cache.cc revision 11742
12SN/A/*
210349Sandreas.hansson@arm.com * Copyright (c) 2010-2016 ARM Limited
310349Sandreas.hansson@arm.com * All rights reserved.
410349Sandreas.hansson@arm.com *
510349Sandreas.hansson@arm.com * The license below extends only to copyright in the software and shall
610349Sandreas.hansson@arm.com * not be construed as granting a license to any other intellectual
710349Sandreas.hansson@arm.com * property including but not limited to intellectual property relating
810349Sandreas.hansson@arm.com * to a hardware implementation of the functionality of the software
910349Sandreas.hansson@arm.com * licensed hereunder.  You may use the software subject to the license
1010349Sandreas.hansson@arm.com * terms below provided that you ensure that this notice is replicated
1110349Sandreas.hansson@arm.com * unmodified and in its entirety in all distributions of the software,
1210349Sandreas.hansson@arm.com * modified or unmodified, in source code or in binary form.
1310349Sandreas.hansson@arm.com *
141762SN/A * Copyright (c) 2002-2005 The Regents of The University of Michigan
152SN/A * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
162SN/A * All rights reserved.
172SN/A *
182SN/A * Redistribution and use in source and binary forms, with or without
192SN/A * modification, are permitted provided that the following conditions are
202SN/A * met: redistributions of source code must retain the above copyright
212SN/A * notice, this list of conditions and the following disclaimer;
222SN/A * redistributions in binary form must reproduce the above copyright
232SN/A * notice, this list of conditions and the following disclaimer in the
242SN/A * documentation and/or other materials provided with the distribution;
252SN/A * neither the name of the copyright holders nor the names of its
262SN/A * contributors may be used to endorse or promote products derived from
272SN/A * this software without specific prior written permission.
282SN/A *
292SN/A * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
302SN/A * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
312SN/A * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
322SN/A * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
332SN/A * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
342SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
352SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
362SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
372SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
382SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
392665Ssaidi@eecs.umich.edu * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
402665Ssaidi@eecs.umich.edu *
412665Ssaidi@eecs.umich.edu * Authors: Erik Hallnor
4210349Sandreas.hansson@arm.com *          Dave Greene
432SN/A *          Nathan Binkert
442SN/A *          Steve Reinhardt
4510349Sandreas.hansson@arm.com *          Ron Dreslinski
4610349Sandreas.hansson@arm.com *          Andreas Sandberg
475190Ssaidi@eecs.umich.edu */
4856SN/A
495190Ssaidi@eecs.umich.edu/**
502SN/A * @file
515190Ssaidi@eecs.umich.edu * Cache definitions.
522SN/A */
5310349Sandreas.hansson@arm.com
545190Ssaidi@eecs.umich.edu#include "mem/cache/cache.hh"
552SN/A
562SN/A#include "base/misc.hh"
575190Ssaidi@eecs.umich.edu#include "base/types.hh"
582SN/A#include "debug/Cache.hh"
595190Ssaidi@eecs.umich.edu#include "debug/CachePort.hh"
602SN/A#include "debug/CacheTags.hh"
612SN/A#include "debug/CacheVerbose.hh"
625190Ssaidi@eecs.umich.edu#include "mem/cache/blk.hh"
631954SN/A#include "mem/cache/mshr.hh"
645190Ssaidi@eecs.umich.edu#include "mem/cache/prefetch/base.hh"
653483Ssaidi@eecs.umich.edu#include "sim/sim_exit.hh"
6610349Sandreas.hansson@arm.com
6710349Sandreas.hansson@arm.comCache::Cache(const CacheParams *p)
685190Ssaidi@eecs.umich.edu    : BaseCache(p, p->system->cacheLineSize()),
6910349Sandreas.hansson@arm.com      tags(p->tags),
701954SN/A      prefetcher(p->prefetcher),
715190Ssaidi@eecs.umich.edu      doFastWrites(true),
725190Ssaidi@eecs.umich.edu      prefetchOnAccess(p->prefetch_on_access),
7310905Sandreas.sandberg@arm.com      clusivity(p->clusivity),
745190Ssaidi@eecs.umich.edu      writebackClean(p->writeback_clean),
7510349Sandreas.hansson@arm.com      tempBlockWriteback(nullptr),
7610349Sandreas.hansson@arm.com      writebackTempBlockAtomicEvent(this, false,
7710349Sandreas.hansson@arm.com                                    EventBase::Delayed_Writeback_Pri)
7810349Sandreas.hansson@arm.com{
7910349Sandreas.hansson@arm.com    tempBlock = new CacheBlk();
8010349Sandreas.hansson@arm.com    tempBlock->data = new uint8_t[blkSize];
8110905Sandreas.sandberg@arm.com
825190Ssaidi@eecs.umich.edu    cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
835190Ssaidi@eecs.umich.edu                                  "CpuSidePort");
845190Ssaidi@eecs.umich.edu    memSidePort = new MemSidePort(p->name + ".mem_side", this,
8510905Sandreas.sandberg@arm.com                                  "MemSidePort");
865190Ssaidi@eecs.umich.edu
8710349Sandreas.hansson@arm.com    tags->setCache(this);
885190Ssaidi@eecs.umich.edu    if (prefetcher)
8910349Sandreas.hansson@arm.com        prefetcher->setCache(this);
9010349Sandreas.hansson@arm.com}
9110349Sandreas.hansson@arm.com
9210349Sandreas.hansson@arm.comCache::~Cache()
9310905Sandreas.sandberg@arm.com{
9410349Sandreas.hansson@arm.com    delete [] tempBlock->data;
9510349Sandreas.hansson@arm.com    delete tempBlock;
9610349Sandreas.hansson@arm.com
975190Ssaidi@eecs.umich.edu    delete cpuSidePort;
985190Ssaidi@eecs.umich.edu    delete memSidePort;
995190Ssaidi@eecs.umich.edu}
100
101void
102Cache::regStats()
103{
104    BaseCache::regStats();
105}
106
107void
108Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
109{
110    assert(pkt->isRequest());
111
112    uint64_t overwrite_val;
113    bool overwrite_mem;
114    uint64_t condition_val64;
115    uint32_t condition_val32;
116
117    int offset = tags->extractBlkOffset(pkt->getAddr());
118    uint8_t *blk_data = blk->data + offset;
119
120    assert(sizeof(uint64_t) >= pkt->getSize());
121
122    overwrite_mem = true;
123    // keep a copy of our possible write value, and copy what is at the
124    // memory address into the packet
125    pkt->writeData((uint8_t *)&overwrite_val);
126    pkt->setData(blk_data);
127
128    if (pkt->req->isCondSwap()) {
129        if (pkt->getSize() == sizeof(uint64_t)) {
130            condition_val64 = pkt->req->getExtraData();
131            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
132                                         sizeof(uint64_t));
133        } else if (pkt->getSize() == sizeof(uint32_t)) {
134            condition_val32 = (uint32_t)pkt->req->getExtraData();
135            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
136                                         sizeof(uint32_t));
137        } else
138            panic("Invalid size for conditional read/write\n");
139    }
140
141    if (overwrite_mem) {
142        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
143        blk->status |= BlkDirty;
144    }
145}
146
147
148void
149Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
150                      bool deferred_response, bool pending_downgrade)
151{
152    assert(pkt->isRequest());
153
154    assert(blk && blk->isValid());
155    // Occasionally this is not true... if we are a lower-level cache
156    // satisfying a string of Read and ReadEx requests from
157    // upper-level caches, a Read will mark the block as shared but we
158    // can satisfy a following ReadEx anyway since we can rely on the
159    // Read requester(s) to have buffered the ReadEx snoop and to
160    // invalidate their blocks after receiving them.
161    // assert(!pkt->needsWritable() || blk->isWritable());
162    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
163
164    // Check RMW operations first since both isRead() and
165    // isWrite() will be true for them
166    if (pkt->cmd == MemCmd::SwapReq) {
167        cmpAndSwap(blk, pkt);
168    } else if (pkt->isWrite()) {
169        // we have the block in a writable state and can go ahead,
170        // note that the line may be also be considered writable in
171        // downstream caches along the path to memory, but always
172        // Exclusive, and never Modified
173        assert(blk->isWritable());
174        // Write or WriteLine at the first cache with block in writable state
175        if (blk->checkWrite(pkt)) {
176            pkt->writeDataToBlock(blk->data, blkSize);
177        }
178        // Always mark the line as dirty (and thus transition to the
179        // Modified state) even if we are a failed StoreCond so we
180        // supply data to any snoops that have appended themselves to
181        // this cache before knowing the store will fail.
182        blk->status |= BlkDirty;
183        DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (write)\n",
184                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
185    } else if (pkt->isRead()) {
186        if (pkt->isLLSC()) {
187            blk->trackLoadLocked(pkt);
188        }
189
190        // all read responses have a data payload
191        assert(pkt->hasRespData());
192        pkt->setDataFromBlock(blk->data, blkSize);
193
194        // determine if this read is from a (coherent) cache or not
195        if (pkt->fromCache()) {
196            assert(pkt->getSize() == blkSize);
197            // special handling for coherent block requests from
198            // upper-level caches
199            if (pkt->needsWritable()) {
200                // sanity check
201                assert(pkt->cmd == MemCmd::ReadExReq ||
202                       pkt->cmd == MemCmd::SCUpgradeFailReq);
203                assert(!pkt->hasSharers());
204
205                // if we have a dirty copy, make sure the recipient
206                // keeps it marked dirty (in the modified state)
207                if (blk->isDirty()) {
208                    pkt->setCacheResponding();
209                    blk->status &= ~BlkDirty;
210                }
211            } else if (blk->isWritable() && !pending_downgrade &&
212                       !pkt->hasSharers() &&
213                       pkt->cmd != MemCmd::ReadCleanReq) {
214                // we can give the requester a writable copy on a read
215                // request if:
216                // - we have a writable copy at this level (& below)
217                // - we don't have a pending snoop from below
218                //   signaling another read request
219                // - no other cache above has a copy (otherwise it
220                //   would have set hasSharers flag when
221                //   snooping the packet)
222                // - the read has explicitly asked for a clean
223                //   copy of the line
224                if (blk->isDirty()) {
225                    // special considerations if we're owner:
226                    if (!deferred_response) {
227                        // respond with the line in Modified state
228                        // (cacheResponding set, hasSharers not set)
229                        pkt->setCacheResponding();
230
231                        // if this cache is mostly inclusive, we
232                        // keep the block in the Exclusive state,
233                        // and pass it upwards as Modified
234                        // (writable and dirty), hence we have
235                        // multiple caches, all on the same path
236                        // towards memory, all considering the
237                        // same block writable, but only one
238                        // considering it Modified
239
240                        // we get away with multiple caches (on
241                        // the same path to memory) considering
242                        // the block writeable as we always enter
243                        // the cache hierarchy through a cache,
244                        // and first snoop upwards in all other
245                        // branches
246                        blk->status &= ~BlkDirty;
247                    } else {
248                        // if we're responding after our own miss,
249                        // there's a window where the recipient didn't
250                        // know it was getting ownership and may not
251                        // have responded to snoops correctly, so we
252                        // have to respond with a shared line
253                        pkt->setHasSharers();
254                    }
255                }
256            } else {
257                // otherwise only respond with a shared copy
258                pkt->setHasSharers();
259            }
260        }
261    } else if (pkt->isUpgrade()) {
262        // sanity check
263        assert(!pkt->hasSharers());
264
265        if (blk->isDirty()) {
266            // we were in the Owned state, and a cache above us that
267            // has the line in Shared state needs to be made aware
268            // that the data it already has is in fact dirty
269            pkt->setCacheResponding();
270            blk->status &= ~BlkDirty;
271        }
272    } else {
273        assert(pkt->isInvalidate());
274        invalidateBlock(blk);
275        DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (invalidation)\n",
276                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
277    }
278}
279
280/////////////////////////////////////////////////////
281//
282// Access path: requests coming in from the CPU side
283//
284/////////////////////////////////////////////////////
285
286bool
287Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
288              PacketList &writebacks)
289{
290    // sanity check
291    assert(pkt->isRequest());
292
293    chatty_assert(!(isReadOnly && pkt->isWrite()),
294                  "Should never see a write in a read-only cache %s\n",
295                  name());
296
297    DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
298            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
299
300    if (pkt->req->isUncacheable()) {
301        DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
302                pkt->req->isInstFetch() ? " (ifetch)" : "",
303                pkt->getAddr());
304
305        // flush and invalidate any existing block
306        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
307        if (old_blk && old_blk->isValid()) {
308            if (old_blk->isDirty() || writebackClean)
309                writebacks.push_back(writebackBlk(old_blk));
310            else
311                writebacks.push_back(cleanEvictBlk(old_blk));
312            tags->invalidate(old_blk);
313            old_blk->invalidate();
314        }
315
316        blk = nullptr;
317        // lookupLatency is the latency in case the request is uncacheable.
318        lat = lookupLatency;
319        return false;
320    }
321
322    ContextID id = pkt->req->hasContextId() ?
323        pkt->req->contextId() : InvalidContextID;
324    // Here lat is the value passed as parameter to accessBlock() function
325    // that can modify its value.
326    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
327
328    DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
329            pkt->req->isInstFetch() ? " (ifetch)" : "",
330            pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
331            blk ? "hit " + blk->print() : "miss");
332
333
334    if (pkt->isEviction()) {
335        // We check for presence of block in above caches before issuing
336        // Writeback or CleanEvict to write buffer. Therefore the only
337        // possible cases can be of a CleanEvict packet coming from above
338        // encountering a Writeback generated in this cache peer cache and
339        // waiting in the write buffer. Cases of upper level peer caches
340        // generating CleanEvict and Writeback or simply CleanEvict and
341        // CleanEvict almost simultaneously will be caught by snoops sent out
342        // by crossbar.
343        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
344                                                          pkt->isSecure());
345        if (wb_entry) {
346            assert(wb_entry->getNumTargets() == 1);
347            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
348            assert(wbPkt->isWriteback());
349
350            if (pkt->isCleanEviction()) {
351                // The CleanEvict and WritebackClean snoops into other
352                // peer caches of the same level while traversing the
353                // crossbar. If a copy of the block is found, the
354                // packet is deleted in the crossbar. Hence, none of
355                // the other upper level caches connected to this
356                // cache have the block, so we can clear the
357                // BLOCK_CACHED flag in the Writeback if set and
358                // discard the CleanEvict by returning true.
359                wbPkt->clearBlockCached();
360                return true;
361            } else {
362                assert(pkt->cmd == MemCmd::WritebackDirty);
363                // Dirty writeback from above trumps our clean
364                // writeback... discard here
365                // Note: markInService will remove entry from writeback buffer.
366                markInService(wb_entry);
367                delete wbPkt;
368            }
369        }
370    }
371
372    // Writeback handling is special case.  We can write the block into
373    // the cache without having a writeable copy (or any copy at all).
374    if (pkt->isWriteback()) {
375        assert(blkSize == pkt->getSize());
376
377        // we could get a clean writeback while we are having
378        // outstanding accesses to a block, do the simple thing for
379        // now and drop the clean writeback so that we do not upset
380        // any ordering/decisions about ownership already taken
381        if (pkt->cmd == MemCmd::WritebackClean &&
382            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
383            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
384                    "dropping\n", pkt->getAddr());
385            return true;
386        }
387
388        if (blk == nullptr) {
389            // need to do a replacement
390            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
391            if (blk == nullptr) {
392                // no replaceable block available: give up, fwd to next level.
393                incMissCount(pkt);
394                return false;
395            }
396            tags->insertBlock(pkt, blk);
397
398            blk->status = (BlkValid | BlkReadable);
399            if (pkt->isSecure()) {
400                blk->status |= BlkSecure;
401            }
402        }
403        // only mark the block dirty if we got a writeback command,
404        // and leave it as is for a clean writeback
405        if (pkt->cmd == MemCmd::WritebackDirty) {
406            blk->status |= BlkDirty;
407        }
408        // if the packet does not have sharers, it is passing
409        // writable, and we got the writeback in Modified or Exclusive
410        // state, if not we are in the Owned or Shared state
411        if (!pkt->hasSharers()) {
412            blk->status |= BlkWritable;
413        }
414        // nothing else to do; writeback doesn't expect response
415        assert(!pkt->needsResponse());
416        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
417        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
418        incHitCount(pkt);
419        return true;
420    } else if (pkt->cmd == MemCmd::CleanEvict) {
421        if (blk != nullptr) {
422            // Found the block in the tags, need to stop CleanEvict from
423            // propagating further down the hierarchy. Returning true will
424            // treat the CleanEvict like a satisfied write request and delete
425            // it.
426            return true;
427        }
428        // We didn't find the block here, propagate the CleanEvict further
429        // down the memory hierarchy. Returning false will treat the CleanEvict
430        // like a Writeback which could not find a replaceable block so has to
431        // go to next level.
432        return false;
433    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
434                       blk->isReadable())) {
435        // OK to satisfy access
436        incHitCount(pkt);
437        satisfyRequest(pkt, blk);
438        maintainClusivity(pkt->fromCache(), blk);
439
440        return true;
441    }
442
443    // Can't satisfy access normally... either no block (blk == nullptr)
444    // or have block but need writable
445
446    incMissCount(pkt);
447
448    if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) {
449        // complete miss on store conditional... just give up now
450        pkt->req->setExtraData(0);
451        return true;
452    }
453
454    return false;
455}
456
457void
458Cache::maintainClusivity(bool from_cache, CacheBlk *blk)
459{
460    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
461        clusivity == Enums::mostly_excl) {
462        // if we have responded to a cache, and our block is still
463        // valid, but not dirty, and this cache is mostly exclusive
464        // with respect to the cache above, drop the block
465        invalidateBlock(blk);
466    }
467}
468
469void
470Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
471{
472    while (!writebacks.empty()) {
473        PacketPtr wbPkt = writebacks.front();
474        // We use forwardLatency here because we are copying writebacks to
475        // write buffer.  Call isCachedAbove for both Writebacks and
476        // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
477        // in Writebacks and discard CleanEvicts.
478        if (isCachedAbove(wbPkt)) {
479            if (wbPkt->cmd == MemCmd::CleanEvict) {
480                // Delete CleanEvict because cached copies exist above. The
481                // packet destructor will delete the request object because
482                // this is a non-snoop request packet which does not require a
483                // response.
484                delete wbPkt;
485            } else if (wbPkt->cmd == MemCmd::WritebackClean) {
486                // clean writeback, do not send since the block is
487                // still cached above
488                assert(writebackClean);
489                delete wbPkt;
490            } else {
491                assert(wbPkt->cmd == MemCmd::WritebackDirty);
492                // Set BLOCK_CACHED flag in Writeback and send below, so that
493                // the Writeback does not reset the bit corresponding to this
494                // address in the snoop filter below.
495                wbPkt->setBlockCached();
496                allocateWriteBuffer(wbPkt, forward_time);
497            }
498        } else {
499            // If the block is not cached above, send packet below. Both
500            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
501            // reset the bit corresponding to this address in the snoop filter
502            // below.
503            allocateWriteBuffer(wbPkt, forward_time);
504        }
505        writebacks.pop_front();
506    }
507}
508
509void
510Cache::doWritebacksAtomic(PacketList& writebacks)
511{
512    while (!writebacks.empty()) {
513        PacketPtr wbPkt = writebacks.front();
514        // Call isCachedAbove for both Writebacks and CleanEvicts. If
515        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
516        // and discard CleanEvicts.
517        if (isCachedAbove(wbPkt, false)) {
518            if (wbPkt->cmd == MemCmd::WritebackDirty) {
519                // Set BLOCK_CACHED flag in Writeback and send below,
520                // so that the Writeback does not reset the bit
521                // corresponding to this address in the snoop filter
522                // below. We can discard CleanEvicts because cached
523                // copies exist above. Atomic mode isCachedAbove
524                // modifies packet to set BLOCK_CACHED flag
525                memSidePort->sendAtomic(wbPkt);
526            }
527        } else {
528            // If the block is not cached above, send packet below. Both
529            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
530            // reset the bit corresponding to this address in the snoop filter
531            // below.
532            memSidePort->sendAtomic(wbPkt);
533        }
534        writebacks.pop_front();
535        // In case of CleanEvicts, the packet destructor will delete the
536        // request object because this is a non-snoop request packet which
537        // does not require a response.
538        delete wbPkt;
539    }
540}
541
542
543void
544Cache::recvTimingSnoopResp(PacketPtr pkt)
545{
546    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
547            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
548
549    assert(pkt->isResponse());
550    assert(!system->bypassCaches());
551
552    // determine if the response is from a snoop request we created
553    // (in which case it should be in the outstandingSnoop), or if we
554    // merely forwarded someone else's snoop request
555    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
556        outstandingSnoop.end();
557
558    if (!forwardAsSnoop) {
559        // the packet came from this cache, so sink it here and do not
560        // forward it
561        assert(pkt->cmd == MemCmd::HardPFResp);
562
563        outstandingSnoop.erase(pkt->req);
564
565        DPRINTF(Cache, "Got prefetch response from above for addr "
566                "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
567        recvTimingResp(pkt);
568        return;
569    }
570
571    // forwardLatency is set here because there is a response from an
572    // upper level cache.
573    // To pay the delay that occurs if the packet comes from the bus,
574    // we charge also headerDelay.
575    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
576    // Reset the timing of the packet.
577    pkt->headerDelay = pkt->payloadDelay = 0;
578    memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
579}
580
581void
582Cache::promoteWholeLineWrites(PacketPtr pkt)
583{
584    // Cache line clearing instructions
585    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
586        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
587        pkt->cmd = MemCmd::WriteLineReq;
588        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
589    }
590}
591
592bool
593Cache::recvTimingReq(PacketPtr pkt)
594{
595    DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
596
597    assert(pkt->isRequest());
598
599    // Just forward the packet if caches are disabled.
600    if (system->bypassCaches()) {
601        // @todo This should really enqueue the packet rather
602        bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
603        assert(success);
604        return true;
605    }
606
607    promoteWholeLineWrites(pkt);
608
609    if (pkt->cacheResponding()) {
610        // a cache above us (but not where the packet came from) is
611        // responding to the request, in other words it has the line
612        // in Modified or Owned state
613        DPRINTF(Cache, "Cache above responding to %#llx (%s): "
614                "not responding\n",
615                pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
616
617        // if the packet needs the block to be writable, and the cache
618        // that has promised to respond (setting the cache responding
619        // flag) is not providing writable (it is in Owned rather than
620        // the Modified state), we know that there may be other Shared
621        // copies in the system; go out and invalidate them all
622        assert(pkt->needsWritable() && !pkt->responderHadWritable());
623
624        // an upstream cache that had the line in Owned state
625        // (dirty, but not writable), is responding and thus
626        // transferring the dirty line from one branch of the
627        // cache hierarchy to another
628
629        // send out an express snoop and invalidate all other
630        // copies (snooping a packet that needs writable is the
631        // same as an invalidation), thus turning the Owned line
632        // into a Modified line, note that we don't invalidate the
633        // block in the current cache or any other cache on the
634        // path to memory
635
636        // create a downstream express snoop with cleared packet
637        // flags, there is no need to allocate any data as the
638        // packet is merely used to co-ordinate state transitions
639        Packet *snoop_pkt = new Packet(pkt, true, false);
640
641        // also reset the bus time that the original packet has
642        // not yet paid for
643        snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
644
645        // make this an instantaneous express snoop, and let the
646        // other caches in the system know that the another cache
647        // is responding, because we have found the authorative
648        // copy (Modified or Owned) that will supply the right
649        // data
650        snoop_pkt->setExpressSnoop();
651        snoop_pkt->setCacheResponding();
652
653        // this express snoop travels towards the memory, and at
654        // every crossbar it is snooped upwards thus reaching
655        // every cache in the system
656        bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
657        // express snoops always succeed
658        assert(success);
659
660        // main memory will delete the snoop packet
661
662        // queue for deletion, as opposed to immediate deletion, as
663        // the sending cache is still relying on the packet
664        pendingDelete.reset(pkt);
665
666        // no need to take any further action in this particular cache
667        // as an upstram cache has already committed to responding,
668        // and we have already sent out any express snoops in the
669        // section above to ensure all other copies in the system are
670        // invalidated
671        return true;
672    }
673
674    // anything that is merely forwarded pays for the forward latency and
675    // the delay provided by the crossbar
676    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
677
678    // We use lookupLatency here because it is used to specify the latency
679    // to access.
680    Cycles lat = lookupLatency;
681    CacheBlk *blk = nullptr;
682    bool satisfied = false;
683    {
684        PacketList writebacks;
685        // Note that lat is passed by reference here. The function
686        // access() calls accessBlock() which can modify lat value.
687        satisfied = access(pkt, blk, lat, writebacks);
688
689        // copy writebacks to write buffer here to ensure they logically
690        // proceed anything happening below
691        doWritebacks(writebacks, forward_time);
692    }
693
694    // Here we charge the headerDelay that takes into account the latencies
695    // of the bus, if the packet comes from it.
696    // The latency charged it is just lat that is the value of lookupLatency
697    // modified by access() function, or if not just lookupLatency.
698    // In case of a hit we are neglecting response latency.
699    // In case of a miss we are neglecting forward latency.
700    Tick request_time = clockEdge(lat) + pkt->headerDelay;
701    // Here we reset the timing of the packet.
702    pkt->headerDelay = pkt->payloadDelay = 0;
703
704    // track time of availability of next prefetch, if any
705    Tick next_pf_time = MaxTick;
706
707    bool needsResponse = pkt->needsResponse();
708
709    if (satisfied) {
710        // should never be satisfying an uncacheable access as we
711        // flush and invalidate any existing block as part of the
712        // lookup
713        assert(!pkt->req->isUncacheable());
714
715        // hit (for all other request types)
716
717        if (prefetcher && (prefetchOnAccess ||
718                           (blk && blk->wasPrefetched()))) {
719            if (blk)
720                blk->status &= ~BlkHWPrefetched;
721
722            // Don't notify on SWPrefetch
723            if (!pkt->cmd.isSWPrefetch())
724                next_pf_time = prefetcher->notify(pkt);
725        }
726
727        if (needsResponse) {
728            pkt->makeTimingResponse();
729            // @todo: Make someone pay for this
730            pkt->headerDelay = pkt->payloadDelay = 0;
731
732            // In this case we are considering request_time that takes
733            // into account the delay of the xbar, if any, and just
734            // lat, neglecting responseLatency, modelling hit latency
735            // just as lookupLatency or or the value of lat overriden
736            // by access(), that calls accessBlock() function.
737            cpuSidePort->schedTimingResp(pkt, request_time, true);
738        } else {
739            DPRINTF(Cache, "%s satisfied %s addr %#llx, no response needed\n",
740                    __func__, pkt->cmdString(), pkt->getAddr());
741
742            // queue the packet for deletion, as the sending cache is
743            // still relying on it; if the block is found in access(),
744            // CleanEvict and Writeback messages will be deleted
745            // here as well
746            pendingDelete.reset(pkt);
747        }
748    } else {
749        // miss
750
751        Addr blk_addr = blockAlign(pkt->getAddr());
752
753        // ignore any existing MSHR if we are dealing with an
754        // uncacheable request
755        MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
756            mshrQueue.findMatch(blk_addr, pkt->isSecure());
757
758        // Software prefetch handling:
759        // To keep the core from waiting on data it won't look at
760        // anyway, send back a response with dummy data. Miss handling
761        // will continue asynchronously. Unfortunately, the core will
762        // insist upon freeing original Packet/Request, so we have to
763        // create a new pair with a different lifecycle. Note that this
764        // processing happens before any MSHR munging on the behalf of
765        // this request because this new Request will be the one stored
766        // into the MSHRs, not the original.
767        if (pkt->cmd.isSWPrefetch()) {
768            assert(needsResponse);
769            assert(pkt->req->hasPaddr());
770            assert(!pkt->req->isUncacheable());
771
772            // There's no reason to add a prefetch as an additional target
773            // to an existing MSHR. If an outstanding request is already
774            // in progress, there is nothing for the prefetch to do.
775            // If this is the case, we don't even create a request at all.
776            PacketPtr pf = nullptr;
777
778            if (!mshr) {
779                // copy the request and create a new SoftPFReq packet
780                RequestPtr req = new Request(pkt->req->getPaddr(),
781                                             pkt->req->getSize(),
782                                             pkt->req->getFlags(),
783                                             pkt->req->masterId());
784                pf = new Packet(req, pkt->cmd);
785                pf->allocate();
786                assert(pf->getAddr() == pkt->getAddr());
787                assert(pf->getSize() == pkt->getSize());
788            }
789
790            pkt->makeTimingResponse();
791
792            // request_time is used here, taking into account lat and the delay
793            // charged if the packet comes from the xbar.
794            cpuSidePort->schedTimingResp(pkt, request_time, true);
795
796            // If an outstanding request is in progress (we found an
797            // MSHR) this is set to null
798            pkt = pf;
799        }
800
801        if (mshr) {
802            /// MSHR hit
803            /// @note writebacks will be checked in getNextMSHR()
804            /// for any conflicting requests to the same block
805
806            //@todo remove hw_pf here
807
808            // Coalesce unless it was a software prefetch (see above).
809            if (pkt) {
810                assert(!pkt->isWriteback());
811                // CleanEvicts corresponding to blocks which have
812                // outstanding requests in MSHRs are simply sunk here
813                if (pkt->cmd == MemCmd::CleanEvict) {
814                    pendingDelete.reset(pkt);
815                } else {
816                    DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx "
817                            "size %d\n", __func__, pkt->cmdString(),
818                            pkt->getAddr(), pkt->getSize());
819
820                    assert(pkt->req->masterId() < system->maxMasters());
821                    mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
822                    // We use forward_time here because it is the same
823                    // considering new targets. We have multiple
824                    // requests for the same address here. It
825                    // specifies the latency to allocate an internal
826                    // buffer and to schedule an event to the queued
827                    // port and also takes into account the additional
828                    // delay of the xbar.
829                    mshr->allocateTarget(pkt, forward_time, order++,
830                                         allocOnFill(pkt->cmd));
831                    if (mshr->getNumTargets() == numTarget) {
832                        noTargetMSHR = mshr;
833                        setBlocked(Blocked_NoTargets);
834                        // need to be careful with this... if this mshr isn't
835                        // ready yet (i.e. time > curTick()), we don't want to
836                        // move it ahead of mshrs that are ready
837                        // mshrQueue.moveToFront(mshr);
838                    }
839                }
840                // We should call the prefetcher reguardless if the request is
841                // satisfied or not, reguardless if the request is in the MSHR
842                // or not.  The request could be a ReadReq hit, but still not
843                // satisfied (potentially because of a prior write to the same
844                // cache line.  So, even when not satisfied, tehre is an MSHR
845                // already allocated for this, we need to let the prefetcher
846                // know about the request
847                if (prefetcher) {
848                    // Don't notify on SWPrefetch
849                    if (!pkt->cmd.isSWPrefetch())
850                        next_pf_time = prefetcher->notify(pkt);
851                }
852            }
853        } else {
854            // no MSHR
855            assert(pkt->req->masterId() < system->maxMasters());
856            if (pkt->req->isUncacheable()) {
857                mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
858            } else {
859                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
860            }
861
862            if (pkt->isEviction() ||
863                (pkt->req->isUncacheable() && pkt->isWrite())) {
864                // We use forward_time here because there is an
865                // uncached memory write, forwarded to WriteBuffer.
866                allocateWriteBuffer(pkt, forward_time);
867            } else {
868                if (blk && blk->isValid()) {
869                    // should have flushed and have no valid block
870                    assert(!pkt->req->isUncacheable());
871
872                    // If we have a write miss to a valid block, we
873                    // need to mark the block non-readable.  Otherwise
874                    // if we allow reads while there's an outstanding
875                    // write miss, the read could return stale data
876                    // out of the cache block... a more aggressive
877                    // system could detect the overlap (if any) and
878                    // forward data out of the MSHRs, but we don't do
879                    // that yet.  Note that we do need to leave the
880                    // block valid so that it stays in the cache, in
881                    // case we get an upgrade response (and hence no
882                    // new data) when the write miss completes.
883                    // As long as CPUs do proper store/load forwarding
884                    // internally, and have a sufficiently weak memory
885                    // model, this is probably unnecessary, but at some
886                    // point it must have seemed like we needed it...
887                    assert(pkt->needsWritable());
888                    assert(!blk->isWritable());
889                    blk->status &= ~BlkReadable;
890                }
891                // Here we are using forward_time, modelling the latency of
892                // a miss (outbound) just as forwardLatency, neglecting the
893                // lookupLatency component.
894                allocateMissBuffer(pkt, forward_time);
895            }
896
897            if (prefetcher) {
898                // Don't notify on SWPrefetch
899                if (!pkt->cmd.isSWPrefetch())
900                    next_pf_time = prefetcher->notify(pkt);
901            }
902        }
903    }
904
905    if (next_pf_time != MaxTick)
906        schedMemSideSendEvent(next_pf_time);
907
908    return true;
909}
910
911PacketPtr
912Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
913                        bool needsWritable) const
914{
915    // should never see evictions here
916    assert(!cpu_pkt->isEviction());
917
918    bool blkValid = blk && blk->isValid();
919
920    if (cpu_pkt->req->isUncacheable() ||
921        (!blkValid && cpu_pkt->isUpgrade())) {
922        // uncacheable requests and upgrades from upper-level caches
923        // that missed completely just go through as is
924        return nullptr;
925    }
926
927    assert(cpu_pkt->needsResponse());
928
929    MemCmd cmd;
930    // @TODO make useUpgrades a parameter.
931    // Note that ownership protocols require upgrade, otherwise a
932    // write miss on a shared owned block will generate a ReadExcl,
933    // which will clobber the owned copy.
934    const bool useUpgrades = true;
935    if (blkValid && useUpgrades) {
936        // only reason to be here is that blk is read only and we need
937        // it to be writable
938        assert(needsWritable);
939        assert(!blk->isWritable());
940        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
941    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
942               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
943        // Even though this SC will fail, we still need to send out the
944        // request and get the data to supply it to other snoopers in the case
945        // where the determination the StoreCond fails is delayed due to
946        // all caches not being on the same local bus.
947        cmd = MemCmd::SCUpgradeFailReq;
948    } else if (cpu_pkt->cmd == MemCmd::WriteLineReq ||
949               cpu_pkt->cmd == MemCmd::InvalidateReq) {
950        // forward as invalidate to all other caches, this gives us
951        // the line in Exclusive state, and invalidates all other
952        // copies
953        cmd = MemCmd::InvalidateReq;
954    } else {
955        // block is invalid
956        cmd = needsWritable ? MemCmd::ReadExReq :
957            (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
958    }
959    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
960
961    // if there are upstream caches that have already marked the
962    // packet as having sharers (not passing writable), pass that info
963    // downstream
964    if (cpu_pkt->hasSharers() && !needsWritable) {
965        // note that cpu_pkt may have spent a considerable time in the
966        // MSHR queue and that the information could possibly be out
967        // of date, however, there is no harm in conservatively
968        // assuming the block has sharers
969        pkt->setHasSharers();
970        DPRINTF(Cache, "%s passing hasSharers from %s to %s addr %#llx "
971                "size %d\n",
972                __func__, cpu_pkt->cmdString(), pkt->cmdString(),
973                pkt->getAddr(), pkt->getSize());
974    }
975
976    // the packet should be block aligned
977    assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
978
979    pkt->allocate();
980    DPRINTF(Cache, "%s created %s from %s for  addr %#llx size %d\n",
981            __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
982            pkt->getSize());
983    return pkt;
984}
985
986
987Tick
988Cache::recvAtomic(PacketPtr pkt)
989{
990    // We are in atomic mode so we pay just for lookupLatency here.
991    Cycles lat = lookupLatency;
992
993    // Forward the request if the system is in cache bypass mode.
994    if (system->bypassCaches())
995        return ticksToCycles(memSidePort->sendAtomic(pkt));
996
997    promoteWholeLineWrites(pkt);
998
999    // follow the same flow as in recvTimingReq, and check if a cache
1000    // above us is responding
1001    if (pkt->cacheResponding()) {
1002        DPRINTF(Cache, "Cache above responding to %#llx (%s): "
1003                "not responding\n",
1004                pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
1005
1006        // if a cache is responding, and it had the line in Owned
1007        // rather than Modified state, we need to invalidate any
1008        // copies that are not on the same path to memory
1009        assert(pkt->needsWritable() && !pkt->responderHadWritable());
1010        lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1011
1012        return lat * clockPeriod();
1013    }
1014
1015    // should assert here that there are no outstanding MSHRs or
1016    // writebacks... that would mean that someone used an atomic
1017    // access in timing mode
1018
1019    CacheBlk *blk = nullptr;
1020    PacketList writebacks;
1021    bool satisfied = access(pkt, blk, lat, writebacks);
1022
1023    // handle writebacks resulting from the access here to ensure they
1024    // logically proceed anything happening below
1025    doWritebacksAtomic(writebacks);
1026
1027    if (!satisfied) {
1028        // MISS
1029
1030        // deal with the packets that go through the write path of
1031        // the cache, i.e. any evictions and uncacheable writes
1032        if (pkt->isEviction() ||
1033            (pkt->req->isUncacheable() && pkt->isWrite())) {
1034            lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1035            return lat * clockPeriod();
1036        }
1037        // only misses left
1038
1039        PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
1040
1041        bool is_forward = (bus_pkt == nullptr);
1042
1043        if (is_forward) {
1044            // just forwarding the same request to the next level
1045            // no local cache operation involved
1046            bus_pkt = pkt;
1047        }
1048
1049        DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
1050                bus_pkt->cmdString(), bus_pkt->getAddr(),
1051                bus_pkt->isSecure() ? "s" : "ns");
1052
1053#if TRACING_ON
1054        CacheBlk::State old_state = blk ? blk->status : 0;
1055#endif
1056
1057        lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1058
1059        bool is_invalidate = bus_pkt->isInvalidate();
1060
1061        // We are now dealing with the response handling
1062        DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in "
1063                "state %i\n", bus_pkt->cmdString(), bus_pkt->getAddr(),
1064                bus_pkt->isSecure() ? "s" : "ns",
1065                old_state);
1066
1067        // If packet was a forward, the response (if any) is already
1068        // in place in the bus_pkt == pkt structure, so we don't need
1069        // to do anything.  Otherwise, use the separate bus_pkt to
1070        // generate response to pkt and then delete it.
1071        if (!is_forward) {
1072            if (pkt->needsResponse()) {
1073                assert(bus_pkt->isResponse());
1074                if (bus_pkt->isError()) {
1075                    pkt->makeAtomicResponse();
1076                    pkt->copyError(bus_pkt);
1077                } else if (pkt->cmd == MemCmd::WriteLineReq) {
1078                    // note the use of pkt, not bus_pkt here.
1079
1080                    // write-line request to the cache that promoted
1081                    // the write to a whole line
1082                    blk = handleFill(pkt, blk, writebacks,
1083                                     allocOnFill(pkt->cmd));
1084                    assert(blk != NULL);
1085                    is_invalidate = false;
1086                    satisfyRequest(pkt, blk);
1087                } else if (bus_pkt->isRead() ||
1088                           bus_pkt->cmd == MemCmd::UpgradeResp) {
1089                    // we're updating cache state to allow us to
1090                    // satisfy the upstream request from the cache
1091                    blk = handleFill(bus_pkt, blk, writebacks,
1092                                     allocOnFill(pkt->cmd));
1093                    satisfyRequest(pkt, blk);
1094                    maintainClusivity(pkt->fromCache(), blk);
1095                } else {
1096                    // we're satisfying the upstream request without
1097                    // modifying cache state, e.g., a write-through
1098                    pkt->makeAtomicResponse();
1099                }
1100            }
1101            delete bus_pkt;
1102        }
1103
1104        if (is_invalidate && blk && blk->isValid()) {
1105            invalidateBlock(blk);
1106        }
1107    }
1108
1109    // Note that we don't invoke the prefetcher at all in atomic mode.
1110    // It's not clear how to do it properly, particularly for
1111    // prefetchers that aggressively generate prefetch candidates and
1112    // rely on bandwidth contention to throttle them; these will tend
1113    // to pollute the cache in atomic mode since there is no bandwidth
1114    // contention.  If we ever do want to enable prefetching in atomic
1115    // mode, though, this is the place to do it... see timingAccess()
1116    // for an example (though we'd want to issue the prefetch(es)
1117    // immediately rather than calling requestMemSideBus() as we do
1118    // there).
1119
1120    // do any writebacks resulting from the response handling
1121    doWritebacksAtomic(writebacks);
1122
1123    // if we used temp block, check to see if its valid and if so
1124    // clear it out, but only do so after the call to recvAtomic is
1125    // finished so that any downstream observers (such as a snoop
1126    // filter), first see the fill, and only then see the eviction
1127    if (blk == tempBlock && tempBlock->isValid()) {
1128        // the atomic CPU calls recvAtomic for fetch and load/store
1129        // sequentuially, and we may already have a tempBlock
1130        // writeback from the fetch that we have not yet sent
1131        if (tempBlockWriteback) {
1132            // if that is the case, write the prevoius one back, and
1133            // do not schedule any new event
1134            writebackTempBlockAtomic();
1135        } else {
1136            // the writeback/clean eviction happens after the call to
1137            // recvAtomic has finished (but before any successive
1138            // calls), so that the response handling from the fill is
1139            // allowed to happen first
1140            schedule(writebackTempBlockAtomicEvent, curTick());
1141        }
1142
1143        tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1144            writebackBlk(blk) : cleanEvictBlk(blk);
1145        blk->invalidate();
1146    }
1147
1148    if (pkt->needsResponse()) {
1149        pkt->makeAtomicResponse();
1150    }
1151
1152    return lat * clockPeriod();
1153}
1154
1155
1156void
1157Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1158{
1159    if (system->bypassCaches()) {
1160        // Packets from the memory side are snoop request and
1161        // shouldn't happen in bypass mode.
1162        assert(fromCpuSide);
1163
1164        // The cache should be flushed if we are in cache bypass mode,
1165        // so we don't need to check if we need to update anything.
1166        memSidePort->sendFunctional(pkt);
1167        return;
1168    }
1169
1170    Addr blk_addr = blockAlign(pkt->getAddr());
1171    bool is_secure = pkt->isSecure();
1172    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1173    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1174
1175    pkt->pushLabel(name());
1176
1177    CacheBlkPrintWrapper cbpw(blk);
1178
1179    // Note that just because an L2/L3 has valid data doesn't mean an
1180    // L1 doesn't have a more up-to-date modified copy that still
1181    // needs to be found.  As a result we always update the request if
1182    // we have it, but only declare it satisfied if we are the owner.
1183
1184    // see if we have data at all (owned or otherwise)
1185    bool have_data = blk && blk->isValid()
1186        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1187                                blk->data);
1188
1189    // data we have is dirty if marked as such or if we have an
1190    // in-service MSHR that is pending a modified line
1191    bool have_dirty =
1192        have_data && (blk->isDirty() ||
1193                      (mshr && mshr->inService && mshr->isPendingModified()));
1194
1195    bool done = have_dirty
1196        || cpuSidePort->checkFunctional(pkt)
1197        || mshrQueue.checkFunctional(pkt, blk_addr)
1198        || writeBuffer.checkFunctional(pkt, blk_addr)
1199        || memSidePort->checkFunctional(pkt);
1200
1201    DPRINTF(CacheVerbose, "functional %s %#llx (%s) %s%s%s\n",
1202            pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1203            (blk && blk->isValid()) ? "valid " : "",
1204            have_data ? "data " : "", done ? "done " : "");
1205
1206    // We're leaving the cache, so pop cache->name() label
1207    pkt->popLabel();
1208
1209    if (done) {
1210        pkt->makeResponse();
1211    } else {
1212        // if it came as a request from the CPU side then make sure it
1213        // continues towards the memory side
1214        if (fromCpuSide) {
1215            memSidePort->sendFunctional(pkt);
1216        } else if (cpuSidePort->isSnooping()) {
1217            // if it came from the memory side, it must be a snoop request
1218            // and we should only forward it if we are forwarding snoops
1219            cpuSidePort->sendFunctionalSnoop(pkt);
1220        }
1221    }
1222}
1223
1224
1225/////////////////////////////////////////////////////
1226//
1227// Response handling: responses from the memory side
1228//
1229/////////////////////////////////////////////////////
1230
1231
1232void
1233Cache::handleUncacheableWriteResp(PacketPtr pkt)
1234{
1235    Tick completion_time = clockEdge(responseLatency) +
1236        pkt->headerDelay + pkt->payloadDelay;
1237
1238    // Reset the bus additional time as it is now accounted for
1239    pkt->headerDelay = pkt->payloadDelay = 0;
1240
1241    cpuSidePort->schedTimingResp(pkt, completion_time, true);
1242}
1243
1244void
1245Cache::recvTimingResp(PacketPtr pkt)
1246{
1247    assert(pkt->isResponse());
1248
1249    // all header delay should be paid for by the crossbar, unless
1250    // this is a prefetch response from above
1251    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1252             "%s saw a non-zero packet delay\n", name());
1253
1254    bool is_error = pkt->isError();
1255
1256    if (is_error) {
1257        DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1258                "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1259                pkt->cmdString());
1260    }
1261
1262    DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1263            pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1264            pkt->isSecure() ? "s" : "ns");
1265
1266    // if this is a write, we should be looking at an uncacheable
1267    // write
1268    if (pkt->isWrite()) {
1269        assert(pkt->req->isUncacheable());
1270        handleUncacheableWriteResp(pkt);
1271        return;
1272    }
1273
1274    // we have dealt with any (uncacheable) writes above, from here on
1275    // we know we are dealing with an MSHR due to a miss or a prefetch
1276    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
1277    assert(mshr);
1278
1279    if (mshr == noTargetMSHR) {
1280        // we always clear at least one target
1281        clearBlocked(Blocked_NoTargets);
1282        noTargetMSHR = nullptr;
1283    }
1284
1285    // Initial target is used just for stats
1286    MSHR::Target *initial_tgt = mshr->getTarget();
1287    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1288    Tick miss_latency = curTick() - initial_tgt->recvTime;
1289
1290    if (pkt->req->isUncacheable()) {
1291        assert(pkt->req->masterId() < system->maxMasters());
1292        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1293            miss_latency;
1294    } else {
1295        assert(pkt->req->masterId() < system->maxMasters());
1296        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1297            miss_latency;
1298    }
1299
1300    bool wasFull = mshrQueue.isFull();
1301
1302    PacketList writebacks;
1303
1304    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1305
1306    // upgrade deferred targets if the response has no sharers, and is
1307    // thus passing writable
1308    if (!pkt->hasSharers()) {
1309        mshr->promoteWritable();
1310    }
1311
1312    bool is_fill = !mshr->isForward &&
1313        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1314
1315    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1316
1317    if (is_fill && !is_error) {
1318        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1319                pkt->getAddr());
1320
1321        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
1322        assert(blk != nullptr);
1323    }
1324
1325    // allow invalidation responses originating from write-line
1326    // requests to be discarded
1327    bool is_invalidate = pkt->isInvalidate();
1328
1329    // First offset for critical word first calculations
1330    int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1331
1332    bool from_cache = false;
1333    MSHR::TargetList targets = mshr->extractServiceableTargets(pkt);
1334    for (auto &target: targets) {
1335        Packet *tgt_pkt = target.pkt;
1336        switch (target.source) {
1337          case MSHR::Target::FromCPU:
1338            Tick completion_time;
1339            // Here we charge on completion_time the delay of the xbar if the
1340            // packet comes from it, charged on headerDelay.
1341            completion_time = pkt->headerDelay;
1342
1343            // Software prefetch handling for cache closest to core
1344            if (tgt_pkt->cmd.isSWPrefetch()) {
1345                // a software prefetch would have already been ack'd
1346                // immediately with dummy data so the core would be able to
1347                // retire it. This request completes right here, so we
1348                // deallocate it.
1349                delete tgt_pkt->req;
1350                delete tgt_pkt;
1351                break; // skip response
1352            }
1353
1354            // keep track of whether we have responded to another
1355            // cache
1356            from_cache = from_cache || tgt_pkt->fromCache();
1357
1358            // unlike the other packet flows, where data is found in other
1359            // caches or memory and brought back, write-line requests always
1360            // have the data right away, so the above check for "is fill?"
1361            // cannot actually be determined until examining the stored MSHR
1362            // state. We "catch up" with that logic here, which is duplicated
1363            // from above.
1364            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1365                assert(!is_error);
1366                // we got the block in a writable state, so promote
1367                // any deferred targets if possible
1368                mshr->promoteWritable();
1369                // NB: we use the original packet here and not the response!
1370                blk = handleFill(tgt_pkt, blk, writebacks,
1371                                 targets.allocOnFill);
1372                assert(blk != nullptr);
1373
1374                // treat as a fill, and discard the invalidation
1375                // response
1376                is_fill = true;
1377                is_invalidate = false;
1378            }
1379
1380            if (is_fill) {
1381                satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
1382
1383                // How many bytes past the first request is this one
1384                int transfer_offset =
1385                    tgt_pkt->getOffset(blkSize) - initial_offset;
1386                if (transfer_offset < 0) {
1387                    transfer_offset += blkSize;
1388                }
1389
1390                // If not critical word (offset) return payloadDelay.
1391                // responseLatency is the latency of the return path
1392                // from lower level caches/memory to an upper level cache or
1393                // the core.
1394                completion_time += clockEdge(responseLatency) +
1395                    (transfer_offset ? pkt->payloadDelay : 0);
1396
1397                assert(!tgt_pkt->req->isUncacheable());
1398
1399                assert(tgt_pkt->req->masterId() < system->maxMasters());
1400                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1401                    completion_time - target.recvTime;
1402            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1403                // failed StoreCond upgrade
1404                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1405                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1406                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1407                // responseLatency is the latency of the return path
1408                // from lower level caches/memory to an upper level cache or
1409                // the core.
1410                completion_time += clockEdge(responseLatency) +
1411                    pkt->payloadDelay;
1412                tgt_pkt->req->setExtraData(0);
1413            } else {
1414                // not a cache fill, just forwarding response
1415                // responseLatency is the latency of the return path
1416                // from lower level cahces/memory to the core.
1417                completion_time += clockEdge(responseLatency) +
1418                    pkt->payloadDelay;
1419                if (pkt->isRead() && !is_error) {
1420                    // sanity check
1421                    assert(pkt->getAddr() == tgt_pkt->getAddr());
1422                    assert(pkt->getSize() >= tgt_pkt->getSize());
1423
1424                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1425                }
1426            }
1427            tgt_pkt->makeTimingResponse();
1428            // if this packet is an error copy that to the new packet
1429            if (is_error)
1430                tgt_pkt->copyError(pkt);
1431            if (tgt_pkt->cmd == MemCmd::ReadResp &&
1432                (is_invalidate || mshr->hasPostInvalidate())) {
1433                // If intermediate cache got ReadRespWithInvalidate,
1434                // propagate that.  Response should not have
1435                // isInvalidate() set otherwise.
1436                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1437                DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1438                        __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1439            }
1440            // Reset the bus additional time as it is now accounted for
1441            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1442            cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1443            break;
1444
1445          case MSHR::Target::FromPrefetcher:
1446            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1447            if (blk)
1448                blk->status |= BlkHWPrefetched;
1449            delete tgt_pkt->req;
1450            delete tgt_pkt;
1451            break;
1452
1453          case MSHR::Target::FromSnoop:
1454            // I don't believe that a snoop can be in an error state
1455            assert(!is_error);
1456            // response to snoop request
1457            DPRINTF(Cache, "processing deferred snoop...\n");
1458            assert(!(is_invalidate && !mshr->hasPostInvalidate()));
1459            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1460            break;
1461
1462          default:
1463            panic("Illegal target->source enum %d\n", target.source);
1464        }
1465    }
1466
1467    maintainClusivity(from_cache, blk);
1468
1469    if (blk && blk->isValid()) {
1470        // an invalidate response stemming from a write line request
1471        // should not invalidate the block, so check if the
1472        // invalidation should be discarded
1473        if (is_invalidate || mshr->hasPostInvalidate()) {
1474            invalidateBlock(blk);
1475        } else if (mshr->hasPostDowngrade()) {
1476            blk->status &= ~BlkWritable;
1477        }
1478    }
1479
1480    if (mshr->promoteDeferredTargets()) {
1481        // avoid later read getting stale data while write miss is
1482        // outstanding.. see comment in timingAccess()
1483        if (blk) {
1484            blk->status &= ~BlkReadable;
1485        }
1486        mshrQueue.markPending(mshr);
1487        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1488    } else {
1489        mshrQueue.deallocate(mshr);
1490        if (wasFull && !mshrQueue.isFull()) {
1491            clearBlocked(Blocked_NoMSHRs);
1492        }
1493
1494        // Request the bus for a prefetch if this deallocation freed enough
1495        // MSHRs for a prefetch to take place
1496        if (prefetcher && mshrQueue.canPrefetch()) {
1497            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1498                                         clockEdge());
1499            if (next_pf_time != MaxTick)
1500                schedMemSideSendEvent(next_pf_time);
1501        }
1502    }
1503    // reset the xbar additional timinig  as it is now accounted for
1504    pkt->headerDelay = pkt->payloadDelay = 0;
1505
1506    // copy writebacks to write buffer
1507    doWritebacks(writebacks, forward_time);
1508
1509    // if we used temp block, check to see if its valid and then clear it out
1510    if (blk == tempBlock && tempBlock->isValid()) {
1511        // We use forwardLatency here because we are copying
1512        // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1513        // allocate an internal buffer and to schedule an event to the
1514        // queued port.
1515        if (blk->isDirty() || writebackClean) {
1516            PacketPtr wbPkt = writebackBlk(blk);
1517            allocateWriteBuffer(wbPkt, forward_time);
1518            // Set BLOCK_CACHED flag if cached above.
1519            if (isCachedAbove(wbPkt))
1520                wbPkt->setBlockCached();
1521        } else {
1522            PacketPtr wcPkt = cleanEvictBlk(blk);
1523            // Check to see if block is cached above. If not allocate
1524            // write buffer
1525            if (isCachedAbove(wcPkt))
1526                delete wcPkt;
1527            else
1528                allocateWriteBuffer(wcPkt, forward_time);
1529        }
1530        blk->invalidate();
1531    }
1532
1533    DPRINTF(CacheVerbose, "Leaving %s with %s for addr %#llx\n", __func__,
1534            pkt->cmdString(), pkt->getAddr());
1535    delete pkt;
1536}
1537
1538PacketPtr
1539Cache::writebackBlk(CacheBlk *blk)
1540{
1541    chatty_assert(!isReadOnly || writebackClean,
1542                  "Writeback from read-only cache");
1543    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1544
1545    writebacks[Request::wbMasterId]++;
1546
1547    Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1548                               blkSize, 0, Request::wbMasterId);
1549    if (blk->isSecure())
1550        req->setFlags(Request::SECURE);
1551
1552    req->taskId(blk->task_id);
1553    blk->task_id= ContextSwitchTaskId::Unknown;
1554    blk->tickInserted = curTick();
1555
1556    PacketPtr pkt =
1557        new Packet(req, blk->isDirty() ?
1558                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1559
1560    DPRINTF(Cache, "Create Writeback %#llx writable: %d, dirty: %d\n",
1561            pkt->getAddr(), blk->isWritable(), blk->isDirty());
1562
1563    if (blk->isWritable()) {
1564        // not asserting shared means we pass the block in modified
1565        // state, mark our own block non-writeable
1566        blk->status &= ~BlkWritable;
1567    } else {
1568        // we are in the Owned state, tell the receiver
1569        pkt->setHasSharers();
1570    }
1571
1572    // make sure the block is not marked dirty
1573    blk->status &= ~BlkDirty;
1574
1575    pkt->allocate();
1576    std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1577
1578    return pkt;
1579}
1580
1581PacketPtr
1582Cache::cleanEvictBlk(CacheBlk *blk)
1583{
1584    assert(!writebackClean);
1585    assert(blk && blk->isValid() && !blk->isDirty());
1586    // Creating a zero sized write, a message to the snoop filter
1587    Request *req =
1588        new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1589                    Request::wbMasterId);
1590    if (blk->isSecure())
1591        req->setFlags(Request::SECURE);
1592
1593    req->taskId(blk->task_id);
1594    blk->task_id = ContextSwitchTaskId::Unknown;
1595    blk->tickInserted = curTick();
1596
1597    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1598    pkt->allocate();
1599    DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1600            pkt->req->isInstFetch() ? " (ifetch)" : "",
1601            pkt->getAddr());
1602
1603    return pkt;
1604}
1605
1606void
1607Cache::memWriteback()
1608{
1609    CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1610    tags->forEachBlk(visitor);
1611}
1612
1613void
1614Cache::memInvalidate()
1615{
1616    CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1617    tags->forEachBlk(visitor);
1618}
1619
1620bool
1621Cache::isDirty() const
1622{
1623    CacheBlkIsDirtyVisitor visitor;
1624    tags->forEachBlk(visitor);
1625
1626    return visitor.isDirty();
1627}
1628
1629bool
1630Cache::writebackVisitor(CacheBlk &blk)
1631{
1632    if (blk.isDirty()) {
1633        assert(blk.isValid());
1634
1635        Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1636                        blkSize, 0, Request::funcMasterId);
1637        request.taskId(blk.task_id);
1638
1639        Packet packet(&request, MemCmd::WriteReq);
1640        packet.dataStatic(blk.data);
1641
1642        memSidePort->sendFunctional(&packet);
1643
1644        blk.status &= ~BlkDirty;
1645    }
1646
1647    return true;
1648}
1649
1650bool
1651Cache::invalidateVisitor(CacheBlk &blk)
1652{
1653
1654    if (blk.isDirty())
1655        warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1656
1657    if (blk.isValid()) {
1658        assert(!blk.isDirty());
1659        tags->invalidate(&blk);
1660        blk.invalidate();
1661    }
1662
1663    return true;
1664}
1665
1666CacheBlk*
1667Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1668{
1669    CacheBlk *blk = tags->findVictim(addr);
1670
1671    // It is valid to return nullptr if there is no victim
1672    if (!blk)
1673        return nullptr;
1674
1675    if (blk->isValid()) {
1676        Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1677        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1678        if (repl_mshr) {
1679            // must be an outstanding upgrade request
1680            // on a block we're about to replace...
1681            assert(!blk->isWritable() || blk->isDirty());
1682            assert(repl_mshr->needsWritable());
1683            // too hard to replace block with transient state
1684            // allocation failed, block not inserted
1685            return nullptr;
1686        } else {
1687            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1688                    "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
1689                    addr, is_secure ? "s" : "ns",
1690                    blk->isDirty() ? "writeback" : "clean");
1691
1692            if (blk->wasPrefetched()) {
1693                unusedPrefetches++;
1694            }
1695            // Will send up Writeback/CleanEvict snoops via isCachedAbove
1696            // when pushing this writeback list into the write buffer.
1697            if (blk->isDirty() || writebackClean) {
1698                // Save writeback packet for handling by caller
1699                writebacks.push_back(writebackBlk(blk));
1700            } else {
1701                writebacks.push_back(cleanEvictBlk(blk));
1702            }
1703        }
1704    }
1705
1706    return blk;
1707}
1708
1709void
1710Cache::invalidateBlock(CacheBlk *blk)
1711{
1712    if (blk != tempBlock)
1713        tags->invalidate(blk);
1714    blk->invalidate();
1715}
1716
1717// Note that the reason we return a list of writebacks rather than
1718// inserting them directly in the write buffer is that this function
1719// is called by both atomic and timing-mode accesses, and in atomic
1720// mode we don't mess with the write buffer (we just perform the
1721// writebacks atomically once the original request is complete).
1722CacheBlk*
1723Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1724                  bool allocate)
1725{
1726    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1727    Addr addr = pkt->getAddr();
1728    bool is_secure = pkt->isSecure();
1729#if TRACING_ON
1730    CacheBlk::State old_state = blk ? blk->status : 0;
1731#endif
1732
1733    // When handling a fill, we should have no writes to this line.
1734    assert(addr == blockAlign(addr));
1735    assert(!writeBuffer.findMatch(addr, is_secure));
1736
1737    if (blk == nullptr) {
1738        // better have read new data...
1739        assert(pkt->hasData());
1740
1741        // only read responses and write-line requests have data;
1742        // note that we don't write the data here for write-line - that
1743        // happens in the subsequent call to satisfyRequest
1744        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1745
1746        // need to do a replacement if allocating, otherwise we stick
1747        // with the temporary storage
1748        blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
1749
1750        if (blk == nullptr) {
1751            // No replaceable block or a mostly exclusive
1752            // cache... just use temporary storage to complete the
1753            // current request and then get rid of it
1754            assert(!tempBlock->isValid());
1755            blk = tempBlock;
1756            tempBlock->set = tags->extractSet(addr);
1757            tempBlock->tag = tags->extractTag(addr);
1758            // @todo: set security state as well...
1759            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1760                    is_secure ? "s" : "ns");
1761        } else {
1762            tags->insertBlock(pkt, blk);
1763        }
1764
1765        // we should never be overwriting a valid block
1766        assert(!blk->isValid());
1767    } else {
1768        // existing block... probably an upgrade
1769        assert(blk->tag == tags->extractTag(addr));
1770        // either we're getting new data or the block should already be valid
1771        assert(pkt->hasData() || blk->isValid());
1772        // don't clear block status... if block is already dirty we
1773        // don't want to lose that
1774    }
1775
1776    if (is_secure)
1777        blk->status |= BlkSecure;
1778    blk->status |= BlkValid | BlkReadable;
1779
1780    // sanity check for whole-line writes, which should always be
1781    // marked as writable as part of the fill, and then later marked
1782    // dirty as part of satisfyRequest
1783    if (pkt->cmd == MemCmd::WriteLineReq) {
1784        assert(!pkt->hasSharers());
1785        // at the moment other caches do not respond to the
1786        // invalidation requests corresponding to a whole-line write
1787        assert(!pkt->cacheResponding());
1788    }
1789
1790    // here we deal with setting the appropriate state of the line,
1791    // and we start by looking at the hasSharers flag, and ignore the
1792    // cacheResponding flag (normally signalling dirty data) if the
1793    // packet has sharers, thus the line is never allocated as Owned
1794    // (dirty but not writable), and always ends up being either
1795    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1796    // for more details
1797    if (!pkt->hasSharers()) {
1798        // we could get a writable line from memory (rather than a
1799        // cache) even in a read-only cache, note that we set this bit
1800        // even for a read-only cache, possibly revisit this decision
1801        blk->status |= BlkWritable;
1802
1803        // check if we got this via cache-to-cache transfer (i.e., from a
1804        // cache that had the block in Modified or Owned state)
1805        if (pkt->cacheResponding()) {
1806            // we got the block in Modified state, and invalidated the
1807            // owners copy
1808            blk->status |= BlkDirty;
1809
1810            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1811                          "in read-only cache %s\n", name());
1812        }
1813    }
1814
1815    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1816            addr, is_secure ? "s" : "ns", old_state, blk->print());
1817
1818    // if we got new data, copy it in (checking for a read response
1819    // and a response that has data is the same in the end)
1820    if (pkt->isRead()) {
1821        // sanity checks
1822        assert(pkt->hasData());
1823        assert(pkt->getSize() == blkSize);
1824
1825        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1826    }
1827    // We pay for fillLatency here.
1828    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1829        pkt->payloadDelay;
1830
1831    return blk;
1832}
1833
1834
1835/////////////////////////////////////////////////////
1836//
1837// Snoop path: requests coming in from the memory side
1838//
1839/////////////////////////////////////////////////////
1840
1841void
1842Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1843                              bool already_copied, bool pending_inval)
1844{
1845    // sanity check
1846    assert(req_pkt->isRequest());
1847    assert(req_pkt->needsResponse());
1848
1849    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1850            req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1851    // timing-mode snoop responses require a new packet, unless we
1852    // already made a copy...
1853    PacketPtr pkt = req_pkt;
1854    if (!already_copied)
1855        // do not clear flags, and allocate space for data if the
1856        // packet needs it (the only packets that carry data are read
1857        // responses)
1858        pkt = new Packet(req_pkt, false, req_pkt->isRead());
1859
1860    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1861           pkt->hasSharers());
1862    pkt->makeTimingResponse();
1863    if (pkt->isRead()) {
1864        pkt->setDataFromBlock(blk_data, blkSize);
1865    }
1866    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1867        // Assume we defer a response to a read from a far-away cache
1868        // A, then later defer a ReadExcl from a cache B on the same
1869        // bus as us. We'll assert cacheResponding in both cases, but
1870        // in the latter case cacheResponding will keep the
1871        // invalidation from reaching cache A. This special response
1872        // tells cache A that it gets the block to satisfy its read,
1873        // but must immediately invalidate it.
1874        pkt->cmd = MemCmd::ReadRespWithInvalidate;
1875    }
1876    // Here we consider forward_time, paying for just forward latency and
1877    // also charging the delay provided by the xbar.
1878    // forward_time is used as send_time in next allocateWriteBuffer().
1879    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1880    // Here we reset the timing of the packet.
1881    pkt->headerDelay = pkt->payloadDelay = 0;
1882    DPRINTF(CacheVerbose,
1883            "%s created response: %s addr %#llx size %d tick: %lu\n",
1884            __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1885            forward_time);
1886    memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1887}
1888
1889uint32_t
1890Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1891                   bool is_deferred, bool pending_inval)
1892{
1893    DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
1894            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1895    // deferred snoops can only happen in timing mode
1896    assert(!(is_deferred && !is_timing));
1897    // pending_inval only makes sense on deferred snoops
1898    assert(!(pending_inval && !is_deferred));
1899    assert(pkt->isRequest());
1900
1901    // the packet may get modified if we or a forwarded snooper
1902    // responds in atomic mode, so remember a few things about the
1903    // original packet up front
1904    bool invalidate = pkt->isInvalidate();
1905    bool M5_VAR_USED needs_writable = pkt->needsWritable();
1906
1907    // at the moment we could get an uncacheable write which does not
1908    // have the invalidate flag, and we need a suitable way of dealing
1909    // with this case
1910    panic_if(invalidate && pkt->req->isUncacheable(),
1911             "%s got an invalidating uncacheable snoop request %s to %#llx",
1912             name(), pkt->cmdString(), pkt->getAddr());
1913
1914    uint32_t snoop_delay = 0;
1915
1916    if (forwardSnoops) {
1917        // first propagate snoop upward to see if anyone above us wants to
1918        // handle it.  save & restore packet src since it will get
1919        // rewritten to be relative to cpu-side bus (if any)
1920        bool alreadyResponded = pkt->cacheResponding();
1921        if (is_timing) {
1922            // copy the packet so that we can clear any flags before
1923            // forwarding it upwards, we also allocate data (passing
1924            // the pointer along in case of static data), in case
1925            // there is a snoop hit in upper levels
1926            Packet snoopPkt(pkt, true, true);
1927            snoopPkt.setExpressSnoop();
1928            // the snoop packet does not need to wait any additional
1929            // time
1930            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1931            cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1932
1933            // add the header delay (including crossbar and snoop
1934            // delays) of the upward snoop to the snoop delay for this
1935            // cache
1936            snoop_delay += snoopPkt.headerDelay;
1937
1938            if (snoopPkt.cacheResponding()) {
1939                // cache-to-cache response from some upper cache
1940                assert(!alreadyResponded);
1941                pkt->setCacheResponding();
1942            }
1943            // upstream cache has the block, or has an outstanding
1944            // MSHR, pass the flag on
1945            if (snoopPkt.hasSharers()) {
1946                pkt->setHasSharers();
1947            }
1948            // If this request is a prefetch or clean evict and an upper level
1949            // signals block present, make sure to propagate the block
1950            // presence to the requester.
1951            if (snoopPkt.isBlockCached()) {
1952                pkt->setBlockCached();
1953            }
1954        } else {
1955            cpuSidePort->sendAtomicSnoop(pkt);
1956            if (!alreadyResponded && pkt->cacheResponding()) {
1957                // cache-to-cache response from some upper cache:
1958                // forward response to original requester
1959                assert(pkt->isResponse());
1960            }
1961        }
1962    }
1963
1964    if (!blk || !blk->isValid()) {
1965        if (is_deferred) {
1966            // we no longer have the block, and will not respond, but a
1967            // packet was allocated in MSHR::handleSnoop and we have
1968            // to delete it
1969            assert(pkt->needsResponse());
1970
1971            // we have passed the block to a cache upstream, that
1972            // cache should be responding
1973            assert(pkt->cacheResponding());
1974
1975            delete pkt;
1976        }
1977
1978        DPRINTF(CacheVerbose, "%s snoop miss for %s addr %#llx size %d\n",
1979                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1980        return snoop_delay;
1981    } else {
1982        DPRINTF(Cache, "%s snoop hit for %s addr %#llx size %d, "
1983                "old state is %s\n", __func__, pkt->cmdString(),
1984                pkt->getAddr(), pkt->getSize(), blk->print());
1985    }
1986
1987    chatty_assert(!(isReadOnly && blk->isDirty()),
1988                  "Should never have a dirty block in a read-only cache %s\n",
1989                  name());
1990
1991    // We may end up modifying both the block state and the packet (if
1992    // we respond in atomic mode), so just figure out what to do now
1993    // and then do it later. If we find dirty data while snooping for
1994    // an invalidate, we don't need to send a response. The
1995    // invalidation itself is taken care of below.
1996    bool respond = blk->isDirty() && pkt->needsResponse() &&
1997        pkt->cmd != MemCmd::InvalidateReq;
1998    bool have_writable = blk->isWritable();
1999
2000    // Invalidate any prefetch's from below that would strip write permissions
2001    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
2002    // above and in it's own cache, a new MemCmd::ReadReq is created that
2003    // downstream caches observe.
2004    if (pkt->mustCheckAbove()) {
2005        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
2006                "from lower cache\n", pkt->getAddr(), pkt->cmdString());
2007        pkt->setBlockCached();
2008        return snoop_delay;
2009    }
2010
2011    if (pkt->isRead() && !invalidate) {
2012        // reading without requiring the line in a writable state
2013        assert(!needs_writable);
2014        pkt->setHasSharers();
2015
2016        // if the requesting packet is uncacheable, retain the line in
2017        // the current state, otherwhise unset the writable flag,
2018        // which means we go from Modified to Owned (and will respond
2019        // below), remain in Owned (and will respond below), from
2020        // Exclusive to Shared, or remain in Shared
2021        if (!pkt->req->isUncacheable())
2022            blk->status &= ~BlkWritable;
2023    }
2024
2025    if (respond) {
2026        // prevent anyone else from responding, cache as well as
2027        // memory, and also prevent any memory from even seeing the
2028        // request
2029        pkt->setCacheResponding();
2030        if (have_writable) {
2031            // inform the cache hierarchy that this cache had the line
2032            // in the Modified state so that we avoid unnecessary
2033            // invalidations (see Packet::setResponderHadWritable)
2034            pkt->setResponderHadWritable();
2035
2036            // in the case of an uncacheable request there is no point
2037            // in setting the responderHadWritable flag, but since the
2038            // recipient does not care there is no harm in doing so
2039        } else {
2040            // if the packet has needsWritable set we invalidate our
2041            // copy below and all other copies will be invalidates
2042            // through express snoops, and if needsWritable is not set
2043            // we already called setHasSharers above
2044        }
2045
2046        // if we are returning a writable and dirty (Modified) line,
2047        // we should be invalidating the line
2048        panic_if(!invalidate && !pkt->hasSharers(),
2049                 "%s is passing a Modified line through %s to %#llx, "
2050                 "but keeping the block",
2051                 name(), pkt->cmdString(), pkt->getAddr());
2052
2053        if (is_timing) {
2054            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2055        } else {
2056            pkt->makeAtomicResponse();
2057            // packets such as upgrades do not actually have any data
2058            // payload
2059            if (pkt->hasData())
2060                pkt->setDataFromBlock(blk->data, blkSize);
2061        }
2062    }
2063
2064    if (!respond && is_deferred) {
2065        assert(pkt->needsResponse());
2066
2067        // if we copied the deferred packet with the intention to
2068        // respond, but are not responding, then a cache above us must
2069        // be, and we can use this as the indication of whether this
2070        // is a packet where we created a copy of the request or not
2071        if (!pkt->cacheResponding()) {
2072            delete pkt->req;
2073        }
2074
2075        delete pkt;
2076    }
2077
2078    // Do this last in case it deallocates block data or something
2079    // like that
2080    if (invalidate) {
2081        invalidateBlock(blk);
2082    }
2083
2084    DPRINTF(Cache, "new state is %s\n", blk->print());
2085
2086    return snoop_delay;
2087}
2088
2089
2090void
2091Cache::recvTimingSnoopReq(PacketPtr pkt)
2092{
2093    DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
2094            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
2095
2096    // Snoops shouldn't happen when bypassing caches
2097    assert(!system->bypassCaches());
2098
2099    // no need to snoop requests that are not in range
2100    if (!inRange(pkt->getAddr())) {
2101        return;
2102    }
2103
2104    bool is_secure = pkt->isSecure();
2105    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2106
2107    Addr blk_addr = blockAlign(pkt->getAddr());
2108    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2109
2110    // Update the latency cost of the snoop so that the crossbar can
2111    // account for it. Do not overwrite what other neighbouring caches
2112    // have already done, rather take the maximum. The update is
2113    // tentative, for cases where we return before an upward snoop
2114    // happens below.
2115    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2116                                         lookupLatency * clockPeriod());
2117
2118    // Inform request(Prefetch, CleanEvict or Writeback) from below of
2119    // MSHR hit, set setBlockCached.
2120    if (mshr && pkt->mustCheckAbove()) {
2121        DPRINTF(Cache, "Setting block cached for %s from"
2122                "lower cache on mshr hit %#x\n",
2123                pkt->cmdString(), pkt->getAddr());
2124        pkt->setBlockCached();
2125        return;
2126    }
2127
2128    // Let the MSHR itself track the snoop and decide whether we want
2129    // to go ahead and do the regular cache snoop
2130    if (mshr && mshr->handleSnoop(pkt, order++)) {
2131        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2132                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2133                mshr->print());
2134
2135        if (mshr->getNumTargets() > numTarget)
2136            warn("allocating bonus target for snoop"); //handle later
2137        return;
2138    }
2139
2140    //We also need to check the writeback buffers and handle those
2141    WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
2142    if (wb_entry) {
2143        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2144                pkt->getAddr(), is_secure ? "s" : "ns");
2145        // Expect to see only Writebacks and/or CleanEvicts here, both of
2146        // which should not be generated for uncacheable data.
2147        assert(!wb_entry->isUncacheable());
2148        // There should only be a single request responsible for generating
2149        // Writebacks/CleanEvicts.
2150        assert(wb_entry->getNumTargets() == 1);
2151        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2152        assert(wb_pkt->isEviction());
2153
2154        if (pkt->isEviction()) {
2155            // if the block is found in the write queue, set the BLOCK_CACHED
2156            // flag for Writeback/CleanEvict snoop. On return the snoop will
2157            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2158            // any CleanEvicts from travelling down the memory hierarchy.
2159            pkt->setBlockCached();
2160            DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
2161                    " %#x\n", pkt->cmdString(), pkt->getAddr());
2162            return;
2163        }
2164
2165        // conceptually writebacks are no different to other blocks in
2166        // this cache, so the behaviour is modelled after handleSnoop,
2167        // the difference being that instead of querying the block
2168        // state to determine if it is dirty and writable, we use the
2169        // command and fields of the writeback packet
2170        bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
2171            pkt->needsResponse() && pkt->cmd != MemCmd::InvalidateReq;
2172        bool have_writable = !wb_pkt->hasSharers();
2173        bool invalidate = pkt->isInvalidate();
2174
2175        if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
2176            assert(!pkt->needsWritable());
2177            pkt->setHasSharers();
2178            wb_pkt->setHasSharers();
2179        }
2180
2181        if (respond) {
2182            pkt->setCacheResponding();
2183
2184            if (have_writable) {
2185                pkt->setResponderHadWritable();
2186            }
2187
2188            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2189                                   false, false);
2190        }
2191
2192        if (invalidate) {
2193            // Invalidation trumps our writeback... discard here
2194            // Note: markInService will remove entry from writeback buffer.
2195            markInService(wb_entry);
2196            delete wb_pkt;
2197        }
2198    }
2199
2200    // If this was a shared writeback, there may still be
2201    // other shared copies above that require invalidation.
2202    // We could be more selective and return here if the
2203    // request is non-exclusive or if the writeback is
2204    // exclusive.
2205    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2206
2207    // Override what we did when we first saw the snoop, as we now
2208    // also have the cost of the upwards snoops to account for
2209    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2210                                         lookupLatency * clockPeriod());
2211}
2212
2213bool
2214Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2215{
2216    // Express snoop responses from master to slave, e.g., from L1 to L2
2217    cache->recvTimingSnoopResp(pkt);
2218    return true;
2219}
2220
2221Tick
2222Cache::recvAtomicSnoop(PacketPtr pkt)
2223{
2224    // Snoops shouldn't happen when bypassing caches
2225    assert(!system->bypassCaches());
2226
2227    // no need to snoop requests that are not in range.
2228    if (!inRange(pkt->getAddr())) {
2229        return 0;
2230    }
2231
2232    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2233    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2234    return snoop_delay + lookupLatency * clockPeriod();
2235}
2236
2237
2238QueueEntry*
2239Cache::getNextQueueEntry()
2240{
2241    // Check both MSHR queue and write buffer for potential requests,
2242    // note that null does not mean there is no request, it could
2243    // simply be that it is not ready
2244    MSHR *miss_mshr  = mshrQueue.getNext();
2245    WriteQueueEntry *wq_entry = writeBuffer.getNext();
2246
2247    // If we got a write buffer request ready, first priority is a
2248    // full write buffer, otherwise we favour the miss requests
2249    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
2250        // need to search MSHR queue for conflicting earlier miss.
2251        MSHR *conflict_mshr =
2252            mshrQueue.findPending(wq_entry->blkAddr,
2253                                  wq_entry->isSecure);
2254
2255        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
2256            // Service misses in order until conflict is cleared.
2257            return conflict_mshr;
2258
2259            // @todo Note that we ignore the ready time of the conflict here
2260        }
2261
2262        // No conflicts; issue write
2263        return wq_entry;
2264    } else if (miss_mshr) {
2265        // need to check for conflicting earlier writeback
2266        WriteQueueEntry *conflict_mshr =
2267            writeBuffer.findPending(miss_mshr->blkAddr,
2268                                    miss_mshr->isSecure);
2269        if (conflict_mshr) {
2270            // not sure why we don't check order here... it was in the
2271            // original code but commented out.
2272
2273            // The only way this happens is if we are
2274            // doing a write and we didn't have permissions
2275            // then subsequently saw a writeback (owned got evicted)
2276            // We need to make sure to perform the writeback first
2277            // To preserve the dirty data, then we can issue the write
2278
2279            // should we return wq_entry here instead?  I.e. do we
2280            // have to flush writes in order?  I don't think so... not
2281            // for Alpha anyway.  Maybe for x86?
2282            return conflict_mshr;
2283
2284            // @todo Note that we ignore the ready time of the conflict here
2285        }
2286
2287        // No conflicts; issue read
2288        return miss_mshr;
2289    }
2290
2291    // fall through... no pending requests.  Try a prefetch.
2292    assert(!miss_mshr && !wq_entry);
2293    if (prefetcher && mshrQueue.canPrefetch()) {
2294        // If we have a miss queue slot, we can try a prefetch
2295        PacketPtr pkt = prefetcher->getPacket();
2296        if (pkt) {
2297            Addr pf_addr = blockAlign(pkt->getAddr());
2298            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2299                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2300                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2301                // Update statistic on number of prefetches issued
2302                // (hwpf_mshr_misses)
2303                assert(pkt->req->masterId() < system->maxMasters());
2304                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2305
2306                // allocate an MSHR and return it, note
2307                // that we send the packet straight away, so do not
2308                // schedule the send
2309                return allocateMissBuffer(pkt, curTick(), false);
2310            } else {
2311                // free the request and packet
2312                delete pkt->req;
2313                delete pkt;
2314            }
2315        }
2316    }
2317
2318    return nullptr;
2319}
2320
2321bool
2322Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2323{
2324    if (!forwardSnoops)
2325        return false;
2326    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2327    // Writeback snoops into upper level caches to check for copies of the
2328    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2329    // packet, the cache can inform the crossbar below of presence or absence
2330    // of the block.
2331    if (is_timing) {
2332        Packet snoop_pkt(pkt, true, false);
2333        snoop_pkt.setExpressSnoop();
2334        // Assert that packet is either Writeback or CleanEvict and not a
2335        // prefetch request because prefetch requests need an MSHR and may
2336        // generate a snoop response.
2337        assert(pkt->isEviction());
2338        snoop_pkt.senderState = nullptr;
2339        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2340        // Writeback/CleanEvict snoops do not generate a snoop response.
2341        assert(!(snoop_pkt.cacheResponding()));
2342        return snoop_pkt.isBlockCached();
2343    } else {
2344        cpuSidePort->sendAtomicSnoop(pkt);
2345        return pkt->isBlockCached();
2346    }
2347}
2348
2349Tick
2350Cache::nextQueueReadyTime() const
2351{
2352    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
2353                              writeBuffer.nextReadyTime());
2354
2355    // Don't signal prefetch ready time if no MSHRs available
2356    // Will signal once enoguh MSHRs are deallocated
2357    if (prefetcher && mshrQueue.canPrefetch()) {
2358        nextReady = std::min(nextReady,
2359                             prefetcher->nextPrefetchReadyTime());
2360    }
2361
2362    return nextReady;
2363}
2364
2365bool
2366Cache::sendMSHRQueuePacket(MSHR* mshr)
2367{
2368    assert(mshr);
2369
2370    // use request from 1st target
2371    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2372
2373    DPRINTF(Cache, "%s MSHR %s for addr %#llx size %d\n", __func__,
2374            tgt_pkt->cmdString(), tgt_pkt->getAddr(),
2375            tgt_pkt->getSize());
2376
2377    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2378
2379    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2380        // we should never have hardware prefetches to allocated
2381        // blocks
2382        assert(blk == nullptr);
2383
2384        // We need to check the caches above us to verify that
2385        // they don't have a copy of this block in the dirty state
2386        // at the moment. Without this check we could get a stale
2387        // copy from memory that might get used in place of the
2388        // dirty one.
2389        Packet snoop_pkt(tgt_pkt, true, false);
2390        snoop_pkt.setExpressSnoop();
2391        // We are sending this packet upwards, but if it hits we will
2392        // get a snoop response that we end up treating just like a
2393        // normal response, hence it needs the MSHR as its sender
2394        // state
2395        snoop_pkt.senderState = mshr;
2396        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2397
2398        // Check to see if the prefetch was squashed by an upper cache (to
2399        // prevent us from grabbing the line) or if a Check to see if a
2400        // writeback arrived between the time the prefetch was placed in
2401        // the MSHRs and when it was selected to be sent or if the
2402        // prefetch was squashed by an upper cache.
2403
2404        // It is important to check cacheResponding before
2405        // prefetchSquashed. If another cache has committed to
2406        // responding, it will be sending a dirty response which will
2407        // arrive at the MSHR allocated for this request. Checking the
2408        // prefetchSquash first may result in the MSHR being
2409        // prematurely deallocated.
2410        if (snoop_pkt.cacheResponding()) {
2411            auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2412            assert(r.second);
2413
2414            // if we are getting a snoop response with no sharers it
2415            // will be allocated as Modified
2416            bool pending_modified_resp = !snoop_pkt.hasSharers();
2417            markInService(mshr, pending_modified_resp);
2418
2419            DPRINTF(Cache, "Upward snoop of prefetch for addr"
2420                    " %#x (%s) hit\n",
2421                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2422            return false;
2423        }
2424
2425        if (snoop_pkt.isBlockCached()) {
2426            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
2427                    "Deallocating mshr target %#x.\n",
2428                    mshr->blkAddr);
2429
2430            // Deallocate the mshr target
2431            if (mshrQueue.forceDeallocateTarget(mshr)) {
2432                // Clear block if this deallocation resulted freed an
2433                // mshr when all had previously been utilized
2434                clearBlocked(Blocked_NoMSHRs);
2435            }
2436            return false;
2437        }
2438    }
2439
2440    // either a prefetch that is not present upstream, or a normal
2441    // MSHR request, proceed to get the packet to send downstream
2442    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
2443
2444    mshr->isForward = (pkt == nullptr);
2445
2446    if (mshr->isForward) {
2447        // not a cache block request, but a response is expected
2448        // make copy of current packet to forward, keep current
2449        // copy for response handling
2450        pkt = new Packet(tgt_pkt, false, true);
2451        assert(!pkt->isWrite());
2452    }
2453
2454    // play it safe and append (rather than set) the sender state,
2455    // as forwarded packets may already have existing state
2456    pkt->pushSenderState(mshr);
2457
2458    if (!memSidePort->sendTimingReq(pkt)) {
2459        // we are awaiting a retry, but we
2460        // delete the packet and will be creating a new packet
2461        // when we get the opportunity
2462        delete pkt;
2463
2464        // note that we have now masked any requestBus and
2465        // schedSendEvent (we will wait for a retry before
2466        // doing anything), and this is so even if we do not
2467        // care about this packet and might override it before
2468        // it gets retried
2469        return true;
2470    } else {
2471        // As part of the call to sendTimingReq the packet is
2472        // forwarded to all neighbouring caches (and any caches
2473        // above them) as a snoop. Thus at this point we know if
2474        // any of the neighbouring caches are responding, and if
2475        // so, we know it is dirty, and we can determine if it is
2476        // being passed as Modified, making our MSHR the ordering
2477        // point
2478        bool pending_modified_resp = !pkt->hasSharers() &&
2479            pkt->cacheResponding();
2480        markInService(mshr, pending_modified_resp);
2481        return false;
2482    }
2483}
2484
2485bool
2486Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
2487{
2488    assert(wq_entry);
2489
2490    // always a single target for write queue entries
2491    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
2492
2493    DPRINTF(Cache, "%s write %s for addr %#llx size %d\n", __func__,
2494            tgt_pkt->cmdString(), tgt_pkt->getAddr(),
2495            tgt_pkt->getSize());
2496
2497    // forward as is, both for evictions and uncacheable writes
2498    if (!memSidePort->sendTimingReq(tgt_pkt)) {
2499        // note that we have now masked any requestBus and
2500        // schedSendEvent (we will wait for a retry before
2501        // doing anything), and this is so even if we do not
2502        // care about this packet and might override it before
2503        // it gets retried
2504        return true;
2505    } else {
2506        markInService(wq_entry);
2507        return false;
2508    }
2509}
2510
2511void
2512Cache::serialize(CheckpointOut &cp) const
2513{
2514    bool dirty(isDirty());
2515
2516    if (dirty) {
2517        warn("*** The cache still contains dirty data. ***\n");
2518        warn("    Make sure to drain the system using the correct flags.\n");
2519        warn("    This checkpoint will not restore correctly and dirty data "
2520             "    in the cache will be lost!\n");
2521    }
2522
2523    // Since we don't checkpoint the data in the cache, any dirty data
2524    // will be lost when restoring from a checkpoint of a system that
2525    // wasn't drained properly. Flag the checkpoint as invalid if the
2526    // cache contains dirty data.
2527    bool bad_checkpoint(dirty);
2528    SERIALIZE_SCALAR(bad_checkpoint);
2529}
2530
2531void
2532Cache::unserialize(CheckpointIn &cp)
2533{
2534    bool bad_checkpoint;
2535    UNSERIALIZE_SCALAR(bad_checkpoint);
2536    if (bad_checkpoint) {
2537        fatal("Restoring from checkpoints with dirty caches is not supported "
2538              "in the classic memory system. Please remove any caches or "
2539              " drain them properly before taking checkpoints.\n");
2540    }
2541}
2542
2543///////////////
2544//
2545// CpuSidePort
2546//
2547///////////////
2548
2549AddrRangeList
2550Cache::CpuSidePort::getAddrRanges() const
2551{
2552    return cache->getAddrRanges();
2553}
2554
2555bool
2556Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2557{
2558    assert(!cache->system->bypassCaches());
2559
2560    bool success = false;
2561
2562    // always let express snoop packets through if even if blocked
2563    if (pkt->isExpressSnoop()) {
2564        // do not change the current retry state
2565        bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2566        assert(bypass_success);
2567        return true;
2568    } else if (blocked || mustSendRetry) {
2569        // either already committed to send a retry, or blocked
2570        success = false;
2571    } else {
2572        // pass it on to the cache, and let the cache decide if we
2573        // have to retry or not
2574        success = cache->recvTimingReq(pkt);
2575    }
2576
2577    // remember if we have to retry
2578    mustSendRetry = !success;
2579    return success;
2580}
2581
2582Tick
2583Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2584{
2585    return cache->recvAtomic(pkt);
2586}
2587
2588void
2589Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2590{
2591    // functional request
2592    cache->functionalAccess(pkt, true);
2593}
2594
2595Cache::
2596CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2597                         const std::string &_label)
2598    : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2599{
2600}
2601
2602Cache*
2603CacheParams::create()
2604{
2605    assert(tags);
2606
2607    return new Cache(this);
2608}
2609///////////////
2610//
2611// MemSidePort
2612//
2613///////////////
2614
2615bool
2616Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2617{
2618    cache->recvTimingResp(pkt);
2619    return true;
2620}
2621
2622// Express snooping requests to memside port
2623void
2624Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2625{
2626    // handle snooping requests
2627    cache->recvTimingSnoopReq(pkt);
2628}
2629
2630Tick
2631Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2632{
2633    return cache->recvAtomicSnoop(pkt);
2634}
2635
2636void
2637Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2638{
2639    // functional snoop (note that in contrast to atomic we don't have
2640    // a specific functionalSnoop method, as they have the same
2641    // behaviour regardless)
2642    cache->functionalAccess(pkt, false);
2643}
2644
2645void
2646Cache::CacheReqPacketQueue::sendDeferredPacket()
2647{
2648    // sanity check
2649    assert(!waitingOnRetry);
2650
2651    // there should never be any deferred request packets in the
2652    // queue, instead we resly on the cache to provide the packets
2653    // from the MSHR queue or write queue
2654    assert(deferredPacketReadyTime() == MaxTick);
2655
2656    // check for request packets (requests & writebacks)
2657    QueueEntry* entry = cache.getNextQueueEntry();
2658
2659    if (!entry) {
2660        // can happen if e.g. we attempt a writeback and fail, but
2661        // before the retry, the writeback is eliminated because
2662        // we snoop another cache's ReadEx.
2663    } else {
2664        // let our snoop responses go first if there are responses to
2665        // the same addresses
2666        if (checkConflictingSnoop(entry->blkAddr)) {
2667            return;
2668        }
2669        waitingOnRetry = entry->sendPacket(cache);
2670    }
2671
2672    // if we succeeded and are not waiting for a retry, schedule the
2673    // next send considering when the next queue is ready, note that
2674    // snoop responses have their own packet queue and thus schedule
2675    // their own events
2676    if (!waitingOnRetry) {
2677        schedSendEvent(cache.nextQueueReadyTime());
2678    }
2679}
2680
2681Cache::
2682MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2683                         const std::string &_label)
2684    : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2685      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2686      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2687{
2688}
2689