cache.cc revision 12167
1/* 2 * Copyright (c) 2010-2016 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2002-2005 The Regents of The University of Michigan 15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc. 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Erik Hallnor 42 * Dave Greene 43 * Nathan Binkert 44 * Steve Reinhardt 45 * Ron Dreslinski 46 * Andreas Sandberg 47 */ 48 49/** 50 * @file 51 * Cache definitions. 52 */ 53 54#include "mem/cache/cache.hh" 55 56#include "base/misc.hh" 57#include "base/types.hh" 58#include "debug/Cache.hh" 59#include "debug/CachePort.hh" 60#include "debug/CacheTags.hh" 61#include "debug/CacheVerbose.hh" 62#include "mem/cache/blk.hh" 63#include "mem/cache/mshr.hh" 64#include "mem/cache/prefetch/base.hh" 65#include "sim/sim_exit.hh" 66 67Cache::Cache(const CacheParams *p) 68 : BaseCache(p, p->system->cacheLineSize()), 69 tags(p->tags), 70 prefetcher(p->prefetcher), 71 doFastWrites(true), 72 prefetchOnAccess(p->prefetch_on_access), 73 clusivity(p->clusivity), 74 writebackClean(p->writeback_clean), 75 tempBlockWriteback(nullptr), 76 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); }, 77 name(), false, 78 EventBase::Delayed_Writeback_Pri) 79{ 80 tempBlock = new CacheBlk(); 81 tempBlock->data = new uint8_t[blkSize]; 82 83 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this, 84 "CpuSidePort"); 85 memSidePort = new MemSidePort(p->name + ".mem_side", this, 86 "MemSidePort"); 87 88 tags->setCache(this); 89 if (prefetcher) 90 prefetcher->setCache(this); 91} 92 93Cache::~Cache() 94{ 95 delete [] tempBlock->data; 96 delete tempBlock; 97 98 delete cpuSidePort; 99 delete memSidePort; 100} 101 102void 103Cache::regStats() 104{ 105 BaseCache::regStats(); 106} 107 108void 109Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) 110{ 111 assert(pkt->isRequest()); 112 113 uint64_t overwrite_val; 114 bool overwrite_mem; 115 uint64_t condition_val64; 116 uint32_t condition_val32; 117 118 int offset = tags->extractBlkOffset(pkt->getAddr()); 119 uint8_t *blk_data = blk->data + offset; 120 121 assert(sizeof(uint64_t) >= pkt->getSize()); 122 123 overwrite_mem = true; 124 // keep a copy of our possible write value, and copy what is at the 125 // memory address into the packet 126 pkt->writeData((uint8_t *)&overwrite_val); 127 pkt->setData(blk_data); 128 129 if (pkt->req->isCondSwap()) { 130 if (pkt->getSize() == sizeof(uint64_t)) { 131 condition_val64 = pkt->req->getExtraData(); 132 overwrite_mem = !std::memcmp(&condition_val64, blk_data, 133 sizeof(uint64_t)); 134 } else if (pkt->getSize() == sizeof(uint32_t)) { 135 condition_val32 = (uint32_t)pkt->req->getExtraData(); 136 overwrite_mem = !std::memcmp(&condition_val32, blk_data, 137 sizeof(uint32_t)); 138 } else 139 panic("Invalid size for conditional read/write\n"); 140 } 141 142 if (overwrite_mem) { 143 std::memcpy(blk_data, &overwrite_val, pkt->getSize()); 144 blk->status |= BlkDirty; 145 } 146} 147 148 149void 150Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, 151 bool deferred_response, bool pending_downgrade) 152{ 153 assert(pkt->isRequest()); 154 155 assert(blk && blk->isValid()); 156 // Occasionally this is not true... if we are a lower-level cache 157 // satisfying a string of Read and ReadEx requests from 158 // upper-level caches, a Read will mark the block as shared but we 159 // can satisfy a following ReadEx anyway since we can rely on the 160 // Read requester(s) to have buffered the ReadEx snoop and to 161 // invalidate their blocks after receiving them. 162 // assert(!pkt->needsWritable() || blk->isWritable()); 163 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); 164 165 // Check RMW operations first since both isRead() and 166 // isWrite() will be true for them 167 if (pkt->cmd == MemCmd::SwapReq) { 168 cmpAndSwap(blk, pkt); 169 } else if (pkt->isWrite()) { 170 // we have the block in a writable state and can go ahead, 171 // note that the line may be also be considered writable in 172 // downstream caches along the path to memory, but always 173 // Exclusive, and never Modified 174 assert(blk->isWritable()); 175 // Write or WriteLine at the first cache with block in writable state 176 if (blk->checkWrite(pkt)) { 177 pkt->writeDataToBlock(blk->data, blkSize); 178 } 179 // Always mark the line as dirty (and thus transition to the 180 // Modified state) even if we are a failed StoreCond so we 181 // supply data to any snoops that have appended themselves to 182 // this cache before knowing the store will fail. 183 blk->status |= BlkDirty; 184 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print()); 185 } else if (pkt->isRead()) { 186 if (pkt->isLLSC()) { 187 blk->trackLoadLocked(pkt); 188 } 189 190 // all read responses have a data payload 191 assert(pkt->hasRespData()); 192 pkt->setDataFromBlock(blk->data, blkSize); 193 194 // determine if this read is from a (coherent) cache or not 195 if (pkt->fromCache()) { 196 assert(pkt->getSize() == blkSize); 197 // special handling for coherent block requests from 198 // upper-level caches 199 if (pkt->needsWritable()) { 200 // sanity check 201 assert(pkt->cmd == MemCmd::ReadExReq || 202 pkt->cmd == MemCmd::SCUpgradeFailReq); 203 assert(!pkt->hasSharers()); 204 205 // if we have a dirty copy, make sure the recipient 206 // keeps it marked dirty (in the modified state) 207 if (blk->isDirty()) { 208 pkt->setCacheResponding(); 209 blk->status &= ~BlkDirty; 210 } 211 } else if (blk->isWritable() && !pending_downgrade && 212 !pkt->hasSharers() && 213 pkt->cmd != MemCmd::ReadCleanReq) { 214 // we can give the requester a writable copy on a read 215 // request if: 216 // - we have a writable copy at this level (& below) 217 // - we don't have a pending snoop from below 218 // signaling another read request 219 // - no other cache above has a copy (otherwise it 220 // would have set hasSharers flag when 221 // snooping the packet) 222 // - the read has explicitly asked for a clean 223 // copy of the line 224 if (blk->isDirty()) { 225 // special considerations if we're owner: 226 if (!deferred_response) { 227 // respond with the line in Modified state 228 // (cacheResponding set, hasSharers not set) 229 pkt->setCacheResponding(); 230 231 // if this cache is mostly inclusive, we 232 // keep the block in the Exclusive state, 233 // and pass it upwards as Modified 234 // (writable and dirty), hence we have 235 // multiple caches, all on the same path 236 // towards memory, all considering the 237 // same block writable, but only one 238 // considering it Modified 239 240 // we get away with multiple caches (on 241 // the same path to memory) considering 242 // the block writeable as we always enter 243 // the cache hierarchy through a cache, 244 // and first snoop upwards in all other 245 // branches 246 blk->status &= ~BlkDirty; 247 } else { 248 // if we're responding after our own miss, 249 // there's a window where the recipient didn't 250 // know it was getting ownership and may not 251 // have responded to snoops correctly, so we 252 // have to respond with a shared line 253 pkt->setHasSharers(); 254 } 255 } 256 } else { 257 // otherwise only respond with a shared copy 258 pkt->setHasSharers(); 259 } 260 } 261 } else if (pkt->isUpgrade()) { 262 // sanity check 263 assert(!pkt->hasSharers()); 264 265 if (blk->isDirty()) { 266 // we were in the Owned state, and a cache above us that 267 // has the line in Shared state needs to be made aware 268 // that the data it already has is in fact dirty 269 pkt->setCacheResponding(); 270 blk->status &= ~BlkDirty; 271 } 272 } else { 273 assert(pkt->isInvalidate()); 274 invalidateBlock(blk); 275 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__, 276 pkt->print()); 277 } 278} 279 280///////////////////////////////////////////////////// 281// 282// Access path: requests coming in from the CPU side 283// 284///////////////////////////////////////////////////// 285 286bool 287Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 288 PacketList &writebacks) 289{ 290 // sanity check 291 assert(pkt->isRequest()); 292 293 chatty_assert(!(isReadOnly && pkt->isWrite()), 294 "Should never see a write in a read-only cache %s\n", 295 name()); 296 297 DPRINTF(CacheVerbose, "%s for %s\n", __func__, pkt->print()); 298 299 if (pkt->req->isUncacheable()) { 300 DPRINTF(Cache, "uncacheable: %s\n", pkt->print()); 301 302 // flush and invalidate any existing block 303 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure())); 304 if (old_blk && old_blk->isValid()) { 305 if (old_blk->isDirty() || writebackClean) 306 writebacks.push_back(writebackBlk(old_blk)); 307 else 308 writebacks.push_back(cleanEvictBlk(old_blk)); 309 invalidateBlock(old_blk); 310 } 311 312 blk = nullptr; 313 // lookupLatency is the latency in case the request is uncacheable. 314 lat = lookupLatency; 315 return false; 316 } 317 318 // Here lat is the value passed as parameter to accessBlock() function 319 // that can modify its value. 320 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat); 321 322 DPRINTF(Cache, "%s %s\n", pkt->print(), 323 blk ? "hit " + blk->print() : "miss"); 324 325 326 if (pkt->isEviction()) { 327 // We check for presence of block in above caches before issuing 328 // Writeback or CleanEvict to write buffer. Therefore the only 329 // possible cases can be of a CleanEvict packet coming from above 330 // encountering a Writeback generated in this cache peer cache and 331 // waiting in the write buffer. Cases of upper level peer caches 332 // generating CleanEvict and Writeback or simply CleanEvict and 333 // CleanEvict almost simultaneously will be caught by snoops sent out 334 // by crossbar. 335 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(), 336 pkt->isSecure()); 337 if (wb_entry) { 338 assert(wb_entry->getNumTargets() == 1); 339 PacketPtr wbPkt = wb_entry->getTarget()->pkt; 340 assert(wbPkt->isWriteback()); 341 342 if (pkt->isCleanEviction()) { 343 // The CleanEvict and WritebackClean snoops into other 344 // peer caches of the same level while traversing the 345 // crossbar. If a copy of the block is found, the 346 // packet is deleted in the crossbar. Hence, none of 347 // the other upper level caches connected to this 348 // cache have the block, so we can clear the 349 // BLOCK_CACHED flag in the Writeback if set and 350 // discard the CleanEvict by returning true. 351 wbPkt->clearBlockCached(); 352 return true; 353 } else { 354 assert(pkt->cmd == MemCmd::WritebackDirty); 355 // Dirty writeback from above trumps our clean 356 // writeback... discard here 357 // Note: markInService will remove entry from writeback buffer. 358 markInService(wb_entry); 359 delete wbPkt; 360 } 361 } 362 } 363 364 // Writeback handling is special case. We can write the block into 365 // the cache without having a writeable copy (or any copy at all). 366 if (pkt->isWriteback()) { 367 assert(blkSize == pkt->getSize()); 368 369 // we could get a clean writeback while we are having 370 // outstanding accesses to a block, do the simple thing for 371 // now and drop the clean writeback so that we do not upset 372 // any ordering/decisions about ownership already taken 373 if (pkt->cmd == MemCmd::WritebackClean && 374 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) { 375 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, " 376 "dropping\n", pkt->getAddr()); 377 return true; 378 } 379 380 if (blk == nullptr) { 381 // need to do a replacement 382 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks); 383 if (blk == nullptr) { 384 // no replaceable block available: give up, fwd to next level. 385 incMissCount(pkt); 386 return false; 387 } 388 tags->insertBlock(pkt, blk); 389 390 blk->status = (BlkValid | BlkReadable); 391 if (pkt->isSecure()) { 392 blk->status |= BlkSecure; 393 } 394 } 395 // only mark the block dirty if we got a writeback command, 396 // and leave it as is for a clean writeback 397 if (pkt->cmd == MemCmd::WritebackDirty) { 398 blk->status |= BlkDirty; 399 } 400 // if the packet does not have sharers, it is passing 401 // writable, and we got the writeback in Modified or Exclusive 402 // state, if not we are in the Owned or Shared state 403 if (!pkt->hasSharers()) { 404 blk->status |= BlkWritable; 405 } 406 // nothing else to do; writeback doesn't expect response 407 assert(!pkt->needsResponse()); 408 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize); 409 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 410 incHitCount(pkt); 411 return true; 412 } else if (pkt->cmd == MemCmd::CleanEvict) { 413 if (blk != nullptr) { 414 // Found the block in the tags, need to stop CleanEvict from 415 // propagating further down the hierarchy. Returning true will 416 // treat the CleanEvict like a satisfied write request and delete 417 // it. 418 return true; 419 } 420 // We didn't find the block here, propagate the CleanEvict further 421 // down the memory hierarchy. Returning false will treat the CleanEvict 422 // like a Writeback which could not find a replaceable block so has to 423 // go to next level. 424 return false; 425 } else if (blk && (pkt->needsWritable() ? blk->isWritable() : 426 blk->isReadable())) { 427 // OK to satisfy access 428 incHitCount(pkt); 429 satisfyRequest(pkt, blk); 430 maintainClusivity(pkt->fromCache(), blk); 431 432 return true; 433 } 434 435 // Can't satisfy access normally... either no block (blk == nullptr) 436 // or have block but need writable 437 438 incMissCount(pkt); 439 440 if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) { 441 // complete miss on store conditional... just give up now 442 pkt->req->setExtraData(0); 443 return true; 444 } 445 446 return false; 447} 448 449void 450Cache::maintainClusivity(bool from_cache, CacheBlk *blk) 451{ 452 if (from_cache && blk && blk->isValid() && !blk->isDirty() && 453 clusivity == Enums::mostly_excl) { 454 // if we have responded to a cache, and our block is still 455 // valid, but not dirty, and this cache is mostly exclusive 456 // with respect to the cache above, drop the block 457 invalidateBlock(blk); 458 } 459} 460 461void 462Cache::doWritebacks(PacketList& writebacks, Tick forward_time) 463{ 464 while (!writebacks.empty()) { 465 PacketPtr wbPkt = writebacks.front(); 466 // We use forwardLatency here because we are copying writebacks to 467 // write buffer. Call isCachedAbove for both Writebacks and 468 // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag 469 // in Writebacks and discard CleanEvicts. 470 if (isCachedAbove(wbPkt)) { 471 if (wbPkt->cmd == MemCmd::CleanEvict) { 472 // Delete CleanEvict because cached copies exist above. The 473 // packet destructor will delete the request object because 474 // this is a non-snoop request packet which does not require a 475 // response. 476 delete wbPkt; 477 } else if (wbPkt->cmd == MemCmd::WritebackClean) { 478 // clean writeback, do not send since the block is 479 // still cached above 480 assert(writebackClean); 481 delete wbPkt; 482 } else { 483 assert(wbPkt->cmd == MemCmd::WritebackDirty); 484 // Set BLOCK_CACHED flag in Writeback and send below, so that 485 // the Writeback does not reset the bit corresponding to this 486 // address in the snoop filter below. 487 wbPkt->setBlockCached(); 488 allocateWriteBuffer(wbPkt, forward_time); 489 } 490 } else { 491 // If the block is not cached above, send packet below. Both 492 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 493 // reset the bit corresponding to this address in the snoop filter 494 // below. 495 allocateWriteBuffer(wbPkt, forward_time); 496 } 497 writebacks.pop_front(); 498 } 499} 500 501void 502Cache::doWritebacksAtomic(PacketList& writebacks) 503{ 504 while (!writebacks.empty()) { 505 PacketPtr wbPkt = writebacks.front(); 506 // Call isCachedAbove for both Writebacks and CleanEvicts. If 507 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks 508 // and discard CleanEvicts. 509 if (isCachedAbove(wbPkt, false)) { 510 if (wbPkt->cmd == MemCmd::WritebackDirty) { 511 // Set BLOCK_CACHED flag in Writeback and send below, 512 // so that the Writeback does not reset the bit 513 // corresponding to this address in the snoop filter 514 // below. We can discard CleanEvicts because cached 515 // copies exist above. Atomic mode isCachedAbove 516 // modifies packet to set BLOCK_CACHED flag 517 memSidePort->sendAtomic(wbPkt); 518 } 519 } else { 520 // If the block is not cached above, send packet below. Both 521 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 522 // reset the bit corresponding to this address in the snoop filter 523 // below. 524 memSidePort->sendAtomic(wbPkt); 525 } 526 writebacks.pop_front(); 527 // In case of CleanEvicts, the packet destructor will delete the 528 // request object because this is a non-snoop request packet which 529 // does not require a response. 530 delete wbPkt; 531 } 532} 533 534 535void 536Cache::recvTimingSnoopResp(PacketPtr pkt) 537{ 538 DPRINTF(Cache, "%s for %s\n", __func__, pkt->print()); 539 540 assert(pkt->isResponse()); 541 assert(!system->bypassCaches()); 542 543 // determine if the response is from a snoop request we created 544 // (in which case it should be in the outstandingSnoop), or if we 545 // merely forwarded someone else's snoop request 546 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 547 outstandingSnoop.end(); 548 549 if (!forwardAsSnoop) { 550 // the packet came from this cache, so sink it here and do not 551 // forward it 552 assert(pkt->cmd == MemCmd::HardPFResp); 553 554 outstandingSnoop.erase(pkt->req); 555 556 DPRINTF(Cache, "Got prefetch response from above for addr " 557 "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 558 recvTimingResp(pkt); 559 return; 560 } 561 562 // forwardLatency is set here because there is a response from an 563 // upper level cache. 564 // To pay the delay that occurs if the packet comes from the bus, 565 // we charge also headerDelay. 566 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay; 567 // Reset the timing of the packet. 568 pkt->headerDelay = pkt->payloadDelay = 0; 569 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time); 570} 571 572void 573Cache::promoteWholeLineWrites(PacketPtr pkt) 574{ 575 // Cache line clearing instructions 576 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) && 577 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) { 578 pkt->cmd = MemCmd::WriteLineReq; 579 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n"); 580 } 581} 582 583bool 584Cache::recvTimingReq(PacketPtr pkt) 585{ 586 DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print()); 587 588 assert(pkt->isRequest()); 589 590 // Just forward the packet if caches are disabled. 591 if (system->bypassCaches()) { 592 // @todo This should really enqueue the packet rather 593 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt); 594 assert(success); 595 return true; 596 } 597 598 promoteWholeLineWrites(pkt); 599 600 if (pkt->cacheResponding()) { 601 // a cache above us (but not where the packet came from) is 602 // responding to the request, in other words it has the line 603 // in Modified or Owned state 604 DPRINTF(Cache, "Cache above responding to %s: not responding\n", 605 pkt->print()); 606 607 // if the packet needs the block to be writable, and the cache 608 // that has promised to respond (setting the cache responding 609 // flag) is not providing writable (it is in Owned rather than 610 // the Modified state), we know that there may be other Shared 611 // copies in the system; go out and invalidate them all 612 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 613 614 // an upstream cache that had the line in Owned state 615 // (dirty, but not writable), is responding and thus 616 // transferring the dirty line from one branch of the 617 // cache hierarchy to another 618 619 // send out an express snoop and invalidate all other 620 // copies (snooping a packet that needs writable is the 621 // same as an invalidation), thus turning the Owned line 622 // into a Modified line, note that we don't invalidate the 623 // block in the current cache or any other cache on the 624 // path to memory 625 626 // create a downstream express snoop with cleared packet 627 // flags, there is no need to allocate any data as the 628 // packet is merely used to co-ordinate state transitions 629 Packet *snoop_pkt = new Packet(pkt, true, false); 630 631 // also reset the bus time that the original packet has 632 // not yet paid for 633 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0; 634 635 // make this an instantaneous express snoop, and let the 636 // other caches in the system know that the another cache 637 // is responding, because we have found the authorative 638 // copy (Modified or Owned) that will supply the right 639 // data 640 snoop_pkt->setExpressSnoop(); 641 snoop_pkt->setCacheResponding(); 642 643 // this express snoop travels towards the memory, and at 644 // every crossbar it is snooped upwards thus reaching 645 // every cache in the system 646 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt); 647 // express snoops always succeed 648 assert(success); 649 650 // main memory will delete the snoop packet 651 652 // queue for deletion, as opposed to immediate deletion, as 653 // the sending cache is still relying on the packet 654 pendingDelete.reset(pkt); 655 656 // no need to take any further action in this particular cache 657 // as an upstram cache has already committed to responding, 658 // and we have already sent out any express snoops in the 659 // section above to ensure all other copies in the system are 660 // invalidated 661 return true; 662 } 663 664 // anything that is merely forwarded pays for the forward latency and 665 // the delay provided by the crossbar 666 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 667 668 // We use lookupLatency here because it is used to specify the latency 669 // to access. 670 Cycles lat = lookupLatency; 671 CacheBlk *blk = nullptr; 672 bool satisfied = false; 673 { 674 PacketList writebacks; 675 // Note that lat is passed by reference here. The function 676 // access() calls accessBlock() which can modify lat value. 677 satisfied = access(pkt, blk, lat, writebacks); 678 679 // copy writebacks to write buffer here to ensure they logically 680 // proceed anything happening below 681 doWritebacks(writebacks, forward_time); 682 } 683 684 // Here we charge the headerDelay that takes into account the latencies 685 // of the bus, if the packet comes from it. 686 // The latency charged it is just lat that is the value of lookupLatency 687 // modified by access() function, or if not just lookupLatency. 688 // In case of a hit we are neglecting response latency. 689 // In case of a miss we are neglecting forward latency. 690 Tick request_time = clockEdge(lat) + pkt->headerDelay; 691 // Here we reset the timing of the packet. 692 pkt->headerDelay = pkt->payloadDelay = 0; 693 694 // track time of availability of next prefetch, if any 695 Tick next_pf_time = MaxTick; 696 697 bool needsResponse = pkt->needsResponse(); 698 699 if (satisfied) { 700 // should never be satisfying an uncacheable access as we 701 // flush and invalidate any existing block as part of the 702 // lookup 703 assert(!pkt->req->isUncacheable()); 704 705 // hit (for all other request types) 706 707 if (prefetcher && (prefetchOnAccess || 708 (blk && blk->wasPrefetched()))) { 709 if (blk) 710 blk->status &= ~BlkHWPrefetched; 711 712 // Don't notify on SWPrefetch 713 if (!pkt->cmd.isSWPrefetch()) 714 next_pf_time = prefetcher->notify(pkt); 715 } 716 717 if (needsResponse) { 718 pkt->makeTimingResponse(); 719 // @todo: Make someone pay for this 720 pkt->headerDelay = pkt->payloadDelay = 0; 721 722 // In this case we are considering request_time that takes 723 // into account the delay of the xbar, if any, and just 724 // lat, neglecting responseLatency, modelling hit latency 725 // just as lookupLatency or or the value of lat overriden 726 // by access(), that calls accessBlock() function. 727 cpuSidePort->schedTimingResp(pkt, request_time, true); 728 } else { 729 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__, 730 pkt->print()); 731 732 // queue the packet for deletion, as the sending cache is 733 // still relying on it; if the block is found in access(), 734 // CleanEvict and Writeback messages will be deleted 735 // here as well 736 pendingDelete.reset(pkt); 737 } 738 } else { 739 // miss 740 741 Addr blk_addr = pkt->getBlockAddr(blkSize); 742 743 // ignore any existing MSHR if we are dealing with an 744 // uncacheable request 745 MSHR *mshr = pkt->req->isUncacheable() ? nullptr : 746 mshrQueue.findMatch(blk_addr, pkt->isSecure()); 747 748 // Software prefetch handling: 749 // To keep the core from waiting on data it won't look at 750 // anyway, send back a response with dummy data. Miss handling 751 // will continue asynchronously. Unfortunately, the core will 752 // insist upon freeing original Packet/Request, so we have to 753 // create a new pair with a different lifecycle. Note that this 754 // processing happens before any MSHR munging on the behalf of 755 // this request because this new Request will be the one stored 756 // into the MSHRs, not the original. 757 if (pkt->cmd.isSWPrefetch()) { 758 assert(needsResponse); 759 assert(pkt->req->hasPaddr()); 760 assert(!pkt->req->isUncacheable()); 761 762 // There's no reason to add a prefetch as an additional target 763 // to an existing MSHR. If an outstanding request is already 764 // in progress, there is nothing for the prefetch to do. 765 // If this is the case, we don't even create a request at all. 766 PacketPtr pf = nullptr; 767 768 if (!mshr) { 769 // copy the request and create a new SoftPFReq packet 770 RequestPtr req = new Request(pkt->req->getPaddr(), 771 pkt->req->getSize(), 772 pkt->req->getFlags(), 773 pkt->req->masterId()); 774 pf = new Packet(req, pkt->cmd); 775 pf->allocate(); 776 assert(pf->getAddr() == pkt->getAddr()); 777 assert(pf->getSize() == pkt->getSize()); 778 } 779 780 pkt->makeTimingResponse(); 781 782 // request_time is used here, taking into account lat and the delay 783 // charged if the packet comes from the xbar. 784 cpuSidePort->schedTimingResp(pkt, request_time, true); 785 786 // If an outstanding request is in progress (we found an 787 // MSHR) this is set to null 788 pkt = pf; 789 } 790 791 if (mshr) { 792 /// MSHR hit 793 /// @note writebacks will be checked in getNextMSHR() 794 /// for any conflicting requests to the same block 795 796 //@todo remove hw_pf here 797 798 // Coalesce unless it was a software prefetch (see above). 799 if (pkt) { 800 assert(!pkt->isWriteback()); 801 // CleanEvicts corresponding to blocks which have 802 // outstanding requests in MSHRs are simply sunk here 803 if (pkt->cmd == MemCmd::CleanEvict) { 804 pendingDelete.reset(pkt); 805 } else { 806 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__, 807 pkt->print()); 808 809 assert(pkt->req->masterId() < system->maxMasters()); 810 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 811 // We use forward_time here because it is the same 812 // considering new targets. We have multiple 813 // requests for the same address here. It 814 // specifies the latency to allocate an internal 815 // buffer and to schedule an event to the queued 816 // port and also takes into account the additional 817 // delay of the xbar. 818 mshr->allocateTarget(pkt, forward_time, order++, 819 allocOnFill(pkt->cmd)); 820 if (mshr->getNumTargets() == numTarget) { 821 noTargetMSHR = mshr; 822 setBlocked(Blocked_NoTargets); 823 // need to be careful with this... if this mshr isn't 824 // ready yet (i.e. time > curTick()), we don't want to 825 // move it ahead of mshrs that are ready 826 // mshrQueue.moveToFront(mshr); 827 } 828 } 829 // We should call the prefetcher reguardless if the request is 830 // satisfied or not, reguardless if the request is in the MSHR 831 // or not. The request could be a ReadReq hit, but still not 832 // satisfied (potentially because of a prior write to the same 833 // cache line. So, even when not satisfied, tehre is an MSHR 834 // already allocated for this, we need to let the prefetcher 835 // know about the request 836 if (prefetcher) { 837 // Don't notify on SWPrefetch 838 if (!pkt->cmd.isSWPrefetch()) 839 next_pf_time = prefetcher->notify(pkt); 840 } 841 } 842 } else { 843 // no MSHR 844 assert(pkt->req->masterId() < system->maxMasters()); 845 if (pkt->req->isUncacheable()) { 846 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++; 847 } else { 848 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 849 } 850 851 if (pkt->isEviction() || 852 (pkt->req->isUncacheable() && pkt->isWrite())) { 853 // We use forward_time here because there is an 854 // uncached memory write, forwarded to WriteBuffer. 855 allocateWriteBuffer(pkt, forward_time); 856 } else { 857 if (blk && blk->isValid()) { 858 // should have flushed and have no valid block 859 assert(!pkt->req->isUncacheable()); 860 861 // If we have a write miss to a valid block, we 862 // need to mark the block non-readable. Otherwise 863 // if we allow reads while there's an outstanding 864 // write miss, the read could return stale data 865 // out of the cache block... a more aggressive 866 // system could detect the overlap (if any) and 867 // forward data out of the MSHRs, but we don't do 868 // that yet. Note that we do need to leave the 869 // block valid so that it stays in the cache, in 870 // case we get an upgrade response (and hence no 871 // new data) when the write miss completes. 872 // As long as CPUs do proper store/load forwarding 873 // internally, and have a sufficiently weak memory 874 // model, this is probably unnecessary, but at some 875 // point it must have seemed like we needed it... 876 assert(pkt->needsWritable()); 877 assert(!blk->isWritable()); 878 blk->status &= ~BlkReadable; 879 } 880 // Here we are using forward_time, modelling the latency of 881 // a miss (outbound) just as forwardLatency, neglecting the 882 // lookupLatency component. 883 allocateMissBuffer(pkt, forward_time); 884 } 885 886 if (prefetcher) { 887 // Don't notify on SWPrefetch 888 if (!pkt->cmd.isSWPrefetch()) 889 next_pf_time = prefetcher->notify(pkt); 890 } 891 } 892 } 893 894 if (next_pf_time != MaxTick) 895 schedMemSideSendEvent(next_pf_time); 896 897 return true; 898} 899 900PacketPtr 901Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk, 902 bool needsWritable) const 903{ 904 // should never see evictions here 905 assert(!cpu_pkt->isEviction()); 906 907 bool blkValid = blk && blk->isValid(); 908 909 if (cpu_pkt->req->isUncacheable() || 910 (!blkValid && cpu_pkt->isUpgrade()) || 911 cpu_pkt->cmd == MemCmd::InvalidateReq) { 912 // uncacheable requests and upgrades from upper-level caches 913 // that missed completely just go through as is 914 return nullptr; 915 } 916 917 assert(cpu_pkt->needsResponse()); 918 919 MemCmd cmd; 920 // @TODO make useUpgrades a parameter. 921 // Note that ownership protocols require upgrade, otherwise a 922 // write miss on a shared owned block will generate a ReadExcl, 923 // which will clobber the owned copy. 924 const bool useUpgrades = true; 925 if (cpu_pkt->cmd == MemCmd::WriteLineReq) { 926 assert(!blkValid || !blk->isWritable()); 927 // forward as invalidate to all other caches, this gives us 928 // the line in Exclusive state, and invalidates all other 929 // copies 930 cmd = MemCmd::InvalidateReq; 931 } else if (blkValid && useUpgrades) { 932 // only reason to be here is that blk is read only and we need 933 // it to be writable 934 assert(needsWritable); 935 assert(!blk->isWritable()); 936 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq; 937 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq || 938 cpu_pkt->cmd == MemCmd::StoreCondFailReq) { 939 // Even though this SC will fail, we still need to send out the 940 // request and get the data to supply it to other snoopers in the case 941 // where the determination the StoreCond fails is delayed due to 942 // all caches not being on the same local bus. 943 cmd = MemCmd::SCUpgradeFailReq; 944 } else { 945 // block is invalid 946 cmd = needsWritable ? MemCmd::ReadExReq : 947 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq); 948 } 949 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize); 950 951 // if there are upstream caches that have already marked the 952 // packet as having sharers (not passing writable), pass that info 953 // downstream 954 if (cpu_pkt->hasSharers() && !needsWritable) { 955 // note that cpu_pkt may have spent a considerable time in the 956 // MSHR queue and that the information could possibly be out 957 // of date, however, there is no harm in conservatively 958 // assuming the block has sharers 959 pkt->setHasSharers(); 960 DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n", 961 __func__, cpu_pkt->print(), pkt->print()); 962 } 963 964 // the packet should be block aligned 965 assert(pkt->getAddr() == pkt->getBlockAddr(blkSize)); 966 967 pkt->allocate(); 968 DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(), 969 cpu_pkt->print()); 970 return pkt; 971} 972 973 974Tick 975Cache::recvAtomic(PacketPtr pkt) 976{ 977 // We are in atomic mode so we pay just for lookupLatency here. 978 Cycles lat = lookupLatency; 979 980 // Forward the request if the system is in cache bypass mode. 981 if (system->bypassCaches()) 982 return ticksToCycles(memSidePort->sendAtomic(pkt)); 983 984 promoteWholeLineWrites(pkt); 985 986 // follow the same flow as in recvTimingReq, and check if a cache 987 // above us is responding 988 if (pkt->cacheResponding()) { 989 DPRINTF(Cache, "Cache above responding to %s: not responding\n", 990 pkt->print()); 991 992 // if a cache is responding, and it had the line in Owned 993 // rather than Modified state, we need to invalidate any 994 // copies that are not on the same path to memory 995 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 996 lat += ticksToCycles(memSidePort->sendAtomic(pkt)); 997 998 return lat * clockPeriod(); 999 } 1000 1001 // should assert here that there are no outstanding MSHRs or 1002 // writebacks... that would mean that someone used an atomic 1003 // access in timing mode 1004 1005 CacheBlk *blk = nullptr; 1006 PacketList writebacks; 1007 bool satisfied = access(pkt, blk, lat, writebacks); 1008 1009 // handle writebacks resulting from the access here to ensure they 1010 // logically proceed anything happening below 1011 doWritebacksAtomic(writebacks); 1012 1013 if (!satisfied) { 1014 // MISS 1015 1016 // deal with the packets that go through the write path of 1017 // the cache, i.e. any evictions and uncacheable writes 1018 if (pkt->isEviction() || 1019 (pkt->req->isUncacheable() && pkt->isWrite())) { 1020 lat += ticksToCycles(memSidePort->sendAtomic(pkt)); 1021 return lat * clockPeriod(); 1022 } 1023 // only misses left 1024 1025 PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable()); 1026 1027 bool is_forward = (bus_pkt == nullptr); 1028 1029 if (is_forward) { 1030 // just forwarding the same request to the next level 1031 // no local cache operation involved 1032 bus_pkt = pkt; 1033 } 1034 1035 DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__, 1036 bus_pkt->print()); 1037 1038#if TRACING_ON 1039 CacheBlk::State old_state = blk ? blk->status : 0; 1040#endif 1041 1042 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt)); 1043 1044 bool is_invalidate = bus_pkt->isInvalidate(); 1045 1046 // We are now dealing with the response handling 1047 DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__, 1048 bus_pkt->print(), old_state); 1049 1050 // If packet was a forward, the response (if any) is already 1051 // in place in the bus_pkt == pkt structure, so we don't need 1052 // to do anything. Otherwise, use the separate bus_pkt to 1053 // generate response to pkt and then delete it. 1054 if (!is_forward) { 1055 if (pkt->needsResponse()) { 1056 assert(bus_pkt->isResponse()); 1057 if (bus_pkt->isError()) { 1058 pkt->makeAtomicResponse(); 1059 pkt->copyError(bus_pkt); 1060 } else if (pkt->cmd == MemCmd::WriteLineReq) { 1061 // note the use of pkt, not bus_pkt here. 1062 1063 // write-line request to the cache that promoted 1064 // the write to a whole line 1065 blk = handleFill(pkt, blk, writebacks, 1066 allocOnFill(pkt->cmd)); 1067 assert(blk != NULL); 1068 is_invalidate = false; 1069 satisfyRequest(pkt, blk); 1070 } else if (bus_pkt->isRead() || 1071 bus_pkt->cmd == MemCmd::UpgradeResp) { 1072 // we're updating cache state to allow us to 1073 // satisfy the upstream request from the cache 1074 blk = handleFill(bus_pkt, blk, writebacks, 1075 allocOnFill(pkt->cmd)); 1076 satisfyRequest(pkt, blk); 1077 maintainClusivity(pkt->fromCache(), blk); 1078 } else { 1079 // we're satisfying the upstream request without 1080 // modifying cache state, e.g., a write-through 1081 pkt->makeAtomicResponse(); 1082 } 1083 } 1084 delete bus_pkt; 1085 } 1086 1087 if (is_invalidate && blk && blk->isValid()) { 1088 invalidateBlock(blk); 1089 } 1090 } 1091 1092 // Note that we don't invoke the prefetcher at all in atomic mode. 1093 // It's not clear how to do it properly, particularly for 1094 // prefetchers that aggressively generate prefetch candidates and 1095 // rely on bandwidth contention to throttle them; these will tend 1096 // to pollute the cache in atomic mode since there is no bandwidth 1097 // contention. If we ever do want to enable prefetching in atomic 1098 // mode, though, this is the place to do it... see timingAccess() 1099 // for an example (though we'd want to issue the prefetch(es) 1100 // immediately rather than calling requestMemSideBus() as we do 1101 // there). 1102 1103 // do any writebacks resulting from the response handling 1104 doWritebacksAtomic(writebacks); 1105 1106 // if we used temp block, check to see if its valid and if so 1107 // clear it out, but only do so after the call to recvAtomic is 1108 // finished so that any downstream observers (such as a snoop 1109 // filter), first see the fill, and only then see the eviction 1110 if (blk == tempBlock && tempBlock->isValid()) { 1111 // the atomic CPU calls recvAtomic for fetch and load/store 1112 // sequentuially, and we may already have a tempBlock 1113 // writeback from the fetch that we have not yet sent 1114 if (tempBlockWriteback) { 1115 // if that is the case, write the prevoius one back, and 1116 // do not schedule any new event 1117 writebackTempBlockAtomic(); 1118 } else { 1119 // the writeback/clean eviction happens after the call to 1120 // recvAtomic has finished (but before any successive 1121 // calls), so that the response handling from the fill is 1122 // allowed to happen first 1123 schedule(writebackTempBlockAtomicEvent, curTick()); 1124 } 1125 1126 tempBlockWriteback = (blk->isDirty() || writebackClean) ? 1127 writebackBlk(blk) : cleanEvictBlk(blk); 1128 invalidateBlock(blk); 1129 } 1130 1131 if (pkt->needsResponse()) { 1132 pkt->makeAtomicResponse(); 1133 } 1134 1135 return lat * clockPeriod(); 1136} 1137 1138 1139void 1140Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide) 1141{ 1142 if (system->bypassCaches()) { 1143 // Packets from the memory side are snoop request and 1144 // shouldn't happen in bypass mode. 1145 assert(fromCpuSide); 1146 1147 // The cache should be flushed if we are in cache bypass mode, 1148 // so we don't need to check if we need to update anything. 1149 memSidePort->sendFunctional(pkt); 1150 return; 1151 } 1152 1153 Addr blk_addr = pkt->getBlockAddr(blkSize); 1154 bool is_secure = pkt->isSecure(); 1155 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 1156 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 1157 1158 pkt->pushLabel(name()); 1159 1160 CacheBlkPrintWrapper cbpw(blk); 1161 1162 // Note that just because an L2/L3 has valid data doesn't mean an 1163 // L1 doesn't have a more up-to-date modified copy that still 1164 // needs to be found. As a result we always update the request if 1165 // we have it, but only declare it satisfied if we are the owner. 1166 1167 // see if we have data at all (owned or otherwise) 1168 bool have_data = blk && blk->isValid() 1169 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize, 1170 blk->data); 1171 1172 // data we have is dirty if marked as such or if we have an 1173 // in-service MSHR that is pending a modified line 1174 bool have_dirty = 1175 have_data && (blk->isDirty() || 1176 (mshr && mshr->inService && mshr->isPendingModified())); 1177 1178 bool done = have_dirty 1179 || cpuSidePort->checkFunctional(pkt) 1180 || mshrQueue.checkFunctional(pkt, blk_addr) 1181 || writeBuffer.checkFunctional(pkt, blk_addr) 1182 || memSidePort->checkFunctional(pkt); 1183 1184 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(), 1185 (blk && blk->isValid()) ? "valid " : "", 1186 have_data ? "data " : "", done ? "done " : ""); 1187 1188 // We're leaving the cache, so pop cache->name() label 1189 pkt->popLabel(); 1190 1191 if (done) { 1192 pkt->makeResponse(); 1193 } else { 1194 // if it came as a request from the CPU side then make sure it 1195 // continues towards the memory side 1196 if (fromCpuSide) { 1197 memSidePort->sendFunctional(pkt); 1198 } else if (cpuSidePort->isSnooping()) { 1199 // if it came from the memory side, it must be a snoop request 1200 // and we should only forward it if we are forwarding snoops 1201 cpuSidePort->sendFunctionalSnoop(pkt); 1202 } 1203 } 1204} 1205 1206 1207///////////////////////////////////////////////////// 1208// 1209// Response handling: responses from the memory side 1210// 1211///////////////////////////////////////////////////// 1212 1213 1214void 1215Cache::handleUncacheableWriteResp(PacketPtr pkt) 1216{ 1217 Tick completion_time = clockEdge(responseLatency) + 1218 pkt->headerDelay + pkt->payloadDelay; 1219 1220 // Reset the bus additional time as it is now accounted for 1221 pkt->headerDelay = pkt->payloadDelay = 0; 1222 1223 cpuSidePort->schedTimingResp(pkt, completion_time, true); 1224} 1225 1226void 1227Cache::recvTimingResp(PacketPtr pkt) 1228{ 1229 assert(pkt->isResponse()); 1230 1231 // all header delay should be paid for by the crossbar, unless 1232 // this is a prefetch response from above 1233 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp, 1234 "%s saw a non-zero packet delay\n", name()); 1235 1236 bool is_error = pkt->isError(); 1237 1238 if (is_error) { 1239 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__, 1240 pkt->print()); 1241 } 1242 1243 DPRINTF(Cache, "%s: Handling response %s\n", __func__, 1244 pkt->print()); 1245 1246 // if this is a write, we should be looking at an uncacheable 1247 // write 1248 if (pkt->isWrite()) { 1249 assert(pkt->req->isUncacheable()); 1250 handleUncacheableWriteResp(pkt); 1251 return; 1252 } 1253 1254 // we have dealt with any (uncacheable) writes above, from here on 1255 // we know we are dealing with an MSHR due to a miss or a prefetch 1256 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState()); 1257 assert(mshr); 1258 1259 if (mshr == noTargetMSHR) { 1260 // we always clear at least one target 1261 clearBlocked(Blocked_NoTargets); 1262 noTargetMSHR = nullptr; 1263 } 1264 1265 // Initial target is used just for stats 1266 MSHR::Target *initial_tgt = mshr->getTarget(); 1267 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); 1268 Tick miss_latency = curTick() - initial_tgt->recvTime; 1269 1270 if (pkt->req->isUncacheable()) { 1271 assert(pkt->req->masterId() < system->maxMasters()); 1272 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += 1273 miss_latency; 1274 } else { 1275 assert(pkt->req->masterId() < system->maxMasters()); 1276 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += 1277 miss_latency; 1278 } 1279 1280 bool wasFull = mshrQueue.isFull(); 1281 1282 PacketList writebacks; 1283 1284 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 1285 1286 // upgrade deferred targets if the response has no sharers, and is 1287 // thus passing writable 1288 if (!pkt->hasSharers()) { 1289 mshr->promoteWritable(); 1290 } 1291 1292 bool is_fill = !mshr->isForward && 1293 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp); 1294 1295 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 1296 1297 if (is_fill && !is_error) { 1298 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", 1299 pkt->getAddr()); 1300 1301 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill()); 1302 assert(blk != nullptr); 1303 } 1304 1305 // allow invalidation responses originating from write-line 1306 // requests to be discarded 1307 bool is_invalidate = pkt->isInvalidate(); 1308 1309 // First offset for critical word first calculations 1310 int initial_offset = initial_tgt->pkt->getOffset(blkSize); 1311 1312 bool from_cache = false; 1313 MSHR::TargetList targets = mshr->extractServiceableTargets(pkt); 1314 for (auto &target: targets) { 1315 Packet *tgt_pkt = target.pkt; 1316 switch (target.source) { 1317 case MSHR::Target::FromCPU: 1318 Tick completion_time; 1319 // Here we charge on completion_time the delay of the xbar if the 1320 // packet comes from it, charged on headerDelay. 1321 completion_time = pkt->headerDelay; 1322 1323 // Software prefetch handling for cache closest to core 1324 if (tgt_pkt->cmd.isSWPrefetch()) { 1325 // a software prefetch would have already been ack'd 1326 // immediately with dummy data so the core would be able to 1327 // retire it. This request completes right here, so we 1328 // deallocate it. 1329 delete tgt_pkt->req; 1330 delete tgt_pkt; 1331 break; // skip response 1332 } 1333 1334 // keep track of whether we have responded to another 1335 // cache 1336 from_cache = from_cache || tgt_pkt->fromCache(); 1337 1338 // unlike the other packet flows, where data is found in other 1339 // caches or memory and brought back, write-line requests always 1340 // have the data right away, so the above check for "is fill?" 1341 // cannot actually be determined until examining the stored MSHR 1342 // state. We "catch up" with that logic here, which is duplicated 1343 // from above. 1344 if (tgt_pkt->cmd == MemCmd::WriteLineReq) { 1345 assert(!is_error); 1346 // we got the block in a writable state, so promote 1347 // any deferred targets if possible 1348 mshr->promoteWritable(); 1349 // NB: we use the original packet here and not the response! 1350 blk = handleFill(tgt_pkt, blk, writebacks, 1351 targets.allocOnFill); 1352 assert(blk != nullptr); 1353 1354 // treat as a fill, and discard the invalidation 1355 // response 1356 is_fill = true; 1357 is_invalidate = false; 1358 } 1359 1360 if (is_fill) { 1361 satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade()); 1362 1363 // How many bytes past the first request is this one 1364 int transfer_offset = 1365 tgt_pkt->getOffset(blkSize) - initial_offset; 1366 if (transfer_offset < 0) { 1367 transfer_offset += blkSize; 1368 } 1369 1370 // If not critical word (offset) return payloadDelay. 1371 // responseLatency is the latency of the return path 1372 // from lower level caches/memory to an upper level cache or 1373 // the core. 1374 completion_time += clockEdge(responseLatency) + 1375 (transfer_offset ? pkt->payloadDelay : 0); 1376 1377 assert(!tgt_pkt->req->isUncacheable()); 1378 1379 assert(tgt_pkt->req->masterId() < system->maxMasters()); 1380 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] += 1381 completion_time - target.recvTime; 1382 } else if (pkt->cmd == MemCmd::UpgradeFailResp) { 1383 // failed StoreCond upgrade 1384 assert(tgt_pkt->cmd == MemCmd::StoreCondReq || 1385 tgt_pkt->cmd == MemCmd::StoreCondFailReq || 1386 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq); 1387 // responseLatency is the latency of the return path 1388 // from lower level caches/memory to an upper level cache or 1389 // the core. 1390 completion_time += clockEdge(responseLatency) + 1391 pkt->payloadDelay; 1392 tgt_pkt->req->setExtraData(0); 1393 } else { 1394 // We are about to send a response to a cache above 1395 // that asked for an invalidation; we need to 1396 // invalidate our copy immediately as the most 1397 // up-to-date copy of the block will now be in the 1398 // cache above. It will also prevent this cache from 1399 // responding (if the block was previously dirty) to 1400 // snoops as they should snoop the caches above where 1401 // they will get the response from. 1402 if (is_invalidate && blk && blk->isValid()) { 1403 invalidateBlock(blk); 1404 } 1405 // not a cache fill, just forwarding response 1406 // responseLatency is the latency of the return path 1407 // from lower level cahces/memory to the core. 1408 completion_time += clockEdge(responseLatency) + 1409 pkt->payloadDelay; 1410 if (pkt->isRead() && !is_error) { 1411 // sanity check 1412 assert(pkt->getAddr() == tgt_pkt->getAddr()); 1413 assert(pkt->getSize() >= tgt_pkt->getSize()); 1414 1415 tgt_pkt->setData(pkt->getConstPtr<uint8_t>()); 1416 } 1417 } 1418 tgt_pkt->makeTimingResponse(); 1419 // if this packet is an error copy that to the new packet 1420 if (is_error) 1421 tgt_pkt->copyError(pkt); 1422 if (tgt_pkt->cmd == MemCmd::ReadResp && 1423 (is_invalidate || mshr->hasPostInvalidate())) { 1424 // If intermediate cache got ReadRespWithInvalidate, 1425 // propagate that. Response should not have 1426 // isInvalidate() set otherwise. 1427 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate; 1428 DPRINTF(Cache, "%s: updated cmd to %s\n", __func__, 1429 tgt_pkt->print()); 1430 } 1431 // Reset the bus additional time as it is now accounted for 1432 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0; 1433 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true); 1434 break; 1435 1436 case MSHR::Target::FromPrefetcher: 1437 assert(tgt_pkt->cmd == MemCmd::HardPFReq); 1438 if (blk) 1439 blk->status |= BlkHWPrefetched; 1440 delete tgt_pkt->req; 1441 delete tgt_pkt; 1442 break; 1443 1444 case MSHR::Target::FromSnoop: 1445 // I don't believe that a snoop can be in an error state 1446 assert(!is_error); 1447 // response to snoop request 1448 DPRINTF(Cache, "processing deferred snoop...\n"); 1449 // If the response is invalidating, a snooping target can 1450 // be satisfied if it is also invalidating. If the reponse is, not 1451 // only invalidating, but more specifically an InvalidateResp, the 1452 // MSHR was created due to an InvalidateReq and a cache above is 1453 // waiting to satisfy a WriteLineReq. In this case even an 1454 // non-invalidating snoop is added as a target here since this is 1455 // the ordering point. When the InvalidateResp reaches this cache, 1456 // the snooping target will snoop further the cache above with the 1457 // WriteLineReq. 1458 assert(!(is_invalidate && 1459 pkt->cmd != MemCmd::InvalidateResp && 1460 !mshr->hasPostInvalidate())); 1461 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate()); 1462 break; 1463 1464 default: 1465 panic("Illegal target->source enum %d\n", target.source); 1466 } 1467 } 1468 1469 maintainClusivity(from_cache, blk); 1470 1471 if (blk && blk->isValid()) { 1472 // an invalidate response stemming from a write line request 1473 // should not invalidate the block, so check if the 1474 // invalidation should be discarded 1475 if (is_invalidate || mshr->hasPostInvalidate()) { 1476 invalidateBlock(blk); 1477 } else if (mshr->hasPostDowngrade()) { 1478 blk->status &= ~BlkWritable; 1479 } 1480 } 1481 1482 if (mshr->promoteDeferredTargets()) { 1483 // avoid later read getting stale data while write miss is 1484 // outstanding.. see comment in timingAccess() 1485 if (blk) { 1486 blk->status &= ~BlkReadable; 1487 } 1488 mshrQueue.markPending(mshr); 1489 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay); 1490 } else { 1491 mshrQueue.deallocate(mshr); 1492 if (wasFull && !mshrQueue.isFull()) { 1493 clearBlocked(Blocked_NoMSHRs); 1494 } 1495 1496 // Request the bus for a prefetch if this deallocation freed enough 1497 // MSHRs for a prefetch to take place 1498 if (prefetcher && mshrQueue.canPrefetch()) { 1499 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), 1500 clockEdge()); 1501 if (next_pf_time != MaxTick) 1502 schedMemSideSendEvent(next_pf_time); 1503 } 1504 } 1505 // reset the xbar additional timinig as it is now accounted for 1506 pkt->headerDelay = pkt->payloadDelay = 0; 1507 1508 // copy writebacks to write buffer 1509 doWritebacks(writebacks, forward_time); 1510 1511 // if we used temp block, check to see if its valid and then clear it out 1512 if (blk == tempBlock && tempBlock->isValid()) { 1513 // We use forwardLatency here because we are copying 1514 // Writebacks/CleanEvicts to write buffer. It specifies the latency to 1515 // allocate an internal buffer and to schedule an event to the 1516 // queued port. 1517 if (blk->isDirty() || writebackClean) { 1518 PacketPtr wbPkt = writebackBlk(blk); 1519 allocateWriteBuffer(wbPkt, forward_time); 1520 // Set BLOCK_CACHED flag if cached above. 1521 if (isCachedAbove(wbPkt)) 1522 wbPkt->setBlockCached(); 1523 } else { 1524 PacketPtr wcPkt = cleanEvictBlk(blk); 1525 // Check to see if block is cached above. If not allocate 1526 // write buffer 1527 if (isCachedAbove(wcPkt)) 1528 delete wcPkt; 1529 else 1530 allocateWriteBuffer(wcPkt, forward_time); 1531 } 1532 invalidateBlock(blk); 1533 } 1534 1535 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print()); 1536 delete pkt; 1537} 1538 1539PacketPtr 1540Cache::writebackBlk(CacheBlk *blk) 1541{ 1542 chatty_assert(!isReadOnly || writebackClean, 1543 "Writeback from read-only cache"); 1544 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean)); 1545 1546 writebacks[Request::wbMasterId]++; 1547 1548 Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set), 1549 blkSize, 0, Request::wbMasterId); 1550 if (blk->isSecure()) 1551 req->setFlags(Request::SECURE); 1552 1553 req->taskId(blk->task_id); 1554 blk->task_id= ContextSwitchTaskId::Unknown; 1555 blk->tickInserted = curTick(); 1556 1557 PacketPtr pkt = 1558 new Packet(req, blk->isDirty() ? 1559 MemCmd::WritebackDirty : MemCmd::WritebackClean); 1560 1561 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n", 1562 pkt->print(), blk->isWritable(), blk->isDirty()); 1563 1564 if (blk->isWritable()) { 1565 // not asserting shared means we pass the block in modified 1566 // state, mark our own block non-writeable 1567 blk->status &= ~BlkWritable; 1568 } else { 1569 // we are in the Owned state, tell the receiver 1570 pkt->setHasSharers(); 1571 } 1572 1573 // make sure the block is not marked dirty 1574 blk->status &= ~BlkDirty; 1575 1576 pkt->allocate(); 1577 std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize); 1578 1579 return pkt; 1580} 1581 1582PacketPtr 1583Cache::cleanEvictBlk(CacheBlk *blk) 1584{ 1585 assert(!writebackClean); 1586 assert(blk && blk->isValid() && !blk->isDirty()); 1587 // Creating a zero sized write, a message to the snoop filter 1588 Request *req = 1589 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0, 1590 Request::wbMasterId); 1591 if (blk->isSecure()) 1592 req->setFlags(Request::SECURE); 1593 1594 req->taskId(blk->task_id); 1595 blk->task_id = ContextSwitchTaskId::Unknown; 1596 blk->tickInserted = curTick(); 1597 1598 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict); 1599 pkt->allocate(); 1600 DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print()); 1601 1602 return pkt; 1603} 1604 1605void 1606Cache::memWriteback() 1607{ 1608 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor); 1609 tags->forEachBlk(visitor); 1610} 1611 1612void 1613Cache::memInvalidate() 1614{ 1615 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor); 1616 tags->forEachBlk(visitor); 1617} 1618 1619bool 1620Cache::isDirty() const 1621{ 1622 CacheBlkIsDirtyVisitor visitor; 1623 tags->forEachBlk(visitor); 1624 1625 return visitor.isDirty(); 1626} 1627 1628bool 1629Cache::writebackVisitor(CacheBlk &blk) 1630{ 1631 if (blk.isDirty()) { 1632 assert(blk.isValid()); 1633 1634 Request request(tags->regenerateBlkAddr(blk.tag, blk.set), 1635 blkSize, 0, Request::funcMasterId); 1636 request.taskId(blk.task_id); 1637 if (blk.isSecure()) { 1638 request.setFlags(Request::SECURE); 1639 } 1640 1641 Packet packet(&request, MemCmd::WriteReq); 1642 packet.dataStatic(blk.data); 1643 1644 memSidePort->sendFunctional(&packet); 1645 1646 blk.status &= ~BlkDirty; 1647 } 1648 1649 return true; 1650} 1651 1652bool 1653Cache::invalidateVisitor(CacheBlk &blk) 1654{ 1655 1656 if (blk.isDirty()) 1657 warn_once("Invalidating dirty cache lines. Expect things to break.\n"); 1658 1659 if (blk.isValid()) { 1660 assert(!blk.isDirty()); 1661 invalidateBlock(&blk); 1662 } 1663 1664 return true; 1665} 1666 1667CacheBlk* 1668Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks) 1669{ 1670 CacheBlk *blk = tags->findVictim(addr); 1671 1672 // It is valid to return nullptr if there is no victim 1673 if (!blk) 1674 return nullptr; 1675 1676 if (blk->isValid()) { 1677 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set); 1678 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); 1679 if (repl_mshr) { 1680 // must be an outstanding upgrade request 1681 // on a block we're about to replace... 1682 assert(!blk->isWritable() || blk->isDirty()); 1683 assert(repl_mshr->needsWritable()); 1684 // too hard to replace block with transient state 1685 // allocation failed, block not inserted 1686 return nullptr; 1687 } else { 1688 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx " 1689 "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns", 1690 addr, is_secure ? "s" : "ns", 1691 blk->isDirty() ? "writeback" : "clean"); 1692 1693 if (blk->wasPrefetched()) { 1694 unusedPrefetches++; 1695 } 1696 // Will send up Writeback/CleanEvict snoops via isCachedAbove 1697 // when pushing this writeback list into the write buffer. 1698 if (blk->isDirty() || writebackClean) { 1699 // Save writeback packet for handling by caller 1700 writebacks.push_back(writebackBlk(blk)); 1701 } else { 1702 writebacks.push_back(cleanEvictBlk(blk)); 1703 } 1704 } 1705 } 1706 1707 return blk; 1708} 1709 1710void 1711Cache::invalidateBlock(CacheBlk *blk) 1712{ 1713 if (blk != tempBlock) 1714 tags->invalidate(blk); 1715 blk->invalidate(); 1716} 1717 1718// Note that the reason we return a list of writebacks rather than 1719// inserting them directly in the write buffer is that this function 1720// is called by both atomic and timing-mode accesses, and in atomic 1721// mode we don't mess with the write buffer (we just perform the 1722// writebacks atomically once the original request is complete). 1723CacheBlk* 1724Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks, 1725 bool allocate) 1726{ 1727 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq); 1728 Addr addr = pkt->getAddr(); 1729 bool is_secure = pkt->isSecure(); 1730#if TRACING_ON 1731 CacheBlk::State old_state = blk ? blk->status : 0; 1732#endif 1733 1734 // When handling a fill, we should have no writes to this line. 1735 assert(addr == pkt->getBlockAddr(blkSize)); 1736 assert(!writeBuffer.findMatch(addr, is_secure)); 1737 1738 if (blk == nullptr) { 1739 // better have read new data... 1740 assert(pkt->hasData()); 1741 1742 // only read responses and write-line requests have data; 1743 // note that we don't write the data here for write-line - that 1744 // happens in the subsequent call to satisfyRequest 1745 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq); 1746 1747 // need to do a replacement if allocating, otherwise we stick 1748 // with the temporary storage 1749 blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr; 1750 1751 if (blk == nullptr) { 1752 // No replaceable block or a mostly exclusive 1753 // cache... just use temporary storage to complete the 1754 // current request and then get rid of it 1755 assert(!tempBlock->isValid()); 1756 blk = tempBlock; 1757 tempBlock->set = tags->extractSet(addr); 1758 tempBlock->tag = tags->extractTag(addr); 1759 // @todo: set security state as well... 1760 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, 1761 is_secure ? "s" : "ns"); 1762 } else { 1763 tags->insertBlock(pkt, blk); 1764 } 1765 1766 // we should never be overwriting a valid block 1767 assert(!blk->isValid()); 1768 } else { 1769 // existing block... probably an upgrade 1770 assert(blk->tag == tags->extractTag(addr)); 1771 // either we're getting new data or the block should already be valid 1772 assert(pkt->hasData() || blk->isValid()); 1773 // don't clear block status... if block is already dirty we 1774 // don't want to lose that 1775 } 1776 1777 if (is_secure) 1778 blk->status |= BlkSecure; 1779 blk->status |= BlkValid | BlkReadable; 1780 1781 // sanity check for whole-line writes, which should always be 1782 // marked as writable as part of the fill, and then later marked 1783 // dirty as part of satisfyRequest 1784 if (pkt->cmd == MemCmd::WriteLineReq) { 1785 assert(!pkt->hasSharers()); 1786 } 1787 1788 // here we deal with setting the appropriate state of the line, 1789 // and we start by looking at the hasSharers flag, and ignore the 1790 // cacheResponding flag (normally signalling dirty data) if the 1791 // packet has sharers, thus the line is never allocated as Owned 1792 // (dirty but not writable), and always ends up being either 1793 // Shared, Exclusive or Modified, see Packet::setCacheResponding 1794 // for more details 1795 if (!pkt->hasSharers()) { 1796 // we could get a writable line from memory (rather than a 1797 // cache) even in a read-only cache, note that we set this bit 1798 // even for a read-only cache, possibly revisit this decision 1799 blk->status |= BlkWritable; 1800 1801 // check if we got this via cache-to-cache transfer (i.e., from a 1802 // cache that had the block in Modified or Owned state) 1803 if (pkt->cacheResponding()) { 1804 // we got the block in Modified state, and invalidated the 1805 // owners copy 1806 blk->status |= BlkDirty; 1807 1808 chatty_assert(!isReadOnly, "Should never see dirty snoop response " 1809 "in read-only cache %s\n", name()); 1810 } 1811 } 1812 1813 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", 1814 addr, is_secure ? "s" : "ns", old_state, blk->print()); 1815 1816 // if we got new data, copy it in (checking for a read response 1817 // and a response that has data is the same in the end) 1818 if (pkt->isRead()) { 1819 // sanity checks 1820 assert(pkt->hasData()); 1821 assert(pkt->getSize() == blkSize); 1822 1823 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize); 1824 } 1825 // We pay for fillLatency here. 1826 blk->whenReady = clockEdge() + fillLatency * clockPeriod() + 1827 pkt->payloadDelay; 1828 1829 return blk; 1830} 1831 1832 1833///////////////////////////////////////////////////// 1834// 1835// Snoop path: requests coming in from the memory side 1836// 1837///////////////////////////////////////////////////// 1838 1839void 1840Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data, 1841 bool already_copied, bool pending_inval) 1842{ 1843 // sanity check 1844 assert(req_pkt->isRequest()); 1845 assert(req_pkt->needsResponse()); 1846 1847 DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print()); 1848 // timing-mode snoop responses require a new packet, unless we 1849 // already made a copy... 1850 PacketPtr pkt = req_pkt; 1851 if (!already_copied) 1852 // do not clear flags, and allocate space for data if the 1853 // packet needs it (the only packets that carry data are read 1854 // responses) 1855 pkt = new Packet(req_pkt, false, req_pkt->isRead()); 1856 1857 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() || 1858 pkt->hasSharers()); 1859 pkt->makeTimingResponse(); 1860 if (pkt->isRead()) { 1861 pkt->setDataFromBlock(blk_data, blkSize); 1862 } 1863 if (pkt->cmd == MemCmd::ReadResp && pending_inval) { 1864 // Assume we defer a response to a read from a far-away cache 1865 // A, then later defer a ReadExcl from a cache B on the same 1866 // bus as us. We'll assert cacheResponding in both cases, but 1867 // in the latter case cacheResponding will keep the 1868 // invalidation from reaching cache A. This special response 1869 // tells cache A that it gets the block to satisfy its read, 1870 // but must immediately invalidate it. 1871 pkt->cmd = MemCmd::ReadRespWithInvalidate; 1872 } 1873 // Here we consider forward_time, paying for just forward latency and 1874 // also charging the delay provided by the xbar. 1875 // forward_time is used as send_time in next allocateWriteBuffer(). 1876 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 1877 // Here we reset the timing of the packet. 1878 pkt->headerDelay = pkt->payloadDelay = 0; 1879 DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__, 1880 pkt->print(), forward_time); 1881 memSidePort->schedTimingSnoopResp(pkt, forward_time, true); 1882} 1883 1884uint32_t 1885Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing, 1886 bool is_deferred, bool pending_inval) 1887{ 1888 DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print()); 1889 // deferred snoops can only happen in timing mode 1890 assert(!(is_deferred && !is_timing)); 1891 // pending_inval only makes sense on deferred snoops 1892 assert(!(pending_inval && !is_deferred)); 1893 assert(pkt->isRequest()); 1894 1895 // the packet may get modified if we or a forwarded snooper 1896 // responds in atomic mode, so remember a few things about the 1897 // original packet up front 1898 bool invalidate = pkt->isInvalidate(); 1899 bool M5_VAR_USED needs_writable = pkt->needsWritable(); 1900 1901 // at the moment we could get an uncacheable write which does not 1902 // have the invalidate flag, and we need a suitable way of dealing 1903 // with this case 1904 panic_if(invalidate && pkt->req->isUncacheable(), 1905 "%s got an invalidating uncacheable snoop request %s", 1906 name(), pkt->print()); 1907 1908 uint32_t snoop_delay = 0; 1909 1910 if (forwardSnoops) { 1911 // first propagate snoop upward to see if anyone above us wants to 1912 // handle it. save & restore packet src since it will get 1913 // rewritten to be relative to cpu-side bus (if any) 1914 bool alreadyResponded = pkt->cacheResponding(); 1915 if (is_timing) { 1916 // copy the packet so that we can clear any flags before 1917 // forwarding it upwards, we also allocate data (passing 1918 // the pointer along in case of static data), in case 1919 // there is a snoop hit in upper levels 1920 Packet snoopPkt(pkt, true, true); 1921 snoopPkt.setExpressSnoop(); 1922 // the snoop packet does not need to wait any additional 1923 // time 1924 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0; 1925 cpuSidePort->sendTimingSnoopReq(&snoopPkt); 1926 1927 // add the header delay (including crossbar and snoop 1928 // delays) of the upward snoop to the snoop delay for this 1929 // cache 1930 snoop_delay += snoopPkt.headerDelay; 1931 1932 if (snoopPkt.cacheResponding()) { 1933 // cache-to-cache response from some upper cache 1934 assert(!alreadyResponded); 1935 pkt->setCacheResponding(); 1936 } 1937 // upstream cache has the block, or has an outstanding 1938 // MSHR, pass the flag on 1939 if (snoopPkt.hasSharers()) { 1940 pkt->setHasSharers(); 1941 } 1942 // If this request is a prefetch or clean evict and an upper level 1943 // signals block present, make sure to propagate the block 1944 // presence to the requester. 1945 if (snoopPkt.isBlockCached()) { 1946 pkt->setBlockCached(); 1947 } 1948 } else { 1949 cpuSidePort->sendAtomicSnoop(pkt); 1950 if (!alreadyResponded && pkt->cacheResponding()) { 1951 // cache-to-cache response from some upper cache: 1952 // forward response to original requester 1953 assert(pkt->isResponse()); 1954 } 1955 } 1956 } 1957 1958 if (!blk || !blk->isValid()) { 1959 DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__, 1960 pkt->print()); 1961 if (is_deferred) { 1962 // we no longer have the block, and will not respond, but a 1963 // packet was allocated in MSHR::handleSnoop and we have 1964 // to delete it 1965 assert(pkt->needsResponse()); 1966 1967 // we have passed the block to a cache upstream, that 1968 // cache should be responding 1969 assert(pkt->cacheResponding()); 1970 1971 delete pkt; 1972 } 1973 return snoop_delay; 1974 } else { 1975 DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__, 1976 pkt->print(), blk->print()); 1977 } 1978 1979 chatty_assert(!(isReadOnly && blk->isDirty()), 1980 "Should never have a dirty block in a read-only cache %s\n", 1981 name()); 1982 1983 // We may end up modifying both the block state and the packet (if 1984 // we respond in atomic mode), so just figure out what to do now 1985 // and then do it later. We respond to all snoops that need 1986 // responses provided we have the block in dirty state. The 1987 // invalidation itself is taken care of below. 1988 bool respond = blk->isDirty() && pkt->needsResponse(); 1989 bool have_writable = blk->isWritable(); 1990 1991 // Invalidate any prefetch's from below that would strip write permissions 1992 // MemCmd::HardPFReq is only observed by upstream caches. After missing 1993 // above and in it's own cache, a new MemCmd::ReadReq is created that 1994 // downstream caches observe. 1995 if (pkt->mustCheckAbove()) { 1996 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s " 1997 "from lower cache\n", pkt->getAddr(), pkt->print()); 1998 pkt->setBlockCached(); 1999 return snoop_delay; 2000 } 2001 2002 if (pkt->isRead() && !invalidate) { 2003 // reading without requiring the line in a writable state 2004 assert(!needs_writable); 2005 pkt->setHasSharers(); 2006 2007 // if the requesting packet is uncacheable, retain the line in 2008 // the current state, otherwhise unset the writable flag, 2009 // which means we go from Modified to Owned (and will respond 2010 // below), remain in Owned (and will respond below), from 2011 // Exclusive to Shared, or remain in Shared 2012 if (!pkt->req->isUncacheable()) 2013 blk->status &= ~BlkWritable; 2014 } 2015 2016 if (respond) { 2017 // prevent anyone else from responding, cache as well as 2018 // memory, and also prevent any memory from even seeing the 2019 // request 2020 pkt->setCacheResponding(); 2021 if (have_writable) { 2022 // inform the cache hierarchy that this cache had the line 2023 // in the Modified state so that we avoid unnecessary 2024 // invalidations (see Packet::setResponderHadWritable) 2025 pkt->setResponderHadWritable(); 2026 2027 // in the case of an uncacheable request there is no point 2028 // in setting the responderHadWritable flag, but since the 2029 // recipient does not care there is no harm in doing so 2030 } else { 2031 // if the packet has needsWritable set we invalidate our 2032 // copy below and all other copies will be invalidates 2033 // through express snoops, and if needsWritable is not set 2034 // we already called setHasSharers above 2035 } 2036 2037 // if we are returning a writable and dirty (Modified) line, 2038 // we should be invalidating the line 2039 panic_if(!invalidate && !pkt->hasSharers(), 2040 "%s is passing a Modified line through %s, " 2041 "but keeping the block", name(), pkt->print()); 2042 2043 if (is_timing) { 2044 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval); 2045 } else { 2046 pkt->makeAtomicResponse(); 2047 // packets such as upgrades do not actually have any data 2048 // payload 2049 if (pkt->hasData()) 2050 pkt->setDataFromBlock(blk->data, blkSize); 2051 } 2052 } 2053 2054 if (!respond && is_deferred) { 2055 assert(pkt->needsResponse()); 2056 2057 // if we copied the deferred packet with the intention to 2058 // respond, but are not responding, then a cache above us must 2059 // be, and we can use this as the indication of whether this 2060 // is a packet where we created a copy of the request or not 2061 if (!pkt->cacheResponding()) { 2062 delete pkt->req; 2063 } 2064 2065 delete pkt; 2066 } 2067 2068 // Do this last in case it deallocates block data or something 2069 // like that 2070 if (invalidate) { 2071 invalidateBlock(blk); 2072 } 2073 2074 DPRINTF(Cache, "new state is %s\n", blk->print()); 2075 2076 return snoop_delay; 2077} 2078 2079 2080void 2081Cache::recvTimingSnoopReq(PacketPtr pkt) 2082{ 2083 DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print()); 2084 2085 // Snoops shouldn't happen when bypassing caches 2086 assert(!system->bypassCaches()); 2087 2088 // no need to snoop requests that are not in range 2089 if (!inRange(pkt->getAddr())) { 2090 return; 2091 } 2092 2093 bool is_secure = pkt->isSecure(); 2094 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 2095 2096 Addr blk_addr = pkt->getBlockAddr(blkSize); 2097 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 2098 2099 // Update the latency cost of the snoop so that the crossbar can 2100 // account for it. Do not overwrite what other neighbouring caches 2101 // have already done, rather take the maximum. The update is 2102 // tentative, for cases where we return before an upward snoop 2103 // happens below. 2104 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, 2105 lookupLatency * clockPeriod()); 2106 2107 // Inform request(Prefetch, CleanEvict or Writeback) from below of 2108 // MSHR hit, set setBlockCached. 2109 if (mshr && pkt->mustCheckAbove()) { 2110 DPRINTF(Cache, "Setting block cached for %s from lower cache on " 2111 "mshr hit\n", pkt->print()); 2112 pkt->setBlockCached(); 2113 return; 2114 } 2115 2116 // Let the MSHR itself track the snoop and decide whether we want 2117 // to go ahead and do the regular cache snoop 2118 if (mshr && mshr->handleSnoop(pkt, order++)) { 2119 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)." 2120 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns", 2121 mshr->print()); 2122 2123 if (mshr->getNumTargets() > numTarget) 2124 warn("allocating bonus target for snoop"); //handle later 2125 return; 2126 } 2127 2128 //We also need to check the writeback buffers and handle those 2129 WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure); 2130 if (wb_entry) { 2131 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n", 2132 pkt->getAddr(), is_secure ? "s" : "ns"); 2133 // Expect to see only Writebacks and/or CleanEvicts here, both of 2134 // which should not be generated for uncacheable data. 2135 assert(!wb_entry->isUncacheable()); 2136 // There should only be a single request responsible for generating 2137 // Writebacks/CleanEvicts. 2138 assert(wb_entry->getNumTargets() == 1); 2139 PacketPtr wb_pkt = wb_entry->getTarget()->pkt; 2140 assert(wb_pkt->isEviction()); 2141 2142 if (pkt->isEviction()) { 2143 // if the block is found in the write queue, set the BLOCK_CACHED 2144 // flag for Writeback/CleanEvict snoop. On return the snoop will 2145 // propagate the BLOCK_CACHED flag in Writeback packets and prevent 2146 // any CleanEvicts from travelling down the memory hierarchy. 2147 pkt->setBlockCached(); 2148 DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue " 2149 "hit\n", __func__, pkt->print()); 2150 return; 2151 } 2152 2153 // conceptually writebacks are no different to other blocks in 2154 // this cache, so the behaviour is modelled after handleSnoop, 2155 // the difference being that instead of querying the block 2156 // state to determine if it is dirty and writable, we use the 2157 // command and fields of the writeback packet 2158 bool respond = wb_pkt->cmd == MemCmd::WritebackDirty && 2159 pkt->needsResponse(); 2160 bool have_writable = !wb_pkt->hasSharers(); 2161 bool invalidate = pkt->isInvalidate(); 2162 2163 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) { 2164 assert(!pkt->needsWritable()); 2165 pkt->setHasSharers(); 2166 wb_pkt->setHasSharers(); 2167 } 2168 2169 if (respond) { 2170 pkt->setCacheResponding(); 2171 2172 if (have_writable) { 2173 pkt->setResponderHadWritable(); 2174 } 2175 2176 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(), 2177 false, false); 2178 } 2179 2180 if (invalidate) { 2181 // Invalidation trumps our writeback... discard here 2182 // Note: markInService will remove entry from writeback buffer. 2183 markInService(wb_entry); 2184 delete wb_pkt; 2185 } 2186 } 2187 2188 // If this was a shared writeback, there may still be 2189 // other shared copies above that require invalidation. 2190 // We could be more selective and return here if the 2191 // request is non-exclusive or if the writeback is 2192 // exclusive. 2193 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false); 2194 2195 // Override what we did when we first saw the snoop, as we now 2196 // also have the cost of the upwards snoops to account for 2197 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay + 2198 lookupLatency * clockPeriod()); 2199} 2200 2201bool 2202Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) 2203{ 2204 // Express snoop responses from master to slave, e.g., from L1 to L2 2205 cache->recvTimingSnoopResp(pkt); 2206 return true; 2207} 2208 2209Tick 2210Cache::recvAtomicSnoop(PacketPtr pkt) 2211{ 2212 // Snoops shouldn't happen when bypassing caches 2213 assert(!system->bypassCaches()); 2214 2215 // no need to snoop requests that are not in range. 2216 if (!inRange(pkt->getAddr())) { 2217 return 0; 2218 } 2219 2220 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 2221 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false); 2222 return snoop_delay + lookupLatency * clockPeriod(); 2223} 2224 2225 2226QueueEntry* 2227Cache::getNextQueueEntry() 2228{ 2229 // Check both MSHR queue and write buffer for potential requests, 2230 // note that null does not mean there is no request, it could 2231 // simply be that it is not ready 2232 MSHR *miss_mshr = mshrQueue.getNext(); 2233 WriteQueueEntry *wq_entry = writeBuffer.getNext(); 2234 2235 // If we got a write buffer request ready, first priority is a 2236 // full write buffer, otherwise we favour the miss requests 2237 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) { 2238 // need to search MSHR queue for conflicting earlier miss. 2239 MSHR *conflict_mshr = 2240 mshrQueue.findPending(wq_entry->blkAddr, 2241 wq_entry->isSecure); 2242 2243 if (conflict_mshr && conflict_mshr->order < wq_entry->order) { 2244 // Service misses in order until conflict is cleared. 2245 return conflict_mshr; 2246 2247 // @todo Note that we ignore the ready time of the conflict here 2248 } 2249 2250 // No conflicts; issue write 2251 return wq_entry; 2252 } else if (miss_mshr) { 2253 // need to check for conflicting earlier writeback 2254 WriteQueueEntry *conflict_mshr = 2255 writeBuffer.findPending(miss_mshr->blkAddr, 2256 miss_mshr->isSecure); 2257 if (conflict_mshr) { 2258 // not sure why we don't check order here... it was in the 2259 // original code but commented out. 2260 2261 // The only way this happens is if we are 2262 // doing a write and we didn't have permissions 2263 // then subsequently saw a writeback (owned got evicted) 2264 // We need to make sure to perform the writeback first 2265 // To preserve the dirty data, then we can issue the write 2266 2267 // should we return wq_entry here instead? I.e. do we 2268 // have to flush writes in order? I don't think so... not 2269 // for Alpha anyway. Maybe for x86? 2270 return conflict_mshr; 2271 2272 // @todo Note that we ignore the ready time of the conflict here 2273 } 2274 2275 // No conflicts; issue read 2276 return miss_mshr; 2277 } 2278 2279 // fall through... no pending requests. Try a prefetch. 2280 assert(!miss_mshr && !wq_entry); 2281 if (prefetcher && mshrQueue.canPrefetch()) { 2282 // If we have a miss queue slot, we can try a prefetch 2283 PacketPtr pkt = prefetcher->getPacket(); 2284 if (pkt) { 2285 Addr pf_addr = pkt->getBlockAddr(blkSize); 2286 if (!tags->findBlock(pf_addr, pkt->isSecure()) && 2287 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && 2288 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { 2289 // Update statistic on number of prefetches issued 2290 // (hwpf_mshr_misses) 2291 assert(pkt->req->masterId() < system->maxMasters()); 2292 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 2293 2294 // allocate an MSHR and return it, note 2295 // that we send the packet straight away, so do not 2296 // schedule the send 2297 return allocateMissBuffer(pkt, curTick(), false); 2298 } else { 2299 // free the request and packet 2300 delete pkt->req; 2301 delete pkt; 2302 } 2303 } 2304 } 2305 2306 return nullptr; 2307} 2308 2309bool 2310Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const 2311{ 2312 if (!forwardSnoops) 2313 return false; 2314 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and 2315 // Writeback snoops into upper level caches to check for copies of the 2316 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict 2317 // packet, the cache can inform the crossbar below of presence or absence 2318 // of the block. 2319 if (is_timing) { 2320 Packet snoop_pkt(pkt, true, false); 2321 snoop_pkt.setExpressSnoop(); 2322 // Assert that packet is either Writeback or CleanEvict and not a 2323 // prefetch request because prefetch requests need an MSHR and may 2324 // generate a snoop response. 2325 assert(pkt->isEviction()); 2326 snoop_pkt.senderState = nullptr; 2327 cpuSidePort->sendTimingSnoopReq(&snoop_pkt); 2328 // Writeback/CleanEvict snoops do not generate a snoop response. 2329 assert(!(snoop_pkt.cacheResponding())); 2330 return snoop_pkt.isBlockCached(); 2331 } else { 2332 cpuSidePort->sendAtomicSnoop(pkt); 2333 return pkt->isBlockCached(); 2334 } 2335} 2336 2337Tick 2338Cache::nextQueueReadyTime() const 2339{ 2340 Tick nextReady = std::min(mshrQueue.nextReadyTime(), 2341 writeBuffer.nextReadyTime()); 2342 2343 // Don't signal prefetch ready time if no MSHRs available 2344 // Will signal once enoguh MSHRs are deallocated 2345 if (prefetcher && mshrQueue.canPrefetch()) { 2346 nextReady = std::min(nextReady, 2347 prefetcher->nextPrefetchReadyTime()); 2348 } 2349 2350 return nextReady; 2351} 2352 2353bool 2354Cache::sendMSHRQueuePacket(MSHR* mshr) 2355{ 2356 assert(mshr); 2357 2358 // use request from 1st target 2359 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 2360 2361 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print()); 2362 2363 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); 2364 2365 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) { 2366 // we should never have hardware prefetches to allocated 2367 // blocks 2368 assert(blk == nullptr); 2369 2370 // We need to check the caches above us to verify that 2371 // they don't have a copy of this block in the dirty state 2372 // at the moment. Without this check we could get a stale 2373 // copy from memory that might get used in place of the 2374 // dirty one. 2375 Packet snoop_pkt(tgt_pkt, true, false); 2376 snoop_pkt.setExpressSnoop(); 2377 // We are sending this packet upwards, but if it hits we will 2378 // get a snoop response that we end up treating just like a 2379 // normal response, hence it needs the MSHR as its sender 2380 // state 2381 snoop_pkt.senderState = mshr; 2382 cpuSidePort->sendTimingSnoopReq(&snoop_pkt); 2383 2384 // Check to see if the prefetch was squashed by an upper cache (to 2385 // prevent us from grabbing the line) or if a Check to see if a 2386 // writeback arrived between the time the prefetch was placed in 2387 // the MSHRs and when it was selected to be sent or if the 2388 // prefetch was squashed by an upper cache. 2389 2390 // It is important to check cacheResponding before 2391 // prefetchSquashed. If another cache has committed to 2392 // responding, it will be sending a dirty response which will 2393 // arrive at the MSHR allocated for this request. Checking the 2394 // prefetchSquash first may result in the MSHR being 2395 // prematurely deallocated. 2396 if (snoop_pkt.cacheResponding()) { 2397 auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req); 2398 assert(r.second); 2399 2400 // if we are getting a snoop response with no sharers it 2401 // will be allocated as Modified 2402 bool pending_modified_resp = !snoop_pkt.hasSharers(); 2403 markInService(mshr, pending_modified_resp); 2404 2405 DPRINTF(Cache, "Upward snoop of prefetch for addr" 2406 " %#x (%s) hit\n", 2407 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns"); 2408 return false; 2409 } 2410 2411 if (snoop_pkt.isBlockCached()) { 2412 DPRINTF(Cache, "Block present, prefetch squashed by cache. " 2413 "Deallocating mshr target %#x.\n", 2414 mshr->blkAddr); 2415 2416 // Deallocate the mshr target 2417 if (mshrQueue.forceDeallocateTarget(mshr)) { 2418 // Clear block if this deallocation resulted freed an 2419 // mshr when all had previously been utilized 2420 clearBlocked(Blocked_NoMSHRs); 2421 } 2422 2423 // given that no response is expected, delete Request and Packet 2424 delete tgt_pkt->req; 2425 delete tgt_pkt; 2426 2427 return false; 2428 } 2429 } 2430 2431 // either a prefetch that is not present upstream, or a normal 2432 // MSHR request, proceed to get the packet to send downstream 2433 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable()); 2434 2435 mshr->isForward = (pkt == nullptr); 2436 2437 if (mshr->isForward) { 2438 // not a cache block request, but a response is expected 2439 // make copy of current packet to forward, keep current 2440 // copy for response handling 2441 pkt = new Packet(tgt_pkt, false, true); 2442 assert(!pkt->isWrite()); 2443 } 2444 2445 // play it safe and append (rather than set) the sender state, 2446 // as forwarded packets may already have existing state 2447 pkt->pushSenderState(mshr); 2448 2449 if (!memSidePort->sendTimingReq(pkt)) { 2450 // we are awaiting a retry, but we 2451 // delete the packet and will be creating a new packet 2452 // when we get the opportunity 2453 delete pkt; 2454 2455 // note that we have now masked any requestBus and 2456 // schedSendEvent (we will wait for a retry before 2457 // doing anything), and this is so even if we do not 2458 // care about this packet and might override it before 2459 // it gets retried 2460 return true; 2461 } else { 2462 // As part of the call to sendTimingReq the packet is 2463 // forwarded to all neighbouring caches (and any caches 2464 // above them) as a snoop. Thus at this point we know if 2465 // any of the neighbouring caches are responding, and if 2466 // so, we know it is dirty, and we can determine if it is 2467 // being passed as Modified, making our MSHR the ordering 2468 // point 2469 bool pending_modified_resp = !pkt->hasSharers() && 2470 pkt->cacheResponding(); 2471 markInService(mshr, pending_modified_resp); 2472 return false; 2473 } 2474} 2475 2476bool 2477Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry) 2478{ 2479 assert(wq_entry); 2480 2481 // always a single target for write queue entries 2482 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt; 2483 2484 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print()); 2485 2486 // forward as is, both for evictions and uncacheable writes 2487 if (!memSidePort->sendTimingReq(tgt_pkt)) { 2488 // note that we have now masked any requestBus and 2489 // schedSendEvent (we will wait for a retry before 2490 // doing anything), and this is so even if we do not 2491 // care about this packet and might override it before 2492 // it gets retried 2493 return true; 2494 } else { 2495 markInService(wq_entry); 2496 return false; 2497 } 2498} 2499 2500void 2501Cache::serialize(CheckpointOut &cp) const 2502{ 2503 bool dirty(isDirty()); 2504 2505 if (dirty) { 2506 warn("*** The cache still contains dirty data. ***\n"); 2507 warn(" Make sure to drain the system using the correct flags.\n"); 2508 warn(" This checkpoint will not restore correctly and dirty data " 2509 " in the cache will be lost!\n"); 2510 } 2511 2512 // Since we don't checkpoint the data in the cache, any dirty data 2513 // will be lost when restoring from a checkpoint of a system that 2514 // wasn't drained properly. Flag the checkpoint as invalid if the 2515 // cache contains dirty data. 2516 bool bad_checkpoint(dirty); 2517 SERIALIZE_SCALAR(bad_checkpoint); 2518} 2519 2520void 2521Cache::unserialize(CheckpointIn &cp) 2522{ 2523 bool bad_checkpoint; 2524 UNSERIALIZE_SCALAR(bad_checkpoint); 2525 if (bad_checkpoint) { 2526 fatal("Restoring from checkpoints with dirty caches is not supported " 2527 "in the classic memory system. Please remove any caches or " 2528 " drain them properly before taking checkpoints.\n"); 2529 } 2530} 2531 2532/////////////// 2533// 2534// CpuSidePort 2535// 2536/////////////// 2537 2538AddrRangeList 2539Cache::CpuSidePort::getAddrRanges() const 2540{ 2541 return cache->getAddrRanges(); 2542} 2543 2544bool 2545Cache::CpuSidePort::recvTimingReq(PacketPtr pkt) 2546{ 2547 assert(!cache->system->bypassCaches()); 2548 2549 bool success = false; 2550 2551 // always let express snoop packets through if even if blocked 2552 if (pkt->isExpressSnoop()) { 2553 // do not change the current retry state 2554 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt); 2555 assert(bypass_success); 2556 return true; 2557 } else if (blocked || mustSendRetry) { 2558 // either already committed to send a retry, or blocked 2559 success = false; 2560 } else { 2561 // pass it on to the cache, and let the cache decide if we 2562 // have to retry or not 2563 success = cache->recvTimingReq(pkt); 2564 } 2565 2566 // remember if we have to retry 2567 mustSendRetry = !success; 2568 return success; 2569} 2570 2571Tick 2572Cache::CpuSidePort::recvAtomic(PacketPtr pkt) 2573{ 2574 return cache->recvAtomic(pkt); 2575} 2576 2577void 2578Cache::CpuSidePort::recvFunctional(PacketPtr pkt) 2579{ 2580 // functional request 2581 cache->functionalAccess(pkt, true); 2582} 2583 2584Cache:: 2585CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache, 2586 const std::string &_label) 2587 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache) 2588{ 2589} 2590 2591Cache* 2592CacheParams::create() 2593{ 2594 assert(tags); 2595 2596 return new Cache(this); 2597} 2598/////////////// 2599// 2600// MemSidePort 2601// 2602/////////////// 2603 2604bool 2605Cache::MemSidePort::recvTimingResp(PacketPtr pkt) 2606{ 2607 cache->recvTimingResp(pkt); 2608 return true; 2609} 2610 2611// Express snooping requests to memside port 2612void 2613Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) 2614{ 2615 // handle snooping requests 2616 cache->recvTimingSnoopReq(pkt); 2617} 2618 2619Tick 2620Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) 2621{ 2622 return cache->recvAtomicSnoop(pkt); 2623} 2624 2625void 2626Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) 2627{ 2628 // functional snoop (note that in contrast to atomic we don't have 2629 // a specific functionalSnoop method, as they have the same 2630 // behaviour regardless) 2631 cache->functionalAccess(pkt, false); 2632} 2633 2634void 2635Cache::CacheReqPacketQueue::sendDeferredPacket() 2636{ 2637 // sanity check 2638 assert(!waitingOnRetry); 2639 2640 // there should never be any deferred request packets in the 2641 // queue, instead we resly on the cache to provide the packets 2642 // from the MSHR queue or write queue 2643 assert(deferredPacketReadyTime() == MaxTick); 2644 2645 // check for request packets (requests & writebacks) 2646 QueueEntry* entry = cache.getNextQueueEntry(); 2647 2648 if (!entry) { 2649 // can happen if e.g. we attempt a writeback and fail, but 2650 // before the retry, the writeback is eliminated because 2651 // we snoop another cache's ReadEx. 2652 } else { 2653 // let our snoop responses go first if there are responses to 2654 // the same addresses 2655 if (checkConflictingSnoop(entry->blkAddr)) { 2656 return; 2657 } 2658 waitingOnRetry = entry->sendPacket(cache); 2659 } 2660 2661 // if we succeeded and are not waiting for a retry, schedule the 2662 // next send considering when the next queue is ready, note that 2663 // snoop responses have their own packet queue and thus schedule 2664 // their own events 2665 if (!waitingOnRetry) { 2666 schedSendEvent(cache.nextQueueReadyTime()); 2667 } 2668} 2669 2670Cache:: 2671MemSidePort::MemSidePort(const std::string &_name, Cache *_cache, 2672 const std::string &_label) 2673 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), 2674 _reqQueue(*_cache, *this, _snoopRespQueue, _label), 2675 _snoopRespQueue(*_cache, *this, _label), cache(_cache) 2676{ 2677} 2678