cache.cc revision 11742
12SN/A/* 210349Sandreas.hansson@arm.com * Copyright (c) 2010-2016 ARM Limited 310349Sandreas.hansson@arm.com * All rights reserved. 410349Sandreas.hansson@arm.com * 510349Sandreas.hansson@arm.com * The license below extends only to copyright in the software and shall 610349Sandreas.hansson@arm.com * not be construed as granting a license to any other intellectual 710349Sandreas.hansson@arm.com * property including but not limited to intellectual property relating 810349Sandreas.hansson@arm.com * to a hardware implementation of the functionality of the software 910349Sandreas.hansson@arm.com * licensed hereunder. You may use the software subject to the license 1010349Sandreas.hansson@arm.com * terms below provided that you ensure that this notice is replicated 1110349Sandreas.hansson@arm.com * unmodified and in its entirety in all distributions of the software, 1210349Sandreas.hansson@arm.com * modified or unmodified, in source code or in binary form. 1310349Sandreas.hansson@arm.com * 141762SN/A * Copyright (c) 2002-2005 The Regents of The University of Michigan 152SN/A * Copyright (c) 2010,2015 Advanced Micro Devices, Inc. 162SN/A * All rights reserved. 172SN/A * 182SN/A * Redistribution and use in source and binary forms, with or without 192SN/A * modification, are permitted provided that the following conditions are 202SN/A * met: redistributions of source code must retain the above copyright 212SN/A * notice, this list of conditions and the following disclaimer; 222SN/A * redistributions in binary form must reproduce the above copyright 232SN/A * notice, this list of conditions and the following disclaimer in the 242SN/A * documentation and/or other materials provided with the distribution; 252SN/A * neither the name of the copyright holders nor the names of its 262SN/A * contributors may be used to endorse or promote products derived from 272SN/A * this software without specific prior written permission. 282SN/A * 292SN/A * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 302SN/A * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 312SN/A * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 322SN/A * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 332SN/A * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 342SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 352SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 362SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 372SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 382SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 392665Ssaidi@eecs.umich.edu * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 402665Ssaidi@eecs.umich.edu * 412665Ssaidi@eecs.umich.edu * Authors: Erik Hallnor 4210349Sandreas.hansson@arm.com * Dave Greene 432SN/A * Nathan Binkert 442SN/A * Steve Reinhardt 4510349Sandreas.hansson@arm.com * Ron Dreslinski 4610349Sandreas.hansson@arm.com * Andreas Sandberg 475190Ssaidi@eecs.umich.edu */ 4856SN/A 495190Ssaidi@eecs.umich.edu/** 502SN/A * @file 515190Ssaidi@eecs.umich.edu * Cache definitions. 522SN/A */ 5310349Sandreas.hansson@arm.com 545190Ssaidi@eecs.umich.edu#include "mem/cache/cache.hh" 552SN/A 562SN/A#include "base/misc.hh" 575190Ssaidi@eecs.umich.edu#include "base/types.hh" 582SN/A#include "debug/Cache.hh" 595190Ssaidi@eecs.umich.edu#include "debug/CachePort.hh" 602SN/A#include "debug/CacheTags.hh" 612SN/A#include "debug/CacheVerbose.hh" 625190Ssaidi@eecs.umich.edu#include "mem/cache/blk.hh" 631954SN/A#include "mem/cache/mshr.hh" 645190Ssaidi@eecs.umich.edu#include "mem/cache/prefetch/base.hh" 653483Ssaidi@eecs.umich.edu#include "sim/sim_exit.hh" 6610349Sandreas.hansson@arm.com 6710349Sandreas.hansson@arm.comCache::Cache(const CacheParams *p) 685190Ssaidi@eecs.umich.edu : BaseCache(p, p->system->cacheLineSize()), 6910349Sandreas.hansson@arm.com tags(p->tags), 701954SN/A prefetcher(p->prefetcher), 715190Ssaidi@eecs.umich.edu doFastWrites(true), 725190Ssaidi@eecs.umich.edu prefetchOnAccess(p->prefetch_on_access), 7310905Sandreas.sandberg@arm.com clusivity(p->clusivity), 745190Ssaidi@eecs.umich.edu writebackClean(p->writeback_clean), 7510349Sandreas.hansson@arm.com tempBlockWriteback(nullptr), 7610349Sandreas.hansson@arm.com writebackTempBlockAtomicEvent(this, false, 7710349Sandreas.hansson@arm.com EventBase::Delayed_Writeback_Pri) 7810349Sandreas.hansson@arm.com{ 7910349Sandreas.hansson@arm.com tempBlock = new CacheBlk(); 8010349Sandreas.hansson@arm.com tempBlock->data = new uint8_t[blkSize]; 8110905Sandreas.sandberg@arm.com 825190Ssaidi@eecs.umich.edu cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this, 835190Ssaidi@eecs.umich.edu "CpuSidePort"); 845190Ssaidi@eecs.umich.edu memSidePort = new MemSidePort(p->name + ".mem_side", this, 8510905Sandreas.sandberg@arm.com "MemSidePort"); 865190Ssaidi@eecs.umich.edu 8710349Sandreas.hansson@arm.com tags->setCache(this); 885190Ssaidi@eecs.umich.edu if (prefetcher) 8910349Sandreas.hansson@arm.com prefetcher->setCache(this); 9010349Sandreas.hansson@arm.com} 9110349Sandreas.hansson@arm.com 9210349Sandreas.hansson@arm.comCache::~Cache() 9310905Sandreas.sandberg@arm.com{ 9410349Sandreas.hansson@arm.com delete [] tempBlock->data; 9510349Sandreas.hansson@arm.com delete tempBlock; 9610349Sandreas.hansson@arm.com 975190Ssaidi@eecs.umich.edu delete cpuSidePort; 985190Ssaidi@eecs.umich.edu delete memSidePort; 995190Ssaidi@eecs.umich.edu} 100 101void 102Cache::regStats() 103{ 104 BaseCache::regStats(); 105} 106 107void 108Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) 109{ 110 assert(pkt->isRequest()); 111 112 uint64_t overwrite_val; 113 bool overwrite_mem; 114 uint64_t condition_val64; 115 uint32_t condition_val32; 116 117 int offset = tags->extractBlkOffset(pkt->getAddr()); 118 uint8_t *blk_data = blk->data + offset; 119 120 assert(sizeof(uint64_t) >= pkt->getSize()); 121 122 overwrite_mem = true; 123 // keep a copy of our possible write value, and copy what is at the 124 // memory address into the packet 125 pkt->writeData((uint8_t *)&overwrite_val); 126 pkt->setData(blk_data); 127 128 if (pkt->req->isCondSwap()) { 129 if (pkt->getSize() == sizeof(uint64_t)) { 130 condition_val64 = pkt->req->getExtraData(); 131 overwrite_mem = !std::memcmp(&condition_val64, blk_data, 132 sizeof(uint64_t)); 133 } else if (pkt->getSize() == sizeof(uint32_t)) { 134 condition_val32 = (uint32_t)pkt->req->getExtraData(); 135 overwrite_mem = !std::memcmp(&condition_val32, blk_data, 136 sizeof(uint32_t)); 137 } else 138 panic("Invalid size for conditional read/write\n"); 139 } 140 141 if (overwrite_mem) { 142 std::memcpy(blk_data, &overwrite_val, pkt->getSize()); 143 blk->status |= BlkDirty; 144 } 145} 146 147 148void 149Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, 150 bool deferred_response, bool pending_downgrade) 151{ 152 assert(pkt->isRequest()); 153 154 assert(blk && blk->isValid()); 155 // Occasionally this is not true... if we are a lower-level cache 156 // satisfying a string of Read and ReadEx requests from 157 // upper-level caches, a Read will mark the block as shared but we 158 // can satisfy a following ReadEx anyway since we can rely on the 159 // Read requester(s) to have buffered the ReadEx snoop and to 160 // invalidate their blocks after receiving them. 161 // assert(!pkt->needsWritable() || blk->isWritable()); 162 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); 163 164 // Check RMW operations first since both isRead() and 165 // isWrite() will be true for them 166 if (pkt->cmd == MemCmd::SwapReq) { 167 cmpAndSwap(blk, pkt); 168 } else if (pkt->isWrite()) { 169 // we have the block in a writable state and can go ahead, 170 // note that the line may be also be considered writable in 171 // downstream caches along the path to memory, but always 172 // Exclusive, and never Modified 173 assert(blk->isWritable()); 174 // Write or WriteLine at the first cache with block in writable state 175 if (blk->checkWrite(pkt)) { 176 pkt->writeDataToBlock(blk->data, blkSize); 177 } 178 // Always mark the line as dirty (and thus transition to the 179 // Modified state) even if we are a failed StoreCond so we 180 // supply data to any snoops that have appended themselves to 181 // this cache before knowing the store will fail. 182 blk->status |= BlkDirty; 183 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (write)\n", 184 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 185 } else if (pkt->isRead()) { 186 if (pkt->isLLSC()) { 187 blk->trackLoadLocked(pkt); 188 } 189 190 // all read responses have a data payload 191 assert(pkt->hasRespData()); 192 pkt->setDataFromBlock(blk->data, blkSize); 193 194 // determine if this read is from a (coherent) cache or not 195 if (pkt->fromCache()) { 196 assert(pkt->getSize() == blkSize); 197 // special handling for coherent block requests from 198 // upper-level caches 199 if (pkt->needsWritable()) { 200 // sanity check 201 assert(pkt->cmd == MemCmd::ReadExReq || 202 pkt->cmd == MemCmd::SCUpgradeFailReq); 203 assert(!pkt->hasSharers()); 204 205 // if we have a dirty copy, make sure the recipient 206 // keeps it marked dirty (in the modified state) 207 if (blk->isDirty()) { 208 pkt->setCacheResponding(); 209 blk->status &= ~BlkDirty; 210 } 211 } else if (blk->isWritable() && !pending_downgrade && 212 !pkt->hasSharers() && 213 pkt->cmd != MemCmd::ReadCleanReq) { 214 // we can give the requester a writable copy on a read 215 // request if: 216 // - we have a writable copy at this level (& below) 217 // - we don't have a pending snoop from below 218 // signaling another read request 219 // - no other cache above has a copy (otherwise it 220 // would have set hasSharers flag when 221 // snooping the packet) 222 // - the read has explicitly asked for a clean 223 // copy of the line 224 if (blk->isDirty()) { 225 // special considerations if we're owner: 226 if (!deferred_response) { 227 // respond with the line in Modified state 228 // (cacheResponding set, hasSharers not set) 229 pkt->setCacheResponding(); 230 231 // if this cache is mostly inclusive, we 232 // keep the block in the Exclusive state, 233 // and pass it upwards as Modified 234 // (writable and dirty), hence we have 235 // multiple caches, all on the same path 236 // towards memory, all considering the 237 // same block writable, but only one 238 // considering it Modified 239 240 // we get away with multiple caches (on 241 // the same path to memory) considering 242 // the block writeable as we always enter 243 // the cache hierarchy through a cache, 244 // and first snoop upwards in all other 245 // branches 246 blk->status &= ~BlkDirty; 247 } else { 248 // if we're responding after our own miss, 249 // there's a window where the recipient didn't 250 // know it was getting ownership and may not 251 // have responded to snoops correctly, so we 252 // have to respond with a shared line 253 pkt->setHasSharers(); 254 } 255 } 256 } else { 257 // otherwise only respond with a shared copy 258 pkt->setHasSharers(); 259 } 260 } 261 } else if (pkt->isUpgrade()) { 262 // sanity check 263 assert(!pkt->hasSharers()); 264 265 if (blk->isDirty()) { 266 // we were in the Owned state, and a cache above us that 267 // has the line in Shared state needs to be made aware 268 // that the data it already has is in fact dirty 269 pkt->setCacheResponding(); 270 blk->status &= ~BlkDirty; 271 } 272 } else { 273 assert(pkt->isInvalidate()); 274 invalidateBlock(blk); 275 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (invalidation)\n", 276 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 277 } 278} 279 280///////////////////////////////////////////////////// 281// 282// Access path: requests coming in from the CPU side 283// 284///////////////////////////////////////////////////// 285 286bool 287Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 288 PacketList &writebacks) 289{ 290 // sanity check 291 assert(pkt->isRequest()); 292 293 chatty_assert(!(isReadOnly && pkt->isWrite()), 294 "Should never see a write in a read-only cache %s\n", 295 name()); 296 297 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__, 298 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 299 300 if (pkt->req->isUncacheable()) { 301 DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(), 302 pkt->req->isInstFetch() ? " (ifetch)" : "", 303 pkt->getAddr()); 304 305 // flush and invalidate any existing block 306 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure())); 307 if (old_blk && old_blk->isValid()) { 308 if (old_blk->isDirty() || writebackClean) 309 writebacks.push_back(writebackBlk(old_blk)); 310 else 311 writebacks.push_back(cleanEvictBlk(old_blk)); 312 tags->invalidate(old_blk); 313 old_blk->invalidate(); 314 } 315 316 blk = nullptr; 317 // lookupLatency is the latency in case the request is uncacheable. 318 lat = lookupLatency; 319 return false; 320 } 321 322 ContextID id = pkt->req->hasContextId() ? 323 pkt->req->contextId() : InvalidContextID; 324 // Here lat is the value passed as parameter to accessBlock() function 325 // that can modify its value. 326 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id); 327 328 DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(), 329 pkt->req->isInstFetch() ? " (ifetch)" : "", 330 pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns", 331 blk ? "hit " + blk->print() : "miss"); 332 333 334 if (pkt->isEviction()) { 335 // We check for presence of block in above caches before issuing 336 // Writeback or CleanEvict to write buffer. Therefore the only 337 // possible cases can be of a CleanEvict packet coming from above 338 // encountering a Writeback generated in this cache peer cache and 339 // waiting in the write buffer. Cases of upper level peer caches 340 // generating CleanEvict and Writeback or simply CleanEvict and 341 // CleanEvict almost simultaneously will be caught by snoops sent out 342 // by crossbar. 343 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(), 344 pkt->isSecure()); 345 if (wb_entry) { 346 assert(wb_entry->getNumTargets() == 1); 347 PacketPtr wbPkt = wb_entry->getTarget()->pkt; 348 assert(wbPkt->isWriteback()); 349 350 if (pkt->isCleanEviction()) { 351 // The CleanEvict and WritebackClean snoops into other 352 // peer caches of the same level while traversing the 353 // crossbar. If a copy of the block is found, the 354 // packet is deleted in the crossbar. Hence, none of 355 // the other upper level caches connected to this 356 // cache have the block, so we can clear the 357 // BLOCK_CACHED flag in the Writeback if set and 358 // discard the CleanEvict by returning true. 359 wbPkt->clearBlockCached(); 360 return true; 361 } else { 362 assert(pkt->cmd == MemCmd::WritebackDirty); 363 // Dirty writeback from above trumps our clean 364 // writeback... discard here 365 // Note: markInService will remove entry from writeback buffer. 366 markInService(wb_entry); 367 delete wbPkt; 368 } 369 } 370 } 371 372 // Writeback handling is special case. We can write the block into 373 // the cache without having a writeable copy (or any copy at all). 374 if (pkt->isWriteback()) { 375 assert(blkSize == pkt->getSize()); 376 377 // we could get a clean writeback while we are having 378 // outstanding accesses to a block, do the simple thing for 379 // now and drop the clean writeback so that we do not upset 380 // any ordering/decisions about ownership already taken 381 if (pkt->cmd == MemCmd::WritebackClean && 382 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) { 383 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, " 384 "dropping\n", pkt->getAddr()); 385 return true; 386 } 387 388 if (blk == nullptr) { 389 // need to do a replacement 390 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks); 391 if (blk == nullptr) { 392 // no replaceable block available: give up, fwd to next level. 393 incMissCount(pkt); 394 return false; 395 } 396 tags->insertBlock(pkt, blk); 397 398 blk->status = (BlkValid | BlkReadable); 399 if (pkt->isSecure()) { 400 blk->status |= BlkSecure; 401 } 402 } 403 // only mark the block dirty if we got a writeback command, 404 // and leave it as is for a clean writeback 405 if (pkt->cmd == MemCmd::WritebackDirty) { 406 blk->status |= BlkDirty; 407 } 408 // if the packet does not have sharers, it is passing 409 // writable, and we got the writeback in Modified or Exclusive 410 // state, if not we are in the Owned or Shared state 411 if (!pkt->hasSharers()) { 412 blk->status |= BlkWritable; 413 } 414 // nothing else to do; writeback doesn't expect response 415 assert(!pkt->needsResponse()); 416 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize); 417 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 418 incHitCount(pkt); 419 return true; 420 } else if (pkt->cmd == MemCmd::CleanEvict) { 421 if (blk != nullptr) { 422 // Found the block in the tags, need to stop CleanEvict from 423 // propagating further down the hierarchy. Returning true will 424 // treat the CleanEvict like a satisfied write request and delete 425 // it. 426 return true; 427 } 428 // We didn't find the block here, propagate the CleanEvict further 429 // down the memory hierarchy. Returning false will treat the CleanEvict 430 // like a Writeback which could not find a replaceable block so has to 431 // go to next level. 432 return false; 433 } else if (blk && (pkt->needsWritable() ? blk->isWritable() : 434 blk->isReadable())) { 435 // OK to satisfy access 436 incHitCount(pkt); 437 satisfyRequest(pkt, blk); 438 maintainClusivity(pkt->fromCache(), blk); 439 440 return true; 441 } 442 443 // Can't satisfy access normally... either no block (blk == nullptr) 444 // or have block but need writable 445 446 incMissCount(pkt); 447 448 if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) { 449 // complete miss on store conditional... just give up now 450 pkt->req->setExtraData(0); 451 return true; 452 } 453 454 return false; 455} 456 457void 458Cache::maintainClusivity(bool from_cache, CacheBlk *blk) 459{ 460 if (from_cache && blk && blk->isValid() && !blk->isDirty() && 461 clusivity == Enums::mostly_excl) { 462 // if we have responded to a cache, and our block is still 463 // valid, but not dirty, and this cache is mostly exclusive 464 // with respect to the cache above, drop the block 465 invalidateBlock(blk); 466 } 467} 468 469void 470Cache::doWritebacks(PacketList& writebacks, Tick forward_time) 471{ 472 while (!writebacks.empty()) { 473 PacketPtr wbPkt = writebacks.front(); 474 // We use forwardLatency here because we are copying writebacks to 475 // write buffer. Call isCachedAbove for both Writebacks and 476 // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag 477 // in Writebacks and discard CleanEvicts. 478 if (isCachedAbove(wbPkt)) { 479 if (wbPkt->cmd == MemCmd::CleanEvict) { 480 // Delete CleanEvict because cached copies exist above. The 481 // packet destructor will delete the request object because 482 // this is a non-snoop request packet which does not require a 483 // response. 484 delete wbPkt; 485 } else if (wbPkt->cmd == MemCmd::WritebackClean) { 486 // clean writeback, do not send since the block is 487 // still cached above 488 assert(writebackClean); 489 delete wbPkt; 490 } else { 491 assert(wbPkt->cmd == MemCmd::WritebackDirty); 492 // Set BLOCK_CACHED flag in Writeback and send below, so that 493 // the Writeback does not reset the bit corresponding to this 494 // address in the snoop filter below. 495 wbPkt->setBlockCached(); 496 allocateWriteBuffer(wbPkt, forward_time); 497 } 498 } else { 499 // If the block is not cached above, send packet below. Both 500 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 501 // reset the bit corresponding to this address in the snoop filter 502 // below. 503 allocateWriteBuffer(wbPkt, forward_time); 504 } 505 writebacks.pop_front(); 506 } 507} 508 509void 510Cache::doWritebacksAtomic(PacketList& writebacks) 511{ 512 while (!writebacks.empty()) { 513 PacketPtr wbPkt = writebacks.front(); 514 // Call isCachedAbove for both Writebacks and CleanEvicts. If 515 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks 516 // and discard CleanEvicts. 517 if (isCachedAbove(wbPkt, false)) { 518 if (wbPkt->cmd == MemCmd::WritebackDirty) { 519 // Set BLOCK_CACHED flag in Writeback and send below, 520 // so that the Writeback does not reset the bit 521 // corresponding to this address in the snoop filter 522 // below. We can discard CleanEvicts because cached 523 // copies exist above. Atomic mode isCachedAbove 524 // modifies packet to set BLOCK_CACHED flag 525 memSidePort->sendAtomic(wbPkt); 526 } 527 } else { 528 // If the block is not cached above, send packet below. Both 529 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 530 // reset the bit corresponding to this address in the snoop filter 531 // below. 532 memSidePort->sendAtomic(wbPkt); 533 } 534 writebacks.pop_front(); 535 // In case of CleanEvicts, the packet destructor will delete the 536 // request object because this is a non-snoop request packet which 537 // does not require a response. 538 delete wbPkt; 539 } 540} 541 542 543void 544Cache::recvTimingSnoopResp(PacketPtr pkt) 545{ 546 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, 547 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 548 549 assert(pkt->isResponse()); 550 assert(!system->bypassCaches()); 551 552 // determine if the response is from a snoop request we created 553 // (in which case it should be in the outstandingSnoop), or if we 554 // merely forwarded someone else's snoop request 555 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 556 outstandingSnoop.end(); 557 558 if (!forwardAsSnoop) { 559 // the packet came from this cache, so sink it here and do not 560 // forward it 561 assert(pkt->cmd == MemCmd::HardPFResp); 562 563 outstandingSnoop.erase(pkt->req); 564 565 DPRINTF(Cache, "Got prefetch response from above for addr " 566 "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 567 recvTimingResp(pkt); 568 return; 569 } 570 571 // forwardLatency is set here because there is a response from an 572 // upper level cache. 573 // To pay the delay that occurs if the packet comes from the bus, 574 // we charge also headerDelay. 575 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay; 576 // Reset the timing of the packet. 577 pkt->headerDelay = pkt->payloadDelay = 0; 578 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time); 579} 580 581void 582Cache::promoteWholeLineWrites(PacketPtr pkt) 583{ 584 // Cache line clearing instructions 585 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) && 586 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) { 587 pkt->cmd = MemCmd::WriteLineReq; 588 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n"); 589 } 590} 591 592bool 593Cache::recvTimingReq(PacketPtr pkt) 594{ 595 DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print()); 596 597 assert(pkt->isRequest()); 598 599 // Just forward the packet if caches are disabled. 600 if (system->bypassCaches()) { 601 // @todo This should really enqueue the packet rather 602 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt); 603 assert(success); 604 return true; 605 } 606 607 promoteWholeLineWrites(pkt); 608 609 if (pkt->cacheResponding()) { 610 // a cache above us (but not where the packet came from) is 611 // responding to the request, in other words it has the line 612 // in Modified or Owned state 613 DPRINTF(Cache, "Cache above responding to %#llx (%s): " 614 "not responding\n", 615 pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 616 617 // if the packet needs the block to be writable, and the cache 618 // that has promised to respond (setting the cache responding 619 // flag) is not providing writable (it is in Owned rather than 620 // the Modified state), we know that there may be other Shared 621 // copies in the system; go out and invalidate them all 622 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 623 624 // an upstream cache that had the line in Owned state 625 // (dirty, but not writable), is responding and thus 626 // transferring the dirty line from one branch of the 627 // cache hierarchy to another 628 629 // send out an express snoop and invalidate all other 630 // copies (snooping a packet that needs writable is the 631 // same as an invalidation), thus turning the Owned line 632 // into a Modified line, note that we don't invalidate the 633 // block in the current cache or any other cache on the 634 // path to memory 635 636 // create a downstream express snoop with cleared packet 637 // flags, there is no need to allocate any data as the 638 // packet is merely used to co-ordinate state transitions 639 Packet *snoop_pkt = new Packet(pkt, true, false); 640 641 // also reset the bus time that the original packet has 642 // not yet paid for 643 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0; 644 645 // make this an instantaneous express snoop, and let the 646 // other caches in the system know that the another cache 647 // is responding, because we have found the authorative 648 // copy (Modified or Owned) that will supply the right 649 // data 650 snoop_pkt->setExpressSnoop(); 651 snoop_pkt->setCacheResponding(); 652 653 // this express snoop travels towards the memory, and at 654 // every crossbar it is snooped upwards thus reaching 655 // every cache in the system 656 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt); 657 // express snoops always succeed 658 assert(success); 659 660 // main memory will delete the snoop packet 661 662 // queue for deletion, as opposed to immediate deletion, as 663 // the sending cache is still relying on the packet 664 pendingDelete.reset(pkt); 665 666 // no need to take any further action in this particular cache 667 // as an upstram cache has already committed to responding, 668 // and we have already sent out any express snoops in the 669 // section above to ensure all other copies in the system are 670 // invalidated 671 return true; 672 } 673 674 // anything that is merely forwarded pays for the forward latency and 675 // the delay provided by the crossbar 676 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 677 678 // We use lookupLatency here because it is used to specify the latency 679 // to access. 680 Cycles lat = lookupLatency; 681 CacheBlk *blk = nullptr; 682 bool satisfied = false; 683 { 684 PacketList writebacks; 685 // Note that lat is passed by reference here. The function 686 // access() calls accessBlock() which can modify lat value. 687 satisfied = access(pkt, blk, lat, writebacks); 688 689 // copy writebacks to write buffer here to ensure they logically 690 // proceed anything happening below 691 doWritebacks(writebacks, forward_time); 692 } 693 694 // Here we charge the headerDelay that takes into account the latencies 695 // of the bus, if the packet comes from it. 696 // The latency charged it is just lat that is the value of lookupLatency 697 // modified by access() function, or if not just lookupLatency. 698 // In case of a hit we are neglecting response latency. 699 // In case of a miss we are neglecting forward latency. 700 Tick request_time = clockEdge(lat) + pkt->headerDelay; 701 // Here we reset the timing of the packet. 702 pkt->headerDelay = pkt->payloadDelay = 0; 703 704 // track time of availability of next prefetch, if any 705 Tick next_pf_time = MaxTick; 706 707 bool needsResponse = pkt->needsResponse(); 708 709 if (satisfied) { 710 // should never be satisfying an uncacheable access as we 711 // flush and invalidate any existing block as part of the 712 // lookup 713 assert(!pkt->req->isUncacheable()); 714 715 // hit (for all other request types) 716 717 if (prefetcher && (prefetchOnAccess || 718 (blk && blk->wasPrefetched()))) { 719 if (blk) 720 blk->status &= ~BlkHWPrefetched; 721 722 // Don't notify on SWPrefetch 723 if (!pkt->cmd.isSWPrefetch()) 724 next_pf_time = prefetcher->notify(pkt); 725 } 726 727 if (needsResponse) { 728 pkt->makeTimingResponse(); 729 // @todo: Make someone pay for this 730 pkt->headerDelay = pkt->payloadDelay = 0; 731 732 // In this case we are considering request_time that takes 733 // into account the delay of the xbar, if any, and just 734 // lat, neglecting responseLatency, modelling hit latency 735 // just as lookupLatency or or the value of lat overriden 736 // by access(), that calls accessBlock() function. 737 cpuSidePort->schedTimingResp(pkt, request_time, true); 738 } else { 739 DPRINTF(Cache, "%s satisfied %s addr %#llx, no response needed\n", 740 __func__, pkt->cmdString(), pkt->getAddr()); 741 742 // queue the packet for deletion, as the sending cache is 743 // still relying on it; if the block is found in access(), 744 // CleanEvict and Writeback messages will be deleted 745 // here as well 746 pendingDelete.reset(pkt); 747 } 748 } else { 749 // miss 750 751 Addr blk_addr = blockAlign(pkt->getAddr()); 752 753 // ignore any existing MSHR if we are dealing with an 754 // uncacheable request 755 MSHR *mshr = pkt->req->isUncacheable() ? nullptr : 756 mshrQueue.findMatch(blk_addr, pkt->isSecure()); 757 758 // Software prefetch handling: 759 // To keep the core from waiting on data it won't look at 760 // anyway, send back a response with dummy data. Miss handling 761 // will continue asynchronously. Unfortunately, the core will 762 // insist upon freeing original Packet/Request, so we have to 763 // create a new pair with a different lifecycle. Note that this 764 // processing happens before any MSHR munging on the behalf of 765 // this request because this new Request will be the one stored 766 // into the MSHRs, not the original. 767 if (pkt->cmd.isSWPrefetch()) { 768 assert(needsResponse); 769 assert(pkt->req->hasPaddr()); 770 assert(!pkt->req->isUncacheable()); 771 772 // There's no reason to add a prefetch as an additional target 773 // to an existing MSHR. If an outstanding request is already 774 // in progress, there is nothing for the prefetch to do. 775 // If this is the case, we don't even create a request at all. 776 PacketPtr pf = nullptr; 777 778 if (!mshr) { 779 // copy the request and create a new SoftPFReq packet 780 RequestPtr req = new Request(pkt->req->getPaddr(), 781 pkt->req->getSize(), 782 pkt->req->getFlags(), 783 pkt->req->masterId()); 784 pf = new Packet(req, pkt->cmd); 785 pf->allocate(); 786 assert(pf->getAddr() == pkt->getAddr()); 787 assert(pf->getSize() == pkt->getSize()); 788 } 789 790 pkt->makeTimingResponse(); 791 792 // request_time is used here, taking into account lat and the delay 793 // charged if the packet comes from the xbar. 794 cpuSidePort->schedTimingResp(pkt, request_time, true); 795 796 // If an outstanding request is in progress (we found an 797 // MSHR) this is set to null 798 pkt = pf; 799 } 800 801 if (mshr) { 802 /// MSHR hit 803 /// @note writebacks will be checked in getNextMSHR() 804 /// for any conflicting requests to the same block 805 806 //@todo remove hw_pf here 807 808 // Coalesce unless it was a software prefetch (see above). 809 if (pkt) { 810 assert(!pkt->isWriteback()); 811 // CleanEvicts corresponding to blocks which have 812 // outstanding requests in MSHRs are simply sunk here 813 if (pkt->cmd == MemCmd::CleanEvict) { 814 pendingDelete.reset(pkt); 815 } else { 816 DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx " 817 "size %d\n", __func__, pkt->cmdString(), 818 pkt->getAddr(), pkt->getSize()); 819 820 assert(pkt->req->masterId() < system->maxMasters()); 821 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 822 // We use forward_time here because it is the same 823 // considering new targets. We have multiple 824 // requests for the same address here. It 825 // specifies the latency to allocate an internal 826 // buffer and to schedule an event to the queued 827 // port and also takes into account the additional 828 // delay of the xbar. 829 mshr->allocateTarget(pkt, forward_time, order++, 830 allocOnFill(pkt->cmd)); 831 if (mshr->getNumTargets() == numTarget) { 832 noTargetMSHR = mshr; 833 setBlocked(Blocked_NoTargets); 834 // need to be careful with this... if this mshr isn't 835 // ready yet (i.e. time > curTick()), we don't want to 836 // move it ahead of mshrs that are ready 837 // mshrQueue.moveToFront(mshr); 838 } 839 } 840 // We should call the prefetcher reguardless if the request is 841 // satisfied or not, reguardless if the request is in the MSHR 842 // or not. The request could be a ReadReq hit, but still not 843 // satisfied (potentially because of a prior write to the same 844 // cache line. So, even when not satisfied, tehre is an MSHR 845 // already allocated for this, we need to let the prefetcher 846 // know about the request 847 if (prefetcher) { 848 // Don't notify on SWPrefetch 849 if (!pkt->cmd.isSWPrefetch()) 850 next_pf_time = prefetcher->notify(pkt); 851 } 852 } 853 } else { 854 // no MSHR 855 assert(pkt->req->masterId() < system->maxMasters()); 856 if (pkt->req->isUncacheable()) { 857 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++; 858 } else { 859 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 860 } 861 862 if (pkt->isEviction() || 863 (pkt->req->isUncacheable() && pkt->isWrite())) { 864 // We use forward_time here because there is an 865 // uncached memory write, forwarded to WriteBuffer. 866 allocateWriteBuffer(pkt, forward_time); 867 } else { 868 if (blk && blk->isValid()) { 869 // should have flushed and have no valid block 870 assert(!pkt->req->isUncacheable()); 871 872 // If we have a write miss to a valid block, we 873 // need to mark the block non-readable. Otherwise 874 // if we allow reads while there's an outstanding 875 // write miss, the read could return stale data 876 // out of the cache block... a more aggressive 877 // system could detect the overlap (if any) and 878 // forward data out of the MSHRs, but we don't do 879 // that yet. Note that we do need to leave the 880 // block valid so that it stays in the cache, in 881 // case we get an upgrade response (and hence no 882 // new data) when the write miss completes. 883 // As long as CPUs do proper store/load forwarding 884 // internally, and have a sufficiently weak memory 885 // model, this is probably unnecessary, but at some 886 // point it must have seemed like we needed it... 887 assert(pkt->needsWritable()); 888 assert(!blk->isWritable()); 889 blk->status &= ~BlkReadable; 890 } 891 // Here we are using forward_time, modelling the latency of 892 // a miss (outbound) just as forwardLatency, neglecting the 893 // lookupLatency component. 894 allocateMissBuffer(pkt, forward_time); 895 } 896 897 if (prefetcher) { 898 // Don't notify on SWPrefetch 899 if (!pkt->cmd.isSWPrefetch()) 900 next_pf_time = prefetcher->notify(pkt); 901 } 902 } 903 } 904 905 if (next_pf_time != MaxTick) 906 schedMemSideSendEvent(next_pf_time); 907 908 return true; 909} 910 911PacketPtr 912Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk, 913 bool needsWritable) const 914{ 915 // should never see evictions here 916 assert(!cpu_pkt->isEviction()); 917 918 bool blkValid = blk && blk->isValid(); 919 920 if (cpu_pkt->req->isUncacheable() || 921 (!blkValid && cpu_pkt->isUpgrade())) { 922 // uncacheable requests and upgrades from upper-level caches 923 // that missed completely just go through as is 924 return nullptr; 925 } 926 927 assert(cpu_pkt->needsResponse()); 928 929 MemCmd cmd; 930 // @TODO make useUpgrades a parameter. 931 // Note that ownership protocols require upgrade, otherwise a 932 // write miss on a shared owned block will generate a ReadExcl, 933 // which will clobber the owned copy. 934 const bool useUpgrades = true; 935 if (blkValid && useUpgrades) { 936 // only reason to be here is that blk is read only and we need 937 // it to be writable 938 assert(needsWritable); 939 assert(!blk->isWritable()); 940 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq; 941 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq || 942 cpu_pkt->cmd == MemCmd::StoreCondFailReq) { 943 // Even though this SC will fail, we still need to send out the 944 // request and get the data to supply it to other snoopers in the case 945 // where the determination the StoreCond fails is delayed due to 946 // all caches not being on the same local bus. 947 cmd = MemCmd::SCUpgradeFailReq; 948 } else if (cpu_pkt->cmd == MemCmd::WriteLineReq || 949 cpu_pkt->cmd == MemCmd::InvalidateReq) { 950 // forward as invalidate to all other caches, this gives us 951 // the line in Exclusive state, and invalidates all other 952 // copies 953 cmd = MemCmd::InvalidateReq; 954 } else { 955 // block is invalid 956 cmd = needsWritable ? MemCmd::ReadExReq : 957 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq); 958 } 959 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize); 960 961 // if there are upstream caches that have already marked the 962 // packet as having sharers (not passing writable), pass that info 963 // downstream 964 if (cpu_pkt->hasSharers() && !needsWritable) { 965 // note that cpu_pkt may have spent a considerable time in the 966 // MSHR queue and that the information could possibly be out 967 // of date, however, there is no harm in conservatively 968 // assuming the block has sharers 969 pkt->setHasSharers(); 970 DPRINTF(Cache, "%s passing hasSharers from %s to %s addr %#llx " 971 "size %d\n", 972 __func__, cpu_pkt->cmdString(), pkt->cmdString(), 973 pkt->getAddr(), pkt->getSize()); 974 } 975 976 // the packet should be block aligned 977 assert(pkt->getAddr() == blockAlign(pkt->getAddr())); 978 979 pkt->allocate(); 980 DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n", 981 __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(), 982 pkt->getSize()); 983 return pkt; 984} 985 986 987Tick 988Cache::recvAtomic(PacketPtr pkt) 989{ 990 // We are in atomic mode so we pay just for lookupLatency here. 991 Cycles lat = lookupLatency; 992 993 // Forward the request if the system is in cache bypass mode. 994 if (system->bypassCaches()) 995 return ticksToCycles(memSidePort->sendAtomic(pkt)); 996 997 promoteWholeLineWrites(pkt); 998 999 // follow the same flow as in recvTimingReq, and check if a cache 1000 // above us is responding 1001 if (pkt->cacheResponding()) { 1002 DPRINTF(Cache, "Cache above responding to %#llx (%s): " 1003 "not responding\n", 1004 pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 1005 1006 // if a cache is responding, and it had the line in Owned 1007 // rather than Modified state, we need to invalidate any 1008 // copies that are not on the same path to memory 1009 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 1010 lat += ticksToCycles(memSidePort->sendAtomic(pkt)); 1011 1012 return lat * clockPeriod(); 1013 } 1014 1015 // should assert here that there are no outstanding MSHRs or 1016 // writebacks... that would mean that someone used an atomic 1017 // access in timing mode 1018 1019 CacheBlk *blk = nullptr; 1020 PacketList writebacks; 1021 bool satisfied = access(pkt, blk, lat, writebacks); 1022 1023 // handle writebacks resulting from the access here to ensure they 1024 // logically proceed anything happening below 1025 doWritebacksAtomic(writebacks); 1026 1027 if (!satisfied) { 1028 // MISS 1029 1030 // deal with the packets that go through the write path of 1031 // the cache, i.e. any evictions and uncacheable writes 1032 if (pkt->isEviction() || 1033 (pkt->req->isUncacheable() && pkt->isWrite())) { 1034 lat += ticksToCycles(memSidePort->sendAtomic(pkt)); 1035 return lat * clockPeriod(); 1036 } 1037 // only misses left 1038 1039 PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable()); 1040 1041 bool is_forward = (bus_pkt == nullptr); 1042 1043 if (is_forward) { 1044 // just forwarding the same request to the next level 1045 // no local cache operation involved 1046 bus_pkt = pkt; 1047 } 1048 1049 DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n", 1050 bus_pkt->cmdString(), bus_pkt->getAddr(), 1051 bus_pkt->isSecure() ? "s" : "ns"); 1052 1053#if TRACING_ON 1054 CacheBlk::State old_state = blk ? blk->status : 0; 1055#endif 1056 1057 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt)); 1058 1059 bool is_invalidate = bus_pkt->isInvalidate(); 1060 1061 // We are now dealing with the response handling 1062 DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in " 1063 "state %i\n", bus_pkt->cmdString(), bus_pkt->getAddr(), 1064 bus_pkt->isSecure() ? "s" : "ns", 1065 old_state); 1066 1067 // If packet was a forward, the response (if any) is already 1068 // in place in the bus_pkt == pkt structure, so we don't need 1069 // to do anything. Otherwise, use the separate bus_pkt to 1070 // generate response to pkt and then delete it. 1071 if (!is_forward) { 1072 if (pkt->needsResponse()) { 1073 assert(bus_pkt->isResponse()); 1074 if (bus_pkt->isError()) { 1075 pkt->makeAtomicResponse(); 1076 pkt->copyError(bus_pkt); 1077 } else if (pkt->cmd == MemCmd::WriteLineReq) { 1078 // note the use of pkt, not bus_pkt here. 1079 1080 // write-line request to the cache that promoted 1081 // the write to a whole line 1082 blk = handleFill(pkt, blk, writebacks, 1083 allocOnFill(pkt->cmd)); 1084 assert(blk != NULL); 1085 is_invalidate = false; 1086 satisfyRequest(pkt, blk); 1087 } else if (bus_pkt->isRead() || 1088 bus_pkt->cmd == MemCmd::UpgradeResp) { 1089 // we're updating cache state to allow us to 1090 // satisfy the upstream request from the cache 1091 blk = handleFill(bus_pkt, blk, writebacks, 1092 allocOnFill(pkt->cmd)); 1093 satisfyRequest(pkt, blk); 1094 maintainClusivity(pkt->fromCache(), blk); 1095 } else { 1096 // we're satisfying the upstream request without 1097 // modifying cache state, e.g., a write-through 1098 pkt->makeAtomicResponse(); 1099 } 1100 } 1101 delete bus_pkt; 1102 } 1103 1104 if (is_invalidate && blk && blk->isValid()) { 1105 invalidateBlock(blk); 1106 } 1107 } 1108 1109 // Note that we don't invoke the prefetcher at all in atomic mode. 1110 // It's not clear how to do it properly, particularly for 1111 // prefetchers that aggressively generate prefetch candidates and 1112 // rely on bandwidth contention to throttle them; these will tend 1113 // to pollute the cache in atomic mode since there is no bandwidth 1114 // contention. If we ever do want to enable prefetching in atomic 1115 // mode, though, this is the place to do it... see timingAccess() 1116 // for an example (though we'd want to issue the prefetch(es) 1117 // immediately rather than calling requestMemSideBus() as we do 1118 // there). 1119 1120 // do any writebacks resulting from the response handling 1121 doWritebacksAtomic(writebacks); 1122 1123 // if we used temp block, check to see if its valid and if so 1124 // clear it out, but only do so after the call to recvAtomic is 1125 // finished so that any downstream observers (such as a snoop 1126 // filter), first see the fill, and only then see the eviction 1127 if (blk == tempBlock && tempBlock->isValid()) { 1128 // the atomic CPU calls recvAtomic for fetch and load/store 1129 // sequentuially, and we may already have a tempBlock 1130 // writeback from the fetch that we have not yet sent 1131 if (tempBlockWriteback) { 1132 // if that is the case, write the prevoius one back, and 1133 // do not schedule any new event 1134 writebackTempBlockAtomic(); 1135 } else { 1136 // the writeback/clean eviction happens after the call to 1137 // recvAtomic has finished (but before any successive 1138 // calls), so that the response handling from the fill is 1139 // allowed to happen first 1140 schedule(writebackTempBlockAtomicEvent, curTick()); 1141 } 1142 1143 tempBlockWriteback = (blk->isDirty() || writebackClean) ? 1144 writebackBlk(blk) : cleanEvictBlk(blk); 1145 blk->invalidate(); 1146 } 1147 1148 if (pkt->needsResponse()) { 1149 pkt->makeAtomicResponse(); 1150 } 1151 1152 return lat * clockPeriod(); 1153} 1154 1155 1156void 1157Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide) 1158{ 1159 if (system->bypassCaches()) { 1160 // Packets from the memory side are snoop request and 1161 // shouldn't happen in bypass mode. 1162 assert(fromCpuSide); 1163 1164 // The cache should be flushed if we are in cache bypass mode, 1165 // so we don't need to check if we need to update anything. 1166 memSidePort->sendFunctional(pkt); 1167 return; 1168 } 1169 1170 Addr blk_addr = blockAlign(pkt->getAddr()); 1171 bool is_secure = pkt->isSecure(); 1172 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 1173 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 1174 1175 pkt->pushLabel(name()); 1176 1177 CacheBlkPrintWrapper cbpw(blk); 1178 1179 // Note that just because an L2/L3 has valid data doesn't mean an 1180 // L1 doesn't have a more up-to-date modified copy that still 1181 // needs to be found. As a result we always update the request if 1182 // we have it, but only declare it satisfied if we are the owner. 1183 1184 // see if we have data at all (owned or otherwise) 1185 bool have_data = blk && blk->isValid() 1186 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize, 1187 blk->data); 1188 1189 // data we have is dirty if marked as such or if we have an 1190 // in-service MSHR that is pending a modified line 1191 bool have_dirty = 1192 have_data && (blk->isDirty() || 1193 (mshr && mshr->inService && mshr->isPendingModified())); 1194 1195 bool done = have_dirty 1196 || cpuSidePort->checkFunctional(pkt) 1197 || mshrQueue.checkFunctional(pkt, blk_addr) 1198 || writeBuffer.checkFunctional(pkt, blk_addr) 1199 || memSidePort->checkFunctional(pkt); 1200 1201 DPRINTF(CacheVerbose, "functional %s %#llx (%s) %s%s%s\n", 1202 pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns", 1203 (blk && blk->isValid()) ? "valid " : "", 1204 have_data ? "data " : "", done ? "done " : ""); 1205 1206 // We're leaving the cache, so pop cache->name() label 1207 pkt->popLabel(); 1208 1209 if (done) { 1210 pkt->makeResponse(); 1211 } else { 1212 // if it came as a request from the CPU side then make sure it 1213 // continues towards the memory side 1214 if (fromCpuSide) { 1215 memSidePort->sendFunctional(pkt); 1216 } else if (cpuSidePort->isSnooping()) { 1217 // if it came from the memory side, it must be a snoop request 1218 // and we should only forward it if we are forwarding snoops 1219 cpuSidePort->sendFunctionalSnoop(pkt); 1220 } 1221 } 1222} 1223 1224 1225///////////////////////////////////////////////////// 1226// 1227// Response handling: responses from the memory side 1228// 1229///////////////////////////////////////////////////// 1230 1231 1232void 1233Cache::handleUncacheableWriteResp(PacketPtr pkt) 1234{ 1235 Tick completion_time = clockEdge(responseLatency) + 1236 pkt->headerDelay + pkt->payloadDelay; 1237 1238 // Reset the bus additional time as it is now accounted for 1239 pkt->headerDelay = pkt->payloadDelay = 0; 1240 1241 cpuSidePort->schedTimingResp(pkt, completion_time, true); 1242} 1243 1244void 1245Cache::recvTimingResp(PacketPtr pkt) 1246{ 1247 assert(pkt->isResponse()); 1248 1249 // all header delay should be paid for by the crossbar, unless 1250 // this is a prefetch response from above 1251 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp, 1252 "%s saw a non-zero packet delay\n", name()); 1253 1254 bool is_error = pkt->isError(); 1255 1256 if (is_error) { 1257 DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), " 1258 "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns", 1259 pkt->cmdString()); 1260 } 1261 1262 DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n", 1263 pkt->cmdString(), pkt->getAddr(), pkt->getSize(), 1264 pkt->isSecure() ? "s" : "ns"); 1265 1266 // if this is a write, we should be looking at an uncacheable 1267 // write 1268 if (pkt->isWrite()) { 1269 assert(pkt->req->isUncacheable()); 1270 handleUncacheableWriteResp(pkt); 1271 return; 1272 } 1273 1274 // we have dealt with any (uncacheable) writes above, from here on 1275 // we know we are dealing with an MSHR due to a miss or a prefetch 1276 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState()); 1277 assert(mshr); 1278 1279 if (mshr == noTargetMSHR) { 1280 // we always clear at least one target 1281 clearBlocked(Blocked_NoTargets); 1282 noTargetMSHR = nullptr; 1283 } 1284 1285 // Initial target is used just for stats 1286 MSHR::Target *initial_tgt = mshr->getTarget(); 1287 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); 1288 Tick miss_latency = curTick() - initial_tgt->recvTime; 1289 1290 if (pkt->req->isUncacheable()) { 1291 assert(pkt->req->masterId() < system->maxMasters()); 1292 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += 1293 miss_latency; 1294 } else { 1295 assert(pkt->req->masterId() < system->maxMasters()); 1296 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += 1297 miss_latency; 1298 } 1299 1300 bool wasFull = mshrQueue.isFull(); 1301 1302 PacketList writebacks; 1303 1304 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 1305 1306 // upgrade deferred targets if the response has no sharers, and is 1307 // thus passing writable 1308 if (!pkt->hasSharers()) { 1309 mshr->promoteWritable(); 1310 } 1311 1312 bool is_fill = !mshr->isForward && 1313 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp); 1314 1315 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 1316 1317 if (is_fill && !is_error) { 1318 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", 1319 pkt->getAddr()); 1320 1321 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill()); 1322 assert(blk != nullptr); 1323 } 1324 1325 // allow invalidation responses originating from write-line 1326 // requests to be discarded 1327 bool is_invalidate = pkt->isInvalidate(); 1328 1329 // First offset for critical word first calculations 1330 int initial_offset = initial_tgt->pkt->getOffset(blkSize); 1331 1332 bool from_cache = false; 1333 MSHR::TargetList targets = mshr->extractServiceableTargets(pkt); 1334 for (auto &target: targets) { 1335 Packet *tgt_pkt = target.pkt; 1336 switch (target.source) { 1337 case MSHR::Target::FromCPU: 1338 Tick completion_time; 1339 // Here we charge on completion_time the delay of the xbar if the 1340 // packet comes from it, charged on headerDelay. 1341 completion_time = pkt->headerDelay; 1342 1343 // Software prefetch handling for cache closest to core 1344 if (tgt_pkt->cmd.isSWPrefetch()) { 1345 // a software prefetch would have already been ack'd 1346 // immediately with dummy data so the core would be able to 1347 // retire it. This request completes right here, so we 1348 // deallocate it. 1349 delete tgt_pkt->req; 1350 delete tgt_pkt; 1351 break; // skip response 1352 } 1353 1354 // keep track of whether we have responded to another 1355 // cache 1356 from_cache = from_cache || tgt_pkt->fromCache(); 1357 1358 // unlike the other packet flows, where data is found in other 1359 // caches or memory and brought back, write-line requests always 1360 // have the data right away, so the above check for "is fill?" 1361 // cannot actually be determined until examining the stored MSHR 1362 // state. We "catch up" with that logic here, which is duplicated 1363 // from above. 1364 if (tgt_pkt->cmd == MemCmd::WriteLineReq) { 1365 assert(!is_error); 1366 // we got the block in a writable state, so promote 1367 // any deferred targets if possible 1368 mshr->promoteWritable(); 1369 // NB: we use the original packet here and not the response! 1370 blk = handleFill(tgt_pkt, blk, writebacks, 1371 targets.allocOnFill); 1372 assert(blk != nullptr); 1373 1374 // treat as a fill, and discard the invalidation 1375 // response 1376 is_fill = true; 1377 is_invalidate = false; 1378 } 1379 1380 if (is_fill) { 1381 satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade()); 1382 1383 // How many bytes past the first request is this one 1384 int transfer_offset = 1385 tgt_pkt->getOffset(blkSize) - initial_offset; 1386 if (transfer_offset < 0) { 1387 transfer_offset += blkSize; 1388 } 1389 1390 // If not critical word (offset) return payloadDelay. 1391 // responseLatency is the latency of the return path 1392 // from lower level caches/memory to an upper level cache or 1393 // the core. 1394 completion_time += clockEdge(responseLatency) + 1395 (transfer_offset ? pkt->payloadDelay : 0); 1396 1397 assert(!tgt_pkt->req->isUncacheable()); 1398 1399 assert(tgt_pkt->req->masterId() < system->maxMasters()); 1400 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] += 1401 completion_time - target.recvTime; 1402 } else if (pkt->cmd == MemCmd::UpgradeFailResp) { 1403 // failed StoreCond upgrade 1404 assert(tgt_pkt->cmd == MemCmd::StoreCondReq || 1405 tgt_pkt->cmd == MemCmd::StoreCondFailReq || 1406 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq); 1407 // responseLatency is the latency of the return path 1408 // from lower level caches/memory to an upper level cache or 1409 // the core. 1410 completion_time += clockEdge(responseLatency) + 1411 pkt->payloadDelay; 1412 tgt_pkt->req->setExtraData(0); 1413 } else { 1414 // not a cache fill, just forwarding response 1415 // responseLatency is the latency of the return path 1416 // from lower level cahces/memory to the core. 1417 completion_time += clockEdge(responseLatency) + 1418 pkt->payloadDelay; 1419 if (pkt->isRead() && !is_error) { 1420 // sanity check 1421 assert(pkt->getAddr() == tgt_pkt->getAddr()); 1422 assert(pkt->getSize() >= tgt_pkt->getSize()); 1423 1424 tgt_pkt->setData(pkt->getConstPtr<uint8_t>()); 1425 } 1426 } 1427 tgt_pkt->makeTimingResponse(); 1428 // if this packet is an error copy that to the new packet 1429 if (is_error) 1430 tgt_pkt->copyError(pkt); 1431 if (tgt_pkt->cmd == MemCmd::ReadResp && 1432 (is_invalidate || mshr->hasPostInvalidate())) { 1433 // If intermediate cache got ReadRespWithInvalidate, 1434 // propagate that. Response should not have 1435 // isInvalidate() set otherwise. 1436 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate; 1437 DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n", 1438 __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr()); 1439 } 1440 // Reset the bus additional time as it is now accounted for 1441 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0; 1442 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true); 1443 break; 1444 1445 case MSHR::Target::FromPrefetcher: 1446 assert(tgt_pkt->cmd == MemCmd::HardPFReq); 1447 if (blk) 1448 blk->status |= BlkHWPrefetched; 1449 delete tgt_pkt->req; 1450 delete tgt_pkt; 1451 break; 1452 1453 case MSHR::Target::FromSnoop: 1454 // I don't believe that a snoop can be in an error state 1455 assert(!is_error); 1456 // response to snoop request 1457 DPRINTF(Cache, "processing deferred snoop...\n"); 1458 assert(!(is_invalidate && !mshr->hasPostInvalidate())); 1459 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate()); 1460 break; 1461 1462 default: 1463 panic("Illegal target->source enum %d\n", target.source); 1464 } 1465 } 1466 1467 maintainClusivity(from_cache, blk); 1468 1469 if (blk && blk->isValid()) { 1470 // an invalidate response stemming from a write line request 1471 // should not invalidate the block, so check if the 1472 // invalidation should be discarded 1473 if (is_invalidate || mshr->hasPostInvalidate()) { 1474 invalidateBlock(blk); 1475 } else if (mshr->hasPostDowngrade()) { 1476 blk->status &= ~BlkWritable; 1477 } 1478 } 1479 1480 if (mshr->promoteDeferredTargets()) { 1481 // avoid later read getting stale data while write miss is 1482 // outstanding.. see comment in timingAccess() 1483 if (blk) { 1484 blk->status &= ~BlkReadable; 1485 } 1486 mshrQueue.markPending(mshr); 1487 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay); 1488 } else { 1489 mshrQueue.deallocate(mshr); 1490 if (wasFull && !mshrQueue.isFull()) { 1491 clearBlocked(Blocked_NoMSHRs); 1492 } 1493 1494 // Request the bus for a prefetch if this deallocation freed enough 1495 // MSHRs for a prefetch to take place 1496 if (prefetcher && mshrQueue.canPrefetch()) { 1497 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), 1498 clockEdge()); 1499 if (next_pf_time != MaxTick) 1500 schedMemSideSendEvent(next_pf_time); 1501 } 1502 } 1503 // reset the xbar additional timinig as it is now accounted for 1504 pkt->headerDelay = pkt->payloadDelay = 0; 1505 1506 // copy writebacks to write buffer 1507 doWritebacks(writebacks, forward_time); 1508 1509 // if we used temp block, check to see if its valid and then clear it out 1510 if (blk == tempBlock && tempBlock->isValid()) { 1511 // We use forwardLatency here because we are copying 1512 // Writebacks/CleanEvicts to write buffer. It specifies the latency to 1513 // allocate an internal buffer and to schedule an event to the 1514 // queued port. 1515 if (blk->isDirty() || writebackClean) { 1516 PacketPtr wbPkt = writebackBlk(blk); 1517 allocateWriteBuffer(wbPkt, forward_time); 1518 // Set BLOCK_CACHED flag if cached above. 1519 if (isCachedAbove(wbPkt)) 1520 wbPkt->setBlockCached(); 1521 } else { 1522 PacketPtr wcPkt = cleanEvictBlk(blk); 1523 // Check to see if block is cached above. If not allocate 1524 // write buffer 1525 if (isCachedAbove(wcPkt)) 1526 delete wcPkt; 1527 else 1528 allocateWriteBuffer(wcPkt, forward_time); 1529 } 1530 blk->invalidate(); 1531 } 1532 1533 DPRINTF(CacheVerbose, "Leaving %s with %s for addr %#llx\n", __func__, 1534 pkt->cmdString(), pkt->getAddr()); 1535 delete pkt; 1536} 1537 1538PacketPtr 1539Cache::writebackBlk(CacheBlk *blk) 1540{ 1541 chatty_assert(!isReadOnly || writebackClean, 1542 "Writeback from read-only cache"); 1543 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean)); 1544 1545 writebacks[Request::wbMasterId]++; 1546 1547 Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set), 1548 blkSize, 0, Request::wbMasterId); 1549 if (blk->isSecure()) 1550 req->setFlags(Request::SECURE); 1551 1552 req->taskId(blk->task_id); 1553 blk->task_id= ContextSwitchTaskId::Unknown; 1554 blk->tickInserted = curTick(); 1555 1556 PacketPtr pkt = 1557 new Packet(req, blk->isDirty() ? 1558 MemCmd::WritebackDirty : MemCmd::WritebackClean); 1559 1560 DPRINTF(Cache, "Create Writeback %#llx writable: %d, dirty: %d\n", 1561 pkt->getAddr(), blk->isWritable(), blk->isDirty()); 1562 1563 if (blk->isWritable()) { 1564 // not asserting shared means we pass the block in modified 1565 // state, mark our own block non-writeable 1566 blk->status &= ~BlkWritable; 1567 } else { 1568 // we are in the Owned state, tell the receiver 1569 pkt->setHasSharers(); 1570 } 1571 1572 // make sure the block is not marked dirty 1573 blk->status &= ~BlkDirty; 1574 1575 pkt->allocate(); 1576 std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize); 1577 1578 return pkt; 1579} 1580 1581PacketPtr 1582Cache::cleanEvictBlk(CacheBlk *blk) 1583{ 1584 assert(!writebackClean); 1585 assert(blk && blk->isValid() && !blk->isDirty()); 1586 // Creating a zero sized write, a message to the snoop filter 1587 Request *req = 1588 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0, 1589 Request::wbMasterId); 1590 if (blk->isSecure()) 1591 req->setFlags(Request::SECURE); 1592 1593 req->taskId(blk->task_id); 1594 blk->task_id = ContextSwitchTaskId::Unknown; 1595 blk->tickInserted = curTick(); 1596 1597 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict); 1598 pkt->allocate(); 1599 DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(), 1600 pkt->req->isInstFetch() ? " (ifetch)" : "", 1601 pkt->getAddr()); 1602 1603 return pkt; 1604} 1605 1606void 1607Cache::memWriteback() 1608{ 1609 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor); 1610 tags->forEachBlk(visitor); 1611} 1612 1613void 1614Cache::memInvalidate() 1615{ 1616 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor); 1617 tags->forEachBlk(visitor); 1618} 1619 1620bool 1621Cache::isDirty() const 1622{ 1623 CacheBlkIsDirtyVisitor visitor; 1624 tags->forEachBlk(visitor); 1625 1626 return visitor.isDirty(); 1627} 1628 1629bool 1630Cache::writebackVisitor(CacheBlk &blk) 1631{ 1632 if (blk.isDirty()) { 1633 assert(blk.isValid()); 1634 1635 Request request(tags->regenerateBlkAddr(blk.tag, blk.set), 1636 blkSize, 0, Request::funcMasterId); 1637 request.taskId(blk.task_id); 1638 1639 Packet packet(&request, MemCmd::WriteReq); 1640 packet.dataStatic(blk.data); 1641 1642 memSidePort->sendFunctional(&packet); 1643 1644 blk.status &= ~BlkDirty; 1645 } 1646 1647 return true; 1648} 1649 1650bool 1651Cache::invalidateVisitor(CacheBlk &blk) 1652{ 1653 1654 if (blk.isDirty()) 1655 warn_once("Invalidating dirty cache lines. Expect things to break.\n"); 1656 1657 if (blk.isValid()) { 1658 assert(!blk.isDirty()); 1659 tags->invalidate(&blk); 1660 blk.invalidate(); 1661 } 1662 1663 return true; 1664} 1665 1666CacheBlk* 1667Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks) 1668{ 1669 CacheBlk *blk = tags->findVictim(addr); 1670 1671 // It is valid to return nullptr if there is no victim 1672 if (!blk) 1673 return nullptr; 1674 1675 if (blk->isValid()) { 1676 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set); 1677 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); 1678 if (repl_mshr) { 1679 // must be an outstanding upgrade request 1680 // on a block we're about to replace... 1681 assert(!blk->isWritable() || blk->isDirty()); 1682 assert(repl_mshr->needsWritable()); 1683 // too hard to replace block with transient state 1684 // allocation failed, block not inserted 1685 return nullptr; 1686 } else { 1687 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx " 1688 "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns", 1689 addr, is_secure ? "s" : "ns", 1690 blk->isDirty() ? "writeback" : "clean"); 1691 1692 if (blk->wasPrefetched()) { 1693 unusedPrefetches++; 1694 } 1695 // Will send up Writeback/CleanEvict snoops via isCachedAbove 1696 // when pushing this writeback list into the write buffer. 1697 if (blk->isDirty() || writebackClean) { 1698 // Save writeback packet for handling by caller 1699 writebacks.push_back(writebackBlk(blk)); 1700 } else { 1701 writebacks.push_back(cleanEvictBlk(blk)); 1702 } 1703 } 1704 } 1705 1706 return blk; 1707} 1708 1709void 1710Cache::invalidateBlock(CacheBlk *blk) 1711{ 1712 if (blk != tempBlock) 1713 tags->invalidate(blk); 1714 blk->invalidate(); 1715} 1716 1717// Note that the reason we return a list of writebacks rather than 1718// inserting them directly in the write buffer is that this function 1719// is called by both atomic and timing-mode accesses, and in atomic 1720// mode we don't mess with the write buffer (we just perform the 1721// writebacks atomically once the original request is complete). 1722CacheBlk* 1723Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks, 1724 bool allocate) 1725{ 1726 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq); 1727 Addr addr = pkt->getAddr(); 1728 bool is_secure = pkt->isSecure(); 1729#if TRACING_ON 1730 CacheBlk::State old_state = blk ? blk->status : 0; 1731#endif 1732 1733 // When handling a fill, we should have no writes to this line. 1734 assert(addr == blockAlign(addr)); 1735 assert(!writeBuffer.findMatch(addr, is_secure)); 1736 1737 if (blk == nullptr) { 1738 // better have read new data... 1739 assert(pkt->hasData()); 1740 1741 // only read responses and write-line requests have data; 1742 // note that we don't write the data here for write-line - that 1743 // happens in the subsequent call to satisfyRequest 1744 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq); 1745 1746 // need to do a replacement if allocating, otherwise we stick 1747 // with the temporary storage 1748 blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr; 1749 1750 if (blk == nullptr) { 1751 // No replaceable block or a mostly exclusive 1752 // cache... just use temporary storage to complete the 1753 // current request and then get rid of it 1754 assert(!tempBlock->isValid()); 1755 blk = tempBlock; 1756 tempBlock->set = tags->extractSet(addr); 1757 tempBlock->tag = tags->extractTag(addr); 1758 // @todo: set security state as well... 1759 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, 1760 is_secure ? "s" : "ns"); 1761 } else { 1762 tags->insertBlock(pkt, blk); 1763 } 1764 1765 // we should never be overwriting a valid block 1766 assert(!blk->isValid()); 1767 } else { 1768 // existing block... probably an upgrade 1769 assert(blk->tag == tags->extractTag(addr)); 1770 // either we're getting new data or the block should already be valid 1771 assert(pkt->hasData() || blk->isValid()); 1772 // don't clear block status... if block is already dirty we 1773 // don't want to lose that 1774 } 1775 1776 if (is_secure) 1777 blk->status |= BlkSecure; 1778 blk->status |= BlkValid | BlkReadable; 1779 1780 // sanity check for whole-line writes, which should always be 1781 // marked as writable as part of the fill, and then later marked 1782 // dirty as part of satisfyRequest 1783 if (pkt->cmd == MemCmd::WriteLineReq) { 1784 assert(!pkt->hasSharers()); 1785 // at the moment other caches do not respond to the 1786 // invalidation requests corresponding to a whole-line write 1787 assert(!pkt->cacheResponding()); 1788 } 1789 1790 // here we deal with setting the appropriate state of the line, 1791 // and we start by looking at the hasSharers flag, and ignore the 1792 // cacheResponding flag (normally signalling dirty data) if the 1793 // packet has sharers, thus the line is never allocated as Owned 1794 // (dirty but not writable), and always ends up being either 1795 // Shared, Exclusive or Modified, see Packet::setCacheResponding 1796 // for more details 1797 if (!pkt->hasSharers()) { 1798 // we could get a writable line from memory (rather than a 1799 // cache) even in a read-only cache, note that we set this bit 1800 // even for a read-only cache, possibly revisit this decision 1801 blk->status |= BlkWritable; 1802 1803 // check if we got this via cache-to-cache transfer (i.e., from a 1804 // cache that had the block in Modified or Owned state) 1805 if (pkt->cacheResponding()) { 1806 // we got the block in Modified state, and invalidated the 1807 // owners copy 1808 blk->status |= BlkDirty; 1809 1810 chatty_assert(!isReadOnly, "Should never see dirty snoop response " 1811 "in read-only cache %s\n", name()); 1812 } 1813 } 1814 1815 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", 1816 addr, is_secure ? "s" : "ns", old_state, blk->print()); 1817 1818 // if we got new data, copy it in (checking for a read response 1819 // and a response that has data is the same in the end) 1820 if (pkt->isRead()) { 1821 // sanity checks 1822 assert(pkt->hasData()); 1823 assert(pkt->getSize() == blkSize); 1824 1825 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize); 1826 } 1827 // We pay for fillLatency here. 1828 blk->whenReady = clockEdge() + fillLatency * clockPeriod() + 1829 pkt->payloadDelay; 1830 1831 return blk; 1832} 1833 1834 1835///////////////////////////////////////////////////// 1836// 1837// Snoop path: requests coming in from the memory side 1838// 1839///////////////////////////////////////////////////// 1840 1841void 1842Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data, 1843 bool already_copied, bool pending_inval) 1844{ 1845 // sanity check 1846 assert(req_pkt->isRequest()); 1847 assert(req_pkt->needsResponse()); 1848 1849 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, 1850 req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize()); 1851 // timing-mode snoop responses require a new packet, unless we 1852 // already made a copy... 1853 PacketPtr pkt = req_pkt; 1854 if (!already_copied) 1855 // do not clear flags, and allocate space for data if the 1856 // packet needs it (the only packets that carry data are read 1857 // responses) 1858 pkt = new Packet(req_pkt, false, req_pkt->isRead()); 1859 1860 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() || 1861 pkt->hasSharers()); 1862 pkt->makeTimingResponse(); 1863 if (pkt->isRead()) { 1864 pkt->setDataFromBlock(blk_data, blkSize); 1865 } 1866 if (pkt->cmd == MemCmd::ReadResp && pending_inval) { 1867 // Assume we defer a response to a read from a far-away cache 1868 // A, then later defer a ReadExcl from a cache B on the same 1869 // bus as us. We'll assert cacheResponding in both cases, but 1870 // in the latter case cacheResponding will keep the 1871 // invalidation from reaching cache A. This special response 1872 // tells cache A that it gets the block to satisfy its read, 1873 // but must immediately invalidate it. 1874 pkt->cmd = MemCmd::ReadRespWithInvalidate; 1875 } 1876 // Here we consider forward_time, paying for just forward latency and 1877 // also charging the delay provided by the xbar. 1878 // forward_time is used as send_time in next allocateWriteBuffer(). 1879 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 1880 // Here we reset the timing of the packet. 1881 pkt->headerDelay = pkt->payloadDelay = 0; 1882 DPRINTF(CacheVerbose, 1883 "%s created response: %s addr %#llx size %d tick: %lu\n", 1884 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(), 1885 forward_time); 1886 memSidePort->schedTimingSnoopResp(pkt, forward_time, true); 1887} 1888 1889uint32_t 1890Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing, 1891 bool is_deferred, bool pending_inval) 1892{ 1893 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__, 1894 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 1895 // deferred snoops can only happen in timing mode 1896 assert(!(is_deferred && !is_timing)); 1897 // pending_inval only makes sense on deferred snoops 1898 assert(!(pending_inval && !is_deferred)); 1899 assert(pkt->isRequest()); 1900 1901 // the packet may get modified if we or a forwarded snooper 1902 // responds in atomic mode, so remember a few things about the 1903 // original packet up front 1904 bool invalidate = pkt->isInvalidate(); 1905 bool M5_VAR_USED needs_writable = pkt->needsWritable(); 1906 1907 // at the moment we could get an uncacheable write which does not 1908 // have the invalidate flag, and we need a suitable way of dealing 1909 // with this case 1910 panic_if(invalidate && pkt->req->isUncacheable(), 1911 "%s got an invalidating uncacheable snoop request %s to %#llx", 1912 name(), pkt->cmdString(), pkt->getAddr()); 1913 1914 uint32_t snoop_delay = 0; 1915 1916 if (forwardSnoops) { 1917 // first propagate snoop upward to see if anyone above us wants to 1918 // handle it. save & restore packet src since it will get 1919 // rewritten to be relative to cpu-side bus (if any) 1920 bool alreadyResponded = pkt->cacheResponding(); 1921 if (is_timing) { 1922 // copy the packet so that we can clear any flags before 1923 // forwarding it upwards, we also allocate data (passing 1924 // the pointer along in case of static data), in case 1925 // there is a snoop hit in upper levels 1926 Packet snoopPkt(pkt, true, true); 1927 snoopPkt.setExpressSnoop(); 1928 // the snoop packet does not need to wait any additional 1929 // time 1930 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0; 1931 cpuSidePort->sendTimingSnoopReq(&snoopPkt); 1932 1933 // add the header delay (including crossbar and snoop 1934 // delays) of the upward snoop to the snoop delay for this 1935 // cache 1936 snoop_delay += snoopPkt.headerDelay; 1937 1938 if (snoopPkt.cacheResponding()) { 1939 // cache-to-cache response from some upper cache 1940 assert(!alreadyResponded); 1941 pkt->setCacheResponding(); 1942 } 1943 // upstream cache has the block, or has an outstanding 1944 // MSHR, pass the flag on 1945 if (snoopPkt.hasSharers()) { 1946 pkt->setHasSharers(); 1947 } 1948 // If this request is a prefetch or clean evict and an upper level 1949 // signals block present, make sure to propagate the block 1950 // presence to the requester. 1951 if (snoopPkt.isBlockCached()) { 1952 pkt->setBlockCached(); 1953 } 1954 } else { 1955 cpuSidePort->sendAtomicSnoop(pkt); 1956 if (!alreadyResponded && pkt->cacheResponding()) { 1957 // cache-to-cache response from some upper cache: 1958 // forward response to original requester 1959 assert(pkt->isResponse()); 1960 } 1961 } 1962 } 1963 1964 if (!blk || !blk->isValid()) { 1965 if (is_deferred) { 1966 // we no longer have the block, and will not respond, but a 1967 // packet was allocated in MSHR::handleSnoop and we have 1968 // to delete it 1969 assert(pkt->needsResponse()); 1970 1971 // we have passed the block to a cache upstream, that 1972 // cache should be responding 1973 assert(pkt->cacheResponding()); 1974 1975 delete pkt; 1976 } 1977 1978 DPRINTF(CacheVerbose, "%s snoop miss for %s addr %#llx size %d\n", 1979 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 1980 return snoop_delay; 1981 } else { 1982 DPRINTF(Cache, "%s snoop hit for %s addr %#llx size %d, " 1983 "old state is %s\n", __func__, pkt->cmdString(), 1984 pkt->getAddr(), pkt->getSize(), blk->print()); 1985 } 1986 1987 chatty_assert(!(isReadOnly && blk->isDirty()), 1988 "Should never have a dirty block in a read-only cache %s\n", 1989 name()); 1990 1991 // We may end up modifying both the block state and the packet (if 1992 // we respond in atomic mode), so just figure out what to do now 1993 // and then do it later. If we find dirty data while snooping for 1994 // an invalidate, we don't need to send a response. The 1995 // invalidation itself is taken care of below. 1996 bool respond = blk->isDirty() && pkt->needsResponse() && 1997 pkt->cmd != MemCmd::InvalidateReq; 1998 bool have_writable = blk->isWritable(); 1999 2000 // Invalidate any prefetch's from below that would strip write permissions 2001 // MemCmd::HardPFReq is only observed by upstream caches. After missing 2002 // above and in it's own cache, a new MemCmd::ReadReq is created that 2003 // downstream caches observe. 2004 if (pkt->mustCheckAbove()) { 2005 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s " 2006 "from lower cache\n", pkt->getAddr(), pkt->cmdString()); 2007 pkt->setBlockCached(); 2008 return snoop_delay; 2009 } 2010 2011 if (pkt->isRead() && !invalidate) { 2012 // reading without requiring the line in a writable state 2013 assert(!needs_writable); 2014 pkt->setHasSharers(); 2015 2016 // if the requesting packet is uncacheable, retain the line in 2017 // the current state, otherwhise unset the writable flag, 2018 // which means we go from Modified to Owned (and will respond 2019 // below), remain in Owned (and will respond below), from 2020 // Exclusive to Shared, or remain in Shared 2021 if (!pkt->req->isUncacheable()) 2022 blk->status &= ~BlkWritable; 2023 } 2024 2025 if (respond) { 2026 // prevent anyone else from responding, cache as well as 2027 // memory, and also prevent any memory from even seeing the 2028 // request 2029 pkt->setCacheResponding(); 2030 if (have_writable) { 2031 // inform the cache hierarchy that this cache had the line 2032 // in the Modified state so that we avoid unnecessary 2033 // invalidations (see Packet::setResponderHadWritable) 2034 pkt->setResponderHadWritable(); 2035 2036 // in the case of an uncacheable request there is no point 2037 // in setting the responderHadWritable flag, but since the 2038 // recipient does not care there is no harm in doing so 2039 } else { 2040 // if the packet has needsWritable set we invalidate our 2041 // copy below and all other copies will be invalidates 2042 // through express snoops, and if needsWritable is not set 2043 // we already called setHasSharers above 2044 } 2045 2046 // if we are returning a writable and dirty (Modified) line, 2047 // we should be invalidating the line 2048 panic_if(!invalidate && !pkt->hasSharers(), 2049 "%s is passing a Modified line through %s to %#llx, " 2050 "but keeping the block", 2051 name(), pkt->cmdString(), pkt->getAddr()); 2052 2053 if (is_timing) { 2054 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval); 2055 } else { 2056 pkt->makeAtomicResponse(); 2057 // packets such as upgrades do not actually have any data 2058 // payload 2059 if (pkt->hasData()) 2060 pkt->setDataFromBlock(blk->data, blkSize); 2061 } 2062 } 2063 2064 if (!respond && is_deferred) { 2065 assert(pkt->needsResponse()); 2066 2067 // if we copied the deferred packet with the intention to 2068 // respond, but are not responding, then a cache above us must 2069 // be, and we can use this as the indication of whether this 2070 // is a packet where we created a copy of the request or not 2071 if (!pkt->cacheResponding()) { 2072 delete pkt->req; 2073 } 2074 2075 delete pkt; 2076 } 2077 2078 // Do this last in case it deallocates block data or something 2079 // like that 2080 if (invalidate) { 2081 invalidateBlock(blk); 2082 } 2083 2084 DPRINTF(Cache, "new state is %s\n", blk->print()); 2085 2086 return snoop_delay; 2087} 2088 2089 2090void 2091Cache::recvTimingSnoopReq(PacketPtr pkt) 2092{ 2093 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__, 2094 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 2095 2096 // Snoops shouldn't happen when bypassing caches 2097 assert(!system->bypassCaches()); 2098 2099 // no need to snoop requests that are not in range 2100 if (!inRange(pkt->getAddr())) { 2101 return; 2102 } 2103 2104 bool is_secure = pkt->isSecure(); 2105 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 2106 2107 Addr blk_addr = blockAlign(pkt->getAddr()); 2108 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 2109 2110 // Update the latency cost of the snoop so that the crossbar can 2111 // account for it. Do not overwrite what other neighbouring caches 2112 // have already done, rather take the maximum. The update is 2113 // tentative, for cases where we return before an upward snoop 2114 // happens below. 2115 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, 2116 lookupLatency * clockPeriod()); 2117 2118 // Inform request(Prefetch, CleanEvict or Writeback) from below of 2119 // MSHR hit, set setBlockCached. 2120 if (mshr && pkt->mustCheckAbove()) { 2121 DPRINTF(Cache, "Setting block cached for %s from" 2122 "lower cache on mshr hit %#x\n", 2123 pkt->cmdString(), pkt->getAddr()); 2124 pkt->setBlockCached(); 2125 return; 2126 } 2127 2128 // Let the MSHR itself track the snoop and decide whether we want 2129 // to go ahead and do the regular cache snoop 2130 if (mshr && mshr->handleSnoop(pkt, order++)) { 2131 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)." 2132 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns", 2133 mshr->print()); 2134 2135 if (mshr->getNumTargets() > numTarget) 2136 warn("allocating bonus target for snoop"); //handle later 2137 return; 2138 } 2139 2140 //We also need to check the writeback buffers and handle those 2141 WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure); 2142 if (wb_entry) { 2143 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n", 2144 pkt->getAddr(), is_secure ? "s" : "ns"); 2145 // Expect to see only Writebacks and/or CleanEvicts here, both of 2146 // which should not be generated for uncacheable data. 2147 assert(!wb_entry->isUncacheable()); 2148 // There should only be a single request responsible for generating 2149 // Writebacks/CleanEvicts. 2150 assert(wb_entry->getNumTargets() == 1); 2151 PacketPtr wb_pkt = wb_entry->getTarget()->pkt; 2152 assert(wb_pkt->isEviction()); 2153 2154 if (pkt->isEviction()) { 2155 // if the block is found in the write queue, set the BLOCK_CACHED 2156 // flag for Writeback/CleanEvict snoop. On return the snoop will 2157 // propagate the BLOCK_CACHED flag in Writeback packets and prevent 2158 // any CleanEvicts from travelling down the memory hierarchy. 2159 pkt->setBlockCached(); 2160 DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit" 2161 " %#x\n", pkt->cmdString(), pkt->getAddr()); 2162 return; 2163 } 2164 2165 // conceptually writebacks are no different to other blocks in 2166 // this cache, so the behaviour is modelled after handleSnoop, 2167 // the difference being that instead of querying the block 2168 // state to determine if it is dirty and writable, we use the 2169 // command and fields of the writeback packet 2170 bool respond = wb_pkt->cmd == MemCmd::WritebackDirty && 2171 pkt->needsResponse() && pkt->cmd != MemCmd::InvalidateReq; 2172 bool have_writable = !wb_pkt->hasSharers(); 2173 bool invalidate = pkt->isInvalidate(); 2174 2175 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) { 2176 assert(!pkt->needsWritable()); 2177 pkt->setHasSharers(); 2178 wb_pkt->setHasSharers(); 2179 } 2180 2181 if (respond) { 2182 pkt->setCacheResponding(); 2183 2184 if (have_writable) { 2185 pkt->setResponderHadWritable(); 2186 } 2187 2188 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(), 2189 false, false); 2190 } 2191 2192 if (invalidate) { 2193 // Invalidation trumps our writeback... discard here 2194 // Note: markInService will remove entry from writeback buffer. 2195 markInService(wb_entry); 2196 delete wb_pkt; 2197 } 2198 } 2199 2200 // If this was a shared writeback, there may still be 2201 // other shared copies above that require invalidation. 2202 // We could be more selective and return here if the 2203 // request is non-exclusive or if the writeback is 2204 // exclusive. 2205 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false); 2206 2207 // Override what we did when we first saw the snoop, as we now 2208 // also have the cost of the upwards snoops to account for 2209 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay + 2210 lookupLatency * clockPeriod()); 2211} 2212 2213bool 2214Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) 2215{ 2216 // Express snoop responses from master to slave, e.g., from L1 to L2 2217 cache->recvTimingSnoopResp(pkt); 2218 return true; 2219} 2220 2221Tick 2222Cache::recvAtomicSnoop(PacketPtr pkt) 2223{ 2224 // Snoops shouldn't happen when bypassing caches 2225 assert(!system->bypassCaches()); 2226 2227 // no need to snoop requests that are not in range. 2228 if (!inRange(pkt->getAddr())) { 2229 return 0; 2230 } 2231 2232 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 2233 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false); 2234 return snoop_delay + lookupLatency * clockPeriod(); 2235} 2236 2237 2238QueueEntry* 2239Cache::getNextQueueEntry() 2240{ 2241 // Check both MSHR queue and write buffer for potential requests, 2242 // note that null does not mean there is no request, it could 2243 // simply be that it is not ready 2244 MSHR *miss_mshr = mshrQueue.getNext(); 2245 WriteQueueEntry *wq_entry = writeBuffer.getNext(); 2246 2247 // If we got a write buffer request ready, first priority is a 2248 // full write buffer, otherwise we favour the miss requests 2249 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) { 2250 // need to search MSHR queue for conflicting earlier miss. 2251 MSHR *conflict_mshr = 2252 mshrQueue.findPending(wq_entry->blkAddr, 2253 wq_entry->isSecure); 2254 2255 if (conflict_mshr && conflict_mshr->order < wq_entry->order) { 2256 // Service misses in order until conflict is cleared. 2257 return conflict_mshr; 2258 2259 // @todo Note that we ignore the ready time of the conflict here 2260 } 2261 2262 // No conflicts; issue write 2263 return wq_entry; 2264 } else if (miss_mshr) { 2265 // need to check for conflicting earlier writeback 2266 WriteQueueEntry *conflict_mshr = 2267 writeBuffer.findPending(miss_mshr->blkAddr, 2268 miss_mshr->isSecure); 2269 if (conflict_mshr) { 2270 // not sure why we don't check order here... it was in the 2271 // original code but commented out. 2272 2273 // The only way this happens is if we are 2274 // doing a write and we didn't have permissions 2275 // then subsequently saw a writeback (owned got evicted) 2276 // We need to make sure to perform the writeback first 2277 // To preserve the dirty data, then we can issue the write 2278 2279 // should we return wq_entry here instead? I.e. do we 2280 // have to flush writes in order? I don't think so... not 2281 // for Alpha anyway. Maybe for x86? 2282 return conflict_mshr; 2283 2284 // @todo Note that we ignore the ready time of the conflict here 2285 } 2286 2287 // No conflicts; issue read 2288 return miss_mshr; 2289 } 2290 2291 // fall through... no pending requests. Try a prefetch. 2292 assert(!miss_mshr && !wq_entry); 2293 if (prefetcher && mshrQueue.canPrefetch()) { 2294 // If we have a miss queue slot, we can try a prefetch 2295 PacketPtr pkt = prefetcher->getPacket(); 2296 if (pkt) { 2297 Addr pf_addr = blockAlign(pkt->getAddr()); 2298 if (!tags->findBlock(pf_addr, pkt->isSecure()) && 2299 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && 2300 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { 2301 // Update statistic on number of prefetches issued 2302 // (hwpf_mshr_misses) 2303 assert(pkt->req->masterId() < system->maxMasters()); 2304 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 2305 2306 // allocate an MSHR and return it, note 2307 // that we send the packet straight away, so do not 2308 // schedule the send 2309 return allocateMissBuffer(pkt, curTick(), false); 2310 } else { 2311 // free the request and packet 2312 delete pkt->req; 2313 delete pkt; 2314 } 2315 } 2316 } 2317 2318 return nullptr; 2319} 2320 2321bool 2322Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const 2323{ 2324 if (!forwardSnoops) 2325 return false; 2326 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and 2327 // Writeback snoops into upper level caches to check for copies of the 2328 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict 2329 // packet, the cache can inform the crossbar below of presence or absence 2330 // of the block. 2331 if (is_timing) { 2332 Packet snoop_pkt(pkt, true, false); 2333 snoop_pkt.setExpressSnoop(); 2334 // Assert that packet is either Writeback or CleanEvict and not a 2335 // prefetch request because prefetch requests need an MSHR and may 2336 // generate a snoop response. 2337 assert(pkt->isEviction()); 2338 snoop_pkt.senderState = nullptr; 2339 cpuSidePort->sendTimingSnoopReq(&snoop_pkt); 2340 // Writeback/CleanEvict snoops do not generate a snoop response. 2341 assert(!(snoop_pkt.cacheResponding())); 2342 return snoop_pkt.isBlockCached(); 2343 } else { 2344 cpuSidePort->sendAtomicSnoop(pkt); 2345 return pkt->isBlockCached(); 2346 } 2347} 2348 2349Tick 2350Cache::nextQueueReadyTime() const 2351{ 2352 Tick nextReady = std::min(mshrQueue.nextReadyTime(), 2353 writeBuffer.nextReadyTime()); 2354 2355 // Don't signal prefetch ready time if no MSHRs available 2356 // Will signal once enoguh MSHRs are deallocated 2357 if (prefetcher && mshrQueue.canPrefetch()) { 2358 nextReady = std::min(nextReady, 2359 prefetcher->nextPrefetchReadyTime()); 2360 } 2361 2362 return nextReady; 2363} 2364 2365bool 2366Cache::sendMSHRQueuePacket(MSHR* mshr) 2367{ 2368 assert(mshr); 2369 2370 // use request from 1st target 2371 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 2372 2373 DPRINTF(Cache, "%s MSHR %s for addr %#llx size %d\n", __func__, 2374 tgt_pkt->cmdString(), tgt_pkt->getAddr(), 2375 tgt_pkt->getSize()); 2376 2377 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); 2378 2379 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) { 2380 // we should never have hardware prefetches to allocated 2381 // blocks 2382 assert(blk == nullptr); 2383 2384 // We need to check the caches above us to verify that 2385 // they don't have a copy of this block in the dirty state 2386 // at the moment. Without this check we could get a stale 2387 // copy from memory that might get used in place of the 2388 // dirty one. 2389 Packet snoop_pkt(tgt_pkt, true, false); 2390 snoop_pkt.setExpressSnoop(); 2391 // We are sending this packet upwards, but if it hits we will 2392 // get a snoop response that we end up treating just like a 2393 // normal response, hence it needs the MSHR as its sender 2394 // state 2395 snoop_pkt.senderState = mshr; 2396 cpuSidePort->sendTimingSnoopReq(&snoop_pkt); 2397 2398 // Check to see if the prefetch was squashed by an upper cache (to 2399 // prevent us from grabbing the line) or if a Check to see if a 2400 // writeback arrived between the time the prefetch was placed in 2401 // the MSHRs and when it was selected to be sent or if the 2402 // prefetch was squashed by an upper cache. 2403 2404 // It is important to check cacheResponding before 2405 // prefetchSquashed. If another cache has committed to 2406 // responding, it will be sending a dirty response which will 2407 // arrive at the MSHR allocated for this request. Checking the 2408 // prefetchSquash first may result in the MSHR being 2409 // prematurely deallocated. 2410 if (snoop_pkt.cacheResponding()) { 2411 auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req); 2412 assert(r.second); 2413 2414 // if we are getting a snoop response with no sharers it 2415 // will be allocated as Modified 2416 bool pending_modified_resp = !snoop_pkt.hasSharers(); 2417 markInService(mshr, pending_modified_resp); 2418 2419 DPRINTF(Cache, "Upward snoop of prefetch for addr" 2420 " %#x (%s) hit\n", 2421 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns"); 2422 return false; 2423 } 2424 2425 if (snoop_pkt.isBlockCached()) { 2426 DPRINTF(Cache, "Block present, prefetch squashed by cache. " 2427 "Deallocating mshr target %#x.\n", 2428 mshr->blkAddr); 2429 2430 // Deallocate the mshr target 2431 if (mshrQueue.forceDeallocateTarget(mshr)) { 2432 // Clear block if this deallocation resulted freed an 2433 // mshr when all had previously been utilized 2434 clearBlocked(Blocked_NoMSHRs); 2435 } 2436 return false; 2437 } 2438 } 2439 2440 // either a prefetch that is not present upstream, or a normal 2441 // MSHR request, proceed to get the packet to send downstream 2442 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable()); 2443 2444 mshr->isForward = (pkt == nullptr); 2445 2446 if (mshr->isForward) { 2447 // not a cache block request, but a response is expected 2448 // make copy of current packet to forward, keep current 2449 // copy for response handling 2450 pkt = new Packet(tgt_pkt, false, true); 2451 assert(!pkt->isWrite()); 2452 } 2453 2454 // play it safe and append (rather than set) the sender state, 2455 // as forwarded packets may already have existing state 2456 pkt->pushSenderState(mshr); 2457 2458 if (!memSidePort->sendTimingReq(pkt)) { 2459 // we are awaiting a retry, but we 2460 // delete the packet and will be creating a new packet 2461 // when we get the opportunity 2462 delete pkt; 2463 2464 // note that we have now masked any requestBus and 2465 // schedSendEvent (we will wait for a retry before 2466 // doing anything), and this is so even if we do not 2467 // care about this packet and might override it before 2468 // it gets retried 2469 return true; 2470 } else { 2471 // As part of the call to sendTimingReq the packet is 2472 // forwarded to all neighbouring caches (and any caches 2473 // above them) as a snoop. Thus at this point we know if 2474 // any of the neighbouring caches are responding, and if 2475 // so, we know it is dirty, and we can determine if it is 2476 // being passed as Modified, making our MSHR the ordering 2477 // point 2478 bool pending_modified_resp = !pkt->hasSharers() && 2479 pkt->cacheResponding(); 2480 markInService(mshr, pending_modified_resp); 2481 return false; 2482 } 2483} 2484 2485bool 2486Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry) 2487{ 2488 assert(wq_entry); 2489 2490 // always a single target for write queue entries 2491 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt; 2492 2493 DPRINTF(Cache, "%s write %s for addr %#llx size %d\n", __func__, 2494 tgt_pkt->cmdString(), tgt_pkt->getAddr(), 2495 tgt_pkt->getSize()); 2496 2497 // forward as is, both for evictions and uncacheable writes 2498 if (!memSidePort->sendTimingReq(tgt_pkt)) { 2499 // note that we have now masked any requestBus and 2500 // schedSendEvent (we will wait for a retry before 2501 // doing anything), and this is so even if we do not 2502 // care about this packet and might override it before 2503 // it gets retried 2504 return true; 2505 } else { 2506 markInService(wq_entry); 2507 return false; 2508 } 2509} 2510 2511void 2512Cache::serialize(CheckpointOut &cp) const 2513{ 2514 bool dirty(isDirty()); 2515 2516 if (dirty) { 2517 warn("*** The cache still contains dirty data. ***\n"); 2518 warn(" Make sure to drain the system using the correct flags.\n"); 2519 warn(" This checkpoint will not restore correctly and dirty data " 2520 " in the cache will be lost!\n"); 2521 } 2522 2523 // Since we don't checkpoint the data in the cache, any dirty data 2524 // will be lost when restoring from a checkpoint of a system that 2525 // wasn't drained properly. Flag the checkpoint as invalid if the 2526 // cache contains dirty data. 2527 bool bad_checkpoint(dirty); 2528 SERIALIZE_SCALAR(bad_checkpoint); 2529} 2530 2531void 2532Cache::unserialize(CheckpointIn &cp) 2533{ 2534 bool bad_checkpoint; 2535 UNSERIALIZE_SCALAR(bad_checkpoint); 2536 if (bad_checkpoint) { 2537 fatal("Restoring from checkpoints with dirty caches is not supported " 2538 "in the classic memory system. Please remove any caches or " 2539 " drain them properly before taking checkpoints.\n"); 2540 } 2541} 2542 2543/////////////// 2544// 2545// CpuSidePort 2546// 2547/////////////// 2548 2549AddrRangeList 2550Cache::CpuSidePort::getAddrRanges() const 2551{ 2552 return cache->getAddrRanges(); 2553} 2554 2555bool 2556Cache::CpuSidePort::recvTimingReq(PacketPtr pkt) 2557{ 2558 assert(!cache->system->bypassCaches()); 2559 2560 bool success = false; 2561 2562 // always let express snoop packets through if even if blocked 2563 if (pkt->isExpressSnoop()) { 2564 // do not change the current retry state 2565 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt); 2566 assert(bypass_success); 2567 return true; 2568 } else if (blocked || mustSendRetry) { 2569 // either already committed to send a retry, or blocked 2570 success = false; 2571 } else { 2572 // pass it on to the cache, and let the cache decide if we 2573 // have to retry or not 2574 success = cache->recvTimingReq(pkt); 2575 } 2576 2577 // remember if we have to retry 2578 mustSendRetry = !success; 2579 return success; 2580} 2581 2582Tick 2583Cache::CpuSidePort::recvAtomic(PacketPtr pkt) 2584{ 2585 return cache->recvAtomic(pkt); 2586} 2587 2588void 2589Cache::CpuSidePort::recvFunctional(PacketPtr pkt) 2590{ 2591 // functional request 2592 cache->functionalAccess(pkt, true); 2593} 2594 2595Cache:: 2596CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache, 2597 const std::string &_label) 2598 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache) 2599{ 2600} 2601 2602Cache* 2603CacheParams::create() 2604{ 2605 assert(tags); 2606 2607 return new Cache(this); 2608} 2609/////////////// 2610// 2611// MemSidePort 2612// 2613/////////////// 2614 2615bool 2616Cache::MemSidePort::recvTimingResp(PacketPtr pkt) 2617{ 2618 cache->recvTimingResp(pkt); 2619 return true; 2620} 2621 2622// Express snooping requests to memside port 2623void 2624Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) 2625{ 2626 // handle snooping requests 2627 cache->recvTimingSnoopReq(pkt); 2628} 2629 2630Tick 2631Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) 2632{ 2633 return cache->recvAtomicSnoop(pkt); 2634} 2635 2636void 2637Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) 2638{ 2639 // functional snoop (note that in contrast to atomic we don't have 2640 // a specific functionalSnoop method, as they have the same 2641 // behaviour regardless) 2642 cache->functionalAccess(pkt, false); 2643} 2644 2645void 2646Cache::CacheReqPacketQueue::sendDeferredPacket() 2647{ 2648 // sanity check 2649 assert(!waitingOnRetry); 2650 2651 // there should never be any deferred request packets in the 2652 // queue, instead we resly on the cache to provide the packets 2653 // from the MSHR queue or write queue 2654 assert(deferredPacketReadyTime() == MaxTick); 2655 2656 // check for request packets (requests & writebacks) 2657 QueueEntry* entry = cache.getNextQueueEntry(); 2658 2659 if (!entry) { 2660 // can happen if e.g. we attempt a writeback and fail, but 2661 // before the retry, the writeback is eliminated because 2662 // we snoop another cache's ReadEx. 2663 } else { 2664 // let our snoop responses go first if there are responses to 2665 // the same addresses 2666 if (checkConflictingSnoop(entry->blkAddr)) { 2667 return; 2668 } 2669 waitingOnRetry = entry->sendPacket(cache); 2670 } 2671 2672 // if we succeeded and are not waiting for a retry, schedule the 2673 // next send considering when the next queue is ready, note that 2674 // snoop responses have their own packet queue and thus schedule 2675 // their own events 2676 if (!waitingOnRetry) { 2677 schedSendEvent(cache.nextQueueReadyTime()); 2678 } 2679} 2680 2681Cache:: 2682MemSidePort::MemSidePort(const std::string &_name, Cache *_cache, 2683 const std::string &_label) 2684 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), 2685 _reqQueue(*_cache, *this, _snoopRespQueue, _label), 2686 _snoopRespQueue(*_cache, *this, _label), cache(_cache) 2687{ 2688} 2689