2807    return cache->recvAtomicSnoop(pkt);
2808}
2809
2810void
2811Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2812{
2813    // functional snoop (note that in contrast to atomic we don't have
2814    // a specific functionalSnoop method, as they have the same
2815    // behaviour regardless)
2816    cache->functionalAccess(pkt, false);
2817}
2818
2819void
2820Cache::CacheReqPacketQueue::sendDeferredPacket()
2821{
2822    // sanity check
2823    assert(!waitingOnRetry);
2824
2825    // there should never be any deferred request packets in the
2826    // queue, instead we resly on the cache to provide the packets
2827    // from the MSHR queue or write queue
2828    assert(deferredPacketReadyTime() == MaxTick);
2829
2830    // check for request packets (requests & writebacks)
2831    QueueEntry* entry = cache.getNextQueueEntry();
2832
2833    if (!entry) {
2834        // can happen if e.g. we attempt a writeback and fail, but
2835        // before the retry, the writeback is eliminated because
2836        // we snoop another cache's ReadEx.
2837    } else {
2838        // let our snoop responses go first if there are responses to
2839        // the same addresses
2840        if (checkConflictingSnoop(entry->blkAddr)) {
2841            return;
2842        }
2843        waitingOnRetry = entry->sendPacket(cache);
2844    }
2845
2846    // if we succeeded and are not waiting for a retry, schedule the
2847    // next send considering when the next queue is ready, note that
2848    // snoop responses have their own packet queue and thus schedule
2849    // their own events
2850    if (!waitingOnRetry) {
2851        schedSendEvent(cache.nextQueueReadyTime());
2852    }
2853}
2854
2855Cache::
2856MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2857                         const std::string &_label)
2858    : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2859      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2860      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2861{
2862}
2863