cache.cc revision 11892
1/* 2 * Copyright (c) 2010-2016 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2002-2005 The Regents of The University of Michigan 15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc. 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Erik Hallnor 42 * Dave Greene 43 * Nathan Binkert 44 * Steve Reinhardt 45 * Ron Dreslinski 46 * Andreas Sandberg 47 */ 48 49/** 50 * @file 51 * Cache definitions. 52 */ 53 54#include "mem/cache/cache.hh" 55 56#include "base/misc.hh" 57#include "base/types.hh" 58#include "debug/Cache.hh" 59#include "debug/CachePort.hh" 60#include "debug/CacheTags.hh" 61#include "debug/CacheVerbose.hh" 62#include "mem/cache/blk.hh" 63#include "mem/cache/mshr.hh" 64#include "mem/cache/prefetch/base.hh" 65#include "sim/sim_exit.hh" 66 67Cache::Cache(const CacheParams *p) 68 : BaseCache(p, p->system->cacheLineSize()), 69 tags(p->tags), 70 prefetcher(p->prefetcher), 71 doFastWrites(true), 72 prefetchOnAccess(p->prefetch_on_access), 73 clusivity(p->clusivity), 74 writebackClean(p->writeback_clean), 75 tempBlockWriteback(nullptr), 76 writebackTempBlockAtomicEvent(this, false, 77 EventBase::Delayed_Writeback_Pri) 78{ 79 tempBlock = new CacheBlk(); 80 tempBlock->data = new uint8_t[blkSize]; 81 82 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this, 83 "CpuSidePort"); 84 memSidePort = new MemSidePort(p->name + ".mem_side", this, 85 "MemSidePort"); 86 87 tags->setCache(this); 88 if (prefetcher) 89 prefetcher->setCache(this); 90} 91 92Cache::~Cache() 93{ 94 delete [] tempBlock->data; 95 delete tempBlock; 96 97 delete cpuSidePort; 98 delete memSidePort; 99} 100 101void 102Cache::regStats() 103{ 104 BaseCache::regStats(); 105} 106 107void 108Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) 109{ 110 assert(pkt->isRequest()); 111 112 uint64_t overwrite_val; 113 bool overwrite_mem; 114 uint64_t condition_val64; 115 uint32_t condition_val32; 116 117 int offset = tags->extractBlkOffset(pkt->getAddr()); 118 uint8_t *blk_data = blk->data + offset; 119 120 assert(sizeof(uint64_t) >= pkt->getSize()); 121 122 overwrite_mem = true; 123 // keep a copy of our possible write value, and copy what is at the 124 // memory address into the packet 125 pkt->writeData((uint8_t *)&overwrite_val); 126 pkt->setData(blk_data); 127 128 if (pkt->req->isCondSwap()) { 129 if (pkt->getSize() == sizeof(uint64_t)) { 130 condition_val64 = pkt->req->getExtraData(); 131 overwrite_mem = !std::memcmp(&condition_val64, blk_data, 132 sizeof(uint64_t)); 133 } else if (pkt->getSize() == sizeof(uint32_t)) { 134 condition_val32 = (uint32_t)pkt->req->getExtraData(); 135 overwrite_mem = !std::memcmp(&condition_val32, blk_data, 136 sizeof(uint32_t)); 137 } else 138 panic("Invalid size for conditional read/write\n"); 139 } 140 141 if (overwrite_mem) { 142 std::memcpy(blk_data, &overwrite_val, pkt->getSize()); 143 blk->status |= BlkDirty; 144 } 145} 146 147 148void 149Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, 150 bool deferred_response, bool pending_downgrade) 151{ 152 assert(pkt->isRequest()); 153 154 assert(blk && blk->isValid()); 155 // Occasionally this is not true... if we are a lower-level cache 156 // satisfying a string of Read and ReadEx requests from 157 // upper-level caches, a Read will mark the block as shared but we 158 // can satisfy a following ReadEx anyway since we can rely on the 159 // Read requester(s) to have buffered the ReadEx snoop and to 160 // invalidate their blocks after receiving them. 161 // assert(!pkt->needsWritable() || blk->isWritable()); 162 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); 163 164 // Check RMW operations first since both isRead() and 165 // isWrite() will be true for them 166 if (pkt->cmd == MemCmd::SwapReq) { 167 cmpAndSwap(blk, pkt); 168 } else if (pkt->isWrite()) { 169 // we have the block in a writable state and can go ahead, 170 // note that the line may be also be considered writable in 171 // downstream caches along the path to memory, but always 172 // Exclusive, and never Modified 173 assert(blk->isWritable()); 174 // Write or WriteLine at the first cache with block in writable state 175 if (blk->checkWrite(pkt)) { 176 pkt->writeDataToBlock(blk->data, blkSize); 177 } 178 // Always mark the line as dirty (and thus transition to the 179 // Modified state) even if we are a failed StoreCond so we 180 // supply data to any snoops that have appended themselves to 181 // this cache before knowing the store will fail. 182 blk->status |= BlkDirty; 183 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print()); 184 } else if (pkt->isRead()) { 185 if (pkt->isLLSC()) { 186 blk->trackLoadLocked(pkt); 187 } 188 189 // all read responses have a data payload 190 assert(pkt->hasRespData()); 191 pkt->setDataFromBlock(blk->data, blkSize); 192 193 // determine if this read is from a (coherent) cache or not 194 if (pkt->fromCache()) { 195 assert(pkt->getSize() == blkSize); 196 // special handling for coherent block requests from 197 // upper-level caches 198 if (pkt->needsWritable()) { 199 // sanity check 200 assert(pkt->cmd == MemCmd::ReadExReq || 201 pkt->cmd == MemCmd::SCUpgradeFailReq); 202 assert(!pkt->hasSharers()); 203 204 // if we have a dirty copy, make sure the recipient 205 // keeps it marked dirty (in the modified state) 206 if (blk->isDirty()) { 207 pkt->setCacheResponding(); 208 blk->status &= ~BlkDirty; 209 } 210 } else if (blk->isWritable() && !pending_downgrade && 211 !pkt->hasSharers() && 212 pkt->cmd != MemCmd::ReadCleanReq) { 213 // we can give the requester a writable copy on a read 214 // request if: 215 // - we have a writable copy at this level (& below) 216 // - we don't have a pending snoop from below 217 // signaling another read request 218 // - no other cache above has a copy (otherwise it 219 // would have set hasSharers flag when 220 // snooping the packet) 221 // - the read has explicitly asked for a clean 222 // copy of the line 223 if (blk->isDirty()) { 224 // special considerations if we're owner: 225 if (!deferred_response) { 226 // respond with the line in Modified state 227 // (cacheResponding set, hasSharers not set) 228 pkt->setCacheResponding(); 229 230 // if this cache is mostly inclusive, we 231 // keep the block in the Exclusive state, 232 // and pass it upwards as Modified 233 // (writable and dirty), hence we have 234 // multiple caches, all on the same path 235 // towards memory, all considering the 236 // same block writable, but only one 237 // considering it Modified 238 239 // we get away with multiple caches (on 240 // the same path to memory) considering 241 // the block writeable as we always enter 242 // the cache hierarchy through a cache, 243 // and first snoop upwards in all other 244 // branches 245 blk->status &= ~BlkDirty; 246 } else { 247 // if we're responding after our own miss, 248 // there's a window where the recipient didn't 249 // know it was getting ownership and may not 250 // have responded to snoops correctly, so we 251 // have to respond with a shared line 252 pkt->setHasSharers(); 253 } 254 } 255 } else { 256 // otherwise only respond with a shared copy 257 pkt->setHasSharers(); 258 } 259 } 260 } else if (pkt->isUpgrade()) { 261 // sanity check 262 assert(!pkt->hasSharers()); 263 264 if (blk->isDirty()) { 265 // we were in the Owned state, and a cache above us that 266 // has the line in Shared state needs to be made aware 267 // that the data it already has is in fact dirty 268 pkt->setCacheResponding(); 269 blk->status &= ~BlkDirty; 270 } 271 } else { 272 assert(pkt->isInvalidate()); 273 invalidateBlock(blk); 274 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__, 275 pkt->print()); 276 } 277} 278 279///////////////////////////////////////////////////// 280// 281// Access path: requests coming in from the CPU side 282// 283///////////////////////////////////////////////////// 284 285bool 286Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 287 PacketList &writebacks) 288{ 289 // sanity check 290 assert(pkt->isRequest()); 291 292 chatty_assert(!(isReadOnly && pkt->isWrite()), 293 "Should never see a write in a read-only cache %s\n", 294 name()); 295 296 DPRINTF(CacheVerbose, "%s for %s\n", __func__, pkt->print()); 297 298 if (pkt->req->isUncacheable()) { 299 DPRINTF(Cache, "uncacheable: %s\n", pkt->print()); 300 301 // flush and invalidate any existing block 302 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure())); 303 if (old_blk && old_blk->isValid()) { 304 if (old_blk->isDirty() || writebackClean) 305 writebacks.push_back(writebackBlk(old_blk)); 306 else 307 writebacks.push_back(cleanEvictBlk(old_blk)); 308 invalidateBlock(old_blk); 309 } 310 311 blk = nullptr; 312 // lookupLatency is the latency in case the request is uncacheable. 313 lat = lookupLatency; 314 return false; 315 } 316 317 // Here lat is the value passed as parameter to accessBlock() function 318 // that can modify its value. 319 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat); 320 321 DPRINTF(Cache, "%s %s\n", pkt->print(), 322 blk ? "hit " + blk->print() : "miss"); 323 324 325 if (pkt->isEviction()) { 326 // We check for presence of block in above caches before issuing 327 // Writeback or CleanEvict to write buffer. Therefore the only 328 // possible cases can be of a CleanEvict packet coming from above 329 // encountering a Writeback generated in this cache peer cache and 330 // waiting in the write buffer. Cases of upper level peer caches 331 // generating CleanEvict and Writeback or simply CleanEvict and 332 // CleanEvict almost simultaneously will be caught by snoops sent out 333 // by crossbar. 334 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(), 335 pkt->isSecure()); 336 if (wb_entry) { 337 assert(wb_entry->getNumTargets() == 1); 338 PacketPtr wbPkt = wb_entry->getTarget()->pkt; 339 assert(wbPkt->isWriteback()); 340 341 if (pkt->isCleanEviction()) { 342 // The CleanEvict and WritebackClean snoops into other 343 // peer caches of the same level while traversing the 344 // crossbar. If a copy of the block is found, the 345 // packet is deleted in the crossbar. Hence, none of 346 // the other upper level caches connected to this 347 // cache have the block, so we can clear the 348 // BLOCK_CACHED flag in the Writeback if set and 349 // discard the CleanEvict by returning true. 350 wbPkt->clearBlockCached(); 351 return true; 352 } else { 353 assert(pkt->cmd == MemCmd::WritebackDirty); 354 // Dirty writeback from above trumps our clean 355 // writeback... discard here 356 // Note: markInService will remove entry from writeback buffer. 357 markInService(wb_entry); 358 delete wbPkt; 359 } 360 } 361 } 362 363 // Writeback handling is special case. We can write the block into 364 // the cache without having a writeable copy (or any copy at all). 365 if (pkt->isWriteback()) { 366 assert(blkSize == pkt->getSize()); 367 368 // we could get a clean writeback while we are having 369 // outstanding accesses to a block, do the simple thing for 370 // now and drop the clean writeback so that we do not upset 371 // any ordering/decisions about ownership already taken 372 if (pkt->cmd == MemCmd::WritebackClean && 373 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) { 374 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, " 375 "dropping\n", pkt->getAddr()); 376 return true; 377 } 378 379 if (blk == nullptr) { 380 // need to do a replacement 381 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks); 382 if (blk == nullptr) { 383 // no replaceable block available: give up, fwd to next level. 384 incMissCount(pkt); 385 return false; 386 } 387 tags->insertBlock(pkt, blk); 388 389 blk->status = (BlkValid | BlkReadable); 390 if (pkt->isSecure()) { 391 blk->status |= BlkSecure; 392 } 393 } 394 // only mark the block dirty if we got a writeback command, 395 // and leave it as is for a clean writeback 396 if (pkt->cmd == MemCmd::WritebackDirty) { 397 blk->status |= BlkDirty; 398 } 399 // if the packet does not have sharers, it is passing 400 // writable, and we got the writeback in Modified or Exclusive 401 // state, if not we are in the Owned or Shared state 402 if (!pkt->hasSharers()) { 403 blk->status |= BlkWritable; 404 } 405 // nothing else to do; writeback doesn't expect response 406 assert(!pkt->needsResponse()); 407 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize); 408 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 409 incHitCount(pkt); 410 return true; 411 } else if (pkt->cmd == MemCmd::CleanEvict) { 412 if (blk != nullptr) { 413 // Found the block in the tags, need to stop CleanEvict from 414 // propagating further down the hierarchy. Returning true will 415 // treat the CleanEvict like a satisfied write request and delete 416 // it. 417 return true; 418 } 419 // We didn't find the block here, propagate the CleanEvict further 420 // down the memory hierarchy. Returning false will treat the CleanEvict 421 // like a Writeback which could not find a replaceable block so has to 422 // go to next level. 423 return false; 424 } else if (blk && (pkt->needsWritable() ? blk->isWritable() : 425 blk->isReadable())) { 426 // OK to satisfy access 427 incHitCount(pkt); 428 satisfyRequest(pkt, blk); 429 maintainClusivity(pkt->fromCache(), blk); 430 431 return true; 432 } 433 434 // Can't satisfy access normally... either no block (blk == nullptr) 435 // or have block but need writable 436 437 incMissCount(pkt); 438 439 if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) { 440 // complete miss on store conditional... just give up now 441 pkt->req->setExtraData(0); 442 return true; 443 } 444 445 return false; 446} 447 448void 449Cache::maintainClusivity(bool from_cache, CacheBlk *blk) 450{ 451 if (from_cache && blk && blk->isValid() && !blk->isDirty() && 452 clusivity == Enums::mostly_excl) { 453 // if we have responded to a cache, and our block is still 454 // valid, but not dirty, and this cache is mostly exclusive 455 // with respect to the cache above, drop the block 456 invalidateBlock(blk); 457 } 458} 459 460void 461Cache::doWritebacks(PacketList& writebacks, Tick forward_time) 462{ 463 while (!writebacks.empty()) { 464 PacketPtr wbPkt = writebacks.front(); 465 // We use forwardLatency here because we are copying writebacks to 466 // write buffer. Call isCachedAbove for both Writebacks and 467 // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag 468 // in Writebacks and discard CleanEvicts. 469 if (isCachedAbove(wbPkt)) { 470 if (wbPkt->cmd == MemCmd::CleanEvict) { 471 // Delete CleanEvict because cached copies exist above. The 472 // packet destructor will delete the request object because 473 // this is a non-snoop request packet which does not require a 474 // response. 475 delete wbPkt; 476 } else if (wbPkt->cmd == MemCmd::WritebackClean) { 477 // clean writeback, do not send since the block is 478 // still cached above 479 assert(writebackClean); 480 delete wbPkt; 481 } else { 482 assert(wbPkt->cmd == MemCmd::WritebackDirty); 483 // Set BLOCK_CACHED flag in Writeback and send below, so that 484 // the Writeback does not reset the bit corresponding to this 485 // address in the snoop filter below. 486 wbPkt->setBlockCached(); 487 allocateWriteBuffer(wbPkt, forward_time); 488 } 489 } else { 490 // If the block is not cached above, send packet below. Both 491 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 492 // reset the bit corresponding to this address in the snoop filter 493 // below. 494 allocateWriteBuffer(wbPkt, forward_time); 495 } 496 writebacks.pop_front(); 497 } 498} 499 500void 501Cache::doWritebacksAtomic(PacketList& writebacks) 502{ 503 while (!writebacks.empty()) { 504 PacketPtr wbPkt = writebacks.front(); 505 // Call isCachedAbove for both Writebacks and CleanEvicts. If 506 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks 507 // and discard CleanEvicts. 508 if (isCachedAbove(wbPkt, false)) { 509 if (wbPkt->cmd == MemCmd::WritebackDirty) { 510 // Set BLOCK_CACHED flag in Writeback and send below, 511 // so that the Writeback does not reset the bit 512 // corresponding to this address in the snoop filter 513 // below. We can discard CleanEvicts because cached 514 // copies exist above. Atomic mode isCachedAbove 515 // modifies packet to set BLOCK_CACHED flag 516 memSidePort->sendAtomic(wbPkt); 517 } 518 } else { 519 // If the block is not cached above, send packet below. Both 520 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 521 // reset the bit corresponding to this address in the snoop filter 522 // below. 523 memSidePort->sendAtomic(wbPkt); 524 } 525 writebacks.pop_front(); 526 // In case of CleanEvicts, the packet destructor will delete the 527 // request object because this is a non-snoop request packet which 528 // does not require a response. 529 delete wbPkt; 530 } 531} 532 533 534void 535Cache::recvTimingSnoopResp(PacketPtr pkt) 536{ 537 DPRINTF(Cache, "%s for %s\n", __func__, pkt->print()); 538 539 assert(pkt->isResponse()); 540 assert(!system->bypassCaches()); 541 542 // determine if the response is from a snoop request we created 543 // (in which case it should be in the outstandingSnoop), or if we 544 // merely forwarded someone else's snoop request 545 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 546 outstandingSnoop.end(); 547 548 if (!forwardAsSnoop) { 549 // the packet came from this cache, so sink it here and do not 550 // forward it 551 assert(pkt->cmd == MemCmd::HardPFResp); 552 553 outstandingSnoop.erase(pkt->req); 554 555 DPRINTF(Cache, "Got prefetch response from above for addr " 556 "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 557 recvTimingResp(pkt); 558 return; 559 } 560 561 // forwardLatency is set here because there is a response from an 562 // upper level cache. 563 // To pay the delay that occurs if the packet comes from the bus, 564 // we charge also headerDelay. 565 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay; 566 // Reset the timing of the packet. 567 pkt->headerDelay = pkt->payloadDelay = 0; 568 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time); 569} 570 571void 572Cache::promoteWholeLineWrites(PacketPtr pkt) 573{ 574 // Cache line clearing instructions 575 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) && 576 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) { 577 pkt->cmd = MemCmd::WriteLineReq; 578 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n"); 579 } 580} 581 582bool 583Cache::recvTimingReq(PacketPtr pkt) 584{ 585 DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print()); 586 587 assert(pkt->isRequest()); 588 589 // Just forward the packet if caches are disabled. 590 if (system->bypassCaches()) { 591 // @todo This should really enqueue the packet rather 592 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt); 593 assert(success); 594 return true; 595 } 596 597 promoteWholeLineWrites(pkt); 598 599 if (pkt->cacheResponding()) { 600 // a cache above us (but not where the packet came from) is 601 // responding to the request, in other words it has the line 602 // in Modified or Owned state 603 DPRINTF(Cache, "Cache above responding to %s: not responding\n", 604 pkt->print()); 605 606 // if the packet needs the block to be writable, and the cache 607 // that has promised to respond (setting the cache responding 608 // flag) is not providing writable (it is in Owned rather than 609 // the Modified state), we know that there may be other Shared 610 // copies in the system; go out and invalidate them all 611 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 612 613 // an upstream cache that had the line in Owned state 614 // (dirty, but not writable), is responding and thus 615 // transferring the dirty line from one branch of the 616 // cache hierarchy to another 617 618 // send out an express snoop and invalidate all other 619 // copies (snooping a packet that needs writable is the 620 // same as an invalidation), thus turning the Owned line 621 // into a Modified line, note that we don't invalidate the 622 // block in the current cache or any other cache on the 623 // path to memory 624 625 // create a downstream express snoop with cleared packet 626 // flags, there is no need to allocate any data as the 627 // packet is merely used to co-ordinate state transitions 628 Packet *snoop_pkt = new Packet(pkt, true, false); 629 630 // also reset the bus time that the original packet has 631 // not yet paid for 632 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0; 633 634 // make this an instantaneous express snoop, and let the 635 // other caches in the system know that the another cache 636 // is responding, because we have found the authorative 637 // copy (Modified or Owned) that will supply the right 638 // data 639 snoop_pkt->setExpressSnoop(); 640 snoop_pkt->setCacheResponding(); 641 642 // this express snoop travels towards the memory, and at 643 // every crossbar it is snooped upwards thus reaching 644 // every cache in the system 645 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt); 646 // express snoops always succeed 647 assert(success); 648 649 // main memory will delete the snoop packet 650 651 // queue for deletion, as opposed to immediate deletion, as 652 // the sending cache is still relying on the packet 653 pendingDelete.reset(pkt); 654 655 // no need to take any further action in this particular cache 656 // as an upstram cache has already committed to responding, 657 // and we have already sent out any express snoops in the 658 // section above to ensure all other copies in the system are 659 // invalidated 660 return true; 661 } 662 663 // anything that is merely forwarded pays for the forward latency and 664 // the delay provided by the crossbar 665 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 666 667 // We use lookupLatency here because it is used to specify the latency 668 // to access. 669 Cycles lat = lookupLatency; 670 CacheBlk *blk = nullptr; 671 bool satisfied = false; 672 { 673 PacketList writebacks; 674 // Note that lat is passed by reference here. The function 675 // access() calls accessBlock() which can modify lat value. 676 satisfied = access(pkt, blk, lat, writebacks); 677 678 // copy writebacks to write buffer here to ensure they logically 679 // proceed anything happening below 680 doWritebacks(writebacks, forward_time); 681 } 682 683 // Here we charge the headerDelay that takes into account the latencies 684 // of the bus, if the packet comes from it. 685 // The latency charged it is just lat that is the value of lookupLatency 686 // modified by access() function, or if not just lookupLatency. 687 // In case of a hit we are neglecting response latency. 688 // In case of a miss we are neglecting forward latency. 689 Tick request_time = clockEdge(lat) + pkt->headerDelay; 690 // Here we reset the timing of the packet. 691 pkt->headerDelay = pkt->payloadDelay = 0; 692 693 // track time of availability of next prefetch, if any 694 Tick next_pf_time = MaxTick; 695 696 bool needsResponse = pkt->needsResponse(); 697 698 if (satisfied) { 699 // should never be satisfying an uncacheable access as we 700 // flush and invalidate any existing block as part of the 701 // lookup 702 assert(!pkt->req->isUncacheable()); 703 704 // hit (for all other request types) 705 706 if (prefetcher && (prefetchOnAccess || 707 (blk && blk->wasPrefetched()))) { 708 if (blk) 709 blk->status &= ~BlkHWPrefetched; 710 711 // Don't notify on SWPrefetch 712 if (!pkt->cmd.isSWPrefetch()) 713 next_pf_time = prefetcher->notify(pkt); 714 } 715 716 if (needsResponse) { 717 pkt->makeTimingResponse(); 718 // @todo: Make someone pay for this 719 pkt->headerDelay = pkt->payloadDelay = 0; 720 721 // In this case we are considering request_time that takes 722 // into account the delay of the xbar, if any, and just 723 // lat, neglecting responseLatency, modelling hit latency 724 // just as lookupLatency or or the value of lat overriden 725 // by access(), that calls accessBlock() function. 726 cpuSidePort->schedTimingResp(pkt, request_time, true); 727 } else { 728 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__, 729 pkt->print()); 730 731 // queue the packet for deletion, as the sending cache is 732 // still relying on it; if the block is found in access(), 733 // CleanEvict and Writeback messages will be deleted 734 // here as well 735 pendingDelete.reset(pkt); 736 } 737 } else { 738 // miss 739 740 Addr blk_addr = pkt->getBlockAddr(blkSize); 741 742 // ignore any existing MSHR if we are dealing with an 743 // uncacheable request 744 MSHR *mshr = pkt->req->isUncacheable() ? nullptr : 745 mshrQueue.findMatch(blk_addr, pkt->isSecure()); 746 747 // Software prefetch handling: 748 // To keep the core from waiting on data it won't look at 749 // anyway, send back a response with dummy data. Miss handling 750 // will continue asynchronously. Unfortunately, the core will 751 // insist upon freeing original Packet/Request, so we have to 752 // create a new pair with a different lifecycle. Note that this 753 // processing happens before any MSHR munging on the behalf of 754 // this request because this new Request will be the one stored 755 // into the MSHRs, not the original. 756 if (pkt->cmd.isSWPrefetch()) { 757 assert(needsResponse); 758 assert(pkt->req->hasPaddr()); 759 assert(!pkt->req->isUncacheable()); 760 761 // There's no reason to add a prefetch as an additional target 762 // to an existing MSHR. If an outstanding request is already 763 // in progress, there is nothing for the prefetch to do. 764 // If this is the case, we don't even create a request at all. 765 PacketPtr pf = nullptr; 766 767 if (!mshr) { 768 // copy the request and create a new SoftPFReq packet 769 RequestPtr req = new Request(pkt->req->getPaddr(), 770 pkt->req->getSize(), 771 pkt->req->getFlags(), 772 pkt->req->masterId()); 773 pf = new Packet(req, pkt->cmd); 774 pf->allocate(); 775 assert(pf->getAddr() == pkt->getAddr()); 776 assert(pf->getSize() == pkt->getSize()); 777 } 778 779 pkt->makeTimingResponse(); 780 781 // request_time is used here, taking into account lat and the delay 782 // charged if the packet comes from the xbar. 783 cpuSidePort->schedTimingResp(pkt, request_time, true); 784 785 // If an outstanding request is in progress (we found an 786 // MSHR) this is set to null 787 pkt = pf; 788 } 789 790 if (mshr) { 791 /// MSHR hit 792 /// @note writebacks will be checked in getNextMSHR() 793 /// for any conflicting requests to the same block 794 795 //@todo remove hw_pf here 796 797 // Coalesce unless it was a software prefetch (see above). 798 if (pkt) { 799 assert(!pkt->isWriteback()); 800 // CleanEvicts corresponding to blocks which have 801 // outstanding requests in MSHRs are simply sunk here 802 if (pkt->cmd == MemCmd::CleanEvict) { 803 pendingDelete.reset(pkt); 804 } else { 805 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__, 806 pkt->print()); 807 808 assert(pkt->req->masterId() < system->maxMasters()); 809 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 810 // We use forward_time here because it is the same 811 // considering new targets. We have multiple 812 // requests for the same address here. It 813 // specifies the latency to allocate an internal 814 // buffer and to schedule an event to the queued 815 // port and also takes into account the additional 816 // delay of the xbar. 817 mshr->allocateTarget(pkt, forward_time, order++, 818 allocOnFill(pkt->cmd)); 819 if (mshr->getNumTargets() == numTarget) { 820 noTargetMSHR = mshr; 821 setBlocked(Blocked_NoTargets); 822 // need to be careful with this... if this mshr isn't 823 // ready yet (i.e. time > curTick()), we don't want to 824 // move it ahead of mshrs that are ready 825 // mshrQueue.moveToFront(mshr); 826 } 827 } 828 // We should call the prefetcher reguardless if the request is 829 // satisfied or not, reguardless if the request is in the MSHR 830 // or not. The request could be a ReadReq hit, but still not 831 // satisfied (potentially because of a prior write to the same 832 // cache line. So, even when not satisfied, tehre is an MSHR 833 // already allocated for this, we need to let the prefetcher 834 // know about the request 835 if (prefetcher) { 836 // Don't notify on SWPrefetch 837 if (!pkt->cmd.isSWPrefetch()) 838 next_pf_time = prefetcher->notify(pkt); 839 } 840 } 841 } else { 842 // no MSHR 843 assert(pkt->req->masterId() < system->maxMasters()); 844 if (pkt->req->isUncacheable()) { 845 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++; 846 } else { 847 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 848 } 849 850 if (pkt->isEviction() || 851 (pkt->req->isUncacheable() && pkt->isWrite())) { 852 // We use forward_time here because there is an 853 // uncached memory write, forwarded to WriteBuffer. 854 allocateWriteBuffer(pkt, forward_time); 855 } else { 856 if (blk && blk->isValid()) { 857 // should have flushed and have no valid block 858 assert(!pkt->req->isUncacheable()); 859 860 // If we have a write miss to a valid block, we 861 // need to mark the block non-readable. Otherwise 862 // if we allow reads while there's an outstanding 863 // write miss, the read could return stale data 864 // out of the cache block... a more aggressive 865 // system could detect the overlap (if any) and 866 // forward data out of the MSHRs, but we don't do 867 // that yet. Note that we do need to leave the 868 // block valid so that it stays in the cache, in 869 // case we get an upgrade response (and hence no 870 // new data) when the write miss completes. 871 // As long as CPUs do proper store/load forwarding 872 // internally, and have a sufficiently weak memory 873 // model, this is probably unnecessary, but at some 874 // point it must have seemed like we needed it... 875 assert(pkt->needsWritable()); 876 assert(!blk->isWritable()); 877 blk->status &= ~BlkReadable; 878 } 879 // Here we are using forward_time, modelling the latency of 880 // a miss (outbound) just as forwardLatency, neglecting the 881 // lookupLatency component. 882 allocateMissBuffer(pkt, forward_time); 883 } 884 885 if (prefetcher) { 886 // Don't notify on SWPrefetch 887 if (!pkt->cmd.isSWPrefetch()) 888 next_pf_time = prefetcher->notify(pkt); 889 } 890 } 891 } 892 893 if (next_pf_time != MaxTick) 894 schedMemSideSendEvent(next_pf_time); 895 896 return true; 897} 898 899PacketPtr 900Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk, 901 bool needsWritable) const 902{ 903 // should never see evictions here 904 assert(!cpu_pkt->isEviction()); 905 906 bool blkValid = blk && blk->isValid(); 907 908 if (cpu_pkt->req->isUncacheable() || 909 (!blkValid && cpu_pkt->isUpgrade()) || 910 cpu_pkt->cmd == MemCmd::InvalidateReq) { 911 // uncacheable requests and upgrades from upper-level caches 912 // that missed completely just go through as is 913 return nullptr; 914 } 915 916 assert(cpu_pkt->needsResponse()); 917 918 MemCmd cmd; 919 // @TODO make useUpgrades a parameter. 920 // Note that ownership protocols require upgrade, otherwise a 921 // write miss on a shared owned block will generate a ReadExcl, 922 // which will clobber the owned copy. 923 const bool useUpgrades = true; 924 if (cpu_pkt->cmd == MemCmd::WriteLineReq) { 925 assert(!blkValid || !blk->isWritable()); 926 // forward as invalidate to all other caches, this gives us 927 // the line in Exclusive state, and invalidates all other 928 // copies 929 cmd = MemCmd::InvalidateReq; 930 } else if (blkValid && useUpgrades) { 931 // only reason to be here is that blk is read only and we need 932 // it to be writable 933 assert(needsWritable); 934 assert(!blk->isWritable()); 935 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq; 936 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq || 937 cpu_pkt->cmd == MemCmd::StoreCondFailReq) { 938 // Even though this SC will fail, we still need to send out the 939 // request and get the data to supply it to other snoopers in the case 940 // where the determination the StoreCond fails is delayed due to 941 // all caches not being on the same local bus. 942 cmd = MemCmd::SCUpgradeFailReq; 943 } else { 944 // block is invalid 945 cmd = needsWritable ? MemCmd::ReadExReq : 946 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq); 947 } 948 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize); 949 950 // if there are upstream caches that have already marked the 951 // packet as having sharers (not passing writable), pass that info 952 // downstream 953 if (cpu_pkt->hasSharers() && !needsWritable) { 954 // note that cpu_pkt may have spent a considerable time in the 955 // MSHR queue and that the information could possibly be out 956 // of date, however, there is no harm in conservatively 957 // assuming the block has sharers 958 pkt->setHasSharers(); 959 DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n", 960 __func__, cpu_pkt->print(), pkt->print()); 961 } 962 963 // the packet should be block aligned 964 assert(pkt->getAddr() == pkt->getBlockAddr(blkSize)); 965 966 pkt->allocate(); 967 DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(), 968 cpu_pkt->print()); 969 return pkt; 970} 971 972 973Tick 974Cache::recvAtomic(PacketPtr pkt) 975{ 976 // We are in atomic mode so we pay just for lookupLatency here. 977 Cycles lat = lookupLatency; 978 979 // Forward the request if the system is in cache bypass mode. 980 if (system->bypassCaches()) 981 return ticksToCycles(memSidePort->sendAtomic(pkt)); 982 983 promoteWholeLineWrites(pkt); 984 985 // follow the same flow as in recvTimingReq, and check if a cache 986 // above us is responding 987 if (pkt->cacheResponding()) { 988 DPRINTF(Cache, "Cache above responding to %s: not responding\n", 989 pkt->print()); 990 991 // if a cache is responding, and it had the line in Owned 992 // rather than Modified state, we need to invalidate any 993 // copies that are not on the same path to memory 994 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 995 lat += ticksToCycles(memSidePort->sendAtomic(pkt)); 996 997 return lat * clockPeriod(); 998 } 999 1000 // should assert here that there are no outstanding MSHRs or 1001 // writebacks... that would mean that someone used an atomic 1002 // access in timing mode 1003 1004 CacheBlk *blk = nullptr; 1005 PacketList writebacks; 1006 bool satisfied = access(pkt, blk, lat, writebacks); 1007 1008 // handle writebacks resulting from the access here to ensure they 1009 // logically proceed anything happening below 1010 doWritebacksAtomic(writebacks); 1011 1012 if (!satisfied) { 1013 // MISS 1014 1015 // deal with the packets that go through the write path of 1016 // the cache, i.e. any evictions and uncacheable writes 1017 if (pkt->isEviction() || 1018 (pkt->req->isUncacheable() && pkt->isWrite())) { 1019 lat += ticksToCycles(memSidePort->sendAtomic(pkt)); 1020 return lat * clockPeriod(); 1021 } 1022 // only misses left 1023 1024 PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable()); 1025 1026 bool is_forward = (bus_pkt == nullptr); 1027 1028 if (is_forward) { 1029 // just forwarding the same request to the next level 1030 // no local cache operation involved 1031 bus_pkt = pkt; 1032 } 1033 1034 DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__, 1035 bus_pkt->print()); 1036 1037#if TRACING_ON 1038 CacheBlk::State old_state = blk ? blk->status : 0; 1039#endif 1040 1041 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt)); 1042 1043 bool is_invalidate = bus_pkt->isInvalidate(); 1044 1045 // We are now dealing with the response handling 1046 DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__, 1047 bus_pkt->print(), old_state); 1048 1049 // If packet was a forward, the response (if any) is already 1050 // in place in the bus_pkt == pkt structure, so we don't need 1051 // to do anything. Otherwise, use the separate bus_pkt to 1052 // generate response to pkt and then delete it. 1053 if (!is_forward) { 1054 if (pkt->needsResponse()) { 1055 assert(bus_pkt->isResponse()); 1056 if (bus_pkt->isError()) { 1057 pkt->makeAtomicResponse(); 1058 pkt->copyError(bus_pkt); 1059 } else if (pkt->cmd == MemCmd::WriteLineReq) { 1060 // note the use of pkt, not bus_pkt here. 1061 1062 // write-line request to the cache that promoted 1063 // the write to a whole line 1064 blk = handleFill(pkt, blk, writebacks, 1065 allocOnFill(pkt->cmd)); 1066 assert(blk != NULL); 1067 is_invalidate = false; 1068 satisfyRequest(pkt, blk); 1069 } else if (bus_pkt->isRead() || 1070 bus_pkt->cmd == MemCmd::UpgradeResp) { 1071 // we're updating cache state to allow us to 1072 // satisfy the upstream request from the cache 1073 blk = handleFill(bus_pkt, blk, writebacks, 1074 allocOnFill(pkt->cmd)); 1075 satisfyRequest(pkt, blk); 1076 maintainClusivity(pkt->fromCache(), blk); 1077 } else { 1078 // we're satisfying the upstream request without 1079 // modifying cache state, e.g., a write-through 1080 pkt->makeAtomicResponse(); 1081 } 1082 } 1083 delete bus_pkt; 1084 } 1085 1086 if (is_invalidate && blk && blk->isValid()) { 1087 invalidateBlock(blk); 1088 } 1089 } 1090 1091 // Note that we don't invoke the prefetcher at all in atomic mode. 1092 // It's not clear how to do it properly, particularly for 1093 // prefetchers that aggressively generate prefetch candidates and 1094 // rely on bandwidth contention to throttle them; these will tend 1095 // to pollute the cache in atomic mode since there is no bandwidth 1096 // contention. If we ever do want to enable prefetching in atomic 1097 // mode, though, this is the place to do it... see timingAccess() 1098 // for an example (though we'd want to issue the prefetch(es) 1099 // immediately rather than calling requestMemSideBus() as we do 1100 // there). 1101 1102 // do any writebacks resulting from the response handling 1103 doWritebacksAtomic(writebacks); 1104 1105 // if we used temp block, check to see if its valid and if so 1106 // clear it out, but only do so after the call to recvAtomic is 1107 // finished so that any downstream observers (such as a snoop 1108 // filter), first see the fill, and only then see the eviction 1109 if (blk == tempBlock && tempBlock->isValid()) { 1110 // the atomic CPU calls recvAtomic for fetch and load/store 1111 // sequentuially, and we may already have a tempBlock 1112 // writeback from the fetch that we have not yet sent 1113 if (tempBlockWriteback) { 1114 // if that is the case, write the prevoius one back, and 1115 // do not schedule any new event 1116 writebackTempBlockAtomic(); 1117 } else { 1118 // the writeback/clean eviction happens after the call to 1119 // recvAtomic has finished (but before any successive 1120 // calls), so that the response handling from the fill is 1121 // allowed to happen first 1122 schedule(writebackTempBlockAtomicEvent, curTick()); 1123 } 1124 1125 tempBlockWriteback = (blk->isDirty() || writebackClean) ? 1126 writebackBlk(blk) : cleanEvictBlk(blk); 1127 invalidateBlock(blk); 1128 } 1129 1130 if (pkt->needsResponse()) { 1131 pkt->makeAtomicResponse(); 1132 } 1133 1134 return lat * clockPeriod(); 1135} 1136 1137 1138void 1139Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide) 1140{ 1141 if (system->bypassCaches()) { 1142 // Packets from the memory side are snoop request and 1143 // shouldn't happen in bypass mode. 1144 assert(fromCpuSide); 1145 1146 // The cache should be flushed if we are in cache bypass mode, 1147 // so we don't need to check if we need to update anything. 1148 memSidePort->sendFunctional(pkt); 1149 return; 1150 } 1151 1152 Addr blk_addr = pkt->getBlockAddr(blkSize); 1153 bool is_secure = pkt->isSecure(); 1154 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 1155 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 1156 1157 pkt->pushLabel(name()); 1158 1159 CacheBlkPrintWrapper cbpw(blk); 1160 1161 // Note that just because an L2/L3 has valid data doesn't mean an 1162 // L1 doesn't have a more up-to-date modified copy that still 1163 // needs to be found. As a result we always update the request if 1164 // we have it, but only declare it satisfied if we are the owner. 1165 1166 // see if we have data at all (owned or otherwise) 1167 bool have_data = blk && blk->isValid() 1168 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize, 1169 blk->data); 1170 1171 // data we have is dirty if marked as such or if we have an 1172 // in-service MSHR that is pending a modified line 1173 bool have_dirty = 1174 have_data && (blk->isDirty() || 1175 (mshr && mshr->inService && mshr->isPendingModified())); 1176 1177 bool done = have_dirty 1178 || cpuSidePort->checkFunctional(pkt) 1179 || mshrQueue.checkFunctional(pkt, blk_addr) 1180 || writeBuffer.checkFunctional(pkt, blk_addr) 1181 || memSidePort->checkFunctional(pkt); 1182 1183 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(), 1184 (blk && blk->isValid()) ? "valid " : "", 1185 have_data ? "data " : "", done ? "done " : ""); 1186 1187 // We're leaving the cache, so pop cache->name() label 1188 pkt->popLabel(); 1189 1190 if (done) { 1191 pkt->makeResponse(); 1192 } else { 1193 // if it came as a request from the CPU side then make sure it 1194 // continues towards the memory side 1195 if (fromCpuSide) { 1196 memSidePort->sendFunctional(pkt); 1197 } else if (cpuSidePort->isSnooping()) { 1198 // if it came from the memory side, it must be a snoop request 1199 // and we should only forward it if we are forwarding snoops 1200 cpuSidePort->sendFunctionalSnoop(pkt); 1201 } 1202 } 1203} 1204 1205 1206///////////////////////////////////////////////////// 1207// 1208// Response handling: responses from the memory side 1209// 1210///////////////////////////////////////////////////// 1211 1212 1213void 1214Cache::handleUncacheableWriteResp(PacketPtr pkt) 1215{ 1216 Tick completion_time = clockEdge(responseLatency) + 1217 pkt->headerDelay + pkt->payloadDelay; 1218 1219 // Reset the bus additional time as it is now accounted for 1220 pkt->headerDelay = pkt->payloadDelay = 0; 1221 1222 cpuSidePort->schedTimingResp(pkt, completion_time, true); 1223} 1224 1225void 1226Cache::recvTimingResp(PacketPtr pkt) 1227{ 1228 assert(pkt->isResponse()); 1229 1230 // all header delay should be paid for by the crossbar, unless 1231 // this is a prefetch response from above 1232 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp, 1233 "%s saw a non-zero packet delay\n", name()); 1234 1235 bool is_error = pkt->isError(); 1236 1237 if (is_error) { 1238 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__, 1239 pkt->print()); 1240 } 1241 1242 DPRINTF(Cache, "%s: Handling response %s\n", __func__, 1243 pkt->print()); 1244 1245 // if this is a write, we should be looking at an uncacheable 1246 // write 1247 if (pkt->isWrite()) { 1248 assert(pkt->req->isUncacheable()); 1249 handleUncacheableWriteResp(pkt); 1250 return; 1251 } 1252 1253 // we have dealt with any (uncacheable) writes above, from here on 1254 // we know we are dealing with an MSHR due to a miss or a prefetch 1255 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState()); 1256 assert(mshr); 1257 1258 if (mshr == noTargetMSHR) { 1259 // we always clear at least one target 1260 clearBlocked(Blocked_NoTargets); 1261 noTargetMSHR = nullptr; 1262 } 1263 1264 // Initial target is used just for stats 1265 MSHR::Target *initial_tgt = mshr->getTarget(); 1266 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); 1267 Tick miss_latency = curTick() - initial_tgt->recvTime; 1268 1269 if (pkt->req->isUncacheable()) { 1270 assert(pkt->req->masterId() < system->maxMasters()); 1271 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += 1272 miss_latency; 1273 } else { 1274 assert(pkt->req->masterId() < system->maxMasters()); 1275 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += 1276 miss_latency; 1277 } 1278 1279 bool wasFull = mshrQueue.isFull(); 1280 1281 PacketList writebacks; 1282 1283 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 1284 1285 // upgrade deferred targets if the response has no sharers, and is 1286 // thus passing writable 1287 if (!pkt->hasSharers()) { 1288 mshr->promoteWritable(); 1289 } 1290 1291 bool is_fill = !mshr->isForward && 1292 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp); 1293 1294 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 1295 1296 if (is_fill && !is_error) { 1297 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", 1298 pkt->getAddr()); 1299 1300 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill()); 1301 assert(blk != nullptr); 1302 } 1303 1304 // allow invalidation responses originating from write-line 1305 // requests to be discarded 1306 bool is_invalidate = pkt->isInvalidate(); 1307 1308 // First offset for critical word first calculations 1309 int initial_offset = initial_tgt->pkt->getOffset(blkSize); 1310 1311 bool from_cache = false; 1312 MSHR::TargetList targets = mshr->extractServiceableTargets(pkt); 1313 for (auto &target: targets) { 1314 Packet *tgt_pkt = target.pkt; 1315 switch (target.source) { 1316 case MSHR::Target::FromCPU: 1317 Tick completion_time; 1318 // Here we charge on completion_time the delay of the xbar if the 1319 // packet comes from it, charged on headerDelay. 1320 completion_time = pkt->headerDelay; 1321 1322 // Software prefetch handling for cache closest to core 1323 if (tgt_pkt->cmd.isSWPrefetch()) { 1324 // a software prefetch would have already been ack'd 1325 // immediately with dummy data so the core would be able to 1326 // retire it. This request completes right here, so we 1327 // deallocate it. 1328 delete tgt_pkt->req; 1329 delete tgt_pkt; 1330 break; // skip response 1331 } 1332 1333 // keep track of whether we have responded to another 1334 // cache 1335 from_cache = from_cache || tgt_pkt->fromCache(); 1336 1337 // unlike the other packet flows, where data is found in other 1338 // caches or memory and brought back, write-line requests always 1339 // have the data right away, so the above check for "is fill?" 1340 // cannot actually be determined until examining the stored MSHR 1341 // state. We "catch up" with that logic here, which is duplicated 1342 // from above. 1343 if (tgt_pkt->cmd == MemCmd::WriteLineReq) { 1344 assert(!is_error); 1345 // we got the block in a writable state, so promote 1346 // any deferred targets if possible 1347 mshr->promoteWritable(); 1348 // NB: we use the original packet here and not the response! 1349 blk = handleFill(tgt_pkt, blk, writebacks, 1350 targets.allocOnFill); 1351 assert(blk != nullptr); 1352 1353 // treat as a fill, and discard the invalidation 1354 // response 1355 is_fill = true; 1356 is_invalidate = false; 1357 } 1358 1359 if (is_fill) { 1360 satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade()); 1361 1362 // How many bytes past the first request is this one 1363 int transfer_offset = 1364 tgt_pkt->getOffset(blkSize) - initial_offset; 1365 if (transfer_offset < 0) { 1366 transfer_offset += blkSize; 1367 } 1368 1369 // If not critical word (offset) return payloadDelay. 1370 // responseLatency is the latency of the return path 1371 // from lower level caches/memory to an upper level cache or 1372 // the core. 1373 completion_time += clockEdge(responseLatency) + 1374 (transfer_offset ? pkt->payloadDelay : 0); 1375 1376 assert(!tgt_pkt->req->isUncacheable()); 1377 1378 assert(tgt_pkt->req->masterId() < system->maxMasters()); 1379 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] += 1380 completion_time - target.recvTime; 1381 } else if (pkt->cmd == MemCmd::UpgradeFailResp) { 1382 // failed StoreCond upgrade 1383 assert(tgt_pkt->cmd == MemCmd::StoreCondReq || 1384 tgt_pkt->cmd == MemCmd::StoreCondFailReq || 1385 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq); 1386 // responseLatency is the latency of the return path 1387 // from lower level caches/memory to an upper level cache or 1388 // the core. 1389 completion_time += clockEdge(responseLatency) + 1390 pkt->payloadDelay; 1391 tgt_pkt->req->setExtraData(0); 1392 } else { 1393 // We are about to send a response to a cache above 1394 // that asked for an invalidation; we need to 1395 // invalidate our copy immediately as the most 1396 // up-to-date copy of the block will now be in the 1397 // cache above. It will also prevent this cache from 1398 // responding (if the block was previously dirty) to 1399 // snoops as they should snoop the caches above where 1400 // they will get the response from. 1401 if (is_invalidate && blk && blk->isValid()) { 1402 invalidateBlock(blk); 1403 } 1404 // not a cache fill, just forwarding response 1405 // responseLatency is the latency of the return path 1406 // from lower level cahces/memory to the core. 1407 completion_time += clockEdge(responseLatency) + 1408 pkt->payloadDelay; 1409 if (pkt->isRead() && !is_error) { 1410 // sanity check 1411 assert(pkt->getAddr() == tgt_pkt->getAddr()); 1412 assert(pkt->getSize() >= tgt_pkt->getSize()); 1413 1414 tgt_pkt->setData(pkt->getConstPtr<uint8_t>()); 1415 } 1416 } 1417 tgt_pkt->makeTimingResponse(); 1418 // if this packet is an error copy that to the new packet 1419 if (is_error) 1420 tgt_pkt->copyError(pkt); 1421 if (tgt_pkt->cmd == MemCmd::ReadResp && 1422 (is_invalidate || mshr->hasPostInvalidate())) { 1423 // If intermediate cache got ReadRespWithInvalidate, 1424 // propagate that. Response should not have 1425 // isInvalidate() set otherwise. 1426 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate; 1427 DPRINTF(Cache, "%s: updated cmd to %s\n", __func__, 1428 tgt_pkt->print()); 1429 } 1430 // Reset the bus additional time as it is now accounted for 1431 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0; 1432 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true); 1433 break; 1434 1435 case MSHR::Target::FromPrefetcher: 1436 assert(tgt_pkt->cmd == MemCmd::HardPFReq); 1437 if (blk) 1438 blk->status |= BlkHWPrefetched; 1439 delete tgt_pkt->req; 1440 delete tgt_pkt; 1441 break; 1442 1443 case MSHR::Target::FromSnoop: 1444 // I don't believe that a snoop can be in an error state 1445 assert(!is_error); 1446 // response to snoop request 1447 DPRINTF(Cache, "processing deferred snoop...\n"); 1448 // If the response is invalidating, a snooping target can 1449 // be satisfied if it is also invalidating. If the reponse is, not 1450 // only invalidating, but more specifically an InvalidateResp, the 1451 // MSHR was created due to an InvalidateReq and a cache above is 1452 // waiting to satisfy a WriteLineReq. In this case even an 1453 // non-invalidating snoop is added as a target here since this is 1454 // the ordering point. When the InvalidateResp reaches this cache, 1455 // the snooping target will snoop further the cache above with the 1456 // WriteLineReq. 1457 assert(!(is_invalidate && 1458 pkt->cmd != MemCmd::InvalidateResp && 1459 !mshr->hasPostInvalidate())); 1460 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate()); 1461 break; 1462 1463 default: 1464 panic("Illegal target->source enum %d\n", target.source); 1465 } 1466 } 1467 1468 maintainClusivity(from_cache, blk); 1469 1470 if (blk && blk->isValid()) { 1471 // an invalidate response stemming from a write line request 1472 // should not invalidate the block, so check if the 1473 // invalidation should be discarded 1474 if (is_invalidate || mshr->hasPostInvalidate()) { 1475 invalidateBlock(blk); 1476 } else if (mshr->hasPostDowngrade()) { 1477 blk->status &= ~BlkWritable; 1478 } 1479 } 1480 1481 if (mshr->promoteDeferredTargets()) { 1482 // avoid later read getting stale data while write miss is 1483 // outstanding.. see comment in timingAccess() 1484 if (blk) { 1485 blk->status &= ~BlkReadable; 1486 } 1487 mshrQueue.markPending(mshr); 1488 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay); 1489 } else { 1490 mshrQueue.deallocate(mshr); 1491 if (wasFull && !mshrQueue.isFull()) { 1492 clearBlocked(Blocked_NoMSHRs); 1493 } 1494 1495 // Request the bus for a prefetch if this deallocation freed enough 1496 // MSHRs for a prefetch to take place 1497 if (prefetcher && mshrQueue.canPrefetch()) { 1498 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), 1499 clockEdge()); 1500 if (next_pf_time != MaxTick) 1501 schedMemSideSendEvent(next_pf_time); 1502 } 1503 } 1504 // reset the xbar additional timinig as it is now accounted for 1505 pkt->headerDelay = pkt->payloadDelay = 0; 1506 1507 // copy writebacks to write buffer 1508 doWritebacks(writebacks, forward_time); 1509 1510 // if we used temp block, check to see if its valid and then clear it out 1511 if (blk == tempBlock && tempBlock->isValid()) { 1512 // We use forwardLatency here because we are copying 1513 // Writebacks/CleanEvicts to write buffer. It specifies the latency to 1514 // allocate an internal buffer and to schedule an event to the 1515 // queued port. 1516 if (blk->isDirty() || writebackClean) { 1517 PacketPtr wbPkt = writebackBlk(blk); 1518 allocateWriteBuffer(wbPkt, forward_time); 1519 // Set BLOCK_CACHED flag if cached above. 1520 if (isCachedAbove(wbPkt)) 1521 wbPkt->setBlockCached(); 1522 } else { 1523 PacketPtr wcPkt = cleanEvictBlk(blk); 1524 // Check to see if block is cached above. If not allocate 1525 // write buffer 1526 if (isCachedAbove(wcPkt)) 1527 delete wcPkt; 1528 else 1529 allocateWriteBuffer(wcPkt, forward_time); 1530 } 1531 invalidateBlock(blk); 1532 } 1533 1534 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print()); 1535 delete pkt; 1536} 1537 1538PacketPtr 1539Cache::writebackBlk(CacheBlk *blk) 1540{ 1541 chatty_assert(!isReadOnly || writebackClean, 1542 "Writeback from read-only cache"); 1543 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean)); 1544 1545 writebacks[Request::wbMasterId]++; 1546 1547 Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set), 1548 blkSize, 0, Request::wbMasterId); 1549 if (blk->isSecure()) 1550 req->setFlags(Request::SECURE); 1551 1552 req->taskId(blk->task_id); 1553 blk->task_id= ContextSwitchTaskId::Unknown; 1554 blk->tickInserted = curTick(); 1555 1556 PacketPtr pkt = 1557 new Packet(req, blk->isDirty() ? 1558 MemCmd::WritebackDirty : MemCmd::WritebackClean); 1559 1560 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n", 1561 pkt->print(), blk->isWritable(), blk->isDirty()); 1562 1563 if (blk->isWritable()) { 1564 // not asserting shared means we pass the block in modified 1565 // state, mark our own block non-writeable 1566 blk->status &= ~BlkWritable; 1567 } else { 1568 // we are in the Owned state, tell the receiver 1569 pkt->setHasSharers(); 1570 } 1571 1572 // make sure the block is not marked dirty 1573 blk->status &= ~BlkDirty; 1574 1575 pkt->allocate(); 1576 std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize); 1577 1578 return pkt; 1579} 1580 1581PacketPtr 1582Cache::cleanEvictBlk(CacheBlk *blk) 1583{ 1584 assert(!writebackClean); 1585 assert(blk && blk->isValid() && !blk->isDirty()); 1586 // Creating a zero sized write, a message to the snoop filter 1587 Request *req = 1588 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0, 1589 Request::wbMasterId); 1590 if (blk->isSecure()) 1591 req->setFlags(Request::SECURE); 1592 1593 req->taskId(blk->task_id); 1594 blk->task_id = ContextSwitchTaskId::Unknown; 1595 blk->tickInserted = curTick(); 1596 1597 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict); 1598 pkt->allocate(); 1599 DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print()); 1600 1601 return pkt; 1602} 1603 1604void 1605Cache::memWriteback() 1606{ 1607 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor); 1608 tags->forEachBlk(visitor); 1609} 1610 1611void 1612Cache::memInvalidate() 1613{ 1614 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor); 1615 tags->forEachBlk(visitor); 1616} 1617 1618bool 1619Cache::isDirty() const 1620{ 1621 CacheBlkIsDirtyVisitor visitor; 1622 tags->forEachBlk(visitor); 1623 1624 return visitor.isDirty(); 1625} 1626 1627bool 1628Cache::writebackVisitor(CacheBlk &blk) 1629{ 1630 if (blk.isDirty()) { 1631 assert(blk.isValid()); 1632 1633 Request request(tags->regenerateBlkAddr(blk.tag, blk.set), 1634 blkSize, 0, Request::funcMasterId); 1635 request.taskId(blk.task_id); 1636 if (blk.isSecure()) { 1637 request.setFlags(Request::SECURE); 1638 } 1639 1640 Packet packet(&request, MemCmd::WriteReq); 1641 packet.dataStatic(blk.data); 1642 1643 memSidePort->sendFunctional(&packet); 1644 1645 blk.status &= ~BlkDirty; 1646 } 1647 1648 return true; 1649} 1650 1651bool 1652Cache::invalidateVisitor(CacheBlk &blk) 1653{ 1654 1655 if (blk.isDirty()) 1656 warn_once("Invalidating dirty cache lines. Expect things to break.\n"); 1657 1658 if (blk.isValid()) { 1659 assert(!blk.isDirty()); 1660 invalidateBlock(&blk); 1661 } 1662 1663 return true; 1664} 1665 1666CacheBlk* 1667Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks) 1668{ 1669 CacheBlk *blk = tags->findVictim(addr); 1670 1671 // It is valid to return nullptr if there is no victim 1672 if (!blk) 1673 return nullptr; 1674 1675 if (blk->isValid()) { 1676 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set); 1677 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); 1678 if (repl_mshr) { 1679 // must be an outstanding upgrade request 1680 // on a block we're about to replace... 1681 assert(!blk->isWritable() || blk->isDirty()); 1682 assert(repl_mshr->needsWritable()); 1683 // too hard to replace block with transient state 1684 // allocation failed, block not inserted 1685 return nullptr; 1686 } else { 1687 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx " 1688 "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns", 1689 addr, is_secure ? "s" : "ns", 1690 blk->isDirty() ? "writeback" : "clean"); 1691 1692 if (blk->wasPrefetched()) { 1693 unusedPrefetches++; 1694 } 1695 // Will send up Writeback/CleanEvict snoops via isCachedAbove 1696 // when pushing this writeback list into the write buffer. 1697 if (blk->isDirty() || writebackClean) { 1698 // Save writeback packet for handling by caller 1699 writebacks.push_back(writebackBlk(blk)); 1700 } else { 1701 writebacks.push_back(cleanEvictBlk(blk)); 1702 } 1703 } 1704 } 1705 1706 return blk; 1707} 1708 1709void 1710Cache::invalidateBlock(CacheBlk *blk) 1711{ 1712 if (blk != tempBlock) 1713 tags->invalidate(blk); 1714 blk->invalidate(); 1715} 1716 1717// Note that the reason we return a list of writebacks rather than 1718// inserting them directly in the write buffer is that this function 1719// is called by both atomic and timing-mode accesses, and in atomic 1720// mode we don't mess with the write buffer (we just perform the 1721// writebacks atomically once the original request is complete). 1722CacheBlk* 1723Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks, 1724 bool allocate) 1725{ 1726 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq); 1727 Addr addr = pkt->getAddr(); 1728 bool is_secure = pkt->isSecure(); 1729#if TRACING_ON 1730 CacheBlk::State old_state = blk ? blk->status : 0; 1731#endif 1732 1733 // When handling a fill, we should have no writes to this line. 1734 assert(addr == pkt->getBlockAddr(blkSize)); 1735 assert(!writeBuffer.findMatch(addr, is_secure)); 1736 1737 if (blk == nullptr) { 1738 // better have read new data... 1739 assert(pkt->hasData()); 1740 1741 // only read responses and write-line requests have data; 1742 // note that we don't write the data here for write-line - that 1743 // happens in the subsequent call to satisfyRequest 1744 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq); 1745 1746 // need to do a replacement if allocating, otherwise we stick 1747 // with the temporary storage 1748 blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr; 1749 1750 if (blk == nullptr) { 1751 // No replaceable block or a mostly exclusive 1752 // cache... just use temporary storage to complete the 1753 // current request and then get rid of it 1754 assert(!tempBlock->isValid()); 1755 blk = tempBlock; 1756 tempBlock->set = tags->extractSet(addr); 1757 tempBlock->tag = tags->extractTag(addr); 1758 // @todo: set security state as well... 1759 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, 1760 is_secure ? "s" : "ns"); 1761 } else { 1762 tags->insertBlock(pkt, blk); 1763 } 1764 1765 // we should never be overwriting a valid block 1766 assert(!blk->isValid()); 1767 } else { 1768 // existing block... probably an upgrade 1769 assert(blk->tag == tags->extractTag(addr)); 1770 // either we're getting new data or the block should already be valid 1771 assert(pkt->hasData() || blk->isValid()); 1772 // don't clear block status... if block is already dirty we 1773 // don't want to lose that 1774 } 1775 1776 if (is_secure) 1777 blk->status |= BlkSecure; 1778 blk->status |= BlkValid | BlkReadable; 1779 1780 // sanity check for whole-line writes, which should always be 1781 // marked as writable as part of the fill, and then later marked 1782 // dirty as part of satisfyRequest 1783 if (pkt->cmd == MemCmd::WriteLineReq) { 1784 assert(!pkt->hasSharers()); 1785 } 1786 1787 // here we deal with setting the appropriate state of the line, 1788 // and we start by looking at the hasSharers flag, and ignore the 1789 // cacheResponding flag (normally signalling dirty data) if the 1790 // packet has sharers, thus the line is never allocated as Owned 1791 // (dirty but not writable), and always ends up being either 1792 // Shared, Exclusive or Modified, see Packet::setCacheResponding 1793 // for more details 1794 if (!pkt->hasSharers()) { 1795 // we could get a writable line from memory (rather than a 1796 // cache) even in a read-only cache, note that we set this bit 1797 // even for a read-only cache, possibly revisit this decision 1798 blk->status |= BlkWritable; 1799 1800 // check if we got this via cache-to-cache transfer (i.e., from a 1801 // cache that had the block in Modified or Owned state) 1802 if (pkt->cacheResponding()) { 1803 // we got the block in Modified state, and invalidated the 1804 // owners copy 1805 blk->status |= BlkDirty; 1806 1807 chatty_assert(!isReadOnly, "Should never see dirty snoop response " 1808 "in read-only cache %s\n", name()); 1809 } 1810 } 1811 1812 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", 1813 addr, is_secure ? "s" : "ns", old_state, blk->print()); 1814 1815 // if we got new data, copy it in (checking for a read response 1816 // and a response that has data is the same in the end) 1817 if (pkt->isRead()) { 1818 // sanity checks 1819 assert(pkt->hasData()); 1820 assert(pkt->getSize() == blkSize); 1821 1822 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize); 1823 } 1824 // We pay for fillLatency here. 1825 blk->whenReady = clockEdge() + fillLatency * clockPeriod() + 1826 pkt->payloadDelay; 1827 1828 return blk; 1829} 1830 1831 1832///////////////////////////////////////////////////// 1833// 1834// Snoop path: requests coming in from the memory side 1835// 1836///////////////////////////////////////////////////// 1837 1838void 1839Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data, 1840 bool already_copied, bool pending_inval) 1841{ 1842 // sanity check 1843 assert(req_pkt->isRequest()); 1844 assert(req_pkt->needsResponse()); 1845 1846 DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print()); 1847 // timing-mode snoop responses require a new packet, unless we 1848 // already made a copy... 1849 PacketPtr pkt = req_pkt; 1850 if (!already_copied) 1851 // do not clear flags, and allocate space for data if the 1852 // packet needs it (the only packets that carry data are read 1853 // responses) 1854 pkt = new Packet(req_pkt, false, req_pkt->isRead()); 1855 1856 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() || 1857 pkt->hasSharers()); 1858 pkt->makeTimingResponse(); 1859 if (pkt->isRead()) { 1860 pkt->setDataFromBlock(blk_data, blkSize); 1861 } 1862 if (pkt->cmd == MemCmd::ReadResp && pending_inval) { 1863 // Assume we defer a response to a read from a far-away cache 1864 // A, then later defer a ReadExcl from a cache B on the same 1865 // bus as us. We'll assert cacheResponding in both cases, but 1866 // in the latter case cacheResponding will keep the 1867 // invalidation from reaching cache A. This special response 1868 // tells cache A that it gets the block to satisfy its read, 1869 // but must immediately invalidate it. 1870 pkt->cmd = MemCmd::ReadRespWithInvalidate; 1871 } 1872 // Here we consider forward_time, paying for just forward latency and 1873 // also charging the delay provided by the xbar. 1874 // forward_time is used as send_time in next allocateWriteBuffer(). 1875 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 1876 // Here we reset the timing of the packet. 1877 pkt->headerDelay = pkt->payloadDelay = 0; 1878 DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__, 1879 pkt->print(), forward_time); 1880 memSidePort->schedTimingSnoopResp(pkt, forward_time, true); 1881} 1882 1883uint32_t 1884Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing, 1885 bool is_deferred, bool pending_inval) 1886{ 1887 DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print()); 1888 // deferred snoops can only happen in timing mode 1889 assert(!(is_deferred && !is_timing)); 1890 // pending_inval only makes sense on deferred snoops 1891 assert(!(pending_inval && !is_deferred)); 1892 assert(pkt->isRequest()); 1893 1894 // the packet may get modified if we or a forwarded snooper 1895 // responds in atomic mode, so remember a few things about the 1896 // original packet up front 1897 bool invalidate = pkt->isInvalidate(); 1898 bool M5_VAR_USED needs_writable = pkt->needsWritable(); 1899 1900 // at the moment we could get an uncacheable write which does not 1901 // have the invalidate flag, and we need a suitable way of dealing 1902 // with this case 1903 panic_if(invalidate && pkt->req->isUncacheable(), 1904 "%s got an invalidating uncacheable snoop request %s", 1905 name(), pkt->print()); 1906 1907 uint32_t snoop_delay = 0; 1908 1909 if (forwardSnoops) { 1910 // first propagate snoop upward to see if anyone above us wants to 1911 // handle it. save & restore packet src since it will get 1912 // rewritten to be relative to cpu-side bus (if any) 1913 bool alreadyResponded = pkt->cacheResponding(); 1914 if (is_timing) { 1915 // copy the packet so that we can clear any flags before 1916 // forwarding it upwards, we also allocate data (passing 1917 // the pointer along in case of static data), in case 1918 // there is a snoop hit in upper levels 1919 Packet snoopPkt(pkt, true, true); 1920 snoopPkt.setExpressSnoop(); 1921 // the snoop packet does not need to wait any additional 1922 // time 1923 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0; 1924 cpuSidePort->sendTimingSnoopReq(&snoopPkt); 1925 1926 // add the header delay (including crossbar and snoop 1927 // delays) of the upward snoop to the snoop delay for this 1928 // cache 1929 snoop_delay += snoopPkt.headerDelay; 1930 1931 if (snoopPkt.cacheResponding()) { 1932 // cache-to-cache response from some upper cache 1933 assert(!alreadyResponded); 1934 pkt->setCacheResponding(); 1935 } 1936 // upstream cache has the block, or has an outstanding 1937 // MSHR, pass the flag on 1938 if (snoopPkt.hasSharers()) { 1939 pkt->setHasSharers(); 1940 } 1941 // If this request is a prefetch or clean evict and an upper level 1942 // signals block present, make sure to propagate the block 1943 // presence to the requester. 1944 if (snoopPkt.isBlockCached()) { 1945 pkt->setBlockCached(); 1946 } 1947 } else { 1948 cpuSidePort->sendAtomicSnoop(pkt); 1949 if (!alreadyResponded && pkt->cacheResponding()) { 1950 // cache-to-cache response from some upper cache: 1951 // forward response to original requester 1952 assert(pkt->isResponse()); 1953 } 1954 } 1955 } 1956 1957 if (!blk || !blk->isValid()) { 1958 DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__, 1959 pkt->print()); 1960 if (is_deferred) { 1961 // we no longer have the block, and will not respond, but a 1962 // packet was allocated in MSHR::handleSnoop and we have 1963 // to delete it 1964 assert(pkt->needsResponse()); 1965 1966 // we have passed the block to a cache upstream, that 1967 // cache should be responding 1968 assert(pkt->cacheResponding()); 1969 1970 delete pkt; 1971 } 1972 return snoop_delay; 1973 } else { 1974 DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__, 1975 pkt->print(), blk->print()); 1976 } 1977 1978 chatty_assert(!(isReadOnly && blk->isDirty()), 1979 "Should never have a dirty block in a read-only cache %s\n", 1980 name()); 1981 1982 // We may end up modifying both the block state and the packet (if 1983 // we respond in atomic mode), so just figure out what to do now 1984 // and then do it later. We respond to all snoops that need 1985 // responses provided we have the block in dirty state. The 1986 // invalidation itself is taken care of below. 1987 bool respond = blk->isDirty() && pkt->needsResponse(); 1988 bool have_writable = blk->isWritable(); 1989 1990 // Invalidate any prefetch's from below that would strip write permissions 1991 // MemCmd::HardPFReq is only observed by upstream caches. After missing 1992 // above and in it's own cache, a new MemCmd::ReadReq is created that 1993 // downstream caches observe. 1994 if (pkt->mustCheckAbove()) { 1995 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s " 1996 "from lower cache\n", pkt->getAddr(), pkt->print()); 1997 pkt->setBlockCached(); 1998 return snoop_delay; 1999 } 2000 2001 if (pkt->isRead() && !invalidate) { 2002 // reading without requiring the line in a writable state 2003 assert(!needs_writable); 2004 pkt->setHasSharers(); 2005 2006 // if the requesting packet is uncacheable, retain the line in 2007 // the current state, otherwhise unset the writable flag, 2008 // which means we go from Modified to Owned (and will respond 2009 // below), remain in Owned (and will respond below), from 2010 // Exclusive to Shared, or remain in Shared 2011 if (!pkt->req->isUncacheable()) 2012 blk->status &= ~BlkWritable; 2013 } 2014 2015 if (respond) { 2016 // prevent anyone else from responding, cache as well as 2017 // memory, and also prevent any memory from even seeing the 2018 // request 2019 pkt->setCacheResponding(); 2020 if (have_writable) { 2021 // inform the cache hierarchy that this cache had the line 2022 // in the Modified state so that we avoid unnecessary 2023 // invalidations (see Packet::setResponderHadWritable) 2024 pkt->setResponderHadWritable(); 2025 2026 // in the case of an uncacheable request there is no point 2027 // in setting the responderHadWritable flag, but since the 2028 // recipient does not care there is no harm in doing so 2029 } else { 2030 // if the packet has needsWritable set we invalidate our 2031 // copy below and all other copies will be invalidates 2032 // through express snoops, and if needsWritable is not set 2033 // we already called setHasSharers above 2034 } 2035 2036 // if we are returning a writable and dirty (Modified) line, 2037 // we should be invalidating the line 2038 panic_if(!invalidate && !pkt->hasSharers(), 2039 "%s is passing a Modified line through %s, " 2040 "but keeping the block", name(), pkt->print()); 2041 2042 if (is_timing) { 2043 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval); 2044 } else { 2045 pkt->makeAtomicResponse(); 2046 // packets such as upgrades do not actually have any data 2047 // payload 2048 if (pkt->hasData()) 2049 pkt->setDataFromBlock(blk->data, blkSize); 2050 } 2051 } 2052 2053 if (!respond && is_deferred) { 2054 assert(pkt->needsResponse()); 2055 2056 // if we copied the deferred packet with the intention to 2057 // respond, but are not responding, then a cache above us must 2058 // be, and we can use this as the indication of whether this 2059 // is a packet where we created a copy of the request or not 2060 if (!pkt->cacheResponding()) { 2061 delete pkt->req; 2062 } 2063 2064 delete pkt; 2065 } 2066 2067 // Do this last in case it deallocates block data or something 2068 // like that 2069 if (invalidate) { 2070 invalidateBlock(blk); 2071 } 2072 2073 DPRINTF(Cache, "new state is %s\n", blk->print()); 2074 2075 return snoop_delay; 2076} 2077 2078 2079void 2080Cache::recvTimingSnoopReq(PacketPtr pkt) 2081{ 2082 DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print()); 2083 2084 // Snoops shouldn't happen when bypassing caches 2085 assert(!system->bypassCaches()); 2086 2087 // no need to snoop requests that are not in range 2088 if (!inRange(pkt->getAddr())) { 2089 return; 2090 } 2091 2092 bool is_secure = pkt->isSecure(); 2093 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 2094 2095 Addr blk_addr = pkt->getBlockAddr(blkSize); 2096 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 2097 2098 // Update the latency cost of the snoop so that the crossbar can 2099 // account for it. Do not overwrite what other neighbouring caches 2100 // have already done, rather take the maximum. The update is 2101 // tentative, for cases where we return before an upward snoop 2102 // happens below. 2103 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, 2104 lookupLatency * clockPeriod()); 2105 2106 // Inform request(Prefetch, CleanEvict or Writeback) from below of 2107 // MSHR hit, set setBlockCached. 2108 if (mshr && pkt->mustCheckAbove()) { 2109 DPRINTF(Cache, "Setting block cached for %s from lower cache on " 2110 "mshr hit\n", pkt->print()); 2111 pkt->setBlockCached(); 2112 return; 2113 } 2114 2115 // Let the MSHR itself track the snoop and decide whether we want 2116 // to go ahead and do the regular cache snoop 2117 if (mshr && mshr->handleSnoop(pkt, order++)) { 2118 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)." 2119 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns", 2120 mshr->print()); 2121 2122 if (mshr->getNumTargets() > numTarget) 2123 warn("allocating bonus target for snoop"); //handle later 2124 return; 2125 } 2126 2127 //We also need to check the writeback buffers and handle those 2128 WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure); 2129 if (wb_entry) { 2130 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n", 2131 pkt->getAddr(), is_secure ? "s" : "ns"); 2132 // Expect to see only Writebacks and/or CleanEvicts here, both of 2133 // which should not be generated for uncacheable data. 2134 assert(!wb_entry->isUncacheable()); 2135 // There should only be a single request responsible for generating 2136 // Writebacks/CleanEvicts. 2137 assert(wb_entry->getNumTargets() == 1); 2138 PacketPtr wb_pkt = wb_entry->getTarget()->pkt; 2139 assert(wb_pkt->isEviction()); 2140 2141 if (pkt->isEviction()) { 2142 // if the block is found in the write queue, set the BLOCK_CACHED 2143 // flag for Writeback/CleanEvict snoop. On return the snoop will 2144 // propagate the BLOCK_CACHED flag in Writeback packets and prevent 2145 // any CleanEvicts from travelling down the memory hierarchy. 2146 pkt->setBlockCached(); 2147 DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue " 2148 "hit\n", __func__, pkt->print()); 2149 return; 2150 } 2151 2152 // conceptually writebacks are no different to other blocks in 2153 // this cache, so the behaviour is modelled after handleSnoop, 2154 // the difference being that instead of querying the block 2155 // state to determine if it is dirty and writable, we use the 2156 // command and fields of the writeback packet 2157 bool respond = wb_pkt->cmd == MemCmd::WritebackDirty && 2158 pkt->needsResponse(); 2159 bool have_writable = !wb_pkt->hasSharers(); 2160 bool invalidate = pkt->isInvalidate(); 2161 2162 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) { 2163 assert(!pkt->needsWritable()); 2164 pkt->setHasSharers(); 2165 wb_pkt->setHasSharers(); 2166 } 2167 2168 if (respond) { 2169 pkt->setCacheResponding(); 2170 2171 if (have_writable) { 2172 pkt->setResponderHadWritable(); 2173 } 2174 2175 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(), 2176 false, false); 2177 } 2178 2179 if (invalidate) { 2180 // Invalidation trumps our writeback... discard here 2181 // Note: markInService will remove entry from writeback buffer. 2182 markInService(wb_entry); 2183 delete wb_pkt; 2184 } 2185 } 2186 2187 // If this was a shared writeback, there may still be 2188 // other shared copies above that require invalidation. 2189 // We could be more selective and return here if the 2190 // request is non-exclusive or if the writeback is 2191 // exclusive. 2192 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false); 2193 2194 // Override what we did when we first saw the snoop, as we now 2195 // also have the cost of the upwards snoops to account for 2196 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay + 2197 lookupLatency * clockPeriod()); 2198} 2199 2200bool 2201Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) 2202{ 2203 // Express snoop responses from master to slave, e.g., from L1 to L2 2204 cache->recvTimingSnoopResp(pkt); 2205 return true; 2206} 2207 2208Tick 2209Cache::recvAtomicSnoop(PacketPtr pkt) 2210{ 2211 // Snoops shouldn't happen when bypassing caches 2212 assert(!system->bypassCaches()); 2213 2214 // no need to snoop requests that are not in range. 2215 if (!inRange(pkt->getAddr())) { 2216 return 0; 2217 } 2218 2219 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 2220 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false); 2221 return snoop_delay + lookupLatency * clockPeriod(); 2222} 2223 2224 2225QueueEntry* 2226Cache::getNextQueueEntry() 2227{ 2228 // Check both MSHR queue and write buffer for potential requests, 2229 // note that null does not mean there is no request, it could 2230 // simply be that it is not ready 2231 MSHR *miss_mshr = mshrQueue.getNext(); 2232 WriteQueueEntry *wq_entry = writeBuffer.getNext(); 2233 2234 // If we got a write buffer request ready, first priority is a 2235 // full write buffer, otherwise we favour the miss requests 2236 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) { 2237 // need to search MSHR queue for conflicting earlier miss. 2238 MSHR *conflict_mshr = 2239 mshrQueue.findPending(wq_entry->blkAddr, 2240 wq_entry->isSecure); 2241 2242 if (conflict_mshr && conflict_mshr->order < wq_entry->order) { 2243 // Service misses in order until conflict is cleared. 2244 return conflict_mshr; 2245 2246 // @todo Note that we ignore the ready time of the conflict here 2247 } 2248 2249 // No conflicts; issue write 2250 return wq_entry; 2251 } else if (miss_mshr) { 2252 // need to check for conflicting earlier writeback 2253 WriteQueueEntry *conflict_mshr = 2254 writeBuffer.findPending(miss_mshr->blkAddr, 2255 miss_mshr->isSecure); 2256 if (conflict_mshr) { 2257 // not sure why we don't check order here... it was in the 2258 // original code but commented out. 2259 2260 // The only way this happens is if we are 2261 // doing a write and we didn't have permissions 2262 // then subsequently saw a writeback (owned got evicted) 2263 // We need to make sure to perform the writeback first 2264 // To preserve the dirty data, then we can issue the write 2265 2266 // should we return wq_entry here instead? I.e. do we 2267 // have to flush writes in order? I don't think so... not 2268 // for Alpha anyway. Maybe for x86? 2269 return conflict_mshr; 2270 2271 // @todo Note that we ignore the ready time of the conflict here 2272 } 2273 2274 // No conflicts; issue read 2275 return miss_mshr; 2276 } 2277 2278 // fall through... no pending requests. Try a prefetch. 2279 assert(!miss_mshr && !wq_entry); 2280 if (prefetcher && mshrQueue.canPrefetch()) { 2281 // If we have a miss queue slot, we can try a prefetch 2282 PacketPtr pkt = prefetcher->getPacket(); 2283 if (pkt) { 2284 Addr pf_addr = pkt->getBlockAddr(blkSize); 2285 if (!tags->findBlock(pf_addr, pkt->isSecure()) && 2286 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && 2287 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { 2288 // Update statistic on number of prefetches issued 2289 // (hwpf_mshr_misses) 2290 assert(pkt->req->masterId() < system->maxMasters()); 2291 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 2292 2293 // allocate an MSHR and return it, note 2294 // that we send the packet straight away, so do not 2295 // schedule the send 2296 return allocateMissBuffer(pkt, curTick(), false); 2297 } else { 2298 // free the request and packet 2299 delete pkt->req; 2300 delete pkt; 2301 } 2302 } 2303 } 2304 2305 return nullptr; 2306} 2307 2308bool 2309Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const 2310{ 2311 if (!forwardSnoops) 2312 return false; 2313 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and 2314 // Writeback snoops into upper level caches to check for copies of the 2315 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict 2316 // packet, the cache can inform the crossbar below of presence or absence 2317 // of the block. 2318 if (is_timing) { 2319 Packet snoop_pkt(pkt, true, false); 2320 snoop_pkt.setExpressSnoop(); 2321 // Assert that packet is either Writeback or CleanEvict and not a 2322 // prefetch request because prefetch requests need an MSHR and may 2323 // generate a snoop response. 2324 assert(pkt->isEviction()); 2325 snoop_pkt.senderState = nullptr; 2326 cpuSidePort->sendTimingSnoopReq(&snoop_pkt); 2327 // Writeback/CleanEvict snoops do not generate a snoop response. 2328 assert(!(snoop_pkt.cacheResponding())); 2329 return snoop_pkt.isBlockCached(); 2330 } else { 2331 cpuSidePort->sendAtomicSnoop(pkt); 2332 return pkt->isBlockCached(); 2333 } 2334} 2335 2336Tick 2337Cache::nextQueueReadyTime() const 2338{ 2339 Tick nextReady = std::min(mshrQueue.nextReadyTime(), 2340 writeBuffer.nextReadyTime()); 2341 2342 // Don't signal prefetch ready time if no MSHRs available 2343 // Will signal once enoguh MSHRs are deallocated 2344 if (prefetcher && mshrQueue.canPrefetch()) { 2345 nextReady = std::min(nextReady, 2346 prefetcher->nextPrefetchReadyTime()); 2347 } 2348 2349 return nextReady; 2350} 2351 2352bool 2353Cache::sendMSHRQueuePacket(MSHR* mshr) 2354{ 2355 assert(mshr); 2356 2357 // use request from 1st target 2358 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 2359 2360 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print()); 2361 2362 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); 2363 2364 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) { 2365 // we should never have hardware prefetches to allocated 2366 // blocks 2367 assert(blk == nullptr); 2368 2369 // We need to check the caches above us to verify that 2370 // they don't have a copy of this block in the dirty state 2371 // at the moment. Without this check we could get a stale 2372 // copy from memory that might get used in place of the 2373 // dirty one. 2374 Packet snoop_pkt(tgt_pkt, true, false); 2375 snoop_pkt.setExpressSnoop(); 2376 // We are sending this packet upwards, but if it hits we will 2377 // get a snoop response that we end up treating just like a 2378 // normal response, hence it needs the MSHR as its sender 2379 // state 2380 snoop_pkt.senderState = mshr; 2381 cpuSidePort->sendTimingSnoopReq(&snoop_pkt); 2382 2383 // Check to see if the prefetch was squashed by an upper cache (to 2384 // prevent us from grabbing the line) or if a Check to see if a 2385 // writeback arrived between the time the prefetch was placed in 2386 // the MSHRs and when it was selected to be sent or if the 2387 // prefetch was squashed by an upper cache. 2388 2389 // It is important to check cacheResponding before 2390 // prefetchSquashed. If another cache has committed to 2391 // responding, it will be sending a dirty response which will 2392 // arrive at the MSHR allocated for this request. Checking the 2393 // prefetchSquash first may result in the MSHR being 2394 // prematurely deallocated. 2395 if (snoop_pkt.cacheResponding()) { 2396 auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req); 2397 assert(r.second); 2398 2399 // if we are getting a snoop response with no sharers it 2400 // will be allocated as Modified 2401 bool pending_modified_resp = !snoop_pkt.hasSharers(); 2402 markInService(mshr, pending_modified_resp); 2403 2404 DPRINTF(Cache, "Upward snoop of prefetch for addr" 2405 " %#x (%s) hit\n", 2406 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns"); 2407 return false; 2408 } 2409 2410 if (snoop_pkt.isBlockCached()) { 2411 DPRINTF(Cache, "Block present, prefetch squashed by cache. " 2412 "Deallocating mshr target %#x.\n", 2413 mshr->blkAddr); 2414 2415 // Deallocate the mshr target 2416 if (mshrQueue.forceDeallocateTarget(mshr)) { 2417 // Clear block if this deallocation resulted freed an 2418 // mshr when all had previously been utilized 2419 clearBlocked(Blocked_NoMSHRs); 2420 } 2421 return false; 2422 } 2423 } 2424 2425 // either a prefetch that is not present upstream, or a normal 2426 // MSHR request, proceed to get the packet to send downstream 2427 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable()); 2428 2429 mshr->isForward = (pkt == nullptr); 2430 2431 if (mshr->isForward) { 2432 // not a cache block request, but a response is expected 2433 // make copy of current packet to forward, keep current 2434 // copy for response handling 2435 pkt = new Packet(tgt_pkt, false, true); 2436 assert(!pkt->isWrite()); 2437 } 2438 2439 // play it safe and append (rather than set) the sender state, 2440 // as forwarded packets may already have existing state 2441 pkt->pushSenderState(mshr); 2442 2443 if (!memSidePort->sendTimingReq(pkt)) { 2444 // we are awaiting a retry, but we 2445 // delete the packet and will be creating a new packet 2446 // when we get the opportunity 2447 delete pkt; 2448 2449 // note that we have now masked any requestBus and 2450 // schedSendEvent (we will wait for a retry before 2451 // doing anything), and this is so even if we do not 2452 // care about this packet and might override it before 2453 // it gets retried 2454 return true; 2455 } else { 2456 // As part of the call to sendTimingReq the packet is 2457 // forwarded to all neighbouring caches (and any caches 2458 // above them) as a snoop. Thus at this point we know if 2459 // any of the neighbouring caches are responding, and if 2460 // so, we know it is dirty, and we can determine if it is 2461 // being passed as Modified, making our MSHR the ordering 2462 // point 2463 bool pending_modified_resp = !pkt->hasSharers() && 2464 pkt->cacheResponding(); 2465 markInService(mshr, pending_modified_resp); 2466 return false; 2467 } 2468} 2469 2470bool 2471Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry) 2472{ 2473 assert(wq_entry); 2474 2475 // always a single target for write queue entries 2476 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt; 2477 2478 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print()); 2479 2480 // forward as is, both for evictions and uncacheable writes 2481 if (!memSidePort->sendTimingReq(tgt_pkt)) { 2482 // note that we have now masked any requestBus and 2483 // schedSendEvent (we will wait for a retry before 2484 // doing anything), and this is so even if we do not 2485 // care about this packet and might override it before 2486 // it gets retried 2487 return true; 2488 } else { 2489 markInService(wq_entry); 2490 return false; 2491 } 2492} 2493 2494void 2495Cache::serialize(CheckpointOut &cp) const 2496{ 2497 bool dirty(isDirty()); 2498 2499 if (dirty) { 2500 warn("*** The cache still contains dirty data. ***\n"); 2501 warn(" Make sure to drain the system using the correct flags.\n"); 2502 warn(" This checkpoint will not restore correctly and dirty data " 2503 " in the cache will be lost!\n"); 2504 } 2505 2506 // Since we don't checkpoint the data in the cache, any dirty data 2507 // will be lost when restoring from a checkpoint of a system that 2508 // wasn't drained properly. Flag the checkpoint as invalid if the 2509 // cache contains dirty data. 2510 bool bad_checkpoint(dirty); 2511 SERIALIZE_SCALAR(bad_checkpoint); 2512} 2513 2514void 2515Cache::unserialize(CheckpointIn &cp) 2516{ 2517 bool bad_checkpoint; 2518 UNSERIALIZE_SCALAR(bad_checkpoint); 2519 if (bad_checkpoint) { 2520 fatal("Restoring from checkpoints with dirty caches is not supported " 2521 "in the classic memory system. Please remove any caches or " 2522 " drain them properly before taking checkpoints.\n"); 2523 } 2524} 2525 2526/////////////// 2527// 2528// CpuSidePort 2529// 2530/////////////// 2531 2532AddrRangeList 2533Cache::CpuSidePort::getAddrRanges() const 2534{ 2535 return cache->getAddrRanges(); 2536} 2537 2538bool 2539Cache::CpuSidePort::recvTimingReq(PacketPtr pkt) 2540{ 2541 assert(!cache->system->bypassCaches()); 2542 2543 bool success = false; 2544 2545 // always let express snoop packets through if even if blocked 2546 if (pkt->isExpressSnoop()) { 2547 // do not change the current retry state 2548 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt); 2549 assert(bypass_success); 2550 return true; 2551 } else if (blocked || mustSendRetry) { 2552 // either already committed to send a retry, or blocked 2553 success = false; 2554 } else { 2555 // pass it on to the cache, and let the cache decide if we 2556 // have to retry or not 2557 success = cache->recvTimingReq(pkt); 2558 } 2559 2560 // remember if we have to retry 2561 mustSendRetry = !success; 2562 return success; 2563} 2564 2565Tick 2566Cache::CpuSidePort::recvAtomic(PacketPtr pkt) 2567{ 2568 return cache->recvAtomic(pkt); 2569} 2570 2571void 2572Cache::CpuSidePort::recvFunctional(PacketPtr pkt) 2573{ 2574 // functional request 2575 cache->functionalAccess(pkt, true); 2576} 2577 2578Cache:: 2579CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache, 2580 const std::string &_label) 2581 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache) 2582{ 2583} 2584 2585Cache* 2586CacheParams::create() 2587{ 2588 assert(tags); 2589 2590 return new Cache(this); 2591} 2592/////////////// 2593// 2594// MemSidePort 2595// 2596/////////////// 2597 2598bool 2599Cache::MemSidePort::recvTimingResp(PacketPtr pkt) 2600{ 2601 cache->recvTimingResp(pkt); 2602 return true; 2603} 2604 2605// Express snooping requests to memside port 2606void 2607Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) 2608{ 2609 // handle snooping requests 2610 cache->recvTimingSnoopReq(pkt); 2611} 2612 2613Tick 2614Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) 2615{ 2616 return cache->recvAtomicSnoop(pkt); 2617} 2618 2619void 2620Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) 2621{ 2622 // functional snoop (note that in contrast to atomic we don't have 2623 // a specific functionalSnoop method, as they have the same 2624 // behaviour regardless) 2625 cache->functionalAccess(pkt, false); 2626} 2627 2628void 2629Cache::CacheReqPacketQueue::sendDeferredPacket() 2630{ 2631 // sanity check 2632 assert(!waitingOnRetry); 2633 2634 // there should never be any deferred request packets in the 2635 // queue, instead we resly on the cache to provide the packets 2636 // from the MSHR queue or write queue 2637 assert(deferredPacketReadyTime() == MaxTick); 2638 2639 // check for request packets (requests & writebacks) 2640 QueueEntry* entry = cache.getNextQueueEntry(); 2641 2642 if (!entry) { 2643 // can happen if e.g. we attempt a writeback and fail, but 2644 // before the retry, the writeback is eliminated because 2645 // we snoop another cache's ReadEx. 2646 } else { 2647 // let our snoop responses go first if there are responses to 2648 // the same addresses 2649 if (checkConflictingSnoop(entry->blkAddr)) { 2650 return; 2651 } 2652 waitingOnRetry = entry->sendPacket(cache); 2653 } 2654 2655 // if we succeeded and are not waiting for a retry, schedule the 2656 // next send considering when the next queue is ready, note that 2657 // snoop responses have their own packet queue and thus schedule 2658 // their own events 2659 if (!waitingOnRetry) { 2660 schedSendEvent(cache.nextQueueReadyTime()); 2661 } 2662} 2663 2664Cache:: 2665MemSidePort::MemSidePort(const std::string &_name, Cache *_cache, 2666 const std::string &_label) 2667 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), 2668 _reqQueue(*_cache, *this, _snoopRespQueue, _label), 2669 _snoopRespQueue(*_cache, *this, _label), cache(_cache) 2670{ 2671} 2672