cache.cc revision 11892
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nathan Binkert
44 *          Steve Reinhardt
45 *          Ron Dreslinski
46 *          Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/misc.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "debug/CacheVerbose.hh"
62#include "mem/cache/blk.hh"
63#include "mem/cache/mshr.hh"
64#include "mem/cache/prefetch/base.hh"
65#include "sim/sim_exit.hh"
66
67Cache::Cache(const CacheParams *p)
68    : BaseCache(p, p->system->cacheLineSize()),
69      tags(p->tags),
70      prefetcher(p->prefetcher),
71      doFastWrites(true),
72      prefetchOnAccess(p->prefetch_on_access),
73      clusivity(p->clusivity),
74      writebackClean(p->writeback_clean),
75      tempBlockWriteback(nullptr),
76      writebackTempBlockAtomicEvent(this, false,
77                                    EventBase::Delayed_Writeback_Pri)
78{
79    tempBlock = new CacheBlk();
80    tempBlock->data = new uint8_t[blkSize];
81
82    cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
83                                  "CpuSidePort");
84    memSidePort = new MemSidePort(p->name + ".mem_side", this,
85                                  "MemSidePort");
86
87    tags->setCache(this);
88    if (prefetcher)
89        prefetcher->setCache(this);
90}
91
92Cache::~Cache()
93{
94    delete [] tempBlock->data;
95    delete tempBlock;
96
97    delete cpuSidePort;
98    delete memSidePort;
99}
100
101void
102Cache::regStats()
103{
104    BaseCache::regStats();
105}
106
107void
108Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
109{
110    assert(pkt->isRequest());
111
112    uint64_t overwrite_val;
113    bool overwrite_mem;
114    uint64_t condition_val64;
115    uint32_t condition_val32;
116
117    int offset = tags->extractBlkOffset(pkt->getAddr());
118    uint8_t *blk_data = blk->data + offset;
119
120    assert(sizeof(uint64_t) >= pkt->getSize());
121
122    overwrite_mem = true;
123    // keep a copy of our possible write value, and copy what is at the
124    // memory address into the packet
125    pkt->writeData((uint8_t *)&overwrite_val);
126    pkt->setData(blk_data);
127
128    if (pkt->req->isCondSwap()) {
129        if (pkt->getSize() == sizeof(uint64_t)) {
130            condition_val64 = pkt->req->getExtraData();
131            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
132                                         sizeof(uint64_t));
133        } else if (pkt->getSize() == sizeof(uint32_t)) {
134            condition_val32 = (uint32_t)pkt->req->getExtraData();
135            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
136                                         sizeof(uint32_t));
137        } else
138            panic("Invalid size for conditional read/write\n");
139    }
140
141    if (overwrite_mem) {
142        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
143        blk->status |= BlkDirty;
144    }
145}
146
147
148void
149Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
150                      bool deferred_response, bool pending_downgrade)
151{
152    assert(pkt->isRequest());
153
154    assert(blk && blk->isValid());
155    // Occasionally this is not true... if we are a lower-level cache
156    // satisfying a string of Read and ReadEx requests from
157    // upper-level caches, a Read will mark the block as shared but we
158    // can satisfy a following ReadEx anyway since we can rely on the
159    // Read requester(s) to have buffered the ReadEx snoop and to
160    // invalidate their blocks after receiving them.
161    // assert(!pkt->needsWritable() || blk->isWritable());
162    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
163
164    // Check RMW operations first since both isRead() and
165    // isWrite() will be true for them
166    if (pkt->cmd == MemCmd::SwapReq) {
167        cmpAndSwap(blk, pkt);
168    } else if (pkt->isWrite()) {
169        // we have the block in a writable state and can go ahead,
170        // note that the line may be also be considered writable in
171        // downstream caches along the path to memory, but always
172        // Exclusive, and never Modified
173        assert(blk->isWritable());
174        // Write or WriteLine at the first cache with block in writable state
175        if (blk->checkWrite(pkt)) {
176            pkt->writeDataToBlock(blk->data, blkSize);
177        }
178        // Always mark the line as dirty (and thus transition to the
179        // Modified state) even if we are a failed StoreCond so we
180        // supply data to any snoops that have appended themselves to
181        // this cache before knowing the store will fail.
182        blk->status |= BlkDirty;
183        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
184    } else if (pkt->isRead()) {
185        if (pkt->isLLSC()) {
186            blk->trackLoadLocked(pkt);
187        }
188
189        // all read responses have a data payload
190        assert(pkt->hasRespData());
191        pkt->setDataFromBlock(blk->data, blkSize);
192
193        // determine if this read is from a (coherent) cache or not
194        if (pkt->fromCache()) {
195            assert(pkt->getSize() == blkSize);
196            // special handling for coherent block requests from
197            // upper-level caches
198            if (pkt->needsWritable()) {
199                // sanity check
200                assert(pkt->cmd == MemCmd::ReadExReq ||
201                       pkt->cmd == MemCmd::SCUpgradeFailReq);
202                assert(!pkt->hasSharers());
203
204                // if we have a dirty copy, make sure the recipient
205                // keeps it marked dirty (in the modified state)
206                if (blk->isDirty()) {
207                    pkt->setCacheResponding();
208                    blk->status &= ~BlkDirty;
209                }
210            } else if (blk->isWritable() && !pending_downgrade &&
211                       !pkt->hasSharers() &&
212                       pkt->cmd != MemCmd::ReadCleanReq) {
213                // we can give the requester a writable copy on a read
214                // request if:
215                // - we have a writable copy at this level (& below)
216                // - we don't have a pending snoop from below
217                //   signaling another read request
218                // - no other cache above has a copy (otherwise it
219                //   would have set hasSharers flag when
220                //   snooping the packet)
221                // - the read has explicitly asked for a clean
222                //   copy of the line
223                if (blk->isDirty()) {
224                    // special considerations if we're owner:
225                    if (!deferred_response) {
226                        // respond with the line in Modified state
227                        // (cacheResponding set, hasSharers not set)
228                        pkt->setCacheResponding();
229
230                        // if this cache is mostly inclusive, we
231                        // keep the block in the Exclusive state,
232                        // and pass it upwards as Modified
233                        // (writable and dirty), hence we have
234                        // multiple caches, all on the same path
235                        // towards memory, all considering the
236                        // same block writable, but only one
237                        // considering it Modified
238
239                        // we get away with multiple caches (on
240                        // the same path to memory) considering
241                        // the block writeable as we always enter
242                        // the cache hierarchy through a cache,
243                        // and first snoop upwards in all other
244                        // branches
245                        blk->status &= ~BlkDirty;
246                    } else {
247                        // if we're responding after our own miss,
248                        // there's a window where the recipient didn't
249                        // know it was getting ownership and may not
250                        // have responded to snoops correctly, so we
251                        // have to respond with a shared line
252                        pkt->setHasSharers();
253                    }
254                }
255            } else {
256                // otherwise only respond with a shared copy
257                pkt->setHasSharers();
258            }
259        }
260    } else if (pkt->isUpgrade()) {
261        // sanity check
262        assert(!pkt->hasSharers());
263
264        if (blk->isDirty()) {
265            // we were in the Owned state, and a cache above us that
266            // has the line in Shared state needs to be made aware
267            // that the data it already has is in fact dirty
268            pkt->setCacheResponding();
269            blk->status &= ~BlkDirty;
270        }
271    } else {
272        assert(pkt->isInvalidate());
273        invalidateBlock(blk);
274        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
275                pkt->print());
276    }
277}
278
279/////////////////////////////////////////////////////
280//
281// Access path: requests coming in from the CPU side
282//
283/////////////////////////////////////////////////////
284
285bool
286Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
287              PacketList &writebacks)
288{
289    // sanity check
290    assert(pkt->isRequest());
291
292    chatty_assert(!(isReadOnly && pkt->isWrite()),
293                  "Should never see a write in a read-only cache %s\n",
294                  name());
295
296    DPRINTF(CacheVerbose, "%s for %s\n", __func__, pkt->print());
297
298    if (pkt->req->isUncacheable()) {
299        DPRINTF(Cache, "uncacheable: %s\n", pkt->print());
300
301        // flush and invalidate any existing block
302        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
303        if (old_blk && old_blk->isValid()) {
304            if (old_blk->isDirty() || writebackClean)
305                writebacks.push_back(writebackBlk(old_blk));
306            else
307                writebacks.push_back(cleanEvictBlk(old_blk));
308            invalidateBlock(old_blk);
309        }
310
311        blk = nullptr;
312        // lookupLatency is the latency in case the request is uncacheable.
313        lat = lookupLatency;
314        return false;
315    }
316
317    // Here lat is the value passed as parameter to accessBlock() function
318    // that can modify its value.
319    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
320
321    DPRINTF(Cache, "%s %s\n", pkt->print(),
322            blk ? "hit " + blk->print() : "miss");
323
324
325    if (pkt->isEviction()) {
326        // We check for presence of block in above caches before issuing
327        // Writeback or CleanEvict to write buffer. Therefore the only
328        // possible cases can be of a CleanEvict packet coming from above
329        // encountering a Writeback generated in this cache peer cache and
330        // waiting in the write buffer. Cases of upper level peer caches
331        // generating CleanEvict and Writeback or simply CleanEvict and
332        // CleanEvict almost simultaneously will be caught by snoops sent out
333        // by crossbar.
334        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
335                                                          pkt->isSecure());
336        if (wb_entry) {
337            assert(wb_entry->getNumTargets() == 1);
338            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
339            assert(wbPkt->isWriteback());
340
341            if (pkt->isCleanEviction()) {
342                // The CleanEvict and WritebackClean snoops into other
343                // peer caches of the same level while traversing the
344                // crossbar. If a copy of the block is found, the
345                // packet is deleted in the crossbar. Hence, none of
346                // the other upper level caches connected to this
347                // cache have the block, so we can clear the
348                // BLOCK_CACHED flag in the Writeback if set and
349                // discard the CleanEvict by returning true.
350                wbPkt->clearBlockCached();
351                return true;
352            } else {
353                assert(pkt->cmd == MemCmd::WritebackDirty);
354                // Dirty writeback from above trumps our clean
355                // writeback... discard here
356                // Note: markInService will remove entry from writeback buffer.
357                markInService(wb_entry);
358                delete wbPkt;
359            }
360        }
361    }
362
363    // Writeback handling is special case.  We can write the block into
364    // the cache without having a writeable copy (or any copy at all).
365    if (pkt->isWriteback()) {
366        assert(blkSize == pkt->getSize());
367
368        // we could get a clean writeback while we are having
369        // outstanding accesses to a block, do the simple thing for
370        // now and drop the clean writeback so that we do not upset
371        // any ordering/decisions about ownership already taken
372        if (pkt->cmd == MemCmd::WritebackClean &&
373            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
374            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
375                    "dropping\n", pkt->getAddr());
376            return true;
377        }
378
379        if (blk == nullptr) {
380            // need to do a replacement
381            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
382            if (blk == nullptr) {
383                // no replaceable block available: give up, fwd to next level.
384                incMissCount(pkt);
385                return false;
386            }
387            tags->insertBlock(pkt, blk);
388
389            blk->status = (BlkValid | BlkReadable);
390            if (pkt->isSecure()) {
391                blk->status |= BlkSecure;
392            }
393        }
394        // only mark the block dirty if we got a writeback command,
395        // and leave it as is for a clean writeback
396        if (pkt->cmd == MemCmd::WritebackDirty) {
397            blk->status |= BlkDirty;
398        }
399        // if the packet does not have sharers, it is passing
400        // writable, and we got the writeback in Modified or Exclusive
401        // state, if not we are in the Owned or Shared state
402        if (!pkt->hasSharers()) {
403            blk->status |= BlkWritable;
404        }
405        // nothing else to do; writeback doesn't expect response
406        assert(!pkt->needsResponse());
407        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
408        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
409        incHitCount(pkt);
410        return true;
411    } else if (pkt->cmd == MemCmd::CleanEvict) {
412        if (blk != nullptr) {
413            // Found the block in the tags, need to stop CleanEvict from
414            // propagating further down the hierarchy. Returning true will
415            // treat the CleanEvict like a satisfied write request and delete
416            // it.
417            return true;
418        }
419        // We didn't find the block here, propagate the CleanEvict further
420        // down the memory hierarchy. Returning false will treat the CleanEvict
421        // like a Writeback which could not find a replaceable block so has to
422        // go to next level.
423        return false;
424    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
425                       blk->isReadable())) {
426        // OK to satisfy access
427        incHitCount(pkt);
428        satisfyRequest(pkt, blk);
429        maintainClusivity(pkt->fromCache(), blk);
430
431        return true;
432    }
433
434    // Can't satisfy access normally... either no block (blk == nullptr)
435    // or have block but need writable
436
437    incMissCount(pkt);
438
439    if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) {
440        // complete miss on store conditional... just give up now
441        pkt->req->setExtraData(0);
442        return true;
443    }
444
445    return false;
446}
447
448void
449Cache::maintainClusivity(bool from_cache, CacheBlk *blk)
450{
451    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
452        clusivity == Enums::mostly_excl) {
453        // if we have responded to a cache, and our block is still
454        // valid, but not dirty, and this cache is mostly exclusive
455        // with respect to the cache above, drop the block
456        invalidateBlock(blk);
457    }
458}
459
460void
461Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
462{
463    while (!writebacks.empty()) {
464        PacketPtr wbPkt = writebacks.front();
465        // We use forwardLatency here because we are copying writebacks to
466        // write buffer.  Call isCachedAbove for both Writebacks and
467        // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
468        // in Writebacks and discard CleanEvicts.
469        if (isCachedAbove(wbPkt)) {
470            if (wbPkt->cmd == MemCmd::CleanEvict) {
471                // Delete CleanEvict because cached copies exist above. The
472                // packet destructor will delete the request object because
473                // this is a non-snoop request packet which does not require a
474                // response.
475                delete wbPkt;
476            } else if (wbPkt->cmd == MemCmd::WritebackClean) {
477                // clean writeback, do not send since the block is
478                // still cached above
479                assert(writebackClean);
480                delete wbPkt;
481            } else {
482                assert(wbPkt->cmd == MemCmd::WritebackDirty);
483                // Set BLOCK_CACHED flag in Writeback and send below, so that
484                // the Writeback does not reset the bit corresponding to this
485                // address in the snoop filter below.
486                wbPkt->setBlockCached();
487                allocateWriteBuffer(wbPkt, forward_time);
488            }
489        } else {
490            // If the block is not cached above, send packet below. Both
491            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
492            // reset the bit corresponding to this address in the snoop filter
493            // below.
494            allocateWriteBuffer(wbPkt, forward_time);
495        }
496        writebacks.pop_front();
497    }
498}
499
500void
501Cache::doWritebacksAtomic(PacketList& writebacks)
502{
503    while (!writebacks.empty()) {
504        PacketPtr wbPkt = writebacks.front();
505        // Call isCachedAbove for both Writebacks and CleanEvicts. If
506        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
507        // and discard CleanEvicts.
508        if (isCachedAbove(wbPkt, false)) {
509            if (wbPkt->cmd == MemCmd::WritebackDirty) {
510                // Set BLOCK_CACHED flag in Writeback and send below,
511                // so that the Writeback does not reset the bit
512                // corresponding to this address in the snoop filter
513                // below. We can discard CleanEvicts because cached
514                // copies exist above. Atomic mode isCachedAbove
515                // modifies packet to set BLOCK_CACHED flag
516                memSidePort->sendAtomic(wbPkt);
517            }
518        } else {
519            // If the block is not cached above, send packet below. Both
520            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
521            // reset the bit corresponding to this address in the snoop filter
522            // below.
523            memSidePort->sendAtomic(wbPkt);
524        }
525        writebacks.pop_front();
526        // In case of CleanEvicts, the packet destructor will delete the
527        // request object because this is a non-snoop request packet which
528        // does not require a response.
529        delete wbPkt;
530    }
531}
532
533
534void
535Cache::recvTimingSnoopResp(PacketPtr pkt)
536{
537    DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
538
539    assert(pkt->isResponse());
540    assert(!system->bypassCaches());
541
542    // determine if the response is from a snoop request we created
543    // (in which case it should be in the outstandingSnoop), or if we
544    // merely forwarded someone else's snoop request
545    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
546        outstandingSnoop.end();
547
548    if (!forwardAsSnoop) {
549        // the packet came from this cache, so sink it here and do not
550        // forward it
551        assert(pkt->cmd == MemCmd::HardPFResp);
552
553        outstandingSnoop.erase(pkt->req);
554
555        DPRINTF(Cache, "Got prefetch response from above for addr "
556                "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
557        recvTimingResp(pkt);
558        return;
559    }
560
561    // forwardLatency is set here because there is a response from an
562    // upper level cache.
563    // To pay the delay that occurs if the packet comes from the bus,
564    // we charge also headerDelay.
565    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
566    // Reset the timing of the packet.
567    pkt->headerDelay = pkt->payloadDelay = 0;
568    memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
569}
570
571void
572Cache::promoteWholeLineWrites(PacketPtr pkt)
573{
574    // Cache line clearing instructions
575    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
576        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
577        pkt->cmd = MemCmd::WriteLineReq;
578        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
579    }
580}
581
582bool
583Cache::recvTimingReq(PacketPtr pkt)
584{
585    DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print());
586
587    assert(pkt->isRequest());
588
589    // Just forward the packet if caches are disabled.
590    if (system->bypassCaches()) {
591        // @todo This should really enqueue the packet rather
592        bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
593        assert(success);
594        return true;
595    }
596
597    promoteWholeLineWrites(pkt);
598
599    if (pkt->cacheResponding()) {
600        // a cache above us (but not where the packet came from) is
601        // responding to the request, in other words it has the line
602        // in Modified or Owned state
603        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
604                pkt->print());
605
606        // if the packet needs the block to be writable, and the cache
607        // that has promised to respond (setting the cache responding
608        // flag) is not providing writable (it is in Owned rather than
609        // the Modified state), we know that there may be other Shared
610        // copies in the system; go out and invalidate them all
611        assert(pkt->needsWritable() && !pkt->responderHadWritable());
612
613        // an upstream cache that had the line in Owned state
614        // (dirty, but not writable), is responding and thus
615        // transferring the dirty line from one branch of the
616        // cache hierarchy to another
617
618        // send out an express snoop and invalidate all other
619        // copies (snooping a packet that needs writable is the
620        // same as an invalidation), thus turning the Owned line
621        // into a Modified line, note that we don't invalidate the
622        // block in the current cache or any other cache on the
623        // path to memory
624
625        // create a downstream express snoop with cleared packet
626        // flags, there is no need to allocate any data as the
627        // packet is merely used to co-ordinate state transitions
628        Packet *snoop_pkt = new Packet(pkt, true, false);
629
630        // also reset the bus time that the original packet has
631        // not yet paid for
632        snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
633
634        // make this an instantaneous express snoop, and let the
635        // other caches in the system know that the another cache
636        // is responding, because we have found the authorative
637        // copy (Modified or Owned) that will supply the right
638        // data
639        snoop_pkt->setExpressSnoop();
640        snoop_pkt->setCacheResponding();
641
642        // this express snoop travels towards the memory, and at
643        // every crossbar it is snooped upwards thus reaching
644        // every cache in the system
645        bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
646        // express snoops always succeed
647        assert(success);
648
649        // main memory will delete the snoop packet
650
651        // queue for deletion, as opposed to immediate deletion, as
652        // the sending cache is still relying on the packet
653        pendingDelete.reset(pkt);
654
655        // no need to take any further action in this particular cache
656        // as an upstram cache has already committed to responding,
657        // and we have already sent out any express snoops in the
658        // section above to ensure all other copies in the system are
659        // invalidated
660        return true;
661    }
662
663    // anything that is merely forwarded pays for the forward latency and
664    // the delay provided by the crossbar
665    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
666
667    // We use lookupLatency here because it is used to specify the latency
668    // to access.
669    Cycles lat = lookupLatency;
670    CacheBlk *blk = nullptr;
671    bool satisfied = false;
672    {
673        PacketList writebacks;
674        // Note that lat is passed by reference here. The function
675        // access() calls accessBlock() which can modify lat value.
676        satisfied = access(pkt, blk, lat, writebacks);
677
678        // copy writebacks to write buffer here to ensure they logically
679        // proceed anything happening below
680        doWritebacks(writebacks, forward_time);
681    }
682
683    // Here we charge the headerDelay that takes into account the latencies
684    // of the bus, if the packet comes from it.
685    // The latency charged it is just lat that is the value of lookupLatency
686    // modified by access() function, or if not just lookupLatency.
687    // In case of a hit we are neglecting response latency.
688    // In case of a miss we are neglecting forward latency.
689    Tick request_time = clockEdge(lat) + pkt->headerDelay;
690    // Here we reset the timing of the packet.
691    pkt->headerDelay = pkt->payloadDelay = 0;
692
693    // track time of availability of next prefetch, if any
694    Tick next_pf_time = MaxTick;
695
696    bool needsResponse = pkt->needsResponse();
697
698    if (satisfied) {
699        // should never be satisfying an uncacheable access as we
700        // flush and invalidate any existing block as part of the
701        // lookup
702        assert(!pkt->req->isUncacheable());
703
704        // hit (for all other request types)
705
706        if (prefetcher && (prefetchOnAccess ||
707                           (blk && blk->wasPrefetched()))) {
708            if (blk)
709                blk->status &= ~BlkHWPrefetched;
710
711            // Don't notify on SWPrefetch
712            if (!pkt->cmd.isSWPrefetch())
713                next_pf_time = prefetcher->notify(pkt);
714        }
715
716        if (needsResponse) {
717            pkt->makeTimingResponse();
718            // @todo: Make someone pay for this
719            pkt->headerDelay = pkt->payloadDelay = 0;
720
721            // In this case we are considering request_time that takes
722            // into account the delay of the xbar, if any, and just
723            // lat, neglecting responseLatency, modelling hit latency
724            // just as lookupLatency or or the value of lat overriden
725            // by access(), that calls accessBlock() function.
726            cpuSidePort->schedTimingResp(pkt, request_time, true);
727        } else {
728            DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
729                    pkt->print());
730
731            // queue the packet for deletion, as the sending cache is
732            // still relying on it; if the block is found in access(),
733            // CleanEvict and Writeback messages will be deleted
734            // here as well
735            pendingDelete.reset(pkt);
736        }
737    } else {
738        // miss
739
740        Addr blk_addr = pkt->getBlockAddr(blkSize);
741
742        // ignore any existing MSHR if we are dealing with an
743        // uncacheable request
744        MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
745            mshrQueue.findMatch(blk_addr, pkt->isSecure());
746
747        // Software prefetch handling:
748        // To keep the core from waiting on data it won't look at
749        // anyway, send back a response with dummy data. Miss handling
750        // will continue asynchronously. Unfortunately, the core will
751        // insist upon freeing original Packet/Request, so we have to
752        // create a new pair with a different lifecycle. Note that this
753        // processing happens before any MSHR munging on the behalf of
754        // this request because this new Request will be the one stored
755        // into the MSHRs, not the original.
756        if (pkt->cmd.isSWPrefetch()) {
757            assert(needsResponse);
758            assert(pkt->req->hasPaddr());
759            assert(!pkt->req->isUncacheable());
760
761            // There's no reason to add a prefetch as an additional target
762            // to an existing MSHR. If an outstanding request is already
763            // in progress, there is nothing for the prefetch to do.
764            // If this is the case, we don't even create a request at all.
765            PacketPtr pf = nullptr;
766
767            if (!mshr) {
768                // copy the request and create a new SoftPFReq packet
769                RequestPtr req = new Request(pkt->req->getPaddr(),
770                                             pkt->req->getSize(),
771                                             pkt->req->getFlags(),
772                                             pkt->req->masterId());
773                pf = new Packet(req, pkt->cmd);
774                pf->allocate();
775                assert(pf->getAddr() == pkt->getAddr());
776                assert(pf->getSize() == pkt->getSize());
777            }
778
779            pkt->makeTimingResponse();
780
781            // request_time is used here, taking into account lat and the delay
782            // charged if the packet comes from the xbar.
783            cpuSidePort->schedTimingResp(pkt, request_time, true);
784
785            // If an outstanding request is in progress (we found an
786            // MSHR) this is set to null
787            pkt = pf;
788        }
789
790        if (mshr) {
791            /// MSHR hit
792            /// @note writebacks will be checked in getNextMSHR()
793            /// for any conflicting requests to the same block
794
795            //@todo remove hw_pf here
796
797            // Coalesce unless it was a software prefetch (see above).
798            if (pkt) {
799                assert(!pkt->isWriteback());
800                // CleanEvicts corresponding to blocks which have
801                // outstanding requests in MSHRs are simply sunk here
802                if (pkt->cmd == MemCmd::CleanEvict) {
803                    pendingDelete.reset(pkt);
804                } else {
805                    DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
806                            pkt->print());
807
808                    assert(pkt->req->masterId() < system->maxMasters());
809                    mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
810                    // We use forward_time here because it is the same
811                    // considering new targets. We have multiple
812                    // requests for the same address here. It
813                    // specifies the latency to allocate an internal
814                    // buffer and to schedule an event to the queued
815                    // port and also takes into account the additional
816                    // delay of the xbar.
817                    mshr->allocateTarget(pkt, forward_time, order++,
818                                         allocOnFill(pkt->cmd));
819                    if (mshr->getNumTargets() == numTarget) {
820                        noTargetMSHR = mshr;
821                        setBlocked(Blocked_NoTargets);
822                        // need to be careful with this... if this mshr isn't
823                        // ready yet (i.e. time > curTick()), we don't want to
824                        // move it ahead of mshrs that are ready
825                        // mshrQueue.moveToFront(mshr);
826                    }
827                }
828                // We should call the prefetcher reguardless if the request is
829                // satisfied or not, reguardless if the request is in the MSHR
830                // or not.  The request could be a ReadReq hit, but still not
831                // satisfied (potentially because of a prior write to the same
832                // cache line.  So, even when not satisfied, tehre is an MSHR
833                // already allocated for this, we need to let the prefetcher
834                // know about the request
835                if (prefetcher) {
836                    // Don't notify on SWPrefetch
837                    if (!pkt->cmd.isSWPrefetch())
838                        next_pf_time = prefetcher->notify(pkt);
839                }
840            }
841        } else {
842            // no MSHR
843            assert(pkt->req->masterId() < system->maxMasters());
844            if (pkt->req->isUncacheable()) {
845                mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
846            } else {
847                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
848            }
849
850            if (pkt->isEviction() ||
851                (pkt->req->isUncacheable() && pkt->isWrite())) {
852                // We use forward_time here because there is an
853                // uncached memory write, forwarded to WriteBuffer.
854                allocateWriteBuffer(pkt, forward_time);
855            } else {
856                if (blk && blk->isValid()) {
857                    // should have flushed and have no valid block
858                    assert(!pkt->req->isUncacheable());
859
860                    // If we have a write miss to a valid block, we
861                    // need to mark the block non-readable.  Otherwise
862                    // if we allow reads while there's an outstanding
863                    // write miss, the read could return stale data
864                    // out of the cache block... a more aggressive
865                    // system could detect the overlap (if any) and
866                    // forward data out of the MSHRs, but we don't do
867                    // that yet.  Note that we do need to leave the
868                    // block valid so that it stays in the cache, in
869                    // case we get an upgrade response (and hence no
870                    // new data) when the write miss completes.
871                    // As long as CPUs do proper store/load forwarding
872                    // internally, and have a sufficiently weak memory
873                    // model, this is probably unnecessary, but at some
874                    // point it must have seemed like we needed it...
875                    assert(pkt->needsWritable());
876                    assert(!blk->isWritable());
877                    blk->status &= ~BlkReadable;
878                }
879                // Here we are using forward_time, modelling the latency of
880                // a miss (outbound) just as forwardLatency, neglecting the
881                // lookupLatency component.
882                allocateMissBuffer(pkt, forward_time);
883            }
884
885            if (prefetcher) {
886                // Don't notify on SWPrefetch
887                if (!pkt->cmd.isSWPrefetch())
888                    next_pf_time = prefetcher->notify(pkt);
889            }
890        }
891    }
892
893    if (next_pf_time != MaxTick)
894        schedMemSideSendEvent(next_pf_time);
895
896    return true;
897}
898
899PacketPtr
900Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
901                        bool needsWritable) const
902{
903    // should never see evictions here
904    assert(!cpu_pkt->isEviction());
905
906    bool blkValid = blk && blk->isValid();
907
908    if (cpu_pkt->req->isUncacheable() ||
909        (!blkValid && cpu_pkt->isUpgrade()) ||
910        cpu_pkt->cmd == MemCmd::InvalidateReq) {
911        // uncacheable requests and upgrades from upper-level caches
912        // that missed completely just go through as is
913        return nullptr;
914    }
915
916    assert(cpu_pkt->needsResponse());
917
918    MemCmd cmd;
919    // @TODO make useUpgrades a parameter.
920    // Note that ownership protocols require upgrade, otherwise a
921    // write miss on a shared owned block will generate a ReadExcl,
922    // which will clobber the owned copy.
923    const bool useUpgrades = true;
924    if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
925        assert(!blkValid || !blk->isWritable());
926        // forward as invalidate to all other caches, this gives us
927        // the line in Exclusive state, and invalidates all other
928        // copies
929        cmd = MemCmd::InvalidateReq;
930    } else if (blkValid && useUpgrades) {
931        // only reason to be here is that blk is read only and we need
932        // it to be writable
933        assert(needsWritable);
934        assert(!blk->isWritable());
935        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
936    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
937               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
938        // Even though this SC will fail, we still need to send out the
939        // request and get the data to supply it to other snoopers in the case
940        // where the determination the StoreCond fails is delayed due to
941        // all caches not being on the same local bus.
942        cmd = MemCmd::SCUpgradeFailReq;
943    } else {
944        // block is invalid
945        cmd = needsWritable ? MemCmd::ReadExReq :
946            (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
947    }
948    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
949
950    // if there are upstream caches that have already marked the
951    // packet as having sharers (not passing writable), pass that info
952    // downstream
953    if (cpu_pkt->hasSharers() && !needsWritable) {
954        // note that cpu_pkt may have spent a considerable time in the
955        // MSHR queue and that the information could possibly be out
956        // of date, however, there is no harm in conservatively
957        // assuming the block has sharers
958        pkt->setHasSharers();
959        DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n",
960                __func__, cpu_pkt->print(), pkt->print());
961    }
962
963    // the packet should be block aligned
964    assert(pkt->getAddr() == pkt->getBlockAddr(blkSize));
965
966    pkt->allocate();
967    DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(),
968            cpu_pkt->print());
969    return pkt;
970}
971
972
973Tick
974Cache::recvAtomic(PacketPtr pkt)
975{
976    // We are in atomic mode so we pay just for lookupLatency here.
977    Cycles lat = lookupLatency;
978
979    // Forward the request if the system is in cache bypass mode.
980    if (system->bypassCaches())
981        return ticksToCycles(memSidePort->sendAtomic(pkt));
982
983    promoteWholeLineWrites(pkt);
984
985    // follow the same flow as in recvTimingReq, and check if a cache
986    // above us is responding
987    if (pkt->cacheResponding()) {
988        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
989                pkt->print());
990
991        // if a cache is responding, and it had the line in Owned
992        // rather than Modified state, we need to invalidate any
993        // copies that are not on the same path to memory
994        assert(pkt->needsWritable() && !pkt->responderHadWritable());
995        lat += ticksToCycles(memSidePort->sendAtomic(pkt));
996
997        return lat * clockPeriod();
998    }
999
1000    // should assert here that there are no outstanding MSHRs or
1001    // writebacks... that would mean that someone used an atomic
1002    // access in timing mode
1003
1004    CacheBlk *blk = nullptr;
1005    PacketList writebacks;
1006    bool satisfied = access(pkt, blk, lat, writebacks);
1007
1008    // handle writebacks resulting from the access here to ensure they
1009    // logically proceed anything happening below
1010    doWritebacksAtomic(writebacks);
1011
1012    if (!satisfied) {
1013        // MISS
1014
1015        // deal with the packets that go through the write path of
1016        // the cache, i.e. any evictions and uncacheable writes
1017        if (pkt->isEviction() ||
1018            (pkt->req->isUncacheable() && pkt->isWrite())) {
1019            lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1020            return lat * clockPeriod();
1021        }
1022        // only misses left
1023
1024        PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
1025
1026        bool is_forward = (bus_pkt == nullptr);
1027
1028        if (is_forward) {
1029            // just forwarding the same request to the next level
1030            // no local cache operation involved
1031            bus_pkt = pkt;
1032        }
1033
1034        DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__,
1035                bus_pkt->print());
1036
1037#if TRACING_ON
1038        CacheBlk::State old_state = blk ? blk->status : 0;
1039#endif
1040
1041        lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1042
1043        bool is_invalidate = bus_pkt->isInvalidate();
1044
1045        // We are now dealing with the response handling
1046        DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__,
1047                bus_pkt->print(), old_state);
1048
1049        // If packet was a forward, the response (if any) is already
1050        // in place in the bus_pkt == pkt structure, so we don't need
1051        // to do anything.  Otherwise, use the separate bus_pkt to
1052        // generate response to pkt and then delete it.
1053        if (!is_forward) {
1054            if (pkt->needsResponse()) {
1055                assert(bus_pkt->isResponse());
1056                if (bus_pkt->isError()) {
1057                    pkt->makeAtomicResponse();
1058                    pkt->copyError(bus_pkt);
1059                } else if (pkt->cmd == MemCmd::WriteLineReq) {
1060                    // note the use of pkt, not bus_pkt here.
1061
1062                    // write-line request to the cache that promoted
1063                    // the write to a whole line
1064                    blk = handleFill(pkt, blk, writebacks,
1065                                     allocOnFill(pkt->cmd));
1066                    assert(blk != NULL);
1067                    is_invalidate = false;
1068                    satisfyRequest(pkt, blk);
1069                } else if (bus_pkt->isRead() ||
1070                           bus_pkt->cmd == MemCmd::UpgradeResp) {
1071                    // we're updating cache state to allow us to
1072                    // satisfy the upstream request from the cache
1073                    blk = handleFill(bus_pkt, blk, writebacks,
1074                                     allocOnFill(pkt->cmd));
1075                    satisfyRequest(pkt, blk);
1076                    maintainClusivity(pkt->fromCache(), blk);
1077                } else {
1078                    // we're satisfying the upstream request without
1079                    // modifying cache state, e.g., a write-through
1080                    pkt->makeAtomicResponse();
1081                }
1082            }
1083            delete bus_pkt;
1084        }
1085
1086        if (is_invalidate && blk && blk->isValid()) {
1087            invalidateBlock(blk);
1088        }
1089    }
1090
1091    // Note that we don't invoke the prefetcher at all in atomic mode.
1092    // It's not clear how to do it properly, particularly for
1093    // prefetchers that aggressively generate prefetch candidates and
1094    // rely on bandwidth contention to throttle them; these will tend
1095    // to pollute the cache in atomic mode since there is no bandwidth
1096    // contention.  If we ever do want to enable prefetching in atomic
1097    // mode, though, this is the place to do it... see timingAccess()
1098    // for an example (though we'd want to issue the prefetch(es)
1099    // immediately rather than calling requestMemSideBus() as we do
1100    // there).
1101
1102    // do any writebacks resulting from the response handling
1103    doWritebacksAtomic(writebacks);
1104
1105    // if we used temp block, check to see if its valid and if so
1106    // clear it out, but only do so after the call to recvAtomic is
1107    // finished so that any downstream observers (such as a snoop
1108    // filter), first see the fill, and only then see the eviction
1109    if (blk == tempBlock && tempBlock->isValid()) {
1110        // the atomic CPU calls recvAtomic for fetch and load/store
1111        // sequentuially, and we may already have a tempBlock
1112        // writeback from the fetch that we have not yet sent
1113        if (tempBlockWriteback) {
1114            // if that is the case, write the prevoius one back, and
1115            // do not schedule any new event
1116            writebackTempBlockAtomic();
1117        } else {
1118            // the writeback/clean eviction happens after the call to
1119            // recvAtomic has finished (but before any successive
1120            // calls), so that the response handling from the fill is
1121            // allowed to happen first
1122            schedule(writebackTempBlockAtomicEvent, curTick());
1123        }
1124
1125        tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1126            writebackBlk(blk) : cleanEvictBlk(blk);
1127        invalidateBlock(blk);
1128    }
1129
1130    if (pkt->needsResponse()) {
1131        pkt->makeAtomicResponse();
1132    }
1133
1134    return lat * clockPeriod();
1135}
1136
1137
1138void
1139Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1140{
1141    if (system->bypassCaches()) {
1142        // Packets from the memory side are snoop request and
1143        // shouldn't happen in bypass mode.
1144        assert(fromCpuSide);
1145
1146        // The cache should be flushed if we are in cache bypass mode,
1147        // so we don't need to check if we need to update anything.
1148        memSidePort->sendFunctional(pkt);
1149        return;
1150    }
1151
1152    Addr blk_addr = pkt->getBlockAddr(blkSize);
1153    bool is_secure = pkt->isSecure();
1154    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1155    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1156
1157    pkt->pushLabel(name());
1158
1159    CacheBlkPrintWrapper cbpw(blk);
1160
1161    // Note that just because an L2/L3 has valid data doesn't mean an
1162    // L1 doesn't have a more up-to-date modified copy that still
1163    // needs to be found.  As a result we always update the request if
1164    // we have it, but only declare it satisfied if we are the owner.
1165
1166    // see if we have data at all (owned or otherwise)
1167    bool have_data = blk && blk->isValid()
1168        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1169                                blk->data);
1170
1171    // data we have is dirty if marked as such or if we have an
1172    // in-service MSHR that is pending a modified line
1173    bool have_dirty =
1174        have_data && (blk->isDirty() ||
1175                      (mshr && mshr->inService && mshr->isPendingModified()));
1176
1177    bool done = have_dirty
1178        || cpuSidePort->checkFunctional(pkt)
1179        || mshrQueue.checkFunctional(pkt, blk_addr)
1180        || writeBuffer.checkFunctional(pkt, blk_addr)
1181        || memSidePort->checkFunctional(pkt);
1182
1183    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
1184            (blk && blk->isValid()) ? "valid " : "",
1185            have_data ? "data " : "", done ? "done " : "");
1186
1187    // We're leaving the cache, so pop cache->name() label
1188    pkt->popLabel();
1189
1190    if (done) {
1191        pkt->makeResponse();
1192    } else {
1193        // if it came as a request from the CPU side then make sure it
1194        // continues towards the memory side
1195        if (fromCpuSide) {
1196            memSidePort->sendFunctional(pkt);
1197        } else if (cpuSidePort->isSnooping()) {
1198            // if it came from the memory side, it must be a snoop request
1199            // and we should only forward it if we are forwarding snoops
1200            cpuSidePort->sendFunctionalSnoop(pkt);
1201        }
1202    }
1203}
1204
1205
1206/////////////////////////////////////////////////////
1207//
1208// Response handling: responses from the memory side
1209//
1210/////////////////////////////////////////////////////
1211
1212
1213void
1214Cache::handleUncacheableWriteResp(PacketPtr pkt)
1215{
1216    Tick completion_time = clockEdge(responseLatency) +
1217        pkt->headerDelay + pkt->payloadDelay;
1218
1219    // Reset the bus additional time as it is now accounted for
1220    pkt->headerDelay = pkt->payloadDelay = 0;
1221
1222    cpuSidePort->schedTimingResp(pkt, completion_time, true);
1223}
1224
1225void
1226Cache::recvTimingResp(PacketPtr pkt)
1227{
1228    assert(pkt->isResponse());
1229
1230    // all header delay should be paid for by the crossbar, unless
1231    // this is a prefetch response from above
1232    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1233             "%s saw a non-zero packet delay\n", name());
1234
1235    bool is_error = pkt->isError();
1236
1237    if (is_error) {
1238        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
1239                pkt->print());
1240    }
1241
1242    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
1243            pkt->print());
1244
1245    // if this is a write, we should be looking at an uncacheable
1246    // write
1247    if (pkt->isWrite()) {
1248        assert(pkt->req->isUncacheable());
1249        handleUncacheableWriteResp(pkt);
1250        return;
1251    }
1252
1253    // we have dealt with any (uncacheable) writes above, from here on
1254    // we know we are dealing with an MSHR due to a miss or a prefetch
1255    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
1256    assert(mshr);
1257
1258    if (mshr == noTargetMSHR) {
1259        // we always clear at least one target
1260        clearBlocked(Blocked_NoTargets);
1261        noTargetMSHR = nullptr;
1262    }
1263
1264    // Initial target is used just for stats
1265    MSHR::Target *initial_tgt = mshr->getTarget();
1266    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1267    Tick miss_latency = curTick() - initial_tgt->recvTime;
1268
1269    if (pkt->req->isUncacheable()) {
1270        assert(pkt->req->masterId() < system->maxMasters());
1271        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1272            miss_latency;
1273    } else {
1274        assert(pkt->req->masterId() < system->maxMasters());
1275        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1276            miss_latency;
1277    }
1278
1279    bool wasFull = mshrQueue.isFull();
1280
1281    PacketList writebacks;
1282
1283    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1284
1285    // upgrade deferred targets if the response has no sharers, and is
1286    // thus passing writable
1287    if (!pkt->hasSharers()) {
1288        mshr->promoteWritable();
1289    }
1290
1291    bool is_fill = !mshr->isForward &&
1292        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1293
1294    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1295
1296    if (is_fill && !is_error) {
1297        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1298                pkt->getAddr());
1299
1300        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
1301        assert(blk != nullptr);
1302    }
1303
1304    // allow invalidation responses originating from write-line
1305    // requests to be discarded
1306    bool is_invalidate = pkt->isInvalidate();
1307
1308    // First offset for critical word first calculations
1309    int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1310
1311    bool from_cache = false;
1312    MSHR::TargetList targets = mshr->extractServiceableTargets(pkt);
1313    for (auto &target: targets) {
1314        Packet *tgt_pkt = target.pkt;
1315        switch (target.source) {
1316          case MSHR::Target::FromCPU:
1317            Tick completion_time;
1318            // Here we charge on completion_time the delay of the xbar if the
1319            // packet comes from it, charged on headerDelay.
1320            completion_time = pkt->headerDelay;
1321
1322            // Software prefetch handling for cache closest to core
1323            if (tgt_pkt->cmd.isSWPrefetch()) {
1324                // a software prefetch would have already been ack'd
1325                // immediately with dummy data so the core would be able to
1326                // retire it. This request completes right here, so we
1327                // deallocate it.
1328                delete tgt_pkt->req;
1329                delete tgt_pkt;
1330                break; // skip response
1331            }
1332
1333            // keep track of whether we have responded to another
1334            // cache
1335            from_cache = from_cache || tgt_pkt->fromCache();
1336
1337            // unlike the other packet flows, where data is found in other
1338            // caches or memory and brought back, write-line requests always
1339            // have the data right away, so the above check for "is fill?"
1340            // cannot actually be determined until examining the stored MSHR
1341            // state. We "catch up" with that logic here, which is duplicated
1342            // from above.
1343            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1344                assert(!is_error);
1345                // we got the block in a writable state, so promote
1346                // any deferred targets if possible
1347                mshr->promoteWritable();
1348                // NB: we use the original packet here and not the response!
1349                blk = handleFill(tgt_pkt, blk, writebacks,
1350                                 targets.allocOnFill);
1351                assert(blk != nullptr);
1352
1353                // treat as a fill, and discard the invalidation
1354                // response
1355                is_fill = true;
1356                is_invalidate = false;
1357            }
1358
1359            if (is_fill) {
1360                satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
1361
1362                // How many bytes past the first request is this one
1363                int transfer_offset =
1364                    tgt_pkt->getOffset(blkSize) - initial_offset;
1365                if (transfer_offset < 0) {
1366                    transfer_offset += blkSize;
1367                }
1368
1369                // If not critical word (offset) return payloadDelay.
1370                // responseLatency is the latency of the return path
1371                // from lower level caches/memory to an upper level cache or
1372                // the core.
1373                completion_time += clockEdge(responseLatency) +
1374                    (transfer_offset ? pkt->payloadDelay : 0);
1375
1376                assert(!tgt_pkt->req->isUncacheable());
1377
1378                assert(tgt_pkt->req->masterId() < system->maxMasters());
1379                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1380                    completion_time - target.recvTime;
1381            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1382                // failed StoreCond upgrade
1383                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1384                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1385                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1386                // responseLatency is the latency of the return path
1387                // from lower level caches/memory to an upper level cache or
1388                // the core.
1389                completion_time += clockEdge(responseLatency) +
1390                    pkt->payloadDelay;
1391                tgt_pkt->req->setExtraData(0);
1392            } else {
1393                // We are about to send a response to a cache above
1394                // that asked for an invalidation; we need to
1395                // invalidate our copy immediately as the most
1396                // up-to-date copy of the block will now be in the
1397                // cache above. It will also prevent this cache from
1398                // responding (if the block was previously dirty) to
1399                // snoops as they should snoop the caches above where
1400                // they will get the response from.
1401                if (is_invalidate && blk && blk->isValid()) {
1402                    invalidateBlock(blk);
1403                }
1404                // not a cache fill, just forwarding response
1405                // responseLatency is the latency of the return path
1406                // from lower level cahces/memory to the core.
1407                completion_time += clockEdge(responseLatency) +
1408                    pkt->payloadDelay;
1409                if (pkt->isRead() && !is_error) {
1410                    // sanity check
1411                    assert(pkt->getAddr() == tgt_pkt->getAddr());
1412                    assert(pkt->getSize() >= tgt_pkt->getSize());
1413
1414                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1415                }
1416            }
1417            tgt_pkt->makeTimingResponse();
1418            // if this packet is an error copy that to the new packet
1419            if (is_error)
1420                tgt_pkt->copyError(pkt);
1421            if (tgt_pkt->cmd == MemCmd::ReadResp &&
1422                (is_invalidate || mshr->hasPostInvalidate())) {
1423                // If intermediate cache got ReadRespWithInvalidate,
1424                // propagate that.  Response should not have
1425                // isInvalidate() set otherwise.
1426                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1427                DPRINTF(Cache, "%s: updated cmd to %s\n", __func__,
1428                        tgt_pkt->print());
1429            }
1430            // Reset the bus additional time as it is now accounted for
1431            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1432            cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1433            break;
1434
1435          case MSHR::Target::FromPrefetcher:
1436            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1437            if (blk)
1438                blk->status |= BlkHWPrefetched;
1439            delete tgt_pkt->req;
1440            delete tgt_pkt;
1441            break;
1442
1443          case MSHR::Target::FromSnoop:
1444            // I don't believe that a snoop can be in an error state
1445            assert(!is_error);
1446            // response to snoop request
1447            DPRINTF(Cache, "processing deferred snoop...\n");
1448            // If the response is invalidating, a snooping target can
1449            // be satisfied if it is also invalidating. If the reponse is, not
1450            // only invalidating, but more specifically an InvalidateResp, the
1451            // MSHR was created due to an InvalidateReq and a cache above is
1452            // waiting to satisfy a WriteLineReq. In this case even an
1453            // non-invalidating snoop is added as a target here since this is
1454            // the ordering point. When the InvalidateResp reaches this cache,
1455            // the snooping target will snoop further the cache above with the
1456            // WriteLineReq.
1457            assert(!(is_invalidate &&
1458                     pkt->cmd != MemCmd::InvalidateResp &&
1459                     !mshr->hasPostInvalidate()));
1460            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1461            break;
1462
1463          default:
1464            panic("Illegal target->source enum %d\n", target.source);
1465        }
1466    }
1467
1468    maintainClusivity(from_cache, blk);
1469
1470    if (blk && blk->isValid()) {
1471        // an invalidate response stemming from a write line request
1472        // should not invalidate the block, so check if the
1473        // invalidation should be discarded
1474        if (is_invalidate || mshr->hasPostInvalidate()) {
1475            invalidateBlock(blk);
1476        } else if (mshr->hasPostDowngrade()) {
1477            blk->status &= ~BlkWritable;
1478        }
1479    }
1480
1481    if (mshr->promoteDeferredTargets()) {
1482        // avoid later read getting stale data while write miss is
1483        // outstanding.. see comment in timingAccess()
1484        if (blk) {
1485            blk->status &= ~BlkReadable;
1486        }
1487        mshrQueue.markPending(mshr);
1488        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1489    } else {
1490        mshrQueue.deallocate(mshr);
1491        if (wasFull && !mshrQueue.isFull()) {
1492            clearBlocked(Blocked_NoMSHRs);
1493        }
1494
1495        // Request the bus for a prefetch if this deallocation freed enough
1496        // MSHRs for a prefetch to take place
1497        if (prefetcher && mshrQueue.canPrefetch()) {
1498            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1499                                         clockEdge());
1500            if (next_pf_time != MaxTick)
1501                schedMemSideSendEvent(next_pf_time);
1502        }
1503    }
1504    // reset the xbar additional timinig  as it is now accounted for
1505    pkt->headerDelay = pkt->payloadDelay = 0;
1506
1507    // copy writebacks to write buffer
1508    doWritebacks(writebacks, forward_time);
1509
1510    // if we used temp block, check to see if its valid and then clear it out
1511    if (blk == tempBlock && tempBlock->isValid()) {
1512        // We use forwardLatency here because we are copying
1513        // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1514        // allocate an internal buffer and to schedule an event to the
1515        // queued port.
1516        if (blk->isDirty() || writebackClean) {
1517            PacketPtr wbPkt = writebackBlk(blk);
1518            allocateWriteBuffer(wbPkt, forward_time);
1519            // Set BLOCK_CACHED flag if cached above.
1520            if (isCachedAbove(wbPkt))
1521                wbPkt->setBlockCached();
1522        } else {
1523            PacketPtr wcPkt = cleanEvictBlk(blk);
1524            // Check to see if block is cached above. If not allocate
1525            // write buffer
1526            if (isCachedAbove(wcPkt))
1527                delete wcPkt;
1528            else
1529                allocateWriteBuffer(wcPkt, forward_time);
1530        }
1531        invalidateBlock(blk);
1532    }
1533
1534    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
1535    delete pkt;
1536}
1537
1538PacketPtr
1539Cache::writebackBlk(CacheBlk *blk)
1540{
1541    chatty_assert(!isReadOnly || writebackClean,
1542                  "Writeback from read-only cache");
1543    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1544
1545    writebacks[Request::wbMasterId]++;
1546
1547    Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1548                               blkSize, 0, Request::wbMasterId);
1549    if (blk->isSecure())
1550        req->setFlags(Request::SECURE);
1551
1552    req->taskId(blk->task_id);
1553    blk->task_id= ContextSwitchTaskId::Unknown;
1554    blk->tickInserted = curTick();
1555
1556    PacketPtr pkt =
1557        new Packet(req, blk->isDirty() ?
1558                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1559
1560    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1561            pkt->print(), blk->isWritable(), blk->isDirty());
1562
1563    if (blk->isWritable()) {
1564        // not asserting shared means we pass the block in modified
1565        // state, mark our own block non-writeable
1566        blk->status &= ~BlkWritable;
1567    } else {
1568        // we are in the Owned state, tell the receiver
1569        pkt->setHasSharers();
1570    }
1571
1572    // make sure the block is not marked dirty
1573    blk->status &= ~BlkDirty;
1574
1575    pkt->allocate();
1576    std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1577
1578    return pkt;
1579}
1580
1581PacketPtr
1582Cache::cleanEvictBlk(CacheBlk *blk)
1583{
1584    assert(!writebackClean);
1585    assert(blk && blk->isValid() && !blk->isDirty());
1586    // Creating a zero sized write, a message to the snoop filter
1587    Request *req =
1588        new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1589                    Request::wbMasterId);
1590    if (blk->isSecure())
1591        req->setFlags(Request::SECURE);
1592
1593    req->taskId(blk->task_id);
1594    blk->task_id = ContextSwitchTaskId::Unknown;
1595    blk->tickInserted = curTick();
1596
1597    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1598    pkt->allocate();
1599    DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print());
1600
1601    return pkt;
1602}
1603
1604void
1605Cache::memWriteback()
1606{
1607    CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1608    tags->forEachBlk(visitor);
1609}
1610
1611void
1612Cache::memInvalidate()
1613{
1614    CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1615    tags->forEachBlk(visitor);
1616}
1617
1618bool
1619Cache::isDirty() const
1620{
1621    CacheBlkIsDirtyVisitor visitor;
1622    tags->forEachBlk(visitor);
1623
1624    return visitor.isDirty();
1625}
1626
1627bool
1628Cache::writebackVisitor(CacheBlk &blk)
1629{
1630    if (blk.isDirty()) {
1631        assert(blk.isValid());
1632
1633        Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1634                        blkSize, 0, Request::funcMasterId);
1635        request.taskId(blk.task_id);
1636        if (blk.isSecure()) {
1637            request.setFlags(Request::SECURE);
1638        }
1639
1640        Packet packet(&request, MemCmd::WriteReq);
1641        packet.dataStatic(blk.data);
1642
1643        memSidePort->sendFunctional(&packet);
1644
1645        blk.status &= ~BlkDirty;
1646    }
1647
1648    return true;
1649}
1650
1651bool
1652Cache::invalidateVisitor(CacheBlk &blk)
1653{
1654
1655    if (blk.isDirty())
1656        warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1657
1658    if (blk.isValid()) {
1659        assert(!blk.isDirty());
1660        invalidateBlock(&blk);
1661    }
1662
1663    return true;
1664}
1665
1666CacheBlk*
1667Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1668{
1669    CacheBlk *blk = tags->findVictim(addr);
1670
1671    // It is valid to return nullptr if there is no victim
1672    if (!blk)
1673        return nullptr;
1674
1675    if (blk->isValid()) {
1676        Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1677        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1678        if (repl_mshr) {
1679            // must be an outstanding upgrade request
1680            // on a block we're about to replace...
1681            assert(!blk->isWritable() || blk->isDirty());
1682            assert(repl_mshr->needsWritable());
1683            // too hard to replace block with transient state
1684            // allocation failed, block not inserted
1685            return nullptr;
1686        } else {
1687            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1688                    "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
1689                    addr, is_secure ? "s" : "ns",
1690                    blk->isDirty() ? "writeback" : "clean");
1691
1692            if (blk->wasPrefetched()) {
1693                unusedPrefetches++;
1694            }
1695            // Will send up Writeback/CleanEvict snoops via isCachedAbove
1696            // when pushing this writeback list into the write buffer.
1697            if (blk->isDirty() || writebackClean) {
1698                // Save writeback packet for handling by caller
1699                writebacks.push_back(writebackBlk(blk));
1700            } else {
1701                writebacks.push_back(cleanEvictBlk(blk));
1702            }
1703        }
1704    }
1705
1706    return blk;
1707}
1708
1709void
1710Cache::invalidateBlock(CacheBlk *blk)
1711{
1712    if (blk != tempBlock)
1713        tags->invalidate(blk);
1714    blk->invalidate();
1715}
1716
1717// Note that the reason we return a list of writebacks rather than
1718// inserting them directly in the write buffer is that this function
1719// is called by both atomic and timing-mode accesses, and in atomic
1720// mode we don't mess with the write buffer (we just perform the
1721// writebacks atomically once the original request is complete).
1722CacheBlk*
1723Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1724                  bool allocate)
1725{
1726    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1727    Addr addr = pkt->getAddr();
1728    bool is_secure = pkt->isSecure();
1729#if TRACING_ON
1730    CacheBlk::State old_state = blk ? blk->status : 0;
1731#endif
1732
1733    // When handling a fill, we should have no writes to this line.
1734    assert(addr == pkt->getBlockAddr(blkSize));
1735    assert(!writeBuffer.findMatch(addr, is_secure));
1736
1737    if (blk == nullptr) {
1738        // better have read new data...
1739        assert(pkt->hasData());
1740
1741        // only read responses and write-line requests have data;
1742        // note that we don't write the data here for write-line - that
1743        // happens in the subsequent call to satisfyRequest
1744        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1745
1746        // need to do a replacement if allocating, otherwise we stick
1747        // with the temporary storage
1748        blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
1749
1750        if (blk == nullptr) {
1751            // No replaceable block or a mostly exclusive
1752            // cache... just use temporary storage to complete the
1753            // current request and then get rid of it
1754            assert(!tempBlock->isValid());
1755            blk = tempBlock;
1756            tempBlock->set = tags->extractSet(addr);
1757            tempBlock->tag = tags->extractTag(addr);
1758            // @todo: set security state as well...
1759            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1760                    is_secure ? "s" : "ns");
1761        } else {
1762            tags->insertBlock(pkt, blk);
1763        }
1764
1765        // we should never be overwriting a valid block
1766        assert(!blk->isValid());
1767    } else {
1768        // existing block... probably an upgrade
1769        assert(blk->tag == tags->extractTag(addr));
1770        // either we're getting new data or the block should already be valid
1771        assert(pkt->hasData() || blk->isValid());
1772        // don't clear block status... if block is already dirty we
1773        // don't want to lose that
1774    }
1775
1776    if (is_secure)
1777        blk->status |= BlkSecure;
1778    blk->status |= BlkValid | BlkReadable;
1779
1780    // sanity check for whole-line writes, which should always be
1781    // marked as writable as part of the fill, and then later marked
1782    // dirty as part of satisfyRequest
1783    if (pkt->cmd == MemCmd::WriteLineReq) {
1784        assert(!pkt->hasSharers());
1785    }
1786
1787    // here we deal with setting the appropriate state of the line,
1788    // and we start by looking at the hasSharers flag, and ignore the
1789    // cacheResponding flag (normally signalling dirty data) if the
1790    // packet has sharers, thus the line is never allocated as Owned
1791    // (dirty but not writable), and always ends up being either
1792    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1793    // for more details
1794    if (!pkt->hasSharers()) {
1795        // we could get a writable line from memory (rather than a
1796        // cache) even in a read-only cache, note that we set this bit
1797        // even for a read-only cache, possibly revisit this decision
1798        blk->status |= BlkWritable;
1799
1800        // check if we got this via cache-to-cache transfer (i.e., from a
1801        // cache that had the block in Modified or Owned state)
1802        if (pkt->cacheResponding()) {
1803            // we got the block in Modified state, and invalidated the
1804            // owners copy
1805            blk->status |= BlkDirty;
1806
1807            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1808                          "in read-only cache %s\n", name());
1809        }
1810    }
1811
1812    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1813            addr, is_secure ? "s" : "ns", old_state, blk->print());
1814
1815    // if we got new data, copy it in (checking for a read response
1816    // and a response that has data is the same in the end)
1817    if (pkt->isRead()) {
1818        // sanity checks
1819        assert(pkt->hasData());
1820        assert(pkt->getSize() == blkSize);
1821
1822        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1823    }
1824    // We pay for fillLatency here.
1825    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1826        pkt->payloadDelay;
1827
1828    return blk;
1829}
1830
1831
1832/////////////////////////////////////////////////////
1833//
1834// Snoop path: requests coming in from the memory side
1835//
1836/////////////////////////////////////////////////////
1837
1838void
1839Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1840                              bool already_copied, bool pending_inval)
1841{
1842    // sanity check
1843    assert(req_pkt->isRequest());
1844    assert(req_pkt->needsResponse());
1845
1846    DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print());
1847    // timing-mode snoop responses require a new packet, unless we
1848    // already made a copy...
1849    PacketPtr pkt = req_pkt;
1850    if (!already_copied)
1851        // do not clear flags, and allocate space for data if the
1852        // packet needs it (the only packets that carry data are read
1853        // responses)
1854        pkt = new Packet(req_pkt, false, req_pkt->isRead());
1855
1856    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1857           pkt->hasSharers());
1858    pkt->makeTimingResponse();
1859    if (pkt->isRead()) {
1860        pkt->setDataFromBlock(blk_data, blkSize);
1861    }
1862    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1863        // Assume we defer a response to a read from a far-away cache
1864        // A, then later defer a ReadExcl from a cache B on the same
1865        // bus as us. We'll assert cacheResponding in both cases, but
1866        // in the latter case cacheResponding will keep the
1867        // invalidation from reaching cache A. This special response
1868        // tells cache A that it gets the block to satisfy its read,
1869        // but must immediately invalidate it.
1870        pkt->cmd = MemCmd::ReadRespWithInvalidate;
1871    }
1872    // Here we consider forward_time, paying for just forward latency and
1873    // also charging the delay provided by the xbar.
1874    // forward_time is used as send_time in next allocateWriteBuffer().
1875    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1876    // Here we reset the timing of the packet.
1877    pkt->headerDelay = pkt->payloadDelay = 0;
1878    DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__,
1879            pkt->print(), forward_time);
1880    memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1881}
1882
1883uint32_t
1884Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1885                   bool is_deferred, bool pending_inval)
1886{
1887    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
1888    // deferred snoops can only happen in timing mode
1889    assert(!(is_deferred && !is_timing));
1890    // pending_inval only makes sense on deferred snoops
1891    assert(!(pending_inval && !is_deferred));
1892    assert(pkt->isRequest());
1893
1894    // the packet may get modified if we or a forwarded snooper
1895    // responds in atomic mode, so remember a few things about the
1896    // original packet up front
1897    bool invalidate = pkt->isInvalidate();
1898    bool M5_VAR_USED needs_writable = pkt->needsWritable();
1899
1900    // at the moment we could get an uncacheable write which does not
1901    // have the invalidate flag, and we need a suitable way of dealing
1902    // with this case
1903    panic_if(invalidate && pkt->req->isUncacheable(),
1904             "%s got an invalidating uncacheable snoop request %s",
1905             name(), pkt->print());
1906
1907    uint32_t snoop_delay = 0;
1908
1909    if (forwardSnoops) {
1910        // first propagate snoop upward to see if anyone above us wants to
1911        // handle it.  save & restore packet src since it will get
1912        // rewritten to be relative to cpu-side bus (if any)
1913        bool alreadyResponded = pkt->cacheResponding();
1914        if (is_timing) {
1915            // copy the packet so that we can clear any flags before
1916            // forwarding it upwards, we also allocate data (passing
1917            // the pointer along in case of static data), in case
1918            // there is a snoop hit in upper levels
1919            Packet snoopPkt(pkt, true, true);
1920            snoopPkt.setExpressSnoop();
1921            // the snoop packet does not need to wait any additional
1922            // time
1923            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1924            cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1925
1926            // add the header delay (including crossbar and snoop
1927            // delays) of the upward snoop to the snoop delay for this
1928            // cache
1929            snoop_delay += snoopPkt.headerDelay;
1930
1931            if (snoopPkt.cacheResponding()) {
1932                // cache-to-cache response from some upper cache
1933                assert(!alreadyResponded);
1934                pkt->setCacheResponding();
1935            }
1936            // upstream cache has the block, or has an outstanding
1937            // MSHR, pass the flag on
1938            if (snoopPkt.hasSharers()) {
1939                pkt->setHasSharers();
1940            }
1941            // If this request is a prefetch or clean evict and an upper level
1942            // signals block present, make sure to propagate the block
1943            // presence to the requester.
1944            if (snoopPkt.isBlockCached()) {
1945                pkt->setBlockCached();
1946            }
1947        } else {
1948            cpuSidePort->sendAtomicSnoop(pkt);
1949            if (!alreadyResponded && pkt->cacheResponding()) {
1950                // cache-to-cache response from some upper cache:
1951                // forward response to original requester
1952                assert(pkt->isResponse());
1953            }
1954        }
1955    }
1956
1957    if (!blk || !blk->isValid()) {
1958        DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__,
1959                pkt->print());
1960        if (is_deferred) {
1961            // we no longer have the block, and will not respond, but a
1962            // packet was allocated in MSHR::handleSnoop and we have
1963            // to delete it
1964            assert(pkt->needsResponse());
1965
1966            // we have passed the block to a cache upstream, that
1967            // cache should be responding
1968            assert(pkt->cacheResponding());
1969
1970            delete pkt;
1971        }
1972        return snoop_delay;
1973    } else {
1974        DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__,
1975                pkt->print(), blk->print());
1976    }
1977
1978    chatty_assert(!(isReadOnly && blk->isDirty()),
1979                  "Should never have a dirty block in a read-only cache %s\n",
1980                  name());
1981
1982    // We may end up modifying both the block state and the packet (if
1983    // we respond in atomic mode), so just figure out what to do now
1984    // and then do it later. We respond to all snoops that need
1985    // responses provided we have the block in dirty state. The
1986    // invalidation itself is taken care of below.
1987    bool respond = blk->isDirty() && pkt->needsResponse();
1988    bool have_writable = blk->isWritable();
1989
1990    // Invalidate any prefetch's from below that would strip write permissions
1991    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
1992    // above and in it's own cache, a new MemCmd::ReadReq is created that
1993    // downstream caches observe.
1994    if (pkt->mustCheckAbove()) {
1995        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
1996                "from lower cache\n", pkt->getAddr(), pkt->print());
1997        pkt->setBlockCached();
1998        return snoop_delay;
1999    }
2000
2001    if (pkt->isRead() && !invalidate) {
2002        // reading without requiring the line in a writable state
2003        assert(!needs_writable);
2004        pkt->setHasSharers();
2005
2006        // if the requesting packet is uncacheable, retain the line in
2007        // the current state, otherwhise unset the writable flag,
2008        // which means we go from Modified to Owned (and will respond
2009        // below), remain in Owned (and will respond below), from
2010        // Exclusive to Shared, or remain in Shared
2011        if (!pkt->req->isUncacheable())
2012            blk->status &= ~BlkWritable;
2013    }
2014
2015    if (respond) {
2016        // prevent anyone else from responding, cache as well as
2017        // memory, and also prevent any memory from even seeing the
2018        // request
2019        pkt->setCacheResponding();
2020        if (have_writable) {
2021            // inform the cache hierarchy that this cache had the line
2022            // in the Modified state so that we avoid unnecessary
2023            // invalidations (see Packet::setResponderHadWritable)
2024            pkt->setResponderHadWritable();
2025
2026            // in the case of an uncacheable request there is no point
2027            // in setting the responderHadWritable flag, but since the
2028            // recipient does not care there is no harm in doing so
2029        } else {
2030            // if the packet has needsWritable set we invalidate our
2031            // copy below and all other copies will be invalidates
2032            // through express snoops, and if needsWritable is not set
2033            // we already called setHasSharers above
2034        }
2035
2036        // if we are returning a writable and dirty (Modified) line,
2037        // we should be invalidating the line
2038        panic_if(!invalidate && !pkt->hasSharers(),
2039                 "%s is passing a Modified line through %s, "
2040                 "but keeping the block", name(), pkt->print());
2041
2042        if (is_timing) {
2043            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2044        } else {
2045            pkt->makeAtomicResponse();
2046            // packets such as upgrades do not actually have any data
2047            // payload
2048            if (pkt->hasData())
2049                pkt->setDataFromBlock(blk->data, blkSize);
2050        }
2051    }
2052
2053    if (!respond && is_deferred) {
2054        assert(pkt->needsResponse());
2055
2056        // if we copied the deferred packet with the intention to
2057        // respond, but are not responding, then a cache above us must
2058        // be, and we can use this as the indication of whether this
2059        // is a packet where we created a copy of the request or not
2060        if (!pkt->cacheResponding()) {
2061            delete pkt->req;
2062        }
2063
2064        delete pkt;
2065    }
2066
2067    // Do this last in case it deallocates block data or something
2068    // like that
2069    if (invalidate) {
2070        invalidateBlock(blk);
2071    }
2072
2073    DPRINTF(Cache, "new state is %s\n", blk->print());
2074
2075    return snoop_delay;
2076}
2077
2078
2079void
2080Cache::recvTimingSnoopReq(PacketPtr pkt)
2081{
2082    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
2083
2084    // Snoops shouldn't happen when bypassing caches
2085    assert(!system->bypassCaches());
2086
2087    // no need to snoop requests that are not in range
2088    if (!inRange(pkt->getAddr())) {
2089        return;
2090    }
2091
2092    bool is_secure = pkt->isSecure();
2093    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2094
2095    Addr blk_addr = pkt->getBlockAddr(blkSize);
2096    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2097
2098    // Update the latency cost of the snoop so that the crossbar can
2099    // account for it. Do not overwrite what other neighbouring caches
2100    // have already done, rather take the maximum. The update is
2101    // tentative, for cases where we return before an upward snoop
2102    // happens below.
2103    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2104                                         lookupLatency * clockPeriod());
2105
2106    // Inform request(Prefetch, CleanEvict or Writeback) from below of
2107    // MSHR hit, set setBlockCached.
2108    if (mshr && pkt->mustCheckAbove()) {
2109        DPRINTF(Cache, "Setting block cached for %s from lower cache on "
2110                "mshr hit\n", pkt->print());
2111        pkt->setBlockCached();
2112        return;
2113    }
2114
2115    // Let the MSHR itself track the snoop and decide whether we want
2116    // to go ahead and do the regular cache snoop
2117    if (mshr && mshr->handleSnoop(pkt, order++)) {
2118        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2119                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2120                mshr->print());
2121
2122        if (mshr->getNumTargets() > numTarget)
2123            warn("allocating bonus target for snoop"); //handle later
2124        return;
2125    }
2126
2127    //We also need to check the writeback buffers and handle those
2128    WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
2129    if (wb_entry) {
2130        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2131                pkt->getAddr(), is_secure ? "s" : "ns");
2132        // Expect to see only Writebacks and/or CleanEvicts here, both of
2133        // which should not be generated for uncacheable data.
2134        assert(!wb_entry->isUncacheable());
2135        // There should only be a single request responsible for generating
2136        // Writebacks/CleanEvicts.
2137        assert(wb_entry->getNumTargets() == 1);
2138        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2139        assert(wb_pkt->isEviction());
2140
2141        if (pkt->isEviction()) {
2142            // if the block is found in the write queue, set the BLOCK_CACHED
2143            // flag for Writeback/CleanEvict snoop. On return the snoop will
2144            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2145            // any CleanEvicts from travelling down the memory hierarchy.
2146            pkt->setBlockCached();
2147            DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue "
2148                    "hit\n", __func__, pkt->print());
2149            return;
2150        }
2151
2152        // conceptually writebacks are no different to other blocks in
2153        // this cache, so the behaviour is modelled after handleSnoop,
2154        // the difference being that instead of querying the block
2155        // state to determine if it is dirty and writable, we use the
2156        // command and fields of the writeback packet
2157        bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
2158            pkt->needsResponse();
2159        bool have_writable = !wb_pkt->hasSharers();
2160        bool invalidate = pkt->isInvalidate();
2161
2162        if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
2163            assert(!pkt->needsWritable());
2164            pkt->setHasSharers();
2165            wb_pkt->setHasSharers();
2166        }
2167
2168        if (respond) {
2169            pkt->setCacheResponding();
2170
2171            if (have_writable) {
2172                pkt->setResponderHadWritable();
2173            }
2174
2175            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2176                                   false, false);
2177        }
2178
2179        if (invalidate) {
2180            // Invalidation trumps our writeback... discard here
2181            // Note: markInService will remove entry from writeback buffer.
2182            markInService(wb_entry);
2183            delete wb_pkt;
2184        }
2185    }
2186
2187    // If this was a shared writeback, there may still be
2188    // other shared copies above that require invalidation.
2189    // We could be more selective and return here if the
2190    // request is non-exclusive or if the writeback is
2191    // exclusive.
2192    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2193
2194    // Override what we did when we first saw the snoop, as we now
2195    // also have the cost of the upwards snoops to account for
2196    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2197                                         lookupLatency * clockPeriod());
2198}
2199
2200bool
2201Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2202{
2203    // Express snoop responses from master to slave, e.g., from L1 to L2
2204    cache->recvTimingSnoopResp(pkt);
2205    return true;
2206}
2207
2208Tick
2209Cache::recvAtomicSnoop(PacketPtr pkt)
2210{
2211    // Snoops shouldn't happen when bypassing caches
2212    assert(!system->bypassCaches());
2213
2214    // no need to snoop requests that are not in range.
2215    if (!inRange(pkt->getAddr())) {
2216        return 0;
2217    }
2218
2219    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2220    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2221    return snoop_delay + lookupLatency * clockPeriod();
2222}
2223
2224
2225QueueEntry*
2226Cache::getNextQueueEntry()
2227{
2228    // Check both MSHR queue and write buffer for potential requests,
2229    // note that null does not mean there is no request, it could
2230    // simply be that it is not ready
2231    MSHR *miss_mshr  = mshrQueue.getNext();
2232    WriteQueueEntry *wq_entry = writeBuffer.getNext();
2233
2234    // If we got a write buffer request ready, first priority is a
2235    // full write buffer, otherwise we favour the miss requests
2236    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
2237        // need to search MSHR queue for conflicting earlier miss.
2238        MSHR *conflict_mshr =
2239            mshrQueue.findPending(wq_entry->blkAddr,
2240                                  wq_entry->isSecure);
2241
2242        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
2243            // Service misses in order until conflict is cleared.
2244            return conflict_mshr;
2245
2246            // @todo Note that we ignore the ready time of the conflict here
2247        }
2248
2249        // No conflicts; issue write
2250        return wq_entry;
2251    } else if (miss_mshr) {
2252        // need to check for conflicting earlier writeback
2253        WriteQueueEntry *conflict_mshr =
2254            writeBuffer.findPending(miss_mshr->blkAddr,
2255                                    miss_mshr->isSecure);
2256        if (conflict_mshr) {
2257            // not sure why we don't check order here... it was in the
2258            // original code but commented out.
2259
2260            // The only way this happens is if we are
2261            // doing a write and we didn't have permissions
2262            // then subsequently saw a writeback (owned got evicted)
2263            // We need to make sure to perform the writeback first
2264            // To preserve the dirty data, then we can issue the write
2265
2266            // should we return wq_entry here instead?  I.e. do we
2267            // have to flush writes in order?  I don't think so... not
2268            // for Alpha anyway.  Maybe for x86?
2269            return conflict_mshr;
2270
2271            // @todo Note that we ignore the ready time of the conflict here
2272        }
2273
2274        // No conflicts; issue read
2275        return miss_mshr;
2276    }
2277
2278    // fall through... no pending requests.  Try a prefetch.
2279    assert(!miss_mshr && !wq_entry);
2280    if (prefetcher && mshrQueue.canPrefetch()) {
2281        // If we have a miss queue slot, we can try a prefetch
2282        PacketPtr pkt = prefetcher->getPacket();
2283        if (pkt) {
2284            Addr pf_addr = pkt->getBlockAddr(blkSize);
2285            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2286                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2287                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2288                // Update statistic on number of prefetches issued
2289                // (hwpf_mshr_misses)
2290                assert(pkt->req->masterId() < system->maxMasters());
2291                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2292
2293                // allocate an MSHR and return it, note
2294                // that we send the packet straight away, so do not
2295                // schedule the send
2296                return allocateMissBuffer(pkt, curTick(), false);
2297            } else {
2298                // free the request and packet
2299                delete pkt->req;
2300                delete pkt;
2301            }
2302        }
2303    }
2304
2305    return nullptr;
2306}
2307
2308bool
2309Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2310{
2311    if (!forwardSnoops)
2312        return false;
2313    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2314    // Writeback snoops into upper level caches to check for copies of the
2315    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2316    // packet, the cache can inform the crossbar below of presence or absence
2317    // of the block.
2318    if (is_timing) {
2319        Packet snoop_pkt(pkt, true, false);
2320        snoop_pkt.setExpressSnoop();
2321        // Assert that packet is either Writeback or CleanEvict and not a
2322        // prefetch request because prefetch requests need an MSHR and may
2323        // generate a snoop response.
2324        assert(pkt->isEviction());
2325        snoop_pkt.senderState = nullptr;
2326        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2327        // Writeback/CleanEvict snoops do not generate a snoop response.
2328        assert(!(snoop_pkt.cacheResponding()));
2329        return snoop_pkt.isBlockCached();
2330    } else {
2331        cpuSidePort->sendAtomicSnoop(pkt);
2332        return pkt->isBlockCached();
2333    }
2334}
2335
2336Tick
2337Cache::nextQueueReadyTime() const
2338{
2339    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
2340                              writeBuffer.nextReadyTime());
2341
2342    // Don't signal prefetch ready time if no MSHRs available
2343    // Will signal once enoguh MSHRs are deallocated
2344    if (prefetcher && mshrQueue.canPrefetch()) {
2345        nextReady = std::min(nextReady,
2346                             prefetcher->nextPrefetchReadyTime());
2347    }
2348
2349    return nextReady;
2350}
2351
2352bool
2353Cache::sendMSHRQueuePacket(MSHR* mshr)
2354{
2355    assert(mshr);
2356
2357    // use request from 1st target
2358    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2359
2360    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
2361
2362    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2363
2364    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2365        // we should never have hardware prefetches to allocated
2366        // blocks
2367        assert(blk == nullptr);
2368
2369        // We need to check the caches above us to verify that
2370        // they don't have a copy of this block in the dirty state
2371        // at the moment. Without this check we could get a stale
2372        // copy from memory that might get used in place of the
2373        // dirty one.
2374        Packet snoop_pkt(tgt_pkt, true, false);
2375        snoop_pkt.setExpressSnoop();
2376        // We are sending this packet upwards, but if it hits we will
2377        // get a snoop response that we end up treating just like a
2378        // normal response, hence it needs the MSHR as its sender
2379        // state
2380        snoop_pkt.senderState = mshr;
2381        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2382
2383        // Check to see if the prefetch was squashed by an upper cache (to
2384        // prevent us from grabbing the line) or if a Check to see if a
2385        // writeback arrived between the time the prefetch was placed in
2386        // the MSHRs and when it was selected to be sent or if the
2387        // prefetch was squashed by an upper cache.
2388
2389        // It is important to check cacheResponding before
2390        // prefetchSquashed. If another cache has committed to
2391        // responding, it will be sending a dirty response which will
2392        // arrive at the MSHR allocated for this request. Checking the
2393        // prefetchSquash first may result in the MSHR being
2394        // prematurely deallocated.
2395        if (snoop_pkt.cacheResponding()) {
2396            auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2397            assert(r.second);
2398
2399            // if we are getting a snoop response with no sharers it
2400            // will be allocated as Modified
2401            bool pending_modified_resp = !snoop_pkt.hasSharers();
2402            markInService(mshr, pending_modified_resp);
2403
2404            DPRINTF(Cache, "Upward snoop of prefetch for addr"
2405                    " %#x (%s) hit\n",
2406                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2407            return false;
2408        }
2409
2410        if (snoop_pkt.isBlockCached()) {
2411            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
2412                    "Deallocating mshr target %#x.\n",
2413                    mshr->blkAddr);
2414
2415            // Deallocate the mshr target
2416            if (mshrQueue.forceDeallocateTarget(mshr)) {
2417                // Clear block if this deallocation resulted freed an
2418                // mshr when all had previously been utilized
2419                clearBlocked(Blocked_NoMSHRs);
2420            }
2421            return false;
2422        }
2423    }
2424
2425    // either a prefetch that is not present upstream, or a normal
2426    // MSHR request, proceed to get the packet to send downstream
2427    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
2428
2429    mshr->isForward = (pkt == nullptr);
2430
2431    if (mshr->isForward) {
2432        // not a cache block request, but a response is expected
2433        // make copy of current packet to forward, keep current
2434        // copy for response handling
2435        pkt = new Packet(tgt_pkt, false, true);
2436        assert(!pkt->isWrite());
2437    }
2438
2439    // play it safe and append (rather than set) the sender state,
2440    // as forwarded packets may already have existing state
2441    pkt->pushSenderState(mshr);
2442
2443    if (!memSidePort->sendTimingReq(pkt)) {
2444        // we are awaiting a retry, but we
2445        // delete the packet and will be creating a new packet
2446        // when we get the opportunity
2447        delete pkt;
2448
2449        // note that we have now masked any requestBus and
2450        // schedSendEvent (we will wait for a retry before
2451        // doing anything), and this is so even if we do not
2452        // care about this packet and might override it before
2453        // it gets retried
2454        return true;
2455    } else {
2456        // As part of the call to sendTimingReq the packet is
2457        // forwarded to all neighbouring caches (and any caches
2458        // above them) as a snoop. Thus at this point we know if
2459        // any of the neighbouring caches are responding, and if
2460        // so, we know it is dirty, and we can determine if it is
2461        // being passed as Modified, making our MSHR the ordering
2462        // point
2463        bool pending_modified_resp = !pkt->hasSharers() &&
2464            pkt->cacheResponding();
2465        markInService(mshr, pending_modified_resp);
2466        return false;
2467    }
2468}
2469
2470bool
2471Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
2472{
2473    assert(wq_entry);
2474
2475    // always a single target for write queue entries
2476    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
2477
2478    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
2479
2480    // forward as is, both for evictions and uncacheable writes
2481    if (!memSidePort->sendTimingReq(tgt_pkt)) {
2482        // note that we have now masked any requestBus and
2483        // schedSendEvent (we will wait for a retry before
2484        // doing anything), and this is so even if we do not
2485        // care about this packet and might override it before
2486        // it gets retried
2487        return true;
2488    } else {
2489        markInService(wq_entry);
2490        return false;
2491    }
2492}
2493
2494void
2495Cache::serialize(CheckpointOut &cp) const
2496{
2497    bool dirty(isDirty());
2498
2499    if (dirty) {
2500        warn("*** The cache still contains dirty data. ***\n");
2501        warn("    Make sure to drain the system using the correct flags.\n");
2502        warn("    This checkpoint will not restore correctly and dirty data "
2503             "    in the cache will be lost!\n");
2504    }
2505
2506    // Since we don't checkpoint the data in the cache, any dirty data
2507    // will be lost when restoring from a checkpoint of a system that
2508    // wasn't drained properly. Flag the checkpoint as invalid if the
2509    // cache contains dirty data.
2510    bool bad_checkpoint(dirty);
2511    SERIALIZE_SCALAR(bad_checkpoint);
2512}
2513
2514void
2515Cache::unserialize(CheckpointIn &cp)
2516{
2517    bool bad_checkpoint;
2518    UNSERIALIZE_SCALAR(bad_checkpoint);
2519    if (bad_checkpoint) {
2520        fatal("Restoring from checkpoints with dirty caches is not supported "
2521              "in the classic memory system. Please remove any caches or "
2522              " drain them properly before taking checkpoints.\n");
2523    }
2524}
2525
2526///////////////
2527//
2528// CpuSidePort
2529//
2530///////////////
2531
2532AddrRangeList
2533Cache::CpuSidePort::getAddrRanges() const
2534{
2535    return cache->getAddrRanges();
2536}
2537
2538bool
2539Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2540{
2541    assert(!cache->system->bypassCaches());
2542
2543    bool success = false;
2544
2545    // always let express snoop packets through if even if blocked
2546    if (pkt->isExpressSnoop()) {
2547        // do not change the current retry state
2548        bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2549        assert(bypass_success);
2550        return true;
2551    } else if (blocked || mustSendRetry) {
2552        // either already committed to send a retry, or blocked
2553        success = false;
2554    } else {
2555        // pass it on to the cache, and let the cache decide if we
2556        // have to retry or not
2557        success = cache->recvTimingReq(pkt);
2558    }
2559
2560    // remember if we have to retry
2561    mustSendRetry = !success;
2562    return success;
2563}
2564
2565Tick
2566Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2567{
2568    return cache->recvAtomic(pkt);
2569}
2570
2571void
2572Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2573{
2574    // functional request
2575    cache->functionalAccess(pkt, true);
2576}
2577
2578Cache::
2579CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2580                         const std::string &_label)
2581    : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2582{
2583}
2584
2585Cache*
2586CacheParams::create()
2587{
2588    assert(tags);
2589
2590    return new Cache(this);
2591}
2592///////////////
2593//
2594// MemSidePort
2595//
2596///////////////
2597
2598bool
2599Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2600{
2601    cache->recvTimingResp(pkt);
2602    return true;
2603}
2604
2605// Express snooping requests to memside port
2606void
2607Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2608{
2609    // handle snooping requests
2610    cache->recvTimingSnoopReq(pkt);
2611}
2612
2613Tick
2614Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2615{
2616    return cache->recvAtomicSnoop(pkt);
2617}
2618
2619void
2620Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2621{
2622    // functional snoop (note that in contrast to atomic we don't have
2623    // a specific functionalSnoop method, as they have the same
2624    // behaviour regardless)
2625    cache->functionalAccess(pkt, false);
2626}
2627
2628void
2629Cache::CacheReqPacketQueue::sendDeferredPacket()
2630{
2631    // sanity check
2632    assert(!waitingOnRetry);
2633
2634    // there should never be any deferred request packets in the
2635    // queue, instead we resly on the cache to provide the packets
2636    // from the MSHR queue or write queue
2637    assert(deferredPacketReadyTime() == MaxTick);
2638
2639    // check for request packets (requests & writebacks)
2640    QueueEntry* entry = cache.getNextQueueEntry();
2641
2642    if (!entry) {
2643        // can happen if e.g. we attempt a writeback and fail, but
2644        // before the retry, the writeback is eliminated because
2645        // we snoop another cache's ReadEx.
2646    } else {
2647        // let our snoop responses go first if there are responses to
2648        // the same addresses
2649        if (checkConflictingSnoop(entry->blkAddr)) {
2650            return;
2651        }
2652        waitingOnRetry = entry->sendPacket(cache);
2653    }
2654
2655    // if we succeeded and are not waiting for a retry, schedule the
2656    // next send considering when the next queue is ready, note that
2657    // snoop responses have their own packet queue and thus schedule
2658    // their own events
2659    if (!waitingOnRetry) {
2660        schedSendEvent(cache.nextQueueReadyTime());
2661    }
2662}
2663
2664Cache::
2665MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2666                         const std::string &_label)
2667    : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2668      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2669      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2670{
2671}
2672