cache.cc revision 11601:382e0637fae0
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nathan Binkert
44 *          Steve Reinhardt
45 *          Ron Dreslinski
46 *          Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/misc.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "debug/CacheVerbose.hh"
62#include "mem/cache/blk.hh"
63#include "mem/cache/mshr.hh"
64#include "mem/cache/prefetch/base.hh"
65#include "sim/sim_exit.hh"
66
67Cache::Cache(const CacheParams *p)
68    : BaseCache(p, p->system->cacheLineSize()),
69      tags(p->tags),
70      prefetcher(p->prefetcher),
71      doFastWrites(true),
72      prefetchOnAccess(p->prefetch_on_access),
73      clusivity(p->clusivity),
74      writebackClean(p->writeback_clean),
75      tempBlockWriteback(nullptr),
76      writebackTempBlockAtomicEvent(this, false,
77                                    EventBase::Delayed_Writeback_Pri)
78{
79    tempBlock = new CacheBlk();
80    tempBlock->data = new uint8_t[blkSize];
81
82    cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
83                                  "CpuSidePort");
84    memSidePort = new MemSidePort(p->name + ".mem_side", this,
85                                  "MemSidePort");
86
87    tags->setCache(this);
88    if (prefetcher)
89        prefetcher->setCache(this);
90}
91
92Cache::~Cache()
93{
94    delete [] tempBlock->data;
95    delete tempBlock;
96
97    delete cpuSidePort;
98    delete memSidePort;
99}
100
101void
102Cache::regStats()
103{
104    BaseCache::regStats();
105}
106
107void
108Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
109{
110    assert(pkt->isRequest());
111
112    uint64_t overwrite_val;
113    bool overwrite_mem;
114    uint64_t condition_val64;
115    uint32_t condition_val32;
116
117    int offset = tags->extractBlkOffset(pkt->getAddr());
118    uint8_t *blk_data = blk->data + offset;
119
120    assert(sizeof(uint64_t) >= pkt->getSize());
121
122    overwrite_mem = true;
123    // keep a copy of our possible write value, and copy what is at the
124    // memory address into the packet
125    pkt->writeData((uint8_t *)&overwrite_val);
126    pkt->setData(blk_data);
127
128    if (pkt->req->isCondSwap()) {
129        if (pkt->getSize() == sizeof(uint64_t)) {
130            condition_val64 = pkt->req->getExtraData();
131            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
132                                         sizeof(uint64_t));
133        } else if (pkt->getSize() == sizeof(uint32_t)) {
134            condition_val32 = (uint32_t)pkt->req->getExtraData();
135            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
136                                         sizeof(uint32_t));
137        } else
138            panic("Invalid size for conditional read/write\n");
139    }
140
141    if (overwrite_mem) {
142        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
143        blk->status |= BlkDirty;
144    }
145}
146
147
148void
149Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
150                      bool deferred_response, bool pending_downgrade)
151{
152    assert(pkt->isRequest());
153
154    assert(blk && blk->isValid());
155    // Occasionally this is not true... if we are a lower-level cache
156    // satisfying a string of Read and ReadEx requests from
157    // upper-level caches, a Read will mark the block as shared but we
158    // can satisfy a following ReadEx anyway since we can rely on the
159    // Read requester(s) to have buffered the ReadEx snoop and to
160    // invalidate their blocks after receiving them.
161    // assert(!pkt->needsWritable() || blk->isWritable());
162    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
163
164    // Check RMW operations first since both isRead() and
165    // isWrite() will be true for them
166    if (pkt->cmd == MemCmd::SwapReq) {
167        cmpAndSwap(blk, pkt);
168    } else if (pkt->isWrite()) {
169        // we have the block in a writable state and can go ahead,
170        // note that the line may be also be considered writable in
171        // downstream caches along the path to memory, but always
172        // Exclusive, and never Modified
173        assert(blk->isWritable());
174        // Write or WriteLine at the first cache with block in writable state
175        if (blk->checkWrite(pkt)) {
176            pkt->writeDataToBlock(blk->data, blkSize);
177        }
178        // Always mark the line as dirty (and thus transition to the
179        // Modified state) even if we are a failed StoreCond so we
180        // supply data to any snoops that have appended themselves to
181        // this cache before knowing the store will fail.
182        blk->status |= BlkDirty;
183        DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (write)\n",
184                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
185    } else if (pkt->isRead()) {
186        if (pkt->isLLSC()) {
187            blk->trackLoadLocked(pkt);
188        }
189
190        // all read responses have a data payload
191        assert(pkt->hasRespData());
192        pkt->setDataFromBlock(blk->data, blkSize);
193
194        // determine if this read is from a (coherent) cache or not
195        if (pkt->fromCache()) {
196            assert(pkt->getSize() == blkSize);
197            // special handling for coherent block requests from
198            // upper-level caches
199            if (pkt->needsWritable()) {
200                // sanity check
201                assert(pkt->cmd == MemCmd::ReadExReq ||
202                       pkt->cmd == MemCmd::SCUpgradeFailReq);
203
204                // if we have a dirty copy, make sure the recipient
205                // keeps it marked dirty (in the modified state)
206                if (blk->isDirty()) {
207                    pkt->setCacheResponding();
208                }
209                // on ReadExReq we give up our copy unconditionally,
210                // even if this cache is mostly inclusive, we may want
211                // to revisit this
212                invalidateBlock(blk);
213            } else if (blk->isWritable() && !pending_downgrade &&
214                       !pkt->hasSharers() &&
215                       pkt->cmd != MemCmd::ReadCleanReq) {
216                // we can give the requester a writable copy on a read
217                // request if:
218                // - we have a writable copy at this level (& below)
219                // - we don't have a pending snoop from below
220                //   signaling another read request
221                // - no other cache above has a copy (otherwise it
222                //   would have set hasSharers flag when
223                //   snooping the packet)
224                // - the read has explicitly asked for a clean
225                //   copy of the line
226                if (blk->isDirty()) {
227                    // special considerations if we're owner:
228                    if (!deferred_response) {
229                        // respond with the line in Modified state
230                        // (cacheResponding set, hasSharers not set)
231                        pkt->setCacheResponding();
232
233                        // if this cache is mostly inclusive, we
234                        // keep the block in the Exclusive state,
235                        // and pass it upwards as Modified
236                        // (writable and dirty), hence we have
237                        // multiple caches, all on the same path
238                        // towards memory, all considering the
239                        // same block writable, but only one
240                        // considering it Modified
241
242                        // we get away with multiple caches (on
243                        // the same path to memory) considering
244                        // the block writeable as we always enter
245                        // the cache hierarchy through a cache,
246                        // and first snoop upwards in all other
247                        // branches
248                        blk->status &= ~BlkDirty;
249                    } else {
250                        // if we're responding after our own miss,
251                        // there's a window where the recipient didn't
252                        // know it was getting ownership and may not
253                        // have responded to snoops correctly, so we
254                        // have to respond with a shared line
255                        pkt->setHasSharers();
256                    }
257                }
258            } else {
259                // otherwise only respond with a shared copy
260                pkt->setHasSharers();
261            }
262        }
263    } else {
264        // Upgrade or Invalidate
265        assert(pkt->isUpgrade() || pkt->isInvalidate());
266
267        // for invalidations we could be looking at the temp block
268        // (for upgrades we always allocate)
269        invalidateBlock(blk);
270        DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (invalidation)\n",
271                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
272    }
273}
274
275/////////////////////////////////////////////////////
276//
277// Access path: requests coming in from the CPU side
278//
279/////////////////////////////////////////////////////
280
281bool
282Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
283              PacketList &writebacks)
284{
285    // sanity check
286    assert(pkt->isRequest());
287
288    chatty_assert(!(isReadOnly && pkt->isWrite()),
289                  "Should never see a write in a read-only cache %s\n",
290                  name());
291
292    DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
293            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
294
295    if (pkt->req->isUncacheable()) {
296        DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
297                pkt->req->isInstFetch() ? " (ifetch)" : "",
298                pkt->getAddr());
299
300        // flush and invalidate any existing block
301        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
302        if (old_blk && old_blk->isValid()) {
303            if (old_blk->isDirty() || writebackClean)
304                writebacks.push_back(writebackBlk(old_blk));
305            else
306                writebacks.push_back(cleanEvictBlk(old_blk));
307            tags->invalidate(old_blk);
308            old_blk->invalidate();
309        }
310
311        blk = nullptr;
312        // lookupLatency is the latency in case the request is uncacheable.
313        lat = lookupLatency;
314        return false;
315    }
316
317    ContextID id = pkt->req->hasContextId() ?
318        pkt->req->contextId() : InvalidContextID;
319    // Here lat is the value passed as parameter to accessBlock() function
320    // that can modify its value.
321    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
322
323    DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
324            pkt->req->isInstFetch() ? " (ifetch)" : "",
325            pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
326            blk ? "hit " + blk->print() : "miss");
327
328
329    if (pkt->isEviction()) {
330        // We check for presence of block in above caches before issuing
331        // Writeback or CleanEvict to write buffer. Therefore the only
332        // possible cases can be of a CleanEvict packet coming from above
333        // encountering a Writeback generated in this cache peer cache and
334        // waiting in the write buffer. Cases of upper level peer caches
335        // generating CleanEvict and Writeback or simply CleanEvict and
336        // CleanEvict almost simultaneously will be caught by snoops sent out
337        // by crossbar.
338        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
339                                                          pkt->isSecure());
340        if (wb_entry) {
341            assert(wb_entry->getNumTargets() == 1);
342            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
343            assert(wbPkt->isWriteback());
344
345            if (pkt->isCleanEviction()) {
346                // The CleanEvict and WritebackClean snoops into other
347                // peer caches of the same level while traversing the
348                // crossbar. If a copy of the block is found, the
349                // packet is deleted in the crossbar. Hence, none of
350                // the other upper level caches connected to this
351                // cache have the block, so we can clear the
352                // BLOCK_CACHED flag in the Writeback if set and
353                // discard the CleanEvict by returning true.
354                wbPkt->clearBlockCached();
355                return true;
356            } else {
357                assert(pkt->cmd == MemCmd::WritebackDirty);
358                // Dirty writeback from above trumps our clean
359                // writeback... discard here
360                // Note: markInService will remove entry from writeback buffer.
361                markInService(wb_entry);
362                delete wbPkt;
363            }
364        }
365    }
366
367    // Writeback handling is special case.  We can write the block into
368    // the cache without having a writeable copy (or any copy at all).
369    if (pkt->isWriteback()) {
370        assert(blkSize == pkt->getSize());
371
372        // we could get a clean writeback while we are having
373        // outstanding accesses to a block, do the simple thing for
374        // now and drop the clean writeback so that we do not upset
375        // any ordering/decisions about ownership already taken
376        if (pkt->cmd == MemCmd::WritebackClean &&
377            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
378            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
379                    "dropping\n", pkt->getAddr());
380            return true;
381        }
382
383        if (blk == nullptr) {
384            // need to do a replacement
385            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
386            if (blk == nullptr) {
387                // no replaceable block available: give up, fwd to next level.
388                incMissCount(pkt);
389                return false;
390            }
391            tags->insertBlock(pkt, blk);
392
393            blk->status = (BlkValid | BlkReadable);
394            if (pkt->isSecure()) {
395                blk->status |= BlkSecure;
396            }
397        }
398        // only mark the block dirty if we got a writeback command,
399        // and leave it as is for a clean writeback
400        if (pkt->cmd == MemCmd::WritebackDirty) {
401            blk->status |= BlkDirty;
402        }
403        // if the packet does not have sharers, it is passing
404        // writable, and we got the writeback in Modified or Exclusive
405        // state, if not we are in the Owned or Shared state
406        if (!pkt->hasSharers()) {
407            blk->status |= BlkWritable;
408        }
409        // nothing else to do; writeback doesn't expect response
410        assert(!pkt->needsResponse());
411        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
412        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
413        incHitCount(pkt);
414        return true;
415    } else if (pkt->cmd == MemCmd::CleanEvict) {
416        if (blk != nullptr) {
417            // Found the block in the tags, need to stop CleanEvict from
418            // propagating further down the hierarchy. Returning true will
419            // treat the CleanEvict like a satisfied write request and delete
420            // it.
421            return true;
422        }
423        // We didn't find the block here, propagate the CleanEvict further
424        // down the memory hierarchy. Returning false will treat the CleanEvict
425        // like a Writeback which could not find a replaceable block so has to
426        // go to next level.
427        return false;
428    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
429                       blk->isReadable())) {
430        // OK to satisfy access
431        incHitCount(pkt);
432        satisfyRequest(pkt, blk);
433        maintainClusivity(pkt->fromCache(), blk);
434
435        return true;
436    }
437
438    // Can't satisfy access normally... either no block (blk == nullptr)
439    // or have block but need writable
440
441    incMissCount(pkt);
442
443    if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) {
444        // complete miss on store conditional... just give up now
445        pkt->req->setExtraData(0);
446        return true;
447    }
448
449    return false;
450}
451
452void
453Cache::maintainClusivity(bool from_cache, CacheBlk *blk)
454{
455    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
456        clusivity == Enums::mostly_excl) {
457        // if we have responded to a cache, and our block is still
458        // valid, but not dirty, and this cache is mostly exclusive
459        // with respect to the cache above, drop the block
460        invalidateBlock(blk);
461    }
462}
463
464void
465Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
466{
467    while (!writebacks.empty()) {
468        PacketPtr wbPkt = writebacks.front();
469        // We use forwardLatency here because we are copying writebacks to
470        // write buffer.  Call isCachedAbove for both Writebacks and
471        // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
472        // in Writebacks and discard CleanEvicts.
473        if (isCachedAbove(wbPkt)) {
474            if (wbPkt->cmd == MemCmd::CleanEvict) {
475                // Delete CleanEvict because cached copies exist above. The
476                // packet destructor will delete the request object because
477                // this is a non-snoop request packet which does not require a
478                // response.
479                delete wbPkt;
480            } else if (wbPkt->cmd == MemCmd::WritebackClean) {
481                // clean writeback, do not send since the block is
482                // still cached above
483                assert(writebackClean);
484                delete wbPkt;
485            } else {
486                assert(wbPkt->cmd == MemCmd::WritebackDirty);
487                // Set BLOCK_CACHED flag in Writeback and send below, so that
488                // the Writeback does not reset the bit corresponding to this
489                // address in the snoop filter below.
490                wbPkt->setBlockCached();
491                allocateWriteBuffer(wbPkt, forward_time);
492            }
493        } else {
494            // If the block is not cached above, send packet below. Both
495            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
496            // reset the bit corresponding to this address in the snoop filter
497            // below.
498            allocateWriteBuffer(wbPkt, forward_time);
499        }
500        writebacks.pop_front();
501    }
502}
503
504void
505Cache::doWritebacksAtomic(PacketList& writebacks)
506{
507    while (!writebacks.empty()) {
508        PacketPtr wbPkt = writebacks.front();
509        // Call isCachedAbove for both Writebacks and CleanEvicts. If
510        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
511        // and discard CleanEvicts.
512        if (isCachedAbove(wbPkt, false)) {
513            if (wbPkt->cmd == MemCmd::WritebackDirty) {
514                // Set BLOCK_CACHED flag in Writeback and send below,
515                // so that the Writeback does not reset the bit
516                // corresponding to this address in the snoop filter
517                // below. We can discard CleanEvicts because cached
518                // copies exist above. Atomic mode isCachedAbove
519                // modifies packet to set BLOCK_CACHED flag
520                memSidePort->sendAtomic(wbPkt);
521            }
522        } else {
523            // If the block is not cached above, send packet below. Both
524            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
525            // reset the bit corresponding to this address in the snoop filter
526            // below.
527            memSidePort->sendAtomic(wbPkt);
528        }
529        writebacks.pop_front();
530        // In case of CleanEvicts, the packet destructor will delete the
531        // request object because this is a non-snoop request packet which
532        // does not require a response.
533        delete wbPkt;
534    }
535}
536
537
538void
539Cache::recvTimingSnoopResp(PacketPtr pkt)
540{
541    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
542            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
543
544    assert(pkt->isResponse());
545    assert(!system->bypassCaches());
546
547    // determine if the response is from a snoop request we created
548    // (in which case it should be in the outstandingSnoop), or if we
549    // merely forwarded someone else's snoop request
550    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
551        outstandingSnoop.end();
552
553    if (!forwardAsSnoop) {
554        // the packet came from this cache, so sink it here and do not
555        // forward it
556        assert(pkt->cmd == MemCmd::HardPFResp);
557
558        outstandingSnoop.erase(pkt->req);
559
560        DPRINTF(Cache, "Got prefetch response from above for addr "
561                "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
562        recvTimingResp(pkt);
563        return;
564    }
565
566    // forwardLatency is set here because there is a response from an
567    // upper level cache.
568    // To pay the delay that occurs if the packet comes from the bus,
569    // we charge also headerDelay.
570    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
571    // Reset the timing of the packet.
572    pkt->headerDelay = pkt->payloadDelay = 0;
573    memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
574}
575
576void
577Cache::promoteWholeLineWrites(PacketPtr pkt)
578{
579    // Cache line clearing instructions
580    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
581        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
582        pkt->cmd = MemCmd::WriteLineReq;
583        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
584    }
585}
586
587bool
588Cache::recvTimingReq(PacketPtr pkt)
589{
590    DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
591
592    assert(pkt->isRequest());
593
594    // Just forward the packet if caches are disabled.
595    if (system->bypassCaches()) {
596        // @todo This should really enqueue the packet rather
597        bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
598        assert(success);
599        return true;
600    }
601
602    promoteWholeLineWrites(pkt);
603
604    if (pkt->cacheResponding()) {
605        // a cache above us (but not where the packet came from) is
606        // responding to the request, in other words it has the line
607        // in Modified or Owned state
608        DPRINTF(Cache, "Cache above responding to %#llx (%s): "
609                "not responding\n",
610                pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
611
612        // if the packet needs the block to be writable, and the cache
613        // that has promised to respond (setting the cache responding
614        // flag) is not providing writable (it is in Owned rather than
615        // the Modified state), we know that there may be other Shared
616        // copies in the system; go out and invalidate them all
617        assert(pkt->needsWritable() && !pkt->responderHadWritable());
618
619        // an upstream cache that had the line in Owned state
620        // (dirty, but not writable), is responding and thus
621        // transferring the dirty line from one branch of the
622        // cache hierarchy to another
623
624        // send out an express snoop and invalidate all other
625        // copies (snooping a packet that needs writable is the
626        // same as an invalidation), thus turning the Owned line
627        // into a Modified line, note that we don't invalidate the
628        // block in the current cache or any other cache on the
629        // path to memory
630
631        // create a downstream express snoop with cleared packet
632        // flags, there is no need to allocate any data as the
633        // packet is merely used to co-ordinate state transitions
634        Packet *snoop_pkt = new Packet(pkt, true, false);
635
636        // also reset the bus time that the original packet has
637        // not yet paid for
638        snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
639
640        // make this an instantaneous express snoop, and let the
641        // other caches in the system know that the another cache
642        // is responding, because we have found the authorative
643        // copy (Modified or Owned) that will supply the right
644        // data
645        snoop_pkt->setExpressSnoop();
646        snoop_pkt->setCacheResponding();
647
648        // this express snoop travels towards the memory, and at
649        // every crossbar it is snooped upwards thus reaching
650        // every cache in the system
651        bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
652        // express snoops always succeed
653        assert(success);
654
655        // main memory will delete the snoop packet
656
657        // queue for deletion, as opposed to immediate deletion, as
658        // the sending cache is still relying on the packet
659        pendingDelete.reset(pkt);
660
661        // no need to take any further action in this particular cache
662        // as an upstram cache has already committed to responding,
663        // and we have already sent out any express snoops in the
664        // section above to ensure all other copies in the system are
665        // invalidated
666        return true;
667    }
668
669    // anything that is merely forwarded pays for the forward latency and
670    // the delay provided by the crossbar
671    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
672
673    // We use lookupLatency here because it is used to specify the latency
674    // to access.
675    Cycles lat = lookupLatency;
676    CacheBlk *blk = nullptr;
677    bool satisfied = false;
678    {
679        PacketList writebacks;
680        // Note that lat is passed by reference here. The function
681        // access() calls accessBlock() which can modify lat value.
682        satisfied = access(pkt, blk, lat, writebacks);
683
684        // copy writebacks to write buffer here to ensure they logically
685        // proceed anything happening below
686        doWritebacks(writebacks, forward_time);
687    }
688
689    // Here we charge the headerDelay that takes into account the latencies
690    // of the bus, if the packet comes from it.
691    // The latency charged it is just lat that is the value of lookupLatency
692    // modified by access() function, or if not just lookupLatency.
693    // In case of a hit we are neglecting response latency.
694    // In case of a miss we are neglecting forward latency.
695    Tick request_time = clockEdge(lat) + pkt->headerDelay;
696    // Here we reset the timing of the packet.
697    pkt->headerDelay = pkt->payloadDelay = 0;
698
699    // track time of availability of next prefetch, if any
700    Tick next_pf_time = MaxTick;
701
702    bool needsResponse = pkt->needsResponse();
703
704    if (satisfied) {
705        // should never be satisfying an uncacheable access as we
706        // flush and invalidate any existing block as part of the
707        // lookup
708        assert(!pkt->req->isUncacheable());
709
710        // hit (for all other request types)
711
712        if (prefetcher && (prefetchOnAccess ||
713                           (blk && blk->wasPrefetched()))) {
714            if (blk)
715                blk->status &= ~BlkHWPrefetched;
716
717            // Don't notify on SWPrefetch
718            if (!pkt->cmd.isSWPrefetch())
719                next_pf_time = prefetcher->notify(pkt);
720        }
721
722        if (needsResponse) {
723            pkt->makeTimingResponse();
724            // @todo: Make someone pay for this
725            pkt->headerDelay = pkt->payloadDelay = 0;
726
727            // In this case we are considering request_time that takes
728            // into account the delay of the xbar, if any, and just
729            // lat, neglecting responseLatency, modelling hit latency
730            // just as lookupLatency or or the value of lat overriden
731            // by access(), that calls accessBlock() function.
732            cpuSidePort->schedTimingResp(pkt, request_time, true);
733        } else {
734            DPRINTF(Cache, "%s satisfied %s addr %#llx, no response needed\n",
735                    __func__, pkt->cmdString(), pkt->getAddr());
736
737            // queue the packet for deletion, as the sending cache is
738            // still relying on it; if the block is found in access(),
739            // CleanEvict and Writeback messages will be deleted
740            // here as well
741            pendingDelete.reset(pkt);
742        }
743    } else {
744        // miss
745
746        Addr blk_addr = blockAlign(pkt->getAddr());
747
748        // ignore any existing MSHR if we are dealing with an
749        // uncacheable request
750        MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
751            mshrQueue.findMatch(blk_addr, pkt->isSecure());
752
753        // Software prefetch handling:
754        // To keep the core from waiting on data it won't look at
755        // anyway, send back a response with dummy data. Miss handling
756        // will continue asynchronously. Unfortunately, the core will
757        // insist upon freeing original Packet/Request, so we have to
758        // create a new pair with a different lifecycle. Note that this
759        // processing happens before any MSHR munging on the behalf of
760        // this request because this new Request will be the one stored
761        // into the MSHRs, not the original.
762        if (pkt->cmd.isSWPrefetch()) {
763            assert(needsResponse);
764            assert(pkt->req->hasPaddr());
765            assert(!pkt->req->isUncacheable());
766
767            // There's no reason to add a prefetch as an additional target
768            // to an existing MSHR. If an outstanding request is already
769            // in progress, there is nothing for the prefetch to do.
770            // If this is the case, we don't even create a request at all.
771            PacketPtr pf = nullptr;
772
773            if (!mshr) {
774                // copy the request and create a new SoftPFReq packet
775                RequestPtr req = new Request(pkt->req->getPaddr(),
776                                             pkt->req->getSize(),
777                                             pkt->req->getFlags(),
778                                             pkt->req->masterId());
779                pf = new Packet(req, pkt->cmd);
780                pf->allocate();
781                assert(pf->getAddr() == pkt->getAddr());
782                assert(pf->getSize() == pkt->getSize());
783            }
784
785            pkt->makeTimingResponse();
786
787            // request_time is used here, taking into account lat and the delay
788            // charged if the packet comes from the xbar.
789            cpuSidePort->schedTimingResp(pkt, request_time, true);
790
791            // If an outstanding request is in progress (we found an
792            // MSHR) this is set to null
793            pkt = pf;
794        }
795
796        if (mshr) {
797            /// MSHR hit
798            /// @note writebacks will be checked in getNextMSHR()
799            /// for any conflicting requests to the same block
800
801            //@todo remove hw_pf here
802
803            // Coalesce unless it was a software prefetch (see above).
804            if (pkt) {
805                assert(!pkt->isWriteback());
806                // CleanEvicts corresponding to blocks which have
807                // outstanding requests in MSHRs are simply sunk here
808                if (pkt->cmd == MemCmd::CleanEvict) {
809                    pendingDelete.reset(pkt);
810                } else {
811                    DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx "
812                            "size %d\n", __func__, pkt->cmdString(),
813                            pkt->getAddr(), pkt->getSize());
814
815                    assert(pkt->req->masterId() < system->maxMasters());
816                    mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
817                    // We use forward_time here because it is the same
818                    // considering new targets. We have multiple
819                    // requests for the same address here. It
820                    // specifies the latency to allocate an internal
821                    // buffer and to schedule an event to the queued
822                    // port and also takes into account the additional
823                    // delay of the xbar.
824                    mshr->allocateTarget(pkt, forward_time, order++,
825                                         allocOnFill(pkt->cmd));
826                    if (mshr->getNumTargets() == numTarget) {
827                        noTargetMSHR = mshr;
828                        setBlocked(Blocked_NoTargets);
829                        // need to be careful with this... if this mshr isn't
830                        // ready yet (i.e. time > curTick()), we don't want to
831                        // move it ahead of mshrs that are ready
832                        // mshrQueue.moveToFront(mshr);
833                    }
834                }
835                // We should call the prefetcher reguardless if the request is
836                // satisfied or not, reguardless if the request is in the MSHR
837                // or not.  The request could be a ReadReq hit, but still not
838                // satisfied (potentially because of a prior write to the same
839                // cache line.  So, even when not satisfied, tehre is an MSHR
840                // already allocated for this, we need to let the prefetcher
841                // know about the request
842                if (prefetcher) {
843                    // Don't notify on SWPrefetch
844                    if (!pkt->cmd.isSWPrefetch())
845                        next_pf_time = prefetcher->notify(pkt);
846                }
847            }
848        } else {
849            // no MSHR
850            assert(pkt->req->masterId() < system->maxMasters());
851            if (pkt->req->isUncacheable()) {
852                mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
853            } else {
854                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
855            }
856
857            if (pkt->isEviction() ||
858                (pkt->req->isUncacheable() && pkt->isWrite())) {
859                // We use forward_time here because there is an
860                // uncached memory write, forwarded to WriteBuffer.
861                allocateWriteBuffer(pkt, forward_time);
862            } else {
863                if (blk && blk->isValid()) {
864                    // should have flushed and have no valid block
865                    assert(!pkt->req->isUncacheable());
866
867                    // If we have a write miss to a valid block, we
868                    // need to mark the block non-readable.  Otherwise
869                    // if we allow reads while there's an outstanding
870                    // write miss, the read could return stale data
871                    // out of the cache block... a more aggressive
872                    // system could detect the overlap (if any) and
873                    // forward data out of the MSHRs, but we don't do
874                    // that yet.  Note that we do need to leave the
875                    // block valid so that it stays in the cache, in
876                    // case we get an upgrade response (and hence no
877                    // new data) when the write miss completes.
878                    // As long as CPUs do proper store/load forwarding
879                    // internally, and have a sufficiently weak memory
880                    // model, this is probably unnecessary, but at some
881                    // point it must have seemed like we needed it...
882                    assert(pkt->needsWritable());
883                    assert(!blk->isWritable());
884                    blk->status &= ~BlkReadable;
885                }
886                // Here we are using forward_time, modelling the latency of
887                // a miss (outbound) just as forwardLatency, neglecting the
888                // lookupLatency component.
889                allocateMissBuffer(pkt, forward_time);
890            }
891
892            if (prefetcher) {
893                // Don't notify on SWPrefetch
894                if (!pkt->cmd.isSWPrefetch())
895                    next_pf_time = prefetcher->notify(pkt);
896            }
897        }
898    }
899
900    if (next_pf_time != MaxTick)
901        schedMemSideSendEvent(next_pf_time);
902
903    return true;
904}
905
906PacketPtr
907Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
908                        bool needsWritable) const
909{
910    // should never see evictions here
911    assert(!cpu_pkt->isEviction());
912
913    bool blkValid = blk && blk->isValid();
914
915    if (cpu_pkt->req->isUncacheable() ||
916        (!blkValid && cpu_pkt->isUpgrade())) {
917        // uncacheable requests and upgrades from upper-level caches
918        // that missed completely just go through as is
919        return nullptr;
920    }
921
922    assert(cpu_pkt->needsResponse());
923
924    MemCmd cmd;
925    // @TODO make useUpgrades a parameter.
926    // Note that ownership protocols require upgrade, otherwise a
927    // write miss on a shared owned block will generate a ReadExcl,
928    // which will clobber the owned copy.
929    const bool useUpgrades = true;
930    if (blkValid && useUpgrades) {
931        // only reason to be here is that blk is read only and we need
932        // it to be writable
933        assert(needsWritable);
934        assert(!blk->isWritable());
935        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
936    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
937               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
938        // Even though this SC will fail, we still need to send out the
939        // request and get the data to supply it to other snoopers in the case
940        // where the determination the StoreCond fails is delayed due to
941        // all caches not being on the same local bus.
942        cmd = MemCmd::SCUpgradeFailReq;
943    } else if (cpu_pkt->cmd == MemCmd::WriteLineReq ||
944               cpu_pkt->cmd == MemCmd::InvalidateReq) {
945        // forward as invalidate to all other caches, this gives us
946        // the line in Exclusive state, and invalidates all other
947        // copies
948        cmd = MemCmd::InvalidateReq;
949    } else {
950        // block is invalid
951        cmd = needsWritable ? MemCmd::ReadExReq :
952            (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
953    }
954    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
955
956    // if there are upstream caches that have already marked the
957    // packet as having sharers (not passing writable), pass that info
958    // downstream
959    if (cpu_pkt->hasSharers()) {
960        // note that cpu_pkt may have spent a considerable time in the
961        // MSHR queue and that the information could possibly be out
962        // of date, however, there is no harm in conservatively
963        // assuming the block has sharers
964        pkt->setHasSharers();
965        DPRINTF(Cache, "%s passing hasSharers from %s to %s addr %#llx "
966                "size %d\n",
967                __func__, cpu_pkt->cmdString(), pkt->cmdString(),
968                pkt->getAddr(), pkt->getSize());
969    }
970
971    // the packet should be block aligned
972    assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
973
974    pkt->allocate();
975    DPRINTF(Cache, "%s created %s from %s for  addr %#llx size %d\n",
976            __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
977            pkt->getSize());
978    return pkt;
979}
980
981
982Tick
983Cache::recvAtomic(PacketPtr pkt)
984{
985    // We are in atomic mode so we pay just for lookupLatency here.
986    Cycles lat = lookupLatency;
987
988    // Forward the request if the system is in cache bypass mode.
989    if (system->bypassCaches())
990        return ticksToCycles(memSidePort->sendAtomic(pkt));
991
992    promoteWholeLineWrites(pkt);
993
994    // follow the same flow as in recvTimingReq, and check if a cache
995    // above us is responding
996    if (pkt->cacheResponding()) {
997        DPRINTF(Cache, "Cache above responding to %#llx (%s): "
998                "not responding\n",
999                pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
1000
1001        // if a cache is responding, and it had the line in Owned
1002        // rather than Modified state, we need to invalidate any
1003        // copies that are not on the same path to memory
1004        assert(pkt->needsWritable() && !pkt->responderHadWritable());
1005        lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1006
1007        return lat * clockPeriod();
1008    }
1009
1010    // should assert here that there are no outstanding MSHRs or
1011    // writebacks... that would mean that someone used an atomic
1012    // access in timing mode
1013
1014    CacheBlk *blk = nullptr;
1015    PacketList writebacks;
1016    bool satisfied = access(pkt, blk, lat, writebacks);
1017
1018    // handle writebacks resulting from the access here to ensure they
1019    // logically proceed anything happening below
1020    doWritebacksAtomic(writebacks);
1021
1022    if (!satisfied) {
1023        // MISS
1024
1025        // deal with the packets that go through the write path of
1026        // the cache, i.e. any evictions and uncacheable writes
1027        if (pkt->isEviction() ||
1028            (pkt->req->isUncacheable() && pkt->isWrite())) {
1029            lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1030            return lat * clockPeriod();
1031        }
1032        // only misses left
1033
1034        PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
1035
1036        bool is_forward = (bus_pkt == nullptr);
1037
1038        if (is_forward) {
1039            // just forwarding the same request to the next level
1040            // no local cache operation involved
1041            bus_pkt = pkt;
1042        }
1043
1044        DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
1045                bus_pkt->cmdString(), bus_pkt->getAddr(),
1046                bus_pkt->isSecure() ? "s" : "ns");
1047
1048#if TRACING_ON
1049        CacheBlk::State old_state = blk ? blk->status : 0;
1050#endif
1051
1052        lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1053
1054        bool is_invalidate = bus_pkt->isInvalidate();
1055
1056        // We are now dealing with the response handling
1057        DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in "
1058                "state %i\n", bus_pkt->cmdString(), bus_pkt->getAddr(),
1059                bus_pkt->isSecure() ? "s" : "ns",
1060                old_state);
1061
1062        // If packet was a forward, the response (if any) is already
1063        // in place in the bus_pkt == pkt structure, so we don't need
1064        // to do anything.  Otherwise, use the separate bus_pkt to
1065        // generate response to pkt and then delete it.
1066        if (!is_forward) {
1067            if (pkt->needsResponse()) {
1068                assert(bus_pkt->isResponse());
1069                if (bus_pkt->isError()) {
1070                    pkt->makeAtomicResponse();
1071                    pkt->copyError(bus_pkt);
1072                } else if (pkt->cmd == MemCmd::WriteLineReq) {
1073                    // note the use of pkt, not bus_pkt here.
1074
1075                    // write-line request to the cache that promoted
1076                    // the write to a whole line
1077                    blk = handleFill(pkt, blk, writebacks,
1078                                     allocOnFill(pkt->cmd));
1079                    assert(blk != NULL);
1080                    is_invalidate = false;
1081                    satisfyRequest(pkt, blk);
1082                } else if (bus_pkt->isRead() ||
1083                           bus_pkt->cmd == MemCmd::UpgradeResp) {
1084                    // we're updating cache state to allow us to
1085                    // satisfy the upstream request from the cache
1086                    blk = handleFill(bus_pkt, blk, writebacks,
1087                                     allocOnFill(pkt->cmd));
1088                    satisfyRequest(pkt, blk);
1089                    maintainClusivity(pkt->fromCache(), blk);
1090                } else {
1091                    // we're satisfying the upstream request without
1092                    // modifying cache state, e.g., a write-through
1093                    pkt->makeAtomicResponse();
1094                }
1095            }
1096            delete bus_pkt;
1097        }
1098
1099        if (is_invalidate && blk && blk->isValid()) {
1100            invalidateBlock(blk);
1101        }
1102    }
1103
1104    // Note that we don't invoke the prefetcher at all in atomic mode.
1105    // It's not clear how to do it properly, particularly for
1106    // prefetchers that aggressively generate prefetch candidates and
1107    // rely on bandwidth contention to throttle them; these will tend
1108    // to pollute the cache in atomic mode since there is no bandwidth
1109    // contention.  If we ever do want to enable prefetching in atomic
1110    // mode, though, this is the place to do it... see timingAccess()
1111    // for an example (though we'd want to issue the prefetch(es)
1112    // immediately rather than calling requestMemSideBus() as we do
1113    // there).
1114
1115    // do any writebacks resulting from the response handling
1116    doWritebacksAtomic(writebacks);
1117
1118    // if we used temp block, check to see if its valid and if so
1119    // clear it out, but only do so after the call to recvAtomic is
1120    // finished so that any downstream observers (such as a snoop
1121    // filter), first see the fill, and only then see the eviction
1122    if (blk == tempBlock && tempBlock->isValid()) {
1123        // the atomic CPU calls recvAtomic for fetch and load/store
1124        // sequentuially, and we may already have a tempBlock
1125        // writeback from the fetch that we have not yet sent
1126        if (tempBlockWriteback) {
1127            // if that is the case, write the prevoius one back, and
1128            // do not schedule any new event
1129            writebackTempBlockAtomic();
1130        } else {
1131            // the writeback/clean eviction happens after the call to
1132            // recvAtomic has finished (but before any successive
1133            // calls), so that the response handling from the fill is
1134            // allowed to happen first
1135            schedule(writebackTempBlockAtomicEvent, curTick());
1136        }
1137
1138        tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1139            writebackBlk(blk) : cleanEvictBlk(blk);
1140        blk->invalidate();
1141    }
1142
1143    if (pkt->needsResponse()) {
1144        pkt->makeAtomicResponse();
1145    }
1146
1147    return lat * clockPeriod();
1148}
1149
1150
1151void
1152Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1153{
1154    if (system->bypassCaches()) {
1155        // Packets from the memory side are snoop request and
1156        // shouldn't happen in bypass mode.
1157        assert(fromCpuSide);
1158
1159        // The cache should be flushed if we are in cache bypass mode,
1160        // so we don't need to check if we need to update anything.
1161        memSidePort->sendFunctional(pkt);
1162        return;
1163    }
1164
1165    Addr blk_addr = blockAlign(pkt->getAddr());
1166    bool is_secure = pkt->isSecure();
1167    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1168    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1169
1170    pkt->pushLabel(name());
1171
1172    CacheBlkPrintWrapper cbpw(blk);
1173
1174    // Note that just because an L2/L3 has valid data doesn't mean an
1175    // L1 doesn't have a more up-to-date modified copy that still
1176    // needs to be found.  As a result we always update the request if
1177    // we have it, but only declare it satisfied if we are the owner.
1178
1179    // see if we have data at all (owned or otherwise)
1180    bool have_data = blk && blk->isValid()
1181        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1182                                blk->data);
1183
1184    // data we have is dirty if marked as such or if we have an
1185    // in-service MSHR that is pending a modified line
1186    bool have_dirty =
1187        have_data && (blk->isDirty() ||
1188                      (mshr && mshr->inService && mshr->isPendingModified()));
1189
1190    bool done = have_dirty
1191        || cpuSidePort->checkFunctional(pkt)
1192        || mshrQueue.checkFunctional(pkt, blk_addr)
1193        || writeBuffer.checkFunctional(pkt, blk_addr)
1194        || memSidePort->checkFunctional(pkt);
1195
1196    DPRINTF(CacheVerbose, "functional %s %#llx (%s) %s%s%s\n",
1197            pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1198            (blk && blk->isValid()) ? "valid " : "",
1199            have_data ? "data " : "", done ? "done " : "");
1200
1201    // We're leaving the cache, so pop cache->name() label
1202    pkt->popLabel();
1203
1204    if (done) {
1205        pkt->makeResponse();
1206    } else {
1207        // if it came as a request from the CPU side then make sure it
1208        // continues towards the memory side
1209        if (fromCpuSide) {
1210            memSidePort->sendFunctional(pkt);
1211        } else if (cpuSidePort->isSnooping()) {
1212            // if it came from the memory side, it must be a snoop request
1213            // and we should only forward it if we are forwarding snoops
1214            cpuSidePort->sendFunctionalSnoop(pkt);
1215        }
1216    }
1217}
1218
1219
1220/////////////////////////////////////////////////////
1221//
1222// Response handling: responses from the memory side
1223//
1224/////////////////////////////////////////////////////
1225
1226
1227void
1228Cache::handleUncacheableWriteResp(PacketPtr pkt)
1229{
1230    Tick completion_time = clockEdge(responseLatency) +
1231        pkt->headerDelay + pkt->payloadDelay;
1232
1233    // Reset the bus additional time as it is now accounted for
1234    pkt->headerDelay = pkt->payloadDelay = 0;
1235
1236    cpuSidePort->schedTimingResp(pkt, completion_time, true);
1237}
1238
1239void
1240Cache::recvTimingResp(PacketPtr pkt)
1241{
1242    assert(pkt->isResponse());
1243
1244    // all header delay should be paid for by the crossbar, unless
1245    // this is a prefetch response from above
1246    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1247             "%s saw a non-zero packet delay\n", name());
1248
1249    bool is_error = pkt->isError();
1250
1251    if (is_error) {
1252        DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1253                "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1254                pkt->cmdString());
1255    }
1256
1257    DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1258            pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1259            pkt->isSecure() ? "s" : "ns");
1260
1261    // if this is a write, we should be looking at an uncacheable
1262    // write
1263    if (pkt->isWrite()) {
1264        assert(pkt->req->isUncacheable());
1265        handleUncacheableWriteResp(pkt);
1266        return;
1267    }
1268
1269    // we have dealt with any (uncacheable) writes above, from here on
1270    // we know we are dealing with an MSHR due to a miss or a prefetch
1271    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
1272    assert(mshr);
1273
1274    if (mshr == noTargetMSHR) {
1275        // we always clear at least one target
1276        clearBlocked(Blocked_NoTargets);
1277        noTargetMSHR = nullptr;
1278    }
1279
1280    // Initial target is used just for stats
1281    MSHR::Target *initial_tgt = mshr->getTarget();
1282    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1283    Tick miss_latency = curTick() - initial_tgt->recvTime;
1284
1285    if (pkt->req->isUncacheable()) {
1286        assert(pkt->req->masterId() < system->maxMasters());
1287        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1288            miss_latency;
1289    } else {
1290        assert(pkt->req->masterId() < system->maxMasters());
1291        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1292            miss_latency;
1293    }
1294
1295    bool wasFull = mshrQueue.isFull();
1296
1297    PacketList writebacks;
1298
1299    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1300
1301    // upgrade deferred targets if the response has no sharers, and is
1302    // thus passing writable
1303    if (!pkt->hasSharers()) {
1304        mshr->promoteWritable();
1305    }
1306
1307    bool is_fill = !mshr->isForward &&
1308        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1309
1310    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1311
1312    if (is_fill && !is_error) {
1313        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1314                pkt->getAddr());
1315
1316        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill);
1317        assert(blk != nullptr);
1318    }
1319
1320    // allow invalidation responses originating from write-line
1321    // requests to be discarded
1322    bool is_invalidate = pkt->isInvalidate();
1323
1324    // First offset for critical word first calculations
1325    int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1326
1327    bool from_cache = false;
1328
1329    while (mshr->hasTargets()) {
1330        MSHR::Target *target = mshr->getTarget();
1331        Packet *tgt_pkt = target->pkt;
1332
1333        switch (target->source) {
1334          case MSHR::Target::FromCPU:
1335            Tick completion_time;
1336            // Here we charge on completion_time the delay of the xbar if the
1337            // packet comes from it, charged on headerDelay.
1338            completion_time = pkt->headerDelay;
1339
1340            // Software prefetch handling for cache closest to core
1341            if (tgt_pkt->cmd.isSWPrefetch()) {
1342                // a software prefetch would have already been ack'd
1343                // immediately with dummy data so the core would be able to
1344                // retire it. This request completes right here, so we
1345                // deallocate it.
1346                delete tgt_pkt->req;
1347                delete tgt_pkt;
1348                break; // skip response
1349            }
1350
1351            // keep track of whether we have responded to another
1352            // cache
1353            from_cache = from_cache || tgt_pkt->fromCache();
1354
1355            // unlike the other packet flows, where data is found in other
1356            // caches or memory and brought back, write-line requests always
1357            // have the data right away, so the above check for "is fill?"
1358            // cannot actually be determined until examining the stored MSHR
1359            // state. We "catch up" with that logic here, which is duplicated
1360            // from above.
1361            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1362                assert(!is_error);
1363                // we got the block in a writable state, so promote
1364                // any deferred targets if possible
1365                mshr->promoteWritable();
1366                // NB: we use the original packet here and not the response!
1367                blk = handleFill(tgt_pkt, blk, writebacks, mshr->allocOnFill);
1368                assert(blk != nullptr);
1369
1370                // treat as a fill, and discard the invalidation
1371                // response
1372                is_fill = true;
1373                is_invalidate = false;
1374            }
1375
1376            if (is_fill) {
1377                satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
1378
1379                // How many bytes past the first request is this one
1380                int transfer_offset =
1381                    tgt_pkt->getOffset(blkSize) - initial_offset;
1382                if (transfer_offset < 0) {
1383                    transfer_offset += blkSize;
1384                }
1385
1386                // If not critical word (offset) return payloadDelay.
1387                // responseLatency is the latency of the return path
1388                // from lower level caches/memory to an upper level cache or
1389                // the core.
1390                completion_time += clockEdge(responseLatency) +
1391                    (transfer_offset ? pkt->payloadDelay : 0);
1392
1393                assert(!tgt_pkt->req->isUncacheable());
1394
1395                assert(tgt_pkt->req->masterId() < system->maxMasters());
1396                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1397                    completion_time - target->recvTime;
1398            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1399                // failed StoreCond upgrade
1400                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1401                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1402                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1403                // responseLatency is the latency of the return path
1404                // from lower level caches/memory to an upper level cache or
1405                // the core.
1406                completion_time += clockEdge(responseLatency) +
1407                    pkt->payloadDelay;
1408                tgt_pkt->req->setExtraData(0);
1409            } else {
1410                // not a cache fill, just forwarding response
1411                // responseLatency is the latency of the return path
1412                // from lower level cahces/memory to the core.
1413                completion_time += clockEdge(responseLatency) +
1414                    pkt->payloadDelay;
1415                if (pkt->isRead() && !is_error) {
1416                    // sanity check
1417                    assert(pkt->getAddr() == tgt_pkt->getAddr());
1418                    assert(pkt->getSize() >= tgt_pkt->getSize());
1419
1420                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1421                }
1422            }
1423            tgt_pkt->makeTimingResponse();
1424            // if this packet is an error copy that to the new packet
1425            if (is_error)
1426                tgt_pkt->copyError(pkt);
1427            if (tgt_pkt->cmd == MemCmd::ReadResp &&
1428                (is_invalidate || mshr->hasPostInvalidate())) {
1429                // If intermediate cache got ReadRespWithInvalidate,
1430                // propagate that.  Response should not have
1431                // isInvalidate() set otherwise.
1432                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1433                DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1434                        __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1435            }
1436            // Reset the bus additional time as it is now accounted for
1437            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1438            cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1439            break;
1440
1441          case MSHR::Target::FromPrefetcher:
1442            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1443            if (blk)
1444                blk->status |= BlkHWPrefetched;
1445            delete tgt_pkt->req;
1446            delete tgt_pkt;
1447            break;
1448
1449          case MSHR::Target::FromSnoop:
1450            // I don't believe that a snoop can be in an error state
1451            assert(!is_error);
1452            // response to snoop request
1453            DPRINTF(Cache, "processing deferred snoop...\n");
1454            assert(!(is_invalidate && !mshr->hasPostInvalidate()));
1455            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1456            break;
1457
1458          default:
1459            panic("Illegal target->source enum %d\n", target->source);
1460        }
1461
1462        mshr->popTarget();
1463    }
1464
1465    maintainClusivity(from_cache, blk);
1466
1467    if (blk && blk->isValid()) {
1468        // an invalidate response stemming from a write line request
1469        // should not invalidate the block, so check if the
1470        // invalidation should be discarded
1471        if (is_invalidate || mshr->hasPostInvalidate()) {
1472            invalidateBlock(blk);
1473        } else if (mshr->hasPostDowngrade()) {
1474            blk->status &= ~BlkWritable;
1475        }
1476    }
1477
1478    if (mshr->promoteDeferredTargets()) {
1479        // avoid later read getting stale data while write miss is
1480        // outstanding.. see comment in timingAccess()
1481        if (blk) {
1482            blk->status &= ~BlkReadable;
1483        }
1484        mshrQueue.markPending(mshr);
1485        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1486    } else {
1487        mshrQueue.deallocate(mshr);
1488        if (wasFull && !mshrQueue.isFull()) {
1489            clearBlocked(Blocked_NoMSHRs);
1490        }
1491
1492        // Request the bus for a prefetch if this deallocation freed enough
1493        // MSHRs for a prefetch to take place
1494        if (prefetcher && mshrQueue.canPrefetch()) {
1495            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1496                                         clockEdge());
1497            if (next_pf_time != MaxTick)
1498                schedMemSideSendEvent(next_pf_time);
1499        }
1500    }
1501    // reset the xbar additional timinig  as it is now accounted for
1502    pkt->headerDelay = pkt->payloadDelay = 0;
1503
1504    // copy writebacks to write buffer
1505    doWritebacks(writebacks, forward_time);
1506
1507    // if we used temp block, check to see if its valid and then clear it out
1508    if (blk == tempBlock && tempBlock->isValid()) {
1509        // We use forwardLatency here because we are copying
1510        // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1511        // allocate an internal buffer and to schedule an event to the
1512        // queued port.
1513        if (blk->isDirty() || writebackClean) {
1514            PacketPtr wbPkt = writebackBlk(blk);
1515            allocateWriteBuffer(wbPkt, forward_time);
1516            // Set BLOCK_CACHED flag if cached above.
1517            if (isCachedAbove(wbPkt))
1518                wbPkt->setBlockCached();
1519        } else {
1520            PacketPtr wcPkt = cleanEvictBlk(blk);
1521            // Check to see if block is cached above. If not allocate
1522            // write buffer
1523            if (isCachedAbove(wcPkt))
1524                delete wcPkt;
1525            else
1526                allocateWriteBuffer(wcPkt, forward_time);
1527        }
1528        blk->invalidate();
1529    }
1530
1531    DPRINTF(CacheVerbose, "Leaving %s with %s for addr %#llx\n", __func__,
1532            pkt->cmdString(), pkt->getAddr());
1533    delete pkt;
1534}
1535
1536PacketPtr
1537Cache::writebackBlk(CacheBlk *blk)
1538{
1539    chatty_assert(!isReadOnly || writebackClean,
1540                  "Writeback from read-only cache");
1541    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1542
1543    writebacks[Request::wbMasterId]++;
1544
1545    Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1546                               blkSize, 0, Request::wbMasterId);
1547    if (blk->isSecure())
1548        req->setFlags(Request::SECURE);
1549
1550    req->taskId(blk->task_id);
1551    blk->task_id= ContextSwitchTaskId::Unknown;
1552    blk->tickInserted = curTick();
1553
1554    PacketPtr pkt =
1555        new Packet(req, blk->isDirty() ?
1556                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1557
1558    DPRINTF(Cache, "Create Writeback %#llx writable: %d, dirty: %d\n",
1559            pkt->getAddr(), blk->isWritable(), blk->isDirty());
1560
1561    if (blk->isWritable()) {
1562        // not asserting shared means we pass the block in modified
1563        // state, mark our own block non-writeable
1564        blk->status &= ~BlkWritable;
1565    } else {
1566        // we are in the Owned state, tell the receiver
1567        pkt->setHasSharers();
1568    }
1569
1570    // make sure the block is not marked dirty
1571    blk->status &= ~BlkDirty;
1572
1573    pkt->allocate();
1574    std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1575
1576    return pkt;
1577}
1578
1579PacketPtr
1580Cache::cleanEvictBlk(CacheBlk *blk)
1581{
1582    assert(!writebackClean);
1583    assert(blk && blk->isValid() && !blk->isDirty());
1584    // Creating a zero sized write, a message to the snoop filter
1585    Request *req =
1586        new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1587                    Request::wbMasterId);
1588    if (blk->isSecure())
1589        req->setFlags(Request::SECURE);
1590
1591    req->taskId(blk->task_id);
1592    blk->task_id = ContextSwitchTaskId::Unknown;
1593    blk->tickInserted = curTick();
1594
1595    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1596    pkt->allocate();
1597    DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1598            pkt->req->isInstFetch() ? " (ifetch)" : "",
1599            pkt->getAddr());
1600
1601    return pkt;
1602}
1603
1604void
1605Cache::memWriteback()
1606{
1607    CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1608    tags->forEachBlk(visitor);
1609}
1610
1611void
1612Cache::memInvalidate()
1613{
1614    CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1615    tags->forEachBlk(visitor);
1616}
1617
1618bool
1619Cache::isDirty() const
1620{
1621    CacheBlkIsDirtyVisitor visitor;
1622    tags->forEachBlk(visitor);
1623
1624    return visitor.isDirty();
1625}
1626
1627bool
1628Cache::writebackVisitor(CacheBlk &blk)
1629{
1630    if (blk.isDirty()) {
1631        assert(blk.isValid());
1632
1633        Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1634                        blkSize, 0, Request::funcMasterId);
1635        request.taskId(blk.task_id);
1636
1637        Packet packet(&request, MemCmd::WriteReq);
1638        packet.dataStatic(blk.data);
1639
1640        memSidePort->sendFunctional(&packet);
1641
1642        blk.status &= ~BlkDirty;
1643    }
1644
1645    return true;
1646}
1647
1648bool
1649Cache::invalidateVisitor(CacheBlk &blk)
1650{
1651
1652    if (blk.isDirty())
1653        warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1654
1655    if (blk.isValid()) {
1656        assert(!blk.isDirty());
1657        tags->invalidate(&blk);
1658        blk.invalidate();
1659    }
1660
1661    return true;
1662}
1663
1664CacheBlk*
1665Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1666{
1667    CacheBlk *blk = tags->findVictim(addr);
1668
1669    // It is valid to return nullptr if there is no victim
1670    if (!blk)
1671        return nullptr;
1672
1673    if (blk->isValid()) {
1674        Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1675        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1676        if (repl_mshr) {
1677            // must be an outstanding upgrade request
1678            // on a block we're about to replace...
1679            assert(!blk->isWritable() || blk->isDirty());
1680            assert(repl_mshr->needsWritable());
1681            // too hard to replace block with transient state
1682            // allocation failed, block not inserted
1683            return nullptr;
1684        } else {
1685            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1686                    "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
1687                    addr, is_secure ? "s" : "ns",
1688                    blk->isDirty() ? "writeback" : "clean");
1689
1690            if (blk->wasPrefetched()) {
1691                unusedPrefetches++;
1692            }
1693            // Will send up Writeback/CleanEvict snoops via isCachedAbove
1694            // when pushing this writeback list into the write buffer.
1695            if (blk->isDirty() || writebackClean) {
1696                // Save writeback packet for handling by caller
1697                writebacks.push_back(writebackBlk(blk));
1698            } else {
1699                writebacks.push_back(cleanEvictBlk(blk));
1700            }
1701        }
1702    }
1703
1704    return blk;
1705}
1706
1707void
1708Cache::invalidateBlock(CacheBlk *blk)
1709{
1710    if (blk != tempBlock)
1711        tags->invalidate(blk);
1712    blk->invalidate();
1713}
1714
1715// Note that the reason we return a list of writebacks rather than
1716// inserting them directly in the write buffer is that this function
1717// is called by both atomic and timing-mode accesses, and in atomic
1718// mode we don't mess with the write buffer (we just perform the
1719// writebacks atomically once the original request is complete).
1720CacheBlk*
1721Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1722                  bool allocate)
1723{
1724    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1725    Addr addr = pkt->getAddr();
1726    bool is_secure = pkt->isSecure();
1727#if TRACING_ON
1728    CacheBlk::State old_state = blk ? blk->status : 0;
1729#endif
1730
1731    // When handling a fill, we should have no writes to this line.
1732    assert(addr == blockAlign(addr));
1733    assert(!writeBuffer.findMatch(addr, is_secure));
1734
1735    if (blk == nullptr) {
1736        // better have read new data...
1737        assert(pkt->hasData());
1738
1739        // only read responses and write-line requests have data;
1740        // note that we don't write the data here for write-line - that
1741        // happens in the subsequent call to satisfyRequest
1742        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1743
1744        // need to do a replacement if allocating, otherwise we stick
1745        // with the temporary storage
1746        blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
1747
1748        if (blk == nullptr) {
1749            // No replaceable block or a mostly exclusive
1750            // cache... just use temporary storage to complete the
1751            // current request and then get rid of it
1752            assert(!tempBlock->isValid());
1753            blk = tempBlock;
1754            tempBlock->set = tags->extractSet(addr);
1755            tempBlock->tag = tags->extractTag(addr);
1756            // @todo: set security state as well...
1757            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1758                    is_secure ? "s" : "ns");
1759        } else {
1760            tags->insertBlock(pkt, blk);
1761        }
1762
1763        // we should never be overwriting a valid block
1764        assert(!blk->isValid());
1765    } else {
1766        // existing block... probably an upgrade
1767        assert(blk->tag == tags->extractTag(addr));
1768        // either we're getting new data or the block should already be valid
1769        assert(pkt->hasData() || blk->isValid());
1770        // don't clear block status... if block is already dirty we
1771        // don't want to lose that
1772    }
1773
1774    if (is_secure)
1775        blk->status |= BlkSecure;
1776    blk->status |= BlkValid | BlkReadable;
1777
1778    // sanity check for whole-line writes, which should always be
1779    // marked as writable as part of the fill, and then later marked
1780    // dirty as part of satisfyRequest
1781    if (pkt->cmd == MemCmd::WriteLineReq) {
1782        assert(!pkt->hasSharers());
1783        // at the moment other caches do not respond to the
1784        // invalidation requests corresponding to a whole-line write
1785        assert(!pkt->cacheResponding());
1786    }
1787
1788    // here we deal with setting the appropriate state of the line,
1789    // and we start by looking at the hasSharers flag, and ignore the
1790    // cacheResponding flag (normally signalling dirty data) if the
1791    // packet has sharers, thus the line is never allocated as Owned
1792    // (dirty but not writable), and always ends up being either
1793    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1794    // for more details
1795    if (!pkt->hasSharers()) {
1796        // we could get a writable line from memory (rather than a
1797        // cache) even in a read-only cache, note that we set this bit
1798        // even for a read-only cache, possibly revisit this decision
1799        blk->status |= BlkWritable;
1800
1801        // check if we got this via cache-to-cache transfer (i.e., from a
1802        // cache that had the block in Modified or Owned state)
1803        if (pkt->cacheResponding()) {
1804            // we got the block in Modified state, and invalidated the
1805            // owners copy
1806            blk->status |= BlkDirty;
1807
1808            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1809                          "in read-only cache %s\n", name());
1810        }
1811    }
1812
1813    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1814            addr, is_secure ? "s" : "ns", old_state, blk->print());
1815
1816    // if we got new data, copy it in (checking for a read response
1817    // and a response that has data is the same in the end)
1818    if (pkt->isRead()) {
1819        // sanity checks
1820        assert(pkt->hasData());
1821        assert(pkt->getSize() == blkSize);
1822
1823        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1824    }
1825    // We pay for fillLatency here.
1826    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1827        pkt->payloadDelay;
1828
1829    return blk;
1830}
1831
1832
1833/////////////////////////////////////////////////////
1834//
1835// Snoop path: requests coming in from the memory side
1836//
1837/////////////////////////////////////////////////////
1838
1839void
1840Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1841                              bool already_copied, bool pending_inval)
1842{
1843    // sanity check
1844    assert(req_pkt->isRequest());
1845    assert(req_pkt->needsResponse());
1846
1847    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1848            req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1849    // timing-mode snoop responses require a new packet, unless we
1850    // already made a copy...
1851    PacketPtr pkt = req_pkt;
1852    if (!already_copied)
1853        // do not clear flags, and allocate space for data if the
1854        // packet needs it (the only packets that carry data are read
1855        // responses)
1856        pkt = new Packet(req_pkt, false, req_pkt->isRead());
1857
1858    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1859           pkt->hasSharers());
1860    pkt->makeTimingResponse();
1861    if (pkt->isRead()) {
1862        pkt->setDataFromBlock(blk_data, blkSize);
1863    }
1864    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1865        // Assume we defer a response to a read from a far-away cache
1866        // A, then later defer a ReadExcl from a cache B on the same
1867        // bus as us. We'll assert cacheResponding in both cases, but
1868        // in the latter case cacheResponding will keep the
1869        // invalidation from reaching cache A. This special response
1870        // tells cache A that it gets the block to satisfy its read,
1871        // but must immediately invalidate it.
1872        pkt->cmd = MemCmd::ReadRespWithInvalidate;
1873    }
1874    // Here we consider forward_time, paying for just forward latency and
1875    // also charging the delay provided by the xbar.
1876    // forward_time is used as send_time in next allocateWriteBuffer().
1877    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1878    // Here we reset the timing of the packet.
1879    pkt->headerDelay = pkt->payloadDelay = 0;
1880    DPRINTF(CacheVerbose,
1881            "%s created response: %s addr %#llx size %d tick: %lu\n",
1882            __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1883            forward_time);
1884    memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1885}
1886
1887uint32_t
1888Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1889                   bool is_deferred, bool pending_inval)
1890{
1891    DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
1892            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1893    // deferred snoops can only happen in timing mode
1894    assert(!(is_deferred && !is_timing));
1895    // pending_inval only makes sense on deferred snoops
1896    assert(!(pending_inval && !is_deferred));
1897    assert(pkt->isRequest());
1898
1899    // the packet may get modified if we or a forwarded snooper
1900    // responds in atomic mode, so remember a few things about the
1901    // original packet up front
1902    bool invalidate = pkt->isInvalidate();
1903    bool M5_VAR_USED needs_writable = pkt->needsWritable();
1904
1905    // at the moment we could get an uncacheable write which does not
1906    // have the invalidate flag, and we need a suitable way of dealing
1907    // with this case
1908    panic_if(invalidate && pkt->req->isUncacheable(),
1909             "%s got an invalidating uncacheable snoop request %s to %#llx",
1910             name(), pkt->cmdString(), pkt->getAddr());
1911
1912    uint32_t snoop_delay = 0;
1913
1914    if (forwardSnoops) {
1915        // first propagate snoop upward to see if anyone above us wants to
1916        // handle it.  save & restore packet src since it will get
1917        // rewritten to be relative to cpu-side bus (if any)
1918        bool alreadyResponded = pkt->cacheResponding();
1919        if (is_timing) {
1920            // copy the packet so that we can clear any flags before
1921            // forwarding it upwards, we also allocate data (passing
1922            // the pointer along in case of static data), in case
1923            // there is a snoop hit in upper levels
1924            Packet snoopPkt(pkt, true, true);
1925            snoopPkt.setExpressSnoop();
1926            // the snoop packet does not need to wait any additional
1927            // time
1928            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1929            cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1930
1931            // add the header delay (including crossbar and snoop
1932            // delays) of the upward snoop to the snoop delay for this
1933            // cache
1934            snoop_delay += snoopPkt.headerDelay;
1935
1936            if (snoopPkt.cacheResponding()) {
1937                // cache-to-cache response from some upper cache
1938                assert(!alreadyResponded);
1939                pkt->setCacheResponding();
1940            }
1941            // upstream cache has the block, or has an outstanding
1942            // MSHR, pass the flag on
1943            if (snoopPkt.hasSharers()) {
1944                pkt->setHasSharers();
1945            }
1946            // If this request is a prefetch or clean evict and an upper level
1947            // signals block present, make sure to propagate the block
1948            // presence to the requester.
1949            if (snoopPkt.isBlockCached()) {
1950                pkt->setBlockCached();
1951            }
1952        } else {
1953            cpuSidePort->sendAtomicSnoop(pkt);
1954            if (!alreadyResponded && pkt->cacheResponding()) {
1955                // cache-to-cache response from some upper cache:
1956                // forward response to original requester
1957                assert(pkt->isResponse());
1958            }
1959        }
1960    }
1961
1962    if (!blk || !blk->isValid()) {
1963        if (is_deferred) {
1964            // we no longer have the block, and will not respond, but a
1965            // packet was allocated in MSHR::handleSnoop and we have
1966            // to delete it
1967            assert(pkt->needsResponse());
1968
1969            // we have passed the block to a cache upstream, that
1970            // cache should be responding
1971            assert(pkt->cacheResponding());
1972
1973            delete pkt;
1974        }
1975
1976        DPRINTF(CacheVerbose, "%s snoop miss for %s addr %#llx size %d\n",
1977                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1978        return snoop_delay;
1979    } else {
1980        DPRINTF(Cache, "%s snoop hit for %s addr %#llx size %d, "
1981                "old state is %s\n", __func__, pkt->cmdString(),
1982                pkt->getAddr(), pkt->getSize(), blk->print());
1983    }
1984
1985    chatty_assert(!(isReadOnly && blk->isDirty()),
1986                  "Should never have a dirty block in a read-only cache %s\n",
1987                  name());
1988
1989    // We may end up modifying both the block state and the packet (if
1990    // we respond in atomic mode), so just figure out what to do now
1991    // and then do it later. If we find dirty data while snooping for
1992    // an invalidate, we don't need to send a response. The
1993    // invalidation itself is taken care of below.
1994    bool respond = blk->isDirty() && pkt->needsResponse() &&
1995        pkt->cmd != MemCmd::InvalidateReq;
1996    bool have_writable = blk->isWritable();
1997
1998    // Invalidate any prefetch's from below that would strip write permissions
1999    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
2000    // above and in it's own cache, a new MemCmd::ReadReq is created that
2001    // downstream caches observe.
2002    if (pkt->mustCheckAbove()) {
2003        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
2004                "from lower cache\n", pkt->getAddr(), pkt->cmdString());
2005        pkt->setBlockCached();
2006        return snoop_delay;
2007    }
2008
2009    if (pkt->isRead() && !invalidate) {
2010        // reading without requiring the line in a writable state
2011        assert(!needs_writable);
2012        pkt->setHasSharers();
2013
2014        // if the requesting packet is uncacheable, retain the line in
2015        // the current state, otherwhise unset the writable flag,
2016        // which means we go from Modified to Owned (and will respond
2017        // below), remain in Owned (and will respond below), from
2018        // Exclusive to Shared, or remain in Shared
2019        if (!pkt->req->isUncacheable())
2020            blk->status &= ~BlkWritable;
2021    }
2022
2023    if (respond) {
2024        // prevent anyone else from responding, cache as well as
2025        // memory, and also prevent any memory from even seeing the
2026        // request
2027        pkt->setCacheResponding();
2028        if (have_writable) {
2029            // inform the cache hierarchy that this cache had the line
2030            // in the Modified state so that we avoid unnecessary
2031            // invalidations (see Packet::setResponderHadWritable)
2032            pkt->setResponderHadWritable();
2033
2034            // in the case of an uncacheable request there is no point
2035            // in setting the responderHadWritable flag, but since the
2036            // recipient does not care there is no harm in doing so
2037        } else {
2038            // if the packet has needsWritable set we invalidate our
2039            // copy below and all other copies will be invalidates
2040            // through express snoops, and if needsWritable is not set
2041            // we already called setHasSharers above
2042        }
2043
2044        // if we are returning a writable and dirty (Modified) line,
2045        // we should be invalidating the line
2046        panic_if(!invalidate && !pkt->hasSharers(),
2047                 "%s is passing a Modified line through %s to %#llx, "
2048                 "but keeping the block",
2049                 name(), pkt->cmdString(), pkt->getAddr());
2050
2051        if (is_timing) {
2052            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2053        } else {
2054            pkt->makeAtomicResponse();
2055            // packets such as upgrades do not actually have any data
2056            // payload
2057            if (pkt->hasData())
2058                pkt->setDataFromBlock(blk->data, blkSize);
2059        }
2060    }
2061
2062    if (!respond && is_timing && is_deferred) {
2063        // if it's a deferred timing snoop to which we are not
2064        // responding, then we've made a copy of both the request and
2065        // the packet, delete them here
2066        assert(pkt->needsResponse());
2067        assert(!pkt->cacheResponding());
2068        delete pkt->req;
2069        delete pkt;
2070    }
2071
2072    // Do this last in case it deallocates block data or something
2073    // like that
2074    if (invalidate) {
2075        invalidateBlock(blk);
2076    }
2077
2078    DPRINTF(Cache, "new state is %s\n", blk->print());
2079
2080    return snoop_delay;
2081}
2082
2083
2084void
2085Cache::recvTimingSnoopReq(PacketPtr pkt)
2086{
2087    DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
2088            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
2089
2090    // Snoops shouldn't happen when bypassing caches
2091    assert(!system->bypassCaches());
2092
2093    // no need to snoop requests that are not in range
2094    if (!inRange(pkt->getAddr())) {
2095        return;
2096    }
2097
2098    bool is_secure = pkt->isSecure();
2099    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2100
2101    Addr blk_addr = blockAlign(pkt->getAddr());
2102    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2103
2104    // Update the latency cost of the snoop so that the crossbar can
2105    // account for it. Do not overwrite what other neighbouring caches
2106    // have already done, rather take the maximum. The update is
2107    // tentative, for cases where we return before an upward snoop
2108    // happens below.
2109    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2110                                         lookupLatency * clockPeriod());
2111
2112    // Inform request(Prefetch, CleanEvict or Writeback) from below of
2113    // MSHR hit, set setBlockCached.
2114    if (mshr && pkt->mustCheckAbove()) {
2115        DPRINTF(Cache, "Setting block cached for %s from"
2116                "lower cache on mshr hit %#x\n",
2117                pkt->cmdString(), pkt->getAddr());
2118        pkt->setBlockCached();
2119        return;
2120    }
2121
2122    // Let the MSHR itself track the snoop and decide whether we want
2123    // to go ahead and do the regular cache snoop
2124    if (mshr && mshr->handleSnoop(pkt, order++)) {
2125        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2126                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2127                mshr->print());
2128
2129        if (mshr->getNumTargets() > numTarget)
2130            warn("allocating bonus target for snoop"); //handle later
2131        return;
2132    }
2133
2134    //We also need to check the writeback buffers and handle those
2135    WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
2136    if (wb_entry) {
2137        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2138                pkt->getAddr(), is_secure ? "s" : "ns");
2139        // Expect to see only Writebacks and/or CleanEvicts here, both of
2140        // which should not be generated for uncacheable data.
2141        assert(!wb_entry->isUncacheable());
2142        // There should only be a single request responsible for generating
2143        // Writebacks/CleanEvicts.
2144        assert(wb_entry->getNumTargets() == 1);
2145        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2146        assert(wb_pkt->isEviction());
2147
2148        if (pkt->isEviction()) {
2149            // if the block is found in the write queue, set the BLOCK_CACHED
2150            // flag for Writeback/CleanEvict snoop. On return the snoop will
2151            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2152            // any CleanEvicts from travelling down the memory hierarchy.
2153            pkt->setBlockCached();
2154            DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
2155                    " %#x\n", pkt->cmdString(), pkt->getAddr());
2156            return;
2157        }
2158
2159        // conceptually writebacks are no different to other blocks in
2160        // this cache, so the behaviour is modelled after handleSnoop,
2161        // the difference being that instead of querying the block
2162        // state to determine if it is dirty and writable, we use the
2163        // command and fields of the writeback packet
2164        bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
2165            pkt->needsResponse() && pkt->cmd != MemCmd::InvalidateReq;
2166        bool have_writable = !wb_pkt->hasSharers();
2167        bool invalidate = pkt->isInvalidate();
2168
2169        if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
2170            assert(!pkt->needsWritable());
2171            pkt->setHasSharers();
2172            wb_pkt->setHasSharers();
2173        }
2174
2175        if (respond) {
2176            pkt->setCacheResponding();
2177
2178            if (have_writable) {
2179                pkt->setResponderHadWritable();
2180            }
2181
2182            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2183                                   false, false);
2184        }
2185
2186        if (invalidate) {
2187            // Invalidation trumps our writeback... discard here
2188            // Note: markInService will remove entry from writeback buffer.
2189            markInService(wb_entry);
2190            delete wb_pkt;
2191        }
2192    }
2193
2194    // If this was a shared writeback, there may still be
2195    // other shared copies above that require invalidation.
2196    // We could be more selective and return here if the
2197    // request is non-exclusive or if the writeback is
2198    // exclusive.
2199    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2200
2201    // Override what we did when we first saw the snoop, as we now
2202    // also have the cost of the upwards snoops to account for
2203    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2204                                         lookupLatency * clockPeriod());
2205}
2206
2207bool
2208Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2209{
2210    // Express snoop responses from master to slave, e.g., from L1 to L2
2211    cache->recvTimingSnoopResp(pkt);
2212    return true;
2213}
2214
2215Tick
2216Cache::recvAtomicSnoop(PacketPtr pkt)
2217{
2218    // Snoops shouldn't happen when bypassing caches
2219    assert(!system->bypassCaches());
2220
2221    // no need to snoop requests that are not in range.
2222    if (!inRange(pkt->getAddr())) {
2223        return 0;
2224    }
2225
2226    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2227    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2228    return snoop_delay + lookupLatency * clockPeriod();
2229}
2230
2231
2232QueueEntry*
2233Cache::getNextQueueEntry()
2234{
2235    // Check both MSHR queue and write buffer for potential requests,
2236    // note that null does not mean there is no request, it could
2237    // simply be that it is not ready
2238    MSHR *miss_mshr  = mshrQueue.getNext();
2239    WriteQueueEntry *wq_entry = writeBuffer.getNext();
2240
2241    // If we got a write buffer request ready, first priority is a
2242    // full write buffer, otherwise we favour the miss requests
2243    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
2244        // need to search MSHR queue for conflicting earlier miss.
2245        MSHR *conflict_mshr =
2246            mshrQueue.findPending(wq_entry->blkAddr,
2247                                  wq_entry->isSecure);
2248
2249        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
2250            // Service misses in order until conflict is cleared.
2251            return conflict_mshr;
2252
2253            // @todo Note that we ignore the ready time of the conflict here
2254        }
2255
2256        // No conflicts; issue write
2257        return wq_entry;
2258    } else if (miss_mshr) {
2259        // need to check for conflicting earlier writeback
2260        WriteQueueEntry *conflict_mshr =
2261            writeBuffer.findPending(miss_mshr->blkAddr,
2262                                    miss_mshr->isSecure);
2263        if (conflict_mshr) {
2264            // not sure why we don't check order here... it was in the
2265            // original code but commented out.
2266
2267            // The only way this happens is if we are
2268            // doing a write and we didn't have permissions
2269            // then subsequently saw a writeback (owned got evicted)
2270            // We need to make sure to perform the writeback first
2271            // To preserve the dirty data, then we can issue the write
2272
2273            // should we return wq_entry here instead?  I.e. do we
2274            // have to flush writes in order?  I don't think so... not
2275            // for Alpha anyway.  Maybe for x86?
2276            return conflict_mshr;
2277
2278            // @todo Note that we ignore the ready time of the conflict here
2279        }
2280
2281        // No conflicts; issue read
2282        return miss_mshr;
2283    }
2284
2285    // fall through... no pending requests.  Try a prefetch.
2286    assert(!miss_mshr && !wq_entry);
2287    if (prefetcher && mshrQueue.canPrefetch()) {
2288        // If we have a miss queue slot, we can try a prefetch
2289        PacketPtr pkt = prefetcher->getPacket();
2290        if (pkt) {
2291            Addr pf_addr = blockAlign(pkt->getAddr());
2292            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2293                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2294                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2295                // Update statistic on number of prefetches issued
2296                // (hwpf_mshr_misses)
2297                assert(pkt->req->masterId() < system->maxMasters());
2298                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2299
2300                // allocate an MSHR and return it, note
2301                // that we send the packet straight away, so do not
2302                // schedule the send
2303                return allocateMissBuffer(pkt, curTick(), false);
2304            } else {
2305                // free the request and packet
2306                delete pkt->req;
2307                delete pkt;
2308            }
2309        }
2310    }
2311
2312    return nullptr;
2313}
2314
2315bool
2316Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2317{
2318    if (!forwardSnoops)
2319        return false;
2320    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2321    // Writeback snoops into upper level caches to check for copies of the
2322    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2323    // packet, the cache can inform the crossbar below of presence or absence
2324    // of the block.
2325    if (is_timing) {
2326        Packet snoop_pkt(pkt, true, false);
2327        snoop_pkt.setExpressSnoop();
2328        // Assert that packet is either Writeback or CleanEvict and not a
2329        // prefetch request because prefetch requests need an MSHR and may
2330        // generate a snoop response.
2331        assert(pkt->isEviction());
2332        snoop_pkt.senderState = nullptr;
2333        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2334        // Writeback/CleanEvict snoops do not generate a snoop response.
2335        assert(!(snoop_pkt.cacheResponding()));
2336        return snoop_pkt.isBlockCached();
2337    } else {
2338        cpuSidePort->sendAtomicSnoop(pkt);
2339        return pkt->isBlockCached();
2340    }
2341}
2342
2343Tick
2344Cache::nextQueueReadyTime() const
2345{
2346    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
2347                              writeBuffer.nextReadyTime());
2348
2349    // Don't signal prefetch ready time if no MSHRs available
2350    // Will signal once enoguh MSHRs are deallocated
2351    if (prefetcher && mshrQueue.canPrefetch()) {
2352        nextReady = std::min(nextReady,
2353                             prefetcher->nextPrefetchReadyTime());
2354    }
2355
2356    return nextReady;
2357}
2358
2359bool
2360Cache::sendMSHRQueuePacket(MSHR* mshr)
2361{
2362    assert(mshr);
2363
2364    // use request from 1st target
2365    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2366
2367    DPRINTF(Cache, "%s MSHR %s for addr %#llx size %d\n", __func__,
2368            tgt_pkt->cmdString(), tgt_pkt->getAddr(),
2369            tgt_pkt->getSize());
2370
2371    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2372
2373    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2374        // we should never have hardware prefetches to allocated
2375        // blocks
2376        assert(blk == nullptr);
2377
2378        // We need to check the caches above us to verify that
2379        // they don't have a copy of this block in the dirty state
2380        // at the moment. Without this check we could get a stale
2381        // copy from memory that might get used in place of the
2382        // dirty one.
2383        Packet snoop_pkt(tgt_pkt, true, false);
2384        snoop_pkt.setExpressSnoop();
2385        // We are sending this packet upwards, but if it hits we will
2386        // get a snoop response that we end up treating just like a
2387        // normal response, hence it needs the MSHR as its sender
2388        // state
2389        snoop_pkt.senderState = mshr;
2390        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2391
2392        // Check to see if the prefetch was squashed by an upper cache (to
2393        // prevent us from grabbing the line) or if a Check to see if a
2394        // writeback arrived between the time the prefetch was placed in
2395        // the MSHRs and when it was selected to be sent or if the
2396        // prefetch was squashed by an upper cache.
2397
2398        // It is important to check cacheResponding before
2399        // prefetchSquashed. If another cache has committed to
2400        // responding, it will be sending a dirty response which will
2401        // arrive at the MSHR allocated for this request. Checking the
2402        // prefetchSquash first may result in the MSHR being
2403        // prematurely deallocated.
2404        if (snoop_pkt.cacheResponding()) {
2405            auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2406            assert(r.second);
2407
2408            // if we are getting a snoop response with no sharers it
2409            // will be allocated as Modified
2410            bool pending_modified_resp = !snoop_pkt.hasSharers();
2411            markInService(mshr, pending_modified_resp);
2412
2413            DPRINTF(Cache, "Upward snoop of prefetch for addr"
2414                    " %#x (%s) hit\n",
2415                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2416            return false;
2417        }
2418
2419        if (snoop_pkt.isBlockCached()) {
2420            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
2421                    "Deallocating mshr target %#x.\n",
2422                    mshr->blkAddr);
2423
2424            // Deallocate the mshr target
2425            if (mshrQueue.forceDeallocateTarget(mshr)) {
2426                // Clear block if this deallocation resulted freed an
2427                // mshr when all had previously been utilized
2428                clearBlocked(Blocked_NoMSHRs);
2429            }
2430            return false;
2431        }
2432    }
2433
2434    // either a prefetch that is not present upstream, or a normal
2435    // MSHR request, proceed to get the packet to send downstream
2436    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
2437
2438    mshr->isForward = (pkt == nullptr);
2439
2440    if (mshr->isForward) {
2441        // not a cache block request, but a response is expected
2442        // make copy of current packet to forward, keep current
2443        // copy for response handling
2444        pkt = new Packet(tgt_pkt, false, true);
2445        assert(!pkt->isWrite());
2446    }
2447
2448    // play it safe and append (rather than set) the sender state,
2449    // as forwarded packets may already have existing state
2450    pkt->pushSenderState(mshr);
2451
2452    if (!memSidePort->sendTimingReq(pkt)) {
2453        // we are awaiting a retry, but we
2454        // delete the packet and will be creating a new packet
2455        // when we get the opportunity
2456        delete pkt;
2457
2458        // note that we have now masked any requestBus and
2459        // schedSendEvent (we will wait for a retry before
2460        // doing anything), and this is so even if we do not
2461        // care about this packet and might override it before
2462        // it gets retried
2463        return true;
2464    } else {
2465        // As part of the call to sendTimingReq the packet is
2466        // forwarded to all neighbouring caches (and any caches
2467        // above them) as a snoop. Thus at this point we know if
2468        // any of the neighbouring caches are responding, and if
2469        // so, we know it is dirty, and we can determine if it is
2470        // being passed as Modified, making our MSHR the ordering
2471        // point
2472        bool pending_modified_resp = !pkt->hasSharers() &&
2473            pkt->cacheResponding();
2474        markInService(mshr, pending_modified_resp);
2475        return false;
2476    }
2477}
2478
2479bool
2480Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
2481{
2482    assert(wq_entry);
2483
2484    // always a single target for write queue entries
2485    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
2486
2487    DPRINTF(Cache, "%s write %s for addr %#llx size %d\n", __func__,
2488            tgt_pkt->cmdString(), tgt_pkt->getAddr(),
2489            tgt_pkt->getSize());
2490
2491    // forward as is, both for evictions and uncacheable writes
2492    if (!memSidePort->sendTimingReq(tgt_pkt)) {
2493        // note that we have now masked any requestBus and
2494        // schedSendEvent (we will wait for a retry before
2495        // doing anything), and this is so even if we do not
2496        // care about this packet and might override it before
2497        // it gets retried
2498        return true;
2499    } else {
2500        markInService(wq_entry);
2501        return false;
2502    }
2503}
2504
2505void
2506Cache::serialize(CheckpointOut &cp) const
2507{
2508    bool dirty(isDirty());
2509
2510    if (dirty) {
2511        warn("*** The cache still contains dirty data. ***\n");
2512        warn("    Make sure to drain the system using the correct flags.\n");
2513        warn("    This checkpoint will not restore correctly and dirty data "
2514             "    in the cache will be lost!\n");
2515    }
2516
2517    // Since we don't checkpoint the data in the cache, any dirty data
2518    // will be lost when restoring from a checkpoint of a system that
2519    // wasn't drained properly. Flag the checkpoint as invalid if the
2520    // cache contains dirty data.
2521    bool bad_checkpoint(dirty);
2522    SERIALIZE_SCALAR(bad_checkpoint);
2523}
2524
2525void
2526Cache::unserialize(CheckpointIn &cp)
2527{
2528    bool bad_checkpoint;
2529    UNSERIALIZE_SCALAR(bad_checkpoint);
2530    if (bad_checkpoint) {
2531        fatal("Restoring from checkpoints with dirty caches is not supported "
2532              "in the classic memory system. Please remove any caches or "
2533              " drain them properly before taking checkpoints.\n");
2534    }
2535}
2536
2537///////////////
2538//
2539// CpuSidePort
2540//
2541///////////////
2542
2543AddrRangeList
2544Cache::CpuSidePort::getAddrRanges() const
2545{
2546    return cache->getAddrRanges();
2547}
2548
2549bool
2550Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2551{
2552    assert(!cache->system->bypassCaches());
2553
2554    bool success = false;
2555
2556    // always let express snoop packets through if even if blocked
2557    if (pkt->isExpressSnoop()) {
2558        // do not change the current retry state
2559        bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2560        assert(bypass_success);
2561        return true;
2562    } else if (blocked || mustSendRetry) {
2563        // either already committed to send a retry, or blocked
2564        success = false;
2565    } else {
2566        // pass it on to the cache, and let the cache decide if we
2567        // have to retry or not
2568        success = cache->recvTimingReq(pkt);
2569    }
2570
2571    // remember if we have to retry
2572    mustSendRetry = !success;
2573    return success;
2574}
2575
2576Tick
2577Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2578{
2579    return cache->recvAtomic(pkt);
2580}
2581
2582void
2583Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2584{
2585    // functional request
2586    cache->functionalAccess(pkt, true);
2587}
2588
2589Cache::
2590CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2591                         const std::string &_label)
2592    : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2593{
2594}
2595
2596Cache*
2597CacheParams::create()
2598{
2599    assert(tags);
2600
2601    return new Cache(this);
2602}
2603///////////////
2604//
2605// MemSidePort
2606//
2607///////////////
2608
2609bool
2610Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2611{
2612    cache->recvTimingResp(pkt);
2613    return true;
2614}
2615
2616// Express snooping requests to memside port
2617void
2618Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2619{
2620    // handle snooping requests
2621    cache->recvTimingSnoopReq(pkt);
2622}
2623
2624Tick
2625Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2626{
2627    return cache->recvAtomicSnoop(pkt);
2628}
2629
2630void
2631Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2632{
2633    // functional snoop (note that in contrast to atomic we don't have
2634    // a specific functionalSnoop method, as they have the same
2635    // behaviour regardless)
2636    cache->functionalAccess(pkt, false);
2637}
2638
2639void
2640Cache::CacheReqPacketQueue::sendDeferredPacket()
2641{
2642    // sanity check
2643    assert(!waitingOnRetry);
2644
2645    // there should never be any deferred request packets in the
2646    // queue, instead we resly on the cache to provide the packets
2647    // from the MSHR queue or write queue
2648    assert(deferredPacketReadyTime() == MaxTick);
2649
2650    // check for request packets (requests & writebacks)
2651    QueueEntry* entry = cache.getNextQueueEntry();
2652
2653    if (!entry) {
2654        // can happen if e.g. we attempt a writeback and fail, but
2655        // before the retry, the writeback is eliminated because
2656        // we snoop another cache's ReadEx.
2657    } else {
2658        // let our snoop responses go first if there are responses to
2659        // the same addresses
2660        if (checkConflictingSnoop(entry->blkAddr)) {
2661            return;
2662        }
2663        waitingOnRetry = entry->sendPacket(cache);
2664    }
2665
2666    // if we succeeded and are not waiting for a retry, schedule the
2667    // next send considering when the next queue is ready, note that
2668    // snoop responses have their own packet queue and thus schedule
2669    // their own events
2670    if (!waitingOnRetry) {
2671        schedSendEvent(cache.nextQueueReadyTime());
2672    }
2673}
2674
2675Cache::
2676MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2677                         const std::string &_label)
2678    : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2679      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2680      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2681{
2682}
2683