cache.cc revision 11744:5d33c6972dda
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nathan Binkert
44 *          Steve Reinhardt
45 *          Ron Dreslinski
46 *          Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/misc.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "debug/CacheVerbose.hh"
62#include "mem/cache/blk.hh"
63#include "mem/cache/mshr.hh"
64#include "mem/cache/prefetch/base.hh"
65#include "sim/sim_exit.hh"
66
67Cache::Cache(const CacheParams *p)
68    : BaseCache(p, p->system->cacheLineSize()),
69      tags(p->tags),
70      prefetcher(p->prefetcher),
71      doFastWrites(true),
72      prefetchOnAccess(p->prefetch_on_access),
73      clusivity(p->clusivity),
74      writebackClean(p->writeback_clean),
75      tempBlockWriteback(nullptr),
76      writebackTempBlockAtomicEvent(this, false,
77                                    EventBase::Delayed_Writeback_Pri)
78{
79    tempBlock = new CacheBlk();
80    tempBlock->data = new uint8_t[blkSize];
81
82    cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
83                                  "CpuSidePort");
84    memSidePort = new MemSidePort(p->name + ".mem_side", this,
85                                  "MemSidePort");
86
87    tags->setCache(this);
88    if (prefetcher)
89        prefetcher->setCache(this);
90}
91
92Cache::~Cache()
93{
94    delete [] tempBlock->data;
95    delete tempBlock;
96
97    delete cpuSidePort;
98    delete memSidePort;
99}
100
101void
102Cache::regStats()
103{
104    BaseCache::regStats();
105}
106
107void
108Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
109{
110    assert(pkt->isRequest());
111
112    uint64_t overwrite_val;
113    bool overwrite_mem;
114    uint64_t condition_val64;
115    uint32_t condition_val32;
116
117    int offset = tags->extractBlkOffset(pkt->getAddr());
118    uint8_t *blk_data = blk->data + offset;
119
120    assert(sizeof(uint64_t) >= pkt->getSize());
121
122    overwrite_mem = true;
123    // keep a copy of our possible write value, and copy what is at the
124    // memory address into the packet
125    pkt->writeData((uint8_t *)&overwrite_val);
126    pkt->setData(blk_data);
127
128    if (pkt->req->isCondSwap()) {
129        if (pkt->getSize() == sizeof(uint64_t)) {
130            condition_val64 = pkt->req->getExtraData();
131            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
132                                         sizeof(uint64_t));
133        } else if (pkt->getSize() == sizeof(uint32_t)) {
134            condition_val32 = (uint32_t)pkt->req->getExtraData();
135            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
136                                         sizeof(uint32_t));
137        } else
138            panic("Invalid size for conditional read/write\n");
139    }
140
141    if (overwrite_mem) {
142        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
143        blk->status |= BlkDirty;
144    }
145}
146
147
148void
149Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
150                      bool deferred_response, bool pending_downgrade)
151{
152    assert(pkt->isRequest());
153
154    assert(blk && blk->isValid());
155    // Occasionally this is not true... if we are a lower-level cache
156    // satisfying a string of Read and ReadEx requests from
157    // upper-level caches, a Read will mark the block as shared but we
158    // can satisfy a following ReadEx anyway since we can rely on the
159    // Read requester(s) to have buffered the ReadEx snoop and to
160    // invalidate their blocks after receiving them.
161    // assert(!pkt->needsWritable() || blk->isWritable());
162    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
163
164    // Check RMW operations first since both isRead() and
165    // isWrite() will be true for them
166    if (pkt->cmd == MemCmd::SwapReq) {
167        cmpAndSwap(blk, pkt);
168    } else if (pkt->isWrite()) {
169        // we have the block in a writable state and can go ahead,
170        // note that the line may be also be considered writable in
171        // downstream caches along the path to memory, but always
172        // Exclusive, and never Modified
173        assert(blk->isWritable());
174        // Write or WriteLine at the first cache with block in writable state
175        if (blk->checkWrite(pkt)) {
176            pkt->writeDataToBlock(blk->data, blkSize);
177        }
178        // Always mark the line as dirty (and thus transition to the
179        // Modified state) even if we are a failed StoreCond so we
180        // supply data to any snoops that have appended themselves to
181        // this cache before knowing the store will fail.
182        blk->status |= BlkDirty;
183        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
184    } else if (pkt->isRead()) {
185        if (pkt->isLLSC()) {
186            blk->trackLoadLocked(pkt);
187        }
188
189        // all read responses have a data payload
190        assert(pkt->hasRespData());
191        pkt->setDataFromBlock(blk->data, blkSize);
192
193        // determine if this read is from a (coherent) cache or not
194        if (pkt->fromCache()) {
195            assert(pkt->getSize() == blkSize);
196            // special handling for coherent block requests from
197            // upper-level caches
198            if (pkt->needsWritable()) {
199                // sanity check
200                assert(pkt->cmd == MemCmd::ReadExReq ||
201                       pkt->cmd == MemCmd::SCUpgradeFailReq);
202                assert(!pkt->hasSharers());
203
204                // if we have a dirty copy, make sure the recipient
205                // keeps it marked dirty (in the modified state)
206                if (blk->isDirty()) {
207                    pkt->setCacheResponding();
208                    blk->status &= ~BlkDirty;
209                }
210            } else if (blk->isWritable() && !pending_downgrade &&
211                       !pkt->hasSharers() &&
212                       pkt->cmd != MemCmd::ReadCleanReq) {
213                // we can give the requester a writable copy on a read
214                // request if:
215                // - we have a writable copy at this level (& below)
216                // - we don't have a pending snoop from below
217                //   signaling another read request
218                // - no other cache above has a copy (otherwise it
219                //   would have set hasSharers flag when
220                //   snooping the packet)
221                // - the read has explicitly asked for a clean
222                //   copy of the line
223                if (blk->isDirty()) {
224                    // special considerations if we're owner:
225                    if (!deferred_response) {
226                        // respond with the line in Modified state
227                        // (cacheResponding set, hasSharers not set)
228                        pkt->setCacheResponding();
229
230                        // if this cache is mostly inclusive, we
231                        // keep the block in the Exclusive state,
232                        // and pass it upwards as Modified
233                        // (writable and dirty), hence we have
234                        // multiple caches, all on the same path
235                        // towards memory, all considering the
236                        // same block writable, but only one
237                        // considering it Modified
238
239                        // we get away with multiple caches (on
240                        // the same path to memory) considering
241                        // the block writeable as we always enter
242                        // the cache hierarchy through a cache,
243                        // and first snoop upwards in all other
244                        // branches
245                        blk->status &= ~BlkDirty;
246                    } else {
247                        // if we're responding after our own miss,
248                        // there's a window where the recipient didn't
249                        // know it was getting ownership and may not
250                        // have responded to snoops correctly, so we
251                        // have to respond with a shared line
252                        pkt->setHasSharers();
253                    }
254                }
255            } else {
256                // otherwise only respond with a shared copy
257                pkt->setHasSharers();
258            }
259        }
260    } else if (pkt->isUpgrade()) {
261        // sanity check
262        assert(!pkt->hasSharers());
263
264        if (blk->isDirty()) {
265            // we were in the Owned state, and a cache above us that
266            // has the line in Shared state needs to be made aware
267            // that the data it already has is in fact dirty
268            pkt->setCacheResponding();
269            blk->status &= ~BlkDirty;
270        }
271    } else {
272        assert(pkt->isInvalidate());
273        invalidateBlock(blk);
274        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
275                pkt->print());
276    }
277}
278
279/////////////////////////////////////////////////////
280//
281// Access path: requests coming in from the CPU side
282//
283/////////////////////////////////////////////////////
284
285bool
286Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
287              PacketList &writebacks)
288{
289    // sanity check
290    assert(pkt->isRequest());
291
292    chatty_assert(!(isReadOnly && pkt->isWrite()),
293                  "Should never see a write in a read-only cache %s\n",
294                  name());
295
296    DPRINTF(CacheVerbose, "%s for %s\n", __func__, pkt->print());
297
298    if (pkt->req->isUncacheable()) {
299        DPRINTF(Cache, "uncacheable: %s\n", pkt->print());
300
301        // flush and invalidate any existing block
302        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
303        if (old_blk && old_blk->isValid()) {
304            if (old_blk->isDirty() || writebackClean)
305                writebacks.push_back(writebackBlk(old_blk));
306            else
307                writebacks.push_back(cleanEvictBlk(old_blk));
308            tags->invalidate(old_blk);
309            old_blk->invalidate();
310        }
311
312        blk = nullptr;
313        // lookupLatency is the latency in case the request is uncacheable.
314        lat = lookupLatency;
315        return false;
316    }
317
318    ContextID id = pkt->req->hasContextId() ?
319        pkt->req->contextId() : InvalidContextID;
320    // Here lat is the value passed as parameter to accessBlock() function
321    // that can modify its value.
322    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
323
324    DPRINTF(Cache, "%s %s\n", pkt->print(),
325            blk ? "hit " + blk->print() : "miss");
326
327
328    if (pkt->isEviction()) {
329        // We check for presence of block in above caches before issuing
330        // Writeback or CleanEvict to write buffer. Therefore the only
331        // possible cases can be of a CleanEvict packet coming from above
332        // encountering a Writeback generated in this cache peer cache and
333        // waiting in the write buffer. Cases of upper level peer caches
334        // generating CleanEvict and Writeback or simply CleanEvict and
335        // CleanEvict almost simultaneously will be caught by snoops sent out
336        // by crossbar.
337        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
338                                                          pkt->isSecure());
339        if (wb_entry) {
340            assert(wb_entry->getNumTargets() == 1);
341            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
342            assert(wbPkt->isWriteback());
343
344            if (pkt->isCleanEviction()) {
345                // The CleanEvict and WritebackClean snoops into other
346                // peer caches of the same level while traversing the
347                // crossbar. If a copy of the block is found, the
348                // packet is deleted in the crossbar. Hence, none of
349                // the other upper level caches connected to this
350                // cache have the block, so we can clear the
351                // BLOCK_CACHED flag in the Writeback if set and
352                // discard the CleanEvict by returning true.
353                wbPkt->clearBlockCached();
354                return true;
355            } else {
356                assert(pkt->cmd == MemCmd::WritebackDirty);
357                // Dirty writeback from above trumps our clean
358                // writeback... discard here
359                // Note: markInService will remove entry from writeback buffer.
360                markInService(wb_entry);
361                delete wbPkt;
362            }
363        }
364    }
365
366    // Writeback handling is special case.  We can write the block into
367    // the cache without having a writeable copy (or any copy at all).
368    if (pkt->isWriteback()) {
369        assert(blkSize == pkt->getSize());
370
371        // we could get a clean writeback while we are having
372        // outstanding accesses to a block, do the simple thing for
373        // now and drop the clean writeback so that we do not upset
374        // any ordering/decisions about ownership already taken
375        if (pkt->cmd == MemCmd::WritebackClean &&
376            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
377            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
378                    "dropping\n", pkt->getAddr());
379            return true;
380        }
381
382        if (blk == nullptr) {
383            // need to do a replacement
384            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
385            if (blk == nullptr) {
386                // no replaceable block available: give up, fwd to next level.
387                incMissCount(pkt);
388                return false;
389            }
390            tags->insertBlock(pkt, blk);
391
392            blk->status = (BlkValid | BlkReadable);
393            if (pkt->isSecure()) {
394                blk->status |= BlkSecure;
395            }
396        }
397        // only mark the block dirty if we got a writeback command,
398        // and leave it as is for a clean writeback
399        if (pkt->cmd == MemCmd::WritebackDirty) {
400            blk->status |= BlkDirty;
401        }
402        // if the packet does not have sharers, it is passing
403        // writable, and we got the writeback in Modified or Exclusive
404        // state, if not we are in the Owned or Shared state
405        if (!pkt->hasSharers()) {
406            blk->status |= BlkWritable;
407        }
408        // nothing else to do; writeback doesn't expect response
409        assert(!pkt->needsResponse());
410        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
411        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
412        incHitCount(pkt);
413        return true;
414    } else if (pkt->cmd == MemCmd::CleanEvict) {
415        if (blk != nullptr) {
416            // Found the block in the tags, need to stop CleanEvict from
417            // propagating further down the hierarchy. Returning true will
418            // treat the CleanEvict like a satisfied write request and delete
419            // it.
420            return true;
421        }
422        // We didn't find the block here, propagate the CleanEvict further
423        // down the memory hierarchy. Returning false will treat the CleanEvict
424        // like a Writeback which could not find a replaceable block so has to
425        // go to next level.
426        return false;
427    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
428                       blk->isReadable())) {
429        // OK to satisfy access
430        incHitCount(pkt);
431        satisfyRequest(pkt, blk);
432        maintainClusivity(pkt->fromCache(), blk);
433
434        return true;
435    }
436
437    // Can't satisfy access normally... either no block (blk == nullptr)
438    // or have block but need writable
439
440    incMissCount(pkt);
441
442    if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) {
443        // complete miss on store conditional... just give up now
444        pkt->req->setExtraData(0);
445        return true;
446    }
447
448    return false;
449}
450
451void
452Cache::maintainClusivity(bool from_cache, CacheBlk *blk)
453{
454    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
455        clusivity == Enums::mostly_excl) {
456        // if we have responded to a cache, and our block is still
457        // valid, but not dirty, and this cache is mostly exclusive
458        // with respect to the cache above, drop the block
459        invalidateBlock(blk);
460    }
461}
462
463void
464Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
465{
466    while (!writebacks.empty()) {
467        PacketPtr wbPkt = writebacks.front();
468        // We use forwardLatency here because we are copying writebacks to
469        // write buffer.  Call isCachedAbove for both Writebacks and
470        // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
471        // in Writebacks and discard CleanEvicts.
472        if (isCachedAbove(wbPkt)) {
473            if (wbPkt->cmd == MemCmd::CleanEvict) {
474                // Delete CleanEvict because cached copies exist above. The
475                // packet destructor will delete the request object because
476                // this is a non-snoop request packet which does not require a
477                // response.
478                delete wbPkt;
479            } else if (wbPkt->cmd == MemCmd::WritebackClean) {
480                // clean writeback, do not send since the block is
481                // still cached above
482                assert(writebackClean);
483                delete wbPkt;
484            } else {
485                assert(wbPkt->cmd == MemCmd::WritebackDirty);
486                // Set BLOCK_CACHED flag in Writeback and send below, so that
487                // the Writeback does not reset the bit corresponding to this
488                // address in the snoop filter below.
489                wbPkt->setBlockCached();
490                allocateWriteBuffer(wbPkt, forward_time);
491            }
492        } else {
493            // If the block is not cached above, send packet below. Both
494            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
495            // reset the bit corresponding to this address in the snoop filter
496            // below.
497            allocateWriteBuffer(wbPkt, forward_time);
498        }
499        writebacks.pop_front();
500    }
501}
502
503void
504Cache::doWritebacksAtomic(PacketList& writebacks)
505{
506    while (!writebacks.empty()) {
507        PacketPtr wbPkt = writebacks.front();
508        // Call isCachedAbove for both Writebacks and CleanEvicts. If
509        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
510        // and discard CleanEvicts.
511        if (isCachedAbove(wbPkt, false)) {
512            if (wbPkt->cmd == MemCmd::WritebackDirty) {
513                // Set BLOCK_CACHED flag in Writeback and send below,
514                // so that the Writeback does not reset the bit
515                // corresponding to this address in the snoop filter
516                // below. We can discard CleanEvicts because cached
517                // copies exist above. Atomic mode isCachedAbove
518                // modifies packet to set BLOCK_CACHED flag
519                memSidePort->sendAtomic(wbPkt);
520            }
521        } else {
522            // If the block is not cached above, send packet below. Both
523            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
524            // reset the bit corresponding to this address in the snoop filter
525            // below.
526            memSidePort->sendAtomic(wbPkt);
527        }
528        writebacks.pop_front();
529        // In case of CleanEvicts, the packet destructor will delete the
530        // request object because this is a non-snoop request packet which
531        // does not require a response.
532        delete wbPkt;
533    }
534}
535
536
537void
538Cache::recvTimingSnoopResp(PacketPtr pkt)
539{
540    DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
541
542    assert(pkt->isResponse());
543    assert(!system->bypassCaches());
544
545    // determine if the response is from a snoop request we created
546    // (in which case it should be in the outstandingSnoop), or if we
547    // merely forwarded someone else's snoop request
548    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
549        outstandingSnoop.end();
550
551    if (!forwardAsSnoop) {
552        // the packet came from this cache, so sink it here and do not
553        // forward it
554        assert(pkt->cmd == MemCmd::HardPFResp);
555
556        outstandingSnoop.erase(pkt->req);
557
558        DPRINTF(Cache, "Got prefetch response from above for addr "
559                "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
560        recvTimingResp(pkt);
561        return;
562    }
563
564    // forwardLatency is set here because there is a response from an
565    // upper level cache.
566    // To pay the delay that occurs if the packet comes from the bus,
567    // we charge also headerDelay.
568    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
569    // Reset the timing of the packet.
570    pkt->headerDelay = pkt->payloadDelay = 0;
571    memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
572}
573
574void
575Cache::promoteWholeLineWrites(PacketPtr pkt)
576{
577    // Cache line clearing instructions
578    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
579        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
580        pkt->cmd = MemCmd::WriteLineReq;
581        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
582    }
583}
584
585bool
586Cache::recvTimingReq(PacketPtr pkt)
587{
588    DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
589
590    assert(pkt->isRequest());
591
592    // Just forward the packet if caches are disabled.
593    if (system->bypassCaches()) {
594        // @todo This should really enqueue the packet rather
595        bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
596        assert(success);
597        return true;
598    }
599
600    promoteWholeLineWrites(pkt);
601
602    if (pkt->cacheResponding()) {
603        // a cache above us (but not where the packet came from) is
604        // responding to the request, in other words it has the line
605        // in Modified or Owned state
606        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
607                pkt->print());
608
609        // if the packet needs the block to be writable, and the cache
610        // that has promised to respond (setting the cache responding
611        // flag) is not providing writable (it is in Owned rather than
612        // the Modified state), we know that there may be other Shared
613        // copies in the system; go out and invalidate them all
614        assert(pkt->needsWritable() && !pkt->responderHadWritable());
615
616        // an upstream cache that had the line in Owned state
617        // (dirty, but not writable), is responding and thus
618        // transferring the dirty line from one branch of the
619        // cache hierarchy to another
620
621        // send out an express snoop and invalidate all other
622        // copies (snooping a packet that needs writable is the
623        // same as an invalidation), thus turning the Owned line
624        // into a Modified line, note that we don't invalidate the
625        // block in the current cache or any other cache on the
626        // path to memory
627
628        // create a downstream express snoop with cleared packet
629        // flags, there is no need to allocate any data as the
630        // packet is merely used to co-ordinate state transitions
631        Packet *snoop_pkt = new Packet(pkt, true, false);
632
633        // also reset the bus time that the original packet has
634        // not yet paid for
635        snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
636
637        // make this an instantaneous express snoop, and let the
638        // other caches in the system know that the another cache
639        // is responding, because we have found the authorative
640        // copy (Modified or Owned) that will supply the right
641        // data
642        snoop_pkt->setExpressSnoop();
643        snoop_pkt->setCacheResponding();
644
645        // this express snoop travels towards the memory, and at
646        // every crossbar it is snooped upwards thus reaching
647        // every cache in the system
648        bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
649        // express snoops always succeed
650        assert(success);
651
652        // main memory will delete the snoop packet
653
654        // queue for deletion, as opposed to immediate deletion, as
655        // the sending cache is still relying on the packet
656        pendingDelete.reset(pkt);
657
658        // no need to take any further action in this particular cache
659        // as an upstram cache has already committed to responding,
660        // and we have already sent out any express snoops in the
661        // section above to ensure all other copies in the system are
662        // invalidated
663        return true;
664    }
665
666    // anything that is merely forwarded pays for the forward latency and
667    // the delay provided by the crossbar
668    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
669
670    // We use lookupLatency here because it is used to specify the latency
671    // to access.
672    Cycles lat = lookupLatency;
673    CacheBlk *blk = nullptr;
674    bool satisfied = false;
675    {
676        PacketList writebacks;
677        // Note that lat is passed by reference here. The function
678        // access() calls accessBlock() which can modify lat value.
679        satisfied = access(pkt, blk, lat, writebacks);
680
681        // copy writebacks to write buffer here to ensure they logically
682        // proceed anything happening below
683        doWritebacks(writebacks, forward_time);
684    }
685
686    // Here we charge the headerDelay that takes into account the latencies
687    // of the bus, if the packet comes from it.
688    // The latency charged it is just lat that is the value of lookupLatency
689    // modified by access() function, or if not just lookupLatency.
690    // In case of a hit we are neglecting response latency.
691    // In case of a miss we are neglecting forward latency.
692    Tick request_time = clockEdge(lat) + pkt->headerDelay;
693    // Here we reset the timing of the packet.
694    pkt->headerDelay = pkt->payloadDelay = 0;
695
696    // track time of availability of next prefetch, if any
697    Tick next_pf_time = MaxTick;
698
699    bool needsResponse = pkt->needsResponse();
700
701    if (satisfied) {
702        // should never be satisfying an uncacheable access as we
703        // flush and invalidate any existing block as part of the
704        // lookup
705        assert(!pkt->req->isUncacheable());
706
707        // hit (for all other request types)
708
709        if (prefetcher && (prefetchOnAccess ||
710                           (blk && blk->wasPrefetched()))) {
711            if (blk)
712                blk->status &= ~BlkHWPrefetched;
713
714            // Don't notify on SWPrefetch
715            if (!pkt->cmd.isSWPrefetch())
716                next_pf_time = prefetcher->notify(pkt);
717        }
718
719        if (needsResponse) {
720            pkt->makeTimingResponse();
721            // @todo: Make someone pay for this
722            pkt->headerDelay = pkt->payloadDelay = 0;
723
724            // In this case we are considering request_time that takes
725            // into account the delay of the xbar, if any, and just
726            // lat, neglecting responseLatency, modelling hit latency
727            // just as lookupLatency or or the value of lat overriden
728            // by access(), that calls accessBlock() function.
729            cpuSidePort->schedTimingResp(pkt, request_time, true);
730        } else {
731            DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
732                    pkt->print());
733
734            // queue the packet for deletion, as the sending cache is
735            // still relying on it; if the block is found in access(),
736            // CleanEvict and Writeback messages will be deleted
737            // here as well
738            pendingDelete.reset(pkt);
739        }
740    } else {
741        // miss
742
743        Addr blk_addr = blockAlign(pkt->getAddr());
744
745        // ignore any existing MSHR if we are dealing with an
746        // uncacheable request
747        MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
748            mshrQueue.findMatch(blk_addr, pkt->isSecure());
749
750        // Software prefetch handling:
751        // To keep the core from waiting on data it won't look at
752        // anyway, send back a response with dummy data. Miss handling
753        // will continue asynchronously. Unfortunately, the core will
754        // insist upon freeing original Packet/Request, so we have to
755        // create a new pair with a different lifecycle. Note that this
756        // processing happens before any MSHR munging on the behalf of
757        // this request because this new Request will be the one stored
758        // into the MSHRs, not the original.
759        if (pkt->cmd.isSWPrefetch()) {
760            assert(needsResponse);
761            assert(pkt->req->hasPaddr());
762            assert(!pkt->req->isUncacheable());
763
764            // There's no reason to add a prefetch as an additional target
765            // to an existing MSHR. If an outstanding request is already
766            // in progress, there is nothing for the prefetch to do.
767            // If this is the case, we don't even create a request at all.
768            PacketPtr pf = nullptr;
769
770            if (!mshr) {
771                // copy the request and create a new SoftPFReq packet
772                RequestPtr req = new Request(pkt->req->getPaddr(),
773                                             pkt->req->getSize(),
774                                             pkt->req->getFlags(),
775                                             pkt->req->masterId());
776                pf = new Packet(req, pkt->cmd);
777                pf->allocate();
778                assert(pf->getAddr() == pkt->getAddr());
779                assert(pf->getSize() == pkt->getSize());
780            }
781
782            pkt->makeTimingResponse();
783
784            // request_time is used here, taking into account lat and the delay
785            // charged if the packet comes from the xbar.
786            cpuSidePort->schedTimingResp(pkt, request_time, true);
787
788            // If an outstanding request is in progress (we found an
789            // MSHR) this is set to null
790            pkt = pf;
791        }
792
793        if (mshr) {
794            /// MSHR hit
795            /// @note writebacks will be checked in getNextMSHR()
796            /// for any conflicting requests to the same block
797
798            //@todo remove hw_pf here
799
800            // Coalesce unless it was a software prefetch (see above).
801            if (pkt) {
802                assert(!pkt->isWriteback());
803                // CleanEvicts corresponding to blocks which have
804                // outstanding requests in MSHRs are simply sunk here
805                if (pkt->cmd == MemCmd::CleanEvict) {
806                    pendingDelete.reset(pkt);
807                } else {
808                    DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
809                            pkt->print());
810
811                    assert(pkt->req->masterId() < system->maxMasters());
812                    mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
813                    // We use forward_time here because it is the same
814                    // considering new targets. We have multiple
815                    // requests for the same address here. It
816                    // specifies the latency to allocate an internal
817                    // buffer and to schedule an event to the queued
818                    // port and also takes into account the additional
819                    // delay of the xbar.
820                    mshr->allocateTarget(pkt, forward_time, order++,
821                                         allocOnFill(pkt->cmd));
822                    if (mshr->getNumTargets() == numTarget) {
823                        noTargetMSHR = mshr;
824                        setBlocked(Blocked_NoTargets);
825                        // need to be careful with this... if this mshr isn't
826                        // ready yet (i.e. time > curTick()), we don't want to
827                        // move it ahead of mshrs that are ready
828                        // mshrQueue.moveToFront(mshr);
829                    }
830                }
831                // We should call the prefetcher reguardless if the request is
832                // satisfied or not, reguardless if the request is in the MSHR
833                // or not.  The request could be a ReadReq hit, but still not
834                // satisfied (potentially because of a prior write to the same
835                // cache line.  So, even when not satisfied, tehre is an MSHR
836                // already allocated for this, we need to let the prefetcher
837                // know about the request
838                if (prefetcher) {
839                    // Don't notify on SWPrefetch
840                    if (!pkt->cmd.isSWPrefetch())
841                        next_pf_time = prefetcher->notify(pkt);
842                }
843            }
844        } else {
845            // no MSHR
846            assert(pkt->req->masterId() < system->maxMasters());
847            if (pkt->req->isUncacheable()) {
848                mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
849            } else {
850                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
851            }
852
853            if (pkt->isEviction() ||
854                (pkt->req->isUncacheable() && pkt->isWrite())) {
855                // We use forward_time here because there is an
856                // uncached memory write, forwarded to WriteBuffer.
857                allocateWriteBuffer(pkt, forward_time);
858            } else {
859                if (blk && blk->isValid()) {
860                    // should have flushed and have no valid block
861                    assert(!pkt->req->isUncacheable());
862
863                    // If we have a write miss to a valid block, we
864                    // need to mark the block non-readable.  Otherwise
865                    // if we allow reads while there's an outstanding
866                    // write miss, the read could return stale data
867                    // out of the cache block... a more aggressive
868                    // system could detect the overlap (if any) and
869                    // forward data out of the MSHRs, but we don't do
870                    // that yet.  Note that we do need to leave the
871                    // block valid so that it stays in the cache, in
872                    // case we get an upgrade response (and hence no
873                    // new data) when the write miss completes.
874                    // As long as CPUs do proper store/load forwarding
875                    // internally, and have a sufficiently weak memory
876                    // model, this is probably unnecessary, but at some
877                    // point it must have seemed like we needed it...
878                    assert(pkt->needsWritable());
879                    assert(!blk->isWritable());
880                    blk->status &= ~BlkReadable;
881                }
882                // Here we are using forward_time, modelling the latency of
883                // a miss (outbound) just as forwardLatency, neglecting the
884                // lookupLatency component.
885                allocateMissBuffer(pkt, forward_time);
886            }
887
888            if (prefetcher) {
889                // Don't notify on SWPrefetch
890                if (!pkt->cmd.isSWPrefetch())
891                    next_pf_time = prefetcher->notify(pkt);
892            }
893        }
894    }
895
896    if (next_pf_time != MaxTick)
897        schedMemSideSendEvent(next_pf_time);
898
899    return true;
900}
901
902PacketPtr
903Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
904                        bool needsWritable) const
905{
906    // should never see evictions here
907    assert(!cpu_pkt->isEviction());
908
909    bool blkValid = blk && blk->isValid();
910
911    if (cpu_pkt->req->isUncacheable() ||
912        (!blkValid && cpu_pkt->isUpgrade())) {
913        // uncacheable requests and upgrades from upper-level caches
914        // that missed completely just go through as is
915        return nullptr;
916    }
917
918    assert(cpu_pkt->needsResponse());
919
920    MemCmd cmd;
921    // @TODO make useUpgrades a parameter.
922    // Note that ownership protocols require upgrade, otherwise a
923    // write miss on a shared owned block will generate a ReadExcl,
924    // which will clobber the owned copy.
925    const bool useUpgrades = true;
926    if (blkValid && useUpgrades) {
927        // only reason to be here is that blk is read only and we need
928        // it to be writable
929        assert(needsWritable);
930        assert(!blk->isWritable());
931        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
932    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
933               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
934        // Even though this SC will fail, we still need to send out the
935        // request and get the data to supply it to other snoopers in the case
936        // where the determination the StoreCond fails is delayed due to
937        // all caches not being on the same local bus.
938        cmd = MemCmd::SCUpgradeFailReq;
939    } else if (cpu_pkt->cmd == MemCmd::WriteLineReq ||
940               cpu_pkt->cmd == MemCmd::InvalidateReq) {
941        // forward as invalidate to all other caches, this gives us
942        // the line in Exclusive state, and invalidates all other
943        // copies
944        cmd = MemCmd::InvalidateReq;
945    } else {
946        // block is invalid
947        cmd = needsWritable ? MemCmd::ReadExReq :
948            (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
949    }
950    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
951
952    // if there are upstream caches that have already marked the
953    // packet as having sharers (not passing writable), pass that info
954    // downstream
955    if (cpu_pkt->hasSharers() && !needsWritable) {
956        // note that cpu_pkt may have spent a considerable time in the
957        // MSHR queue and that the information could possibly be out
958        // of date, however, there is no harm in conservatively
959        // assuming the block has sharers
960        pkt->setHasSharers();
961        DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n",
962                __func__, cpu_pkt->print(), pkt->print());
963    }
964
965    // the packet should be block aligned
966    assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
967
968    pkt->allocate();
969    DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(),
970            cpu_pkt->print());
971    return pkt;
972}
973
974
975Tick
976Cache::recvAtomic(PacketPtr pkt)
977{
978    // We are in atomic mode so we pay just for lookupLatency here.
979    Cycles lat = lookupLatency;
980
981    // Forward the request if the system is in cache bypass mode.
982    if (system->bypassCaches())
983        return ticksToCycles(memSidePort->sendAtomic(pkt));
984
985    promoteWholeLineWrites(pkt);
986
987    // follow the same flow as in recvTimingReq, and check if a cache
988    // above us is responding
989    if (pkt->cacheResponding()) {
990        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
991                pkt->print());
992
993        // if a cache is responding, and it had the line in Owned
994        // rather than Modified state, we need to invalidate any
995        // copies that are not on the same path to memory
996        assert(pkt->needsWritable() && !pkt->responderHadWritable());
997        lat += ticksToCycles(memSidePort->sendAtomic(pkt));
998
999        return lat * clockPeriod();
1000    }
1001
1002    // should assert here that there are no outstanding MSHRs or
1003    // writebacks... that would mean that someone used an atomic
1004    // access in timing mode
1005
1006    CacheBlk *blk = nullptr;
1007    PacketList writebacks;
1008    bool satisfied = access(pkt, blk, lat, writebacks);
1009
1010    // handle writebacks resulting from the access here to ensure they
1011    // logically proceed anything happening below
1012    doWritebacksAtomic(writebacks);
1013
1014    if (!satisfied) {
1015        // MISS
1016
1017        // deal with the packets that go through the write path of
1018        // the cache, i.e. any evictions and uncacheable writes
1019        if (pkt->isEviction() ||
1020            (pkt->req->isUncacheable() && pkt->isWrite())) {
1021            lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1022            return lat * clockPeriod();
1023        }
1024        // only misses left
1025
1026        PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
1027
1028        bool is_forward = (bus_pkt == nullptr);
1029
1030        if (is_forward) {
1031            // just forwarding the same request to the next level
1032            // no local cache operation involved
1033            bus_pkt = pkt;
1034        }
1035
1036        DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__,
1037                bus_pkt->print());
1038
1039#if TRACING_ON
1040        CacheBlk::State old_state = blk ? blk->status : 0;
1041#endif
1042
1043        lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1044
1045        bool is_invalidate = bus_pkt->isInvalidate();
1046
1047        // We are now dealing with the response handling
1048        DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__,
1049                bus_pkt->print(), old_state);
1050
1051        // If packet was a forward, the response (if any) is already
1052        // in place in the bus_pkt == pkt structure, so we don't need
1053        // to do anything.  Otherwise, use the separate bus_pkt to
1054        // generate response to pkt and then delete it.
1055        if (!is_forward) {
1056            if (pkt->needsResponse()) {
1057                assert(bus_pkt->isResponse());
1058                if (bus_pkt->isError()) {
1059                    pkt->makeAtomicResponse();
1060                    pkt->copyError(bus_pkt);
1061                } else if (pkt->cmd == MemCmd::WriteLineReq) {
1062                    // note the use of pkt, not bus_pkt here.
1063
1064                    // write-line request to the cache that promoted
1065                    // the write to a whole line
1066                    blk = handleFill(pkt, blk, writebacks,
1067                                     allocOnFill(pkt->cmd));
1068                    assert(blk != NULL);
1069                    is_invalidate = false;
1070                    satisfyRequest(pkt, blk);
1071                } else if (bus_pkt->isRead() ||
1072                           bus_pkt->cmd == MemCmd::UpgradeResp) {
1073                    // we're updating cache state to allow us to
1074                    // satisfy the upstream request from the cache
1075                    blk = handleFill(bus_pkt, blk, writebacks,
1076                                     allocOnFill(pkt->cmd));
1077                    satisfyRequest(pkt, blk);
1078                    maintainClusivity(pkt->fromCache(), blk);
1079                } else {
1080                    // we're satisfying the upstream request without
1081                    // modifying cache state, e.g., a write-through
1082                    pkt->makeAtomicResponse();
1083                }
1084            }
1085            delete bus_pkt;
1086        }
1087
1088        if (is_invalidate && blk && blk->isValid()) {
1089            invalidateBlock(blk);
1090        }
1091    }
1092
1093    // Note that we don't invoke the prefetcher at all in atomic mode.
1094    // It's not clear how to do it properly, particularly for
1095    // prefetchers that aggressively generate prefetch candidates and
1096    // rely on bandwidth contention to throttle them; these will tend
1097    // to pollute the cache in atomic mode since there is no bandwidth
1098    // contention.  If we ever do want to enable prefetching in atomic
1099    // mode, though, this is the place to do it... see timingAccess()
1100    // for an example (though we'd want to issue the prefetch(es)
1101    // immediately rather than calling requestMemSideBus() as we do
1102    // there).
1103
1104    // do any writebacks resulting from the response handling
1105    doWritebacksAtomic(writebacks);
1106
1107    // if we used temp block, check to see if its valid and if so
1108    // clear it out, but only do so after the call to recvAtomic is
1109    // finished so that any downstream observers (such as a snoop
1110    // filter), first see the fill, and only then see the eviction
1111    if (blk == tempBlock && tempBlock->isValid()) {
1112        // the atomic CPU calls recvAtomic for fetch and load/store
1113        // sequentuially, and we may already have a tempBlock
1114        // writeback from the fetch that we have not yet sent
1115        if (tempBlockWriteback) {
1116            // if that is the case, write the prevoius one back, and
1117            // do not schedule any new event
1118            writebackTempBlockAtomic();
1119        } else {
1120            // the writeback/clean eviction happens after the call to
1121            // recvAtomic has finished (but before any successive
1122            // calls), so that the response handling from the fill is
1123            // allowed to happen first
1124            schedule(writebackTempBlockAtomicEvent, curTick());
1125        }
1126
1127        tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1128            writebackBlk(blk) : cleanEvictBlk(blk);
1129        blk->invalidate();
1130    }
1131
1132    if (pkt->needsResponse()) {
1133        pkt->makeAtomicResponse();
1134    }
1135
1136    return lat * clockPeriod();
1137}
1138
1139
1140void
1141Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1142{
1143    if (system->bypassCaches()) {
1144        // Packets from the memory side are snoop request and
1145        // shouldn't happen in bypass mode.
1146        assert(fromCpuSide);
1147
1148        // The cache should be flushed if we are in cache bypass mode,
1149        // so we don't need to check if we need to update anything.
1150        memSidePort->sendFunctional(pkt);
1151        return;
1152    }
1153
1154    Addr blk_addr = blockAlign(pkt->getAddr());
1155    bool is_secure = pkt->isSecure();
1156    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1157    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1158
1159    pkt->pushLabel(name());
1160
1161    CacheBlkPrintWrapper cbpw(blk);
1162
1163    // Note that just because an L2/L3 has valid data doesn't mean an
1164    // L1 doesn't have a more up-to-date modified copy that still
1165    // needs to be found.  As a result we always update the request if
1166    // we have it, but only declare it satisfied if we are the owner.
1167
1168    // see if we have data at all (owned or otherwise)
1169    bool have_data = blk && blk->isValid()
1170        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1171                                blk->data);
1172
1173    // data we have is dirty if marked as such or if we have an
1174    // in-service MSHR that is pending a modified line
1175    bool have_dirty =
1176        have_data && (blk->isDirty() ||
1177                      (mshr && mshr->inService && mshr->isPendingModified()));
1178
1179    bool done = have_dirty
1180        || cpuSidePort->checkFunctional(pkt)
1181        || mshrQueue.checkFunctional(pkt, blk_addr)
1182        || writeBuffer.checkFunctional(pkt, blk_addr)
1183        || memSidePort->checkFunctional(pkt);
1184
1185    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
1186            (blk && blk->isValid()) ? "valid " : "",
1187            have_data ? "data " : "", done ? "done " : "");
1188
1189    // We're leaving the cache, so pop cache->name() label
1190    pkt->popLabel();
1191
1192    if (done) {
1193        pkt->makeResponse();
1194    } else {
1195        // if it came as a request from the CPU side then make sure it
1196        // continues towards the memory side
1197        if (fromCpuSide) {
1198            memSidePort->sendFunctional(pkt);
1199        } else if (cpuSidePort->isSnooping()) {
1200            // if it came from the memory side, it must be a snoop request
1201            // and we should only forward it if we are forwarding snoops
1202            cpuSidePort->sendFunctionalSnoop(pkt);
1203        }
1204    }
1205}
1206
1207
1208/////////////////////////////////////////////////////
1209//
1210// Response handling: responses from the memory side
1211//
1212/////////////////////////////////////////////////////
1213
1214
1215void
1216Cache::handleUncacheableWriteResp(PacketPtr pkt)
1217{
1218    Tick completion_time = clockEdge(responseLatency) +
1219        pkt->headerDelay + pkt->payloadDelay;
1220
1221    // Reset the bus additional time as it is now accounted for
1222    pkt->headerDelay = pkt->payloadDelay = 0;
1223
1224    cpuSidePort->schedTimingResp(pkt, completion_time, true);
1225}
1226
1227void
1228Cache::recvTimingResp(PacketPtr pkt)
1229{
1230    assert(pkt->isResponse());
1231
1232    // all header delay should be paid for by the crossbar, unless
1233    // this is a prefetch response from above
1234    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1235             "%s saw a non-zero packet delay\n", name());
1236
1237    bool is_error = pkt->isError();
1238
1239    if (is_error) {
1240        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
1241                pkt->print());
1242    }
1243
1244    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
1245            pkt->print());
1246
1247    // if this is a write, we should be looking at an uncacheable
1248    // write
1249    if (pkt->isWrite()) {
1250        assert(pkt->req->isUncacheable());
1251        handleUncacheableWriteResp(pkt);
1252        return;
1253    }
1254
1255    // we have dealt with any (uncacheable) writes above, from here on
1256    // we know we are dealing with an MSHR due to a miss or a prefetch
1257    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
1258    assert(mshr);
1259
1260    if (mshr == noTargetMSHR) {
1261        // we always clear at least one target
1262        clearBlocked(Blocked_NoTargets);
1263        noTargetMSHR = nullptr;
1264    }
1265
1266    // Initial target is used just for stats
1267    MSHR::Target *initial_tgt = mshr->getTarget();
1268    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1269    Tick miss_latency = curTick() - initial_tgt->recvTime;
1270
1271    if (pkt->req->isUncacheable()) {
1272        assert(pkt->req->masterId() < system->maxMasters());
1273        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1274            miss_latency;
1275    } else {
1276        assert(pkt->req->masterId() < system->maxMasters());
1277        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1278            miss_latency;
1279    }
1280
1281    bool wasFull = mshrQueue.isFull();
1282
1283    PacketList writebacks;
1284
1285    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1286
1287    // upgrade deferred targets if the response has no sharers, and is
1288    // thus passing writable
1289    if (!pkt->hasSharers()) {
1290        mshr->promoteWritable();
1291    }
1292
1293    bool is_fill = !mshr->isForward &&
1294        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1295
1296    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1297
1298    if (is_fill && !is_error) {
1299        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1300                pkt->getAddr());
1301
1302        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
1303        assert(blk != nullptr);
1304    }
1305
1306    // allow invalidation responses originating from write-line
1307    // requests to be discarded
1308    bool is_invalidate = pkt->isInvalidate();
1309
1310    // First offset for critical word first calculations
1311    int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1312
1313    bool from_cache = false;
1314    MSHR::TargetList targets = mshr->extractServiceableTargets(pkt);
1315    for (auto &target: targets) {
1316        Packet *tgt_pkt = target.pkt;
1317        switch (target.source) {
1318          case MSHR::Target::FromCPU:
1319            Tick completion_time;
1320            // Here we charge on completion_time the delay of the xbar if the
1321            // packet comes from it, charged on headerDelay.
1322            completion_time = pkt->headerDelay;
1323
1324            // Software prefetch handling for cache closest to core
1325            if (tgt_pkt->cmd.isSWPrefetch()) {
1326                // a software prefetch would have already been ack'd
1327                // immediately with dummy data so the core would be able to
1328                // retire it. This request completes right here, so we
1329                // deallocate it.
1330                delete tgt_pkt->req;
1331                delete tgt_pkt;
1332                break; // skip response
1333            }
1334
1335            // keep track of whether we have responded to another
1336            // cache
1337            from_cache = from_cache || tgt_pkt->fromCache();
1338
1339            // unlike the other packet flows, where data is found in other
1340            // caches or memory and brought back, write-line requests always
1341            // have the data right away, so the above check for "is fill?"
1342            // cannot actually be determined until examining the stored MSHR
1343            // state. We "catch up" with that logic here, which is duplicated
1344            // from above.
1345            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1346                assert(!is_error);
1347                // we got the block in a writable state, so promote
1348                // any deferred targets if possible
1349                mshr->promoteWritable();
1350                // NB: we use the original packet here and not the response!
1351                blk = handleFill(tgt_pkt, blk, writebacks,
1352                                 targets.allocOnFill);
1353                assert(blk != nullptr);
1354
1355                // treat as a fill, and discard the invalidation
1356                // response
1357                is_fill = true;
1358                is_invalidate = false;
1359            }
1360
1361            if (is_fill) {
1362                satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
1363
1364                // How many bytes past the first request is this one
1365                int transfer_offset =
1366                    tgt_pkt->getOffset(blkSize) - initial_offset;
1367                if (transfer_offset < 0) {
1368                    transfer_offset += blkSize;
1369                }
1370
1371                // If not critical word (offset) return payloadDelay.
1372                // responseLatency is the latency of the return path
1373                // from lower level caches/memory to an upper level cache or
1374                // the core.
1375                completion_time += clockEdge(responseLatency) +
1376                    (transfer_offset ? pkt->payloadDelay : 0);
1377
1378                assert(!tgt_pkt->req->isUncacheable());
1379
1380                assert(tgt_pkt->req->masterId() < system->maxMasters());
1381                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1382                    completion_time - target.recvTime;
1383            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1384                // failed StoreCond upgrade
1385                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1386                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1387                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1388                // responseLatency is the latency of the return path
1389                // from lower level caches/memory to an upper level cache or
1390                // the core.
1391                completion_time += clockEdge(responseLatency) +
1392                    pkt->payloadDelay;
1393                tgt_pkt->req->setExtraData(0);
1394            } else {
1395                // not a cache fill, just forwarding response
1396                // responseLatency is the latency of the return path
1397                // from lower level cahces/memory to the core.
1398                completion_time += clockEdge(responseLatency) +
1399                    pkt->payloadDelay;
1400                if (pkt->isRead() && !is_error) {
1401                    // sanity check
1402                    assert(pkt->getAddr() == tgt_pkt->getAddr());
1403                    assert(pkt->getSize() >= tgt_pkt->getSize());
1404
1405                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1406                }
1407            }
1408            tgt_pkt->makeTimingResponse();
1409            // if this packet is an error copy that to the new packet
1410            if (is_error)
1411                tgt_pkt->copyError(pkt);
1412            if (tgt_pkt->cmd == MemCmd::ReadResp &&
1413                (is_invalidate || mshr->hasPostInvalidate())) {
1414                // If intermediate cache got ReadRespWithInvalidate,
1415                // propagate that.  Response should not have
1416                // isInvalidate() set otherwise.
1417                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1418                DPRINTF(Cache, "%s: updated cmd to %s\n", __func__,
1419                        tgt_pkt->print());
1420            }
1421            // Reset the bus additional time as it is now accounted for
1422            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1423            cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1424            break;
1425
1426          case MSHR::Target::FromPrefetcher:
1427            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1428            if (blk)
1429                blk->status |= BlkHWPrefetched;
1430            delete tgt_pkt->req;
1431            delete tgt_pkt;
1432            break;
1433
1434          case MSHR::Target::FromSnoop:
1435            // I don't believe that a snoop can be in an error state
1436            assert(!is_error);
1437            // response to snoop request
1438            DPRINTF(Cache, "processing deferred snoop...\n");
1439            assert(!(is_invalidate && !mshr->hasPostInvalidate()));
1440            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1441            break;
1442
1443          default:
1444            panic("Illegal target->source enum %d\n", target.source);
1445        }
1446    }
1447
1448    maintainClusivity(from_cache, blk);
1449
1450    if (blk && blk->isValid()) {
1451        // an invalidate response stemming from a write line request
1452        // should not invalidate the block, so check if the
1453        // invalidation should be discarded
1454        if (is_invalidate || mshr->hasPostInvalidate()) {
1455            invalidateBlock(blk);
1456        } else if (mshr->hasPostDowngrade()) {
1457            blk->status &= ~BlkWritable;
1458        }
1459    }
1460
1461    if (mshr->promoteDeferredTargets()) {
1462        // avoid later read getting stale data while write miss is
1463        // outstanding.. see comment in timingAccess()
1464        if (blk) {
1465            blk->status &= ~BlkReadable;
1466        }
1467        mshrQueue.markPending(mshr);
1468        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1469    } else {
1470        mshrQueue.deallocate(mshr);
1471        if (wasFull && !mshrQueue.isFull()) {
1472            clearBlocked(Blocked_NoMSHRs);
1473        }
1474
1475        // Request the bus for a prefetch if this deallocation freed enough
1476        // MSHRs for a prefetch to take place
1477        if (prefetcher && mshrQueue.canPrefetch()) {
1478            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1479                                         clockEdge());
1480            if (next_pf_time != MaxTick)
1481                schedMemSideSendEvent(next_pf_time);
1482        }
1483    }
1484    // reset the xbar additional timinig  as it is now accounted for
1485    pkt->headerDelay = pkt->payloadDelay = 0;
1486
1487    // copy writebacks to write buffer
1488    doWritebacks(writebacks, forward_time);
1489
1490    // if we used temp block, check to see if its valid and then clear it out
1491    if (blk == tempBlock && tempBlock->isValid()) {
1492        // We use forwardLatency here because we are copying
1493        // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1494        // allocate an internal buffer and to schedule an event to the
1495        // queued port.
1496        if (blk->isDirty() || writebackClean) {
1497            PacketPtr wbPkt = writebackBlk(blk);
1498            allocateWriteBuffer(wbPkt, forward_time);
1499            // Set BLOCK_CACHED flag if cached above.
1500            if (isCachedAbove(wbPkt))
1501                wbPkt->setBlockCached();
1502        } else {
1503            PacketPtr wcPkt = cleanEvictBlk(blk);
1504            // Check to see if block is cached above. If not allocate
1505            // write buffer
1506            if (isCachedAbove(wcPkt))
1507                delete wcPkt;
1508            else
1509                allocateWriteBuffer(wcPkt, forward_time);
1510        }
1511        blk->invalidate();
1512    }
1513
1514    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
1515    delete pkt;
1516}
1517
1518PacketPtr
1519Cache::writebackBlk(CacheBlk *blk)
1520{
1521    chatty_assert(!isReadOnly || writebackClean,
1522                  "Writeback from read-only cache");
1523    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1524
1525    writebacks[Request::wbMasterId]++;
1526
1527    Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1528                               blkSize, 0, Request::wbMasterId);
1529    if (blk->isSecure())
1530        req->setFlags(Request::SECURE);
1531
1532    req->taskId(blk->task_id);
1533    blk->task_id= ContextSwitchTaskId::Unknown;
1534    blk->tickInserted = curTick();
1535
1536    PacketPtr pkt =
1537        new Packet(req, blk->isDirty() ?
1538                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1539
1540    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1541            pkt->print(), blk->isWritable(), blk->isDirty());
1542
1543    if (blk->isWritable()) {
1544        // not asserting shared means we pass the block in modified
1545        // state, mark our own block non-writeable
1546        blk->status &= ~BlkWritable;
1547    } else {
1548        // we are in the Owned state, tell the receiver
1549        pkt->setHasSharers();
1550    }
1551
1552    // make sure the block is not marked dirty
1553    blk->status &= ~BlkDirty;
1554
1555    pkt->allocate();
1556    std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1557
1558    return pkt;
1559}
1560
1561PacketPtr
1562Cache::cleanEvictBlk(CacheBlk *blk)
1563{
1564    assert(!writebackClean);
1565    assert(blk && blk->isValid() && !blk->isDirty());
1566    // Creating a zero sized write, a message to the snoop filter
1567    Request *req =
1568        new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1569                    Request::wbMasterId);
1570    if (blk->isSecure())
1571        req->setFlags(Request::SECURE);
1572
1573    req->taskId(blk->task_id);
1574    blk->task_id = ContextSwitchTaskId::Unknown;
1575    blk->tickInserted = curTick();
1576
1577    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1578    pkt->allocate();
1579    DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print());
1580
1581    return pkt;
1582}
1583
1584void
1585Cache::memWriteback()
1586{
1587    CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1588    tags->forEachBlk(visitor);
1589}
1590
1591void
1592Cache::memInvalidate()
1593{
1594    CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1595    tags->forEachBlk(visitor);
1596}
1597
1598bool
1599Cache::isDirty() const
1600{
1601    CacheBlkIsDirtyVisitor visitor;
1602    tags->forEachBlk(visitor);
1603
1604    return visitor.isDirty();
1605}
1606
1607bool
1608Cache::writebackVisitor(CacheBlk &blk)
1609{
1610    if (blk.isDirty()) {
1611        assert(blk.isValid());
1612
1613        Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1614                        blkSize, 0, Request::funcMasterId);
1615        request.taskId(blk.task_id);
1616
1617        Packet packet(&request, MemCmd::WriteReq);
1618        packet.dataStatic(blk.data);
1619
1620        memSidePort->sendFunctional(&packet);
1621
1622        blk.status &= ~BlkDirty;
1623    }
1624
1625    return true;
1626}
1627
1628bool
1629Cache::invalidateVisitor(CacheBlk &blk)
1630{
1631
1632    if (blk.isDirty())
1633        warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1634
1635    if (blk.isValid()) {
1636        assert(!blk.isDirty());
1637        tags->invalidate(&blk);
1638        blk.invalidate();
1639    }
1640
1641    return true;
1642}
1643
1644CacheBlk*
1645Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1646{
1647    CacheBlk *blk = tags->findVictim(addr);
1648
1649    // It is valid to return nullptr if there is no victim
1650    if (!blk)
1651        return nullptr;
1652
1653    if (blk->isValid()) {
1654        Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1655        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1656        if (repl_mshr) {
1657            // must be an outstanding upgrade request
1658            // on a block we're about to replace...
1659            assert(!blk->isWritable() || blk->isDirty());
1660            assert(repl_mshr->needsWritable());
1661            // too hard to replace block with transient state
1662            // allocation failed, block not inserted
1663            return nullptr;
1664        } else {
1665            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1666                    "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
1667                    addr, is_secure ? "s" : "ns",
1668                    blk->isDirty() ? "writeback" : "clean");
1669
1670            if (blk->wasPrefetched()) {
1671                unusedPrefetches++;
1672            }
1673            // Will send up Writeback/CleanEvict snoops via isCachedAbove
1674            // when pushing this writeback list into the write buffer.
1675            if (blk->isDirty() || writebackClean) {
1676                // Save writeback packet for handling by caller
1677                writebacks.push_back(writebackBlk(blk));
1678            } else {
1679                writebacks.push_back(cleanEvictBlk(blk));
1680            }
1681        }
1682    }
1683
1684    return blk;
1685}
1686
1687void
1688Cache::invalidateBlock(CacheBlk *blk)
1689{
1690    if (blk != tempBlock)
1691        tags->invalidate(blk);
1692    blk->invalidate();
1693}
1694
1695// Note that the reason we return a list of writebacks rather than
1696// inserting them directly in the write buffer is that this function
1697// is called by both atomic and timing-mode accesses, and in atomic
1698// mode we don't mess with the write buffer (we just perform the
1699// writebacks atomically once the original request is complete).
1700CacheBlk*
1701Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1702                  bool allocate)
1703{
1704    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1705    Addr addr = pkt->getAddr();
1706    bool is_secure = pkt->isSecure();
1707#if TRACING_ON
1708    CacheBlk::State old_state = blk ? blk->status : 0;
1709#endif
1710
1711    // When handling a fill, we should have no writes to this line.
1712    assert(addr == blockAlign(addr));
1713    assert(!writeBuffer.findMatch(addr, is_secure));
1714
1715    if (blk == nullptr) {
1716        // better have read new data...
1717        assert(pkt->hasData());
1718
1719        // only read responses and write-line requests have data;
1720        // note that we don't write the data here for write-line - that
1721        // happens in the subsequent call to satisfyRequest
1722        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1723
1724        // need to do a replacement if allocating, otherwise we stick
1725        // with the temporary storage
1726        blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
1727
1728        if (blk == nullptr) {
1729            // No replaceable block or a mostly exclusive
1730            // cache... just use temporary storage to complete the
1731            // current request and then get rid of it
1732            assert(!tempBlock->isValid());
1733            blk = tempBlock;
1734            tempBlock->set = tags->extractSet(addr);
1735            tempBlock->tag = tags->extractTag(addr);
1736            // @todo: set security state as well...
1737            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1738                    is_secure ? "s" : "ns");
1739        } else {
1740            tags->insertBlock(pkt, blk);
1741        }
1742
1743        // we should never be overwriting a valid block
1744        assert(!blk->isValid());
1745    } else {
1746        // existing block... probably an upgrade
1747        assert(blk->tag == tags->extractTag(addr));
1748        // either we're getting new data or the block should already be valid
1749        assert(pkt->hasData() || blk->isValid());
1750        // don't clear block status... if block is already dirty we
1751        // don't want to lose that
1752    }
1753
1754    if (is_secure)
1755        blk->status |= BlkSecure;
1756    blk->status |= BlkValid | BlkReadable;
1757
1758    // sanity check for whole-line writes, which should always be
1759    // marked as writable as part of the fill, and then later marked
1760    // dirty as part of satisfyRequest
1761    if (pkt->cmd == MemCmd::WriteLineReq) {
1762        assert(!pkt->hasSharers());
1763        // at the moment other caches do not respond to the
1764        // invalidation requests corresponding to a whole-line write
1765        assert(!pkt->cacheResponding());
1766    }
1767
1768    // here we deal with setting the appropriate state of the line,
1769    // and we start by looking at the hasSharers flag, and ignore the
1770    // cacheResponding flag (normally signalling dirty data) if the
1771    // packet has sharers, thus the line is never allocated as Owned
1772    // (dirty but not writable), and always ends up being either
1773    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1774    // for more details
1775    if (!pkt->hasSharers()) {
1776        // we could get a writable line from memory (rather than a
1777        // cache) even in a read-only cache, note that we set this bit
1778        // even for a read-only cache, possibly revisit this decision
1779        blk->status |= BlkWritable;
1780
1781        // check if we got this via cache-to-cache transfer (i.e., from a
1782        // cache that had the block in Modified or Owned state)
1783        if (pkt->cacheResponding()) {
1784            // we got the block in Modified state, and invalidated the
1785            // owners copy
1786            blk->status |= BlkDirty;
1787
1788            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1789                          "in read-only cache %s\n", name());
1790        }
1791    }
1792
1793    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1794            addr, is_secure ? "s" : "ns", old_state, blk->print());
1795
1796    // if we got new data, copy it in (checking for a read response
1797    // and a response that has data is the same in the end)
1798    if (pkt->isRead()) {
1799        // sanity checks
1800        assert(pkt->hasData());
1801        assert(pkt->getSize() == blkSize);
1802
1803        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1804    }
1805    // We pay for fillLatency here.
1806    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1807        pkt->payloadDelay;
1808
1809    return blk;
1810}
1811
1812
1813/////////////////////////////////////////////////////
1814//
1815// Snoop path: requests coming in from the memory side
1816//
1817/////////////////////////////////////////////////////
1818
1819void
1820Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1821                              bool already_copied, bool pending_inval)
1822{
1823    // sanity check
1824    assert(req_pkt->isRequest());
1825    assert(req_pkt->needsResponse());
1826
1827    DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print());
1828    // timing-mode snoop responses require a new packet, unless we
1829    // already made a copy...
1830    PacketPtr pkt = req_pkt;
1831    if (!already_copied)
1832        // do not clear flags, and allocate space for data if the
1833        // packet needs it (the only packets that carry data are read
1834        // responses)
1835        pkt = new Packet(req_pkt, false, req_pkt->isRead());
1836
1837    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1838           pkt->hasSharers());
1839    pkt->makeTimingResponse();
1840    if (pkt->isRead()) {
1841        pkt->setDataFromBlock(blk_data, blkSize);
1842    }
1843    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1844        // Assume we defer a response to a read from a far-away cache
1845        // A, then later defer a ReadExcl from a cache B on the same
1846        // bus as us. We'll assert cacheResponding in both cases, but
1847        // in the latter case cacheResponding will keep the
1848        // invalidation from reaching cache A. This special response
1849        // tells cache A that it gets the block to satisfy its read,
1850        // but must immediately invalidate it.
1851        pkt->cmd = MemCmd::ReadRespWithInvalidate;
1852    }
1853    // Here we consider forward_time, paying for just forward latency and
1854    // also charging the delay provided by the xbar.
1855    // forward_time is used as send_time in next allocateWriteBuffer().
1856    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1857    // Here we reset the timing of the packet.
1858    pkt->headerDelay = pkt->payloadDelay = 0;
1859    DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__,
1860            pkt->print(), forward_time);
1861    memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1862}
1863
1864uint32_t
1865Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1866                   bool is_deferred, bool pending_inval)
1867{
1868    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
1869    // deferred snoops can only happen in timing mode
1870    assert(!(is_deferred && !is_timing));
1871    // pending_inval only makes sense on deferred snoops
1872    assert(!(pending_inval && !is_deferred));
1873    assert(pkt->isRequest());
1874
1875    // the packet may get modified if we or a forwarded snooper
1876    // responds in atomic mode, so remember a few things about the
1877    // original packet up front
1878    bool invalidate = pkt->isInvalidate();
1879    bool M5_VAR_USED needs_writable = pkt->needsWritable();
1880
1881    // at the moment we could get an uncacheable write which does not
1882    // have the invalidate flag, and we need a suitable way of dealing
1883    // with this case
1884    panic_if(invalidate && pkt->req->isUncacheable(),
1885             "%s got an invalidating uncacheable snoop request %s",
1886             name(), pkt->print());
1887
1888    uint32_t snoop_delay = 0;
1889
1890    if (forwardSnoops) {
1891        // first propagate snoop upward to see if anyone above us wants to
1892        // handle it.  save & restore packet src since it will get
1893        // rewritten to be relative to cpu-side bus (if any)
1894        bool alreadyResponded = pkt->cacheResponding();
1895        if (is_timing) {
1896            // copy the packet so that we can clear any flags before
1897            // forwarding it upwards, we also allocate data (passing
1898            // the pointer along in case of static data), in case
1899            // there is a snoop hit in upper levels
1900            Packet snoopPkt(pkt, true, true);
1901            snoopPkt.setExpressSnoop();
1902            // the snoop packet does not need to wait any additional
1903            // time
1904            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1905            cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1906
1907            // add the header delay (including crossbar and snoop
1908            // delays) of the upward snoop to the snoop delay for this
1909            // cache
1910            snoop_delay += snoopPkt.headerDelay;
1911
1912            if (snoopPkt.cacheResponding()) {
1913                // cache-to-cache response from some upper cache
1914                assert(!alreadyResponded);
1915                pkt->setCacheResponding();
1916            }
1917            // upstream cache has the block, or has an outstanding
1918            // MSHR, pass the flag on
1919            if (snoopPkt.hasSharers()) {
1920                pkt->setHasSharers();
1921            }
1922            // If this request is a prefetch or clean evict and an upper level
1923            // signals block present, make sure to propagate the block
1924            // presence to the requester.
1925            if (snoopPkt.isBlockCached()) {
1926                pkt->setBlockCached();
1927            }
1928        } else {
1929            cpuSidePort->sendAtomicSnoop(pkt);
1930            if (!alreadyResponded && pkt->cacheResponding()) {
1931                // cache-to-cache response from some upper cache:
1932                // forward response to original requester
1933                assert(pkt->isResponse());
1934            }
1935        }
1936    }
1937
1938    if (!blk || !blk->isValid()) {
1939        DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__,
1940                pkt->print());
1941        if (is_deferred) {
1942            // we no longer have the block, and will not respond, but a
1943            // packet was allocated in MSHR::handleSnoop and we have
1944            // to delete it
1945            assert(pkt->needsResponse());
1946
1947            // we have passed the block to a cache upstream, that
1948            // cache should be responding
1949            assert(pkt->cacheResponding());
1950
1951            delete pkt;
1952        }
1953        return snoop_delay;
1954    } else {
1955        DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__,
1956                pkt->print(), blk->print());
1957    }
1958
1959    chatty_assert(!(isReadOnly && blk->isDirty()),
1960                  "Should never have a dirty block in a read-only cache %s\n",
1961                  name());
1962
1963    // We may end up modifying both the block state and the packet (if
1964    // we respond in atomic mode), so just figure out what to do now
1965    // and then do it later. If we find dirty data while snooping for
1966    // an invalidate, we don't need to send a response. The
1967    // invalidation itself is taken care of below.
1968    bool respond = blk->isDirty() && pkt->needsResponse() &&
1969        pkt->cmd != MemCmd::InvalidateReq;
1970    bool have_writable = blk->isWritable();
1971
1972    // Invalidate any prefetch's from below that would strip write permissions
1973    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
1974    // above and in it's own cache, a new MemCmd::ReadReq is created that
1975    // downstream caches observe.
1976    if (pkt->mustCheckAbove()) {
1977        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
1978                "from lower cache\n", pkt->getAddr(), pkt->print());
1979        pkt->setBlockCached();
1980        return snoop_delay;
1981    }
1982
1983    if (pkt->isRead() && !invalidate) {
1984        // reading without requiring the line in a writable state
1985        assert(!needs_writable);
1986        pkt->setHasSharers();
1987
1988        // if the requesting packet is uncacheable, retain the line in
1989        // the current state, otherwhise unset the writable flag,
1990        // which means we go from Modified to Owned (and will respond
1991        // below), remain in Owned (and will respond below), from
1992        // Exclusive to Shared, or remain in Shared
1993        if (!pkt->req->isUncacheable())
1994            blk->status &= ~BlkWritable;
1995    }
1996
1997    if (respond) {
1998        // prevent anyone else from responding, cache as well as
1999        // memory, and also prevent any memory from even seeing the
2000        // request
2001        pkt->setCacheResponding();
2002        if (have_writable) {
2003            // inform the cache hierarchy that this cache had the line
2004            // in the Modified state so that we avoid unnecessary
2005            // invalidations (see Packet::setResponderHadWritable)
2006            pkt->setResponderHadWritable();
2007
2008            // in the case of an uncacheable request there is no point
2009            // in setting the responderHadWritable flag, but since the
2010            // recipient does not care there is no harm in doing so
2011        } else {
2012            // if the packet has needsWritable set we invalidate our
2013            // copy below and all other copies will be invalidates
2014            // through express snoops, and if needsWritable is not set
2015            // we already called setHasSharers above
2016        }
2017
2018        // if we are returning a writable and dirty (Modified) line,
2019        // we should be invalidating the line
2020        panic_if(!invalidate && !pkt->hasSharers(),
2021                 "%s is passing a Modified line through %s, "
2022                 "but keeping the block", name(), pkt->print());
2023
2024        if (is_timing) {
2025            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2026        } else {
2027            pkt->makeAtomicResponse();
2028            // packets such as upgrades do not actually have any data
2029            // payload
2030            if (pkt->hasData())
2031                pkt->setDataFromBlock(blk->data, blkSize);
2032        }
2033    }
2034
2035    if (!respond && is_deferred) {
2036        assert(pkt->needsResponse());
2037
2038        // if we copied the deferred packet with the intention to
2039        // respond, but are not responding, then a cache above us must
2040        // be, and we can use this as the indication of whether this
2041        // is a packet where we created a copy of the request or not
2042        if (!pkt->cacheResponding()) {
2043            delete pkt->req;
2044        }
2045
2046        delete pkt;
2047    }
2048
2049    // Do this last in case it deallocates block data or something
2050    // like that
2051    if (invalidate) {
2052        invalidateBlock(blk);
2053    }
2054
2055    DPRINTF(Cache, "new state is %s\n", blk->print());
2056
2057    return snoop_delay;
2058}
2059
2060
2061void
2062Cache::recvTimingSnoopReq(PacketPtr pkt)
2063{
2064    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
2065
2066    // Snoops shouldn't happen when bypassing caches
2067    assert(!system->bypassCaches());
2068
2069    // no need to snoop requests that are not in range
2070    if (!inRange(pkt->getAddr())) {
2071        return;
2072    }
2073
2074    bool is_secure = pkt->isSecure();
2075    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2076
2077    Addr blk_addr = blockAlign(pkt->getAddr());
2078    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2079
2080    // Update the latency cost of the snoop so that the crossbar can
2081    // account for it. Do not overwrite what other neighbouring caches
2082    // have already done, rather take the maximum. The update is
2083    // tentative, for cases where we return before an upward snoop
2084    // happens below.
2085    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2086                                         lookupLatency * clockPeriod());
2087
2088    // Inform request(Prefetch, CleanEvict or Writeback) from below of
2089    // MSHR hit, set setBlockCached.
2090    if (mshr && pkt->mustCheckAbove()) {
2091        DPRINTF(Cache, "Setting block cached for %s from lower cache on "
2092                "mshr hit\n", pkt->print());
2093        pkt->setBlockCached();
2094        return;
2095    }
2096
2097    // Let the MSHR itself track the snoop and decide whether we want
2098    // to go ahead and do the regular cache snoop
2099    if (mshr && mshr->handleSnoop(pkt, order++)) {
2100        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2101                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2102                mshr->print());
2103
2104        if (mshr->getNumTargets() > numTarget)
2105            warn("allocating bonus target for snoop"); //handle later
2106        return;
2107    }
2108
2109    //We also need to check the writeback buffers and handle those
2110    WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
2111    if (wb_entry) {
2112        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2113                pkt->getAddr(), is_secure ? "s" : "ns");
2114        // Expect to see only Writebacks and/or CleanEvicts here, both of
2115        // which should not be generated for uncacheable data.
2116        assert(!wb_entry->isUncacheable());
2117        // There should only be a single request responsible for generating
2118        // Writebacks/CleanEvicts.
2119        assert(wb_entry->getNumTargets() == 1);
2120        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2121        assert(wb_pkt->isEviction());
2122
2123        if (pkt->isEviction()) {
2124            // if the block is found in the write queue, set the BLOCK_CACHED
2125            // flag for Writeback/CleanEvict snoop. On return the snoop will
2126            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2127            // any CleanEvicts from travelling down the memory hierarchy.
2128            pkt->setBlockCached();
2129            DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue "
2130                    "hit\n", __func__, pkt->print());
2131            return;
2132        }
2133
2134        // conceptually writebacks are no different to other blocks in
2135        // this cache, so the behaviour is modelled after handleSnoop,
2136        // the difference being that instead of querying the block
2137        // state to determine if it is dirty and writable, we use the
2138        // command and fields of the writeback packet
2139        bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
2140            pkt->needsResponse() && pkt->cmd != MemCmd::InvalidateReq;
2141        bool have_writable = !wb_pkt->hasSharers();
2142        bool invalidate = pkt->isInvalidate();
2143
2144        if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
2145            assert(!pkt->needsWritable());
2146            pkt->setHasSharers();
2147            wb_pkt->setHasSharers();
2148        }
2149
2150        if (respond) {
2151            pkt->setCacheResponding();
2152
2153            if (have_writable) {
2154                pkt->setResponderHadWritable();
2155            }
2156
2157            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2158                                   false, false);
2159        }
2160
2161        if (invalidate) {
2162            // Invalidation trumps our writeback... discard here
2163            // Note: markInService will remove entry from writeback buffer.
2164            markInService(wb_entry);
2165            delete wb_pkt;
2166        }
2167    }
2168
2169    // If this was a shared writeback, there may still be
2170    // other shared copies above that require invalidation.
2171    // We could be more selective and return here if the
2172    // request is non-exclusive or if the writeback is
2173    // exclusive.
2174    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2175
2176    // Override what we did when we first saw the snoop, as we now
2177    // also have the cost of the upwards snoops to account for
2178    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2179                                         lookupLatency * clockPeriod());
2180}
2181
2182bool
2183Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2184{
2185    // Express snoop responses from master to slave, e.g., from L1 to L2
2186    cache->recvTimingSnoopResp(pkt);
2187    return true;
2188}
2189
2190Tick
2191Cache::recvAtomicSnoop(PacketPtr pkt)
2192{
2193    // Snoops shouldn't happen when bypassing caches
2194    assert(!system->bypassCaches());
2195
2196    // no need to snoop requests that are not in range.
2197    if (!inRange(pkt->getAddr())) {
2198        return 0;
2199    }
2200
2201    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2202    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2203    return snoop_delay + lookupLatency * clockPeriod();
2204}
2205
2206
2207QueueEntry*
2208Cache::getNextQueueEntry()
2209{
2210    // Check both MSHR queue and write buffer for potential requests,
2211    // note that null does not mean there is no request, it could
2212    // simply be that it is not ready
2213    MSHR *miss_mshr  = mshrQueue.getNext();
2214    WriteQueueEntry *wq_entry = writeBuffer.getNext();
2215
2216    // If we got a write buffer request ready, first priority is a
2217    // full write buffer, otherwise we favour the miss requests
2218    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
2219        // need to search MSHR queue for conflicting earlier miss.
2220        MSHR *conflict_mshr =
2221            mshrQueue.findPending(wq_entry->blkAddr,
2222                                  wq_entry->isSecure);
2223
2224        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
2225            // Service misses in order until conflict is cleared.
2226            return conflict_mshr;
2227
2228            // @todo Note that we ignore the ready time of the conflict here
2229        }
2230
2231        // No conflicts; issue write
2232        return wq_entry;
2233    } else if (miss_mshr) {
2234        // need to check for conflicting earlier writeback
2235        WriteQueueEntry *conflict_mshr =
2236            writeBuffer.findPending(miss_mshr->blkAddr,
2237                                    miss_mshr->isSecure);
2238        if (conflict_mshr) {
2239            // not sure why we don't check order here... it was in the
2240            // original code but commented out.
2241
2242            // The only way this happens is if we are
2243            // doing a write and we didn't have permissions
2244            // then subsequently saw a writeback (owned got evicted)
2245            // We need to make sure to perform the writeback first
2246            // To preserve the dirty data, then we can issue the write
2247
2248            // should we return wq_entry here instead?  I.e. do we
2249            // have to flush writes in order?  I don't think so... not
2250            // for Alpha anyway.  Maybe for x86?
2251            return conflict_mshr;
2252
2253            // @todo Note that we ignore the ready time of the conflict here
2254        }
2255
2256        // No conflicts; issue read
2257        return miss_mshr;
2258    }
2259
2260    // fall through... no pending requests.  Try a prefetch.
2261    assert(!miss_mshr && !wq_entry);
2262    if (prefetcher && mshrQueue.canPrefetch()) {
2263        // If we have a miss queue slot, we can try a prefetch
2264        PacketPtr pkt = prefetcher->getPacket();
2265        if (pkt) {
2266            Addr pf_addr = blockAlign(pkt->getAddr());
2267            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2268                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2269                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2270                // Update statistic on number of prefetches issued
2271                // (hwpf_mshr_misses)
2272                assert(pkt->req->masterId() < system->maxMasters());
2273                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2274
2275                // allocate an MSHR and return it, note
2276                // that we send the packet straight away, so do not
2277                // schedule the send
2278                return allocateMissBuffer(pkt, curTick(), false);
2279            } else {
2280                // free the request and packet
2281                delete pkt->req;
2282                delete pkt;
2283            }
2284        }
2285    }
2286
2287    return nullptr;
2288}
2289
2290bool
2291Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2292{
2293    if (!forwardSnoops)
2294        return false;
2295    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2296    // Writeback snoops into upper level caches to check for copies of the
2297    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2298    // packet, the cache can inform the crossbar below of presence or absence
2299    // of the block.
2300    if (is_timing) {
2301        Packet snoop_pkt(pkt, true, false);
2302        snoop_pkt.setExpressSnoop();
2303        // Assert that packet is either Writeback or CleanEvict and not a
2304        // prefetch request because prefetch requests need an MSHR and may
2305        // generate a snoop response.
2306        assert(pkt->isEviction());
2307        snoop_pkt.senderState = nullptr;
2308        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2309        // Writeback/CleanEvict snoops do not generate a snoop response.
2310        assert(!(snoop_pkt.cacheResponding()));
2311        return snoop_pkt.isBlockCached();
2312    } else {
2313        cpuSidePort->sendAtomicSnoop(pkt);
2314        return pkt->isBlockCached();
2315    }
2316}
2317
2318Tick
2319Cache::nextQueueReadyTime() const
2320{
2321    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
2322                              writeBuffer.nextReadyTime());
2323
2324    // Don't signal prefetch ready time if no MSHRs available
2325    // Will signal once enoguh MSHRs are deallocated
2326    if (prefetcher && mshrQueue.canPrefetch()) {
2327        nextReady = std::min(nextReady,
2328                             prefetcher->nextPrefetchReadyTime());
2329    }
2330
2331    return nextReady;
2332}
2333
2334bool
2335Cache::sendMSHRQueuePacket(MSHR* mshr)
2336{
2337    assert(mshr);
2338
2339    // use request from 1st target
2340    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2341
2342    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
2343
2344    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2345
2346    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2347        // we should never have hardware prefetches to allocated
2348        // blocks
2349        assert(blk == nullptr);
2350
2351        // We need to check the caches above us to verify that
2352        // they don't have a copy of this block in the dirty state
2353        // at the moment. Without this check we could get a stale
2354        // copy from memory that might get used in place of the
2355        // dirty one.
2356        Packet snoop_pkt(tgt_pkt, true, false);
2357        snoop_pkt.setExpressSnoop();
2358        // We are sending this packet upwards, but if it hits we will
2359        // get a snoop response that we end up treating just like a
2360        // normal response, hence it needs the MSHR as its sender
2361        // state
2362        snoop_pkt.senderState = mshr;
2363        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2364
2365        // Check to see if the prefetch was squashed by an upper cache (to
2366        // prevent us from grabbing the line) or if a Check to see if a
2367        // writeback arrived between the time the prefetch was placed in
2368        // the MSHRs and when it was selected to be sent or if the
2369        // prefetch was squashed by an upper cache.
2370
2371        // It is important to check cacheResponding before
2372        // prefetchSquashed. If another cache has committed to
2373        // responding, it will be sending a dirty response which will
2374        // arrive at the MSHR allocated for this request. Checking the
2375        // prefetchSquash first may result in the MSHR being
2376        // prematurely deallocated.
2377        if (snoop_pkt.cacheResponding()) {
2378            auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2379            assert(r.second);
2380
2381            // if we are getting a snoop response with no sharers it
2382            // will be allocated as Modified
2383            bool pending_modified_resp = !snoop_pkt.hasSharers();
2384            markInService(mshr, pending_modified_resp);
2385
2386            DPRINTF(Cache, "Upward snoop of prefetch for addr"
2387                    " %#x (%s) hit\n",
2388                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2389            return false;
2390        }
2391
2392        if (snoop_pkt.isBlockCached()) {
2393            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
2394                    "Deallocating mshr target %#x.\n",
2395                    mshr->blkAddr);
2396
2397            // Deallocate the mshr target
2398            if (mshrQueue.forceDeallocateTarget(mshr)) {
2399                // Clear block if this deallocation resulted freed an
2400                // mshr when all had previously been utilized
2401                clearBlocked(Blocked_NoMSHRs);
2402            }
2403            return false;
2404        }
2405    }
2406
2407    // either a prefetch that is not present upstream, or a normal
2408    // MSHR request, proceed to get the packet to send downstream
2409    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
2410
2411    mshr->isForward = (pkt == nullptr);
2412
2413    if (mshr->isForward) {
2414        // not a cache block request, but a response is expected
2415        // make copy of current packet to forward, keep current
2416        // copy for response handling
2417        pkt = new Packet(tgt_pkt, false, true);
2418        assert(!pkt->isWrite());
2419    }
2420
2421    // play it safe and append (rather than set) the sender state,
2422    // as forwarded packets may already have existing state
2423    pkt->pushSenderState(mshr);
2424
2425    if (!memSidePort->sendTimingReq(pkt)) {
2426        // we are awaiting a retry, but we
2427        // delete the packet and will be creating a new packet
2428        // when we get the opportunity
2429        delete pkt;
2430
2431        // note that we have now masked any requestBus and
2432        // schedSendEvent (we will wait for a retry before
2433        // doing anything), and this is so even if we do not
2434        // care about this packet and might override it before
2435        // it gets retried
2436        return true;
2437    } else {
2438        // As part of the call to sendTimingReq the packet is
2439        // forwarded to all neighbouring caches (and any caches
2440        // above them) as a snoop. Thus at this point we know if
2441        // any of the neighbouring caches are responding, and if
2442        // so, we know it is dirty, and we can determine if it is
2443        // being passed as Modified, making our MSHR the ordering
2444        // point
2445        bool pending_modified_resp = !pkt->hasSharers() &&
2446            pkt->cacheResponding();
2447        markInService(mshr, pending_modified_resp);
2448        return false;
2449    }
2450}
2451
2452bool
2453Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
2454{
2455    assert(wq_entry);
2456
2457    // always a single target for write queue entries
2458    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
2459
2460    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
2461
2462    // forward as is, both for evictions and uncacheable writes
2463    if (!memSidePort->sendTimingReq(tgt_pkt)) {
2464        // note that we have now masked any requestBus and
2465        // schedSendEvent (we will wait for a retry before
2466        // doing anything), and this is so even if we do not
2467        // care about this packet and might override it before
2468        // it gets retried
2469        return true;
2470    } else {
2471        markInService(wq_entry);
2472        return false;
2473    }
2474}
2475
2476void
2477Cache::serialize(CheckpointOut &cp) const
2478{
2479    bool dirty(isDirty());
2480
2481    if (dirty) {
2482        warn("*** The cache still contains dirty data. ***\n");
2483        warn("    Make sure to drain the system using the correct flags.\n");
2484        warn("    This checkpoint will not restore correctly and dirty data "
2485             "    in the cache will be lost!\n");
2486    }
2487
2488    // Since we don't checkpoint the data in the cache, any dirty data
2489    // will be lost when restoring from a checkpoint of a system that
2490    // wasn't drained properly. Flag the checkpoint as invalid if the
2491    // cache contains dirty data.
2492    bool bad_checkpoint(dirty);
2493    SERIALIZE_SCALAR(bad_checkpoint);
2494}
2495
2496void
2497Cache::unserialize(CheckpointIn &cp)
2498{
2499    bool bad_checkpoint;
2500    UNSERIALIZE_SCALAR(bad_checkpoint);
2501    if (bad_checkpoint) {
2502        fatal("Restoring from checkpoints with dirty caches is not supported "
2503              "in the classic memory system. Please remove any caches or "
2504              " drain them properly before taking checkpoints.\n");
2505    }
2506}
2507
2508///////////////
2509//
2510// CpuSidePort
2511//
2512///////////////
2513
2514AddrRangeList
2515Cache::CpuSidePort::getAddrRanges() const
2516{
2517    return cache->getAddrRanges();
2518}
2519
2520bool
2521Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2522{
2523    assert(!cache->system->bypassCaches());
2524
2525    bool success = false;
2526
2527    // always let express snoop packets through if even if blocked
2528    if (pkt->isExpressSnoop()) {
2529        // do not change the current retry state
2530        bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2531        assert(bypass_success);
2532        return true;
2533    } else if (blocked || mustSendRetry) {
2534        // either already committed to send a retry, or blocked
2535        success = false;
2536    } else {
2537        // pass it on to the cache, and let the cache decide if we
2538        // have to retry or not
2539        success = cache->recvTimingReq(pkt);
2540    }
2541
2542    // remember if we have to retry
2543    mustSendRetry = !success;
2544    return success;
2545}
2546
2547Tick
2548Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2549{
2550    return cache->recvAtomic(pkt);
2551}
2552
2553void
2554Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2555{
2556    // functional request
2557    cache->functionalAccess(pkt, true);
2558}
2559
2560Cache::
2561CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2562                         const std::string &_label)
2563    : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2564{
2565}
2566
2567Cache*
2568CacheParams::create()
2569{
2570    assert(tags);
2571
2572    return new Cache(this);
2573}
2574///////////////
2575//
2576// MemSidePort
2577//
2578///////////////
2579
2580bool
2581Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2582{
2583    cache->recvTimingResp(pkt);
2584    return true;
2585}
2586
2587// Express snooping requests to memside port
2588void
2589Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2590{
2591    // handle snooping requests
2592    cache->recvTimingSnoopReq(pkt);
2593}
2594
2595Tick
2596Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2597{
2598    return cache->recvAtomicSnoop(pkt);
2599}
2600
2601void
2602Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2603{
2604    // functional snoop (note that in contrast to atomic we don't have
2605    // a specific functionalSnoop method, as they have the same
2606    // behaviour regardless)
2607    cache->functionalAccess(pkt, false);
2608}
2609
2610void
2611Cache::CacheReqPacketQueue::sendDeferredPacket()
2612{
2613    // sanity check
2614    assert(!waitingOnRetry);
2615
2616    // there should never be any deferred request packets in the
2617    // queue, instead we resly on the cache to provide the packets
2618    // from the MSHR queue or write queue
2619    assert(deferredPacketReadyTime() == MaxTick);
2620
2621    // check for request packets (requests & writebacks)
2622    QueueEntry* entry = cache.getNextQueueEntry();
2623
2624    if (!entry) {
2625        // can happen if e.g. we attempt a writeback and fail, but
2626        // before the retry, the writeback is eliminated because
2627        // we snoop another cache's ReadEx.
2628    } else {
2629        // let our snoop responses go first if there are responses to
2630        // the same addresses
2631        if (checkConflictingSnoop(entry->blkAddr)) {
2632            return;
2633        }
2634        waitingOnRetry = entry->sendPacket(cache);
2635    }
2636
2637    // if we succeeded and are not waiting for a retry, schedule the
2638    // next send considering when the next queue is ready, note that
2639    // snoop responses have their own packet queue and thus schedule
2640    // their own events
2641    if (!waitingOnRetry) {
2642        schedSendEvent(cache.nextQueueReadyTime());
2643    }
2644}
2645
2646Cache::
2647MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2648                         const std::string &_label)
2649    : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2650      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2651      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2652{
2653}
2654