cache.cc revision 11493:06b73eb44660
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nathan Binkert
44 *          Steve Reinhardt
45 *          Ron Dreslinski
46 *          Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/misc.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "debug/CacheVerbose.hh"
62#include "mem/cache/blk.hh"
63#include "mem/cache/mshr.hh"
64#include "mem/cache/prefetch/base.hh"
65#include "sim/sim_exit.hh"
66
67Cache::Cache(const CacheParams *p)
68    : BaseCache(p, p->system->cacheLineSize()),
69      tags(p->tags),
70      prefetcher(p->prefetcher),
71      doFastWrites(true),
72      prefetchOnAccess(p->prefetch_on_access),
73      clusivity(p->clusivity),
74      writebackClean(p->writeback_clean),
75      tempBlockWriteback(nullptr),
76      writebackTempBlockAtomicEvent(this, false,
77                                    EventBase::Delayed_Writeback_Pri)
78{
79    tempBlock = new CacheBlk();
80    tempBlock->data = new uint8_t[blkSize];
81
82    cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
83                                  "CpuSidePort");
84    memSidePort = new MemSidePort(p->name + ".mem_side", this,
85                                  "MemSidePort");
86
87    tags->setCache(this);
88    if (prefetcher)
89        prefetcher->setCache(this);
90}
91
92Cache::~Cache()
93{
94    delete [] tempBlock->data;
95    delete tempBlock;
96
97    delete cpuSidePort;
98    delete memSidePort;
99}
100
101void
102Cache::regStats()
103{
104    BaseCache::regStats();
105}
106
107void
108Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
109{
110    assert(pkt->isRequest());
111
112    uint64_t overwrite_val;
113    bool overwrite_mem;
114    uint64_t condition_val64;
115    uint32_t condition_val32;
116
117    int offset = tags->extractBlkOffset(pkt->getAddr());
118    uint8_t *blk_data = blk->data + offset;
119
120    assert(sizeof(uint64_t) >= pkt->getSize());
121
122    overwrite_mem = true;
123    // keep a copy of our possible write value, and copy what is at the
124    // memory address into the packet
125    pkt->writeData((uint8_t *)&overwrite_val);
126    pkt->setData(blk_data);
127
128    if (pkt->req->isCondSwap()) {
129        if (pkt->getSize() == sizeof(uint64_t)) {
130            condition_val64 = pkt->req->getExtraData();
131            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
132                                         sizeof(uint64_t));
133        } else if (pkt->getSize() == sizeof(uint32_t)) {
134            condition_val32 = (uint32_t)pkt->req->getExtraData();
135            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
136                                         sizeof(uint32_t));
137        } else
138            panic("Invalid size for conditional read/write\n");
139    }
140
141    if (overwrite_mem) {
142        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
143        blk->status |= BlkDirty;
144    }
145}
146
147
148void
149Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
150                             bool deferred_response, bool pending_downgrade)
151{
152    assert(pkt->isRequest());
153
154    assert(blk && blk->isValid());
155    // Occasionally this is not true... if we are a lower-level cache
156    // satisfying a string of Read and ReadEx requests from
157    // upper-level caches, a Read will mark the block as shared but we
158    // can satisfy a following ReadEx anyway since we can rely on the
159    // Read requester(s) to have buffered the ReadEx snoop and to
160    // invalidate their blocks after receiving them.
161    // assert(!pkt->needsWritable() || blk->isWritable());
162    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
163
164    // Check RMW operations first since both isRead() and
165    // isWrite() will be true for them
166    if (pkt->cmd == MemCmd::SwapReq) {
167        cmpAndSwap(blk, pkt);
168    } else if (pkt->isWrite()) {
169        // we have the block in a writable state and can go ahead,
170        // note that the line may be also be considered writable in
171        // downstream caches along the path to memory, but always
172        // Exclusive, and never Modified
173        assert(blk->isWritable());
174        // Write or WriteLine at the first cache with block in writable state
175        if (blk->checkWrite(pkt)) {
176            pkt->writeDataToBlock(blk->data, blkSize);
177        }
178        // Always mark the line as dirty (and thus transition to the
179        // Modified state) even if we are a failed StoreCond so we
180        // supply data to any snoops that have appended themselves to
181        // this cache before knowing the store will fail.
182        blk->status |= BlkDirty;
183        DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (write)\n",
184                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
185    } else if (pkt->isRead()) {
186        if (pkt->isLLSC()) {
187            blk->trackLoadLocked(pkt);
188        }
189
190        // all read responses have a data payload
191        assert(pkt->hasRespData());
192        pkt->setDataFromBlock(blk->data, blkSize);
193
194        // determine if this read is from a (coherent) cache, or not
195        // by looking at the command type; we could potentially add a
196        // packet attribute such as 'FromCache' to make this check a
197        // bit cleaner
198        if (pkt->cmd == MemCmd::ReadExReq ||
199            pkt->cmd == MemCmd::ReadSharedReq ||
200            pkt->cmd == MemCmd::ReadCleanReq ||
201            pkt->cmd == MemCmd::SCUpgradeFailReq) {
202            assert(pkt->getSize() == blkSize);
203            // special handling for coherent block requests from
204            // upper-level caches
205            if (pkt->needsWritable()) {
206                // sanity check
207                assert(pkt->cmd == MemCmd::ReadExReq ||
208                       pkt->cmd == MemCmd::SCUpgradeFailReq);
209
210                // if we have a dirty copy, make sure the recipient
211                // keeps it marked dirty (in the modified state)
212                if (blk->isDirty()) {
213                    pkt->setCacheResponding();
214                }
215                // on ReadExReq we give up our copy unconditionally,
216                // even if this cache is mostly inclusive, we may want
217                // to revisit this
218                invalidateBlock(blk);
219            } else if (blk->isWritable() && !pending_downgrade &&
220                       !pkt->hasSharers() &&
221                       pkt->cmd != MemCmd::ReadCleanReq) {
222                // we can give the requester a writable copy on a read
223                // request if:
224                // - we have a writable copy at this level (& below)
225                // - we don't have a pending snoop from below
226                //   signaling another read request
227                // - no other cache above has a copy (otherwise it
228                //   would have set hasSharers flag when
229                //   snooping the packet)
230                // - the read has explicitly asked for a clean
231                //   copy of the line
232                if (blk->isDirty()) {
233                    // special considerations if we're owner:
234                    if (!deferred_response) {
235                        // respond with the line in Modified state
236                        // (cacheResponding set, hasSharers not set)
237                        pkt->setCacheResponding();
238
239                        if (clusivity == Enums::mostly_excl) {
240                            // if this cache is mostly exclusive with
241                            // respect to the cache above, drop the
242                            // block, no need to first unset the dirty
243                            // bit
244                            invalidateBlock(blk);
245                        } else {
246                            // if this cache is mostly inclusive, we
247                            // keep the block in the Exclusive state,
248                            // and pass it upwards as Modified
249                            // (writable and dirty), hence we have
250                            // multiple caches, all on the same path
251                            // towards memory, all considering the
252                            // same block writable, but only one
253                            // considering it Modified
254
255                            // we get away with multiple caches (on
256                            // the same path to memory) considering
257                            // the block writeable as we always enter
258                            // the cache hierarchy through a cache,
259                            // and first snoop upwards in all other
260                            // branches
261                            blk->status &= ~BlkDirty;
262                        }
263                    } else {
264                        // if we're responding after our own miss,
265                        // there's a window where the recipient didn't
266                        // know it was getting ownership and may not
267                        // have responded to snoops correctly, so we
268                        // have to respond with a shared line
269                        pkt->setHasSharers();
270                    }
271                }
272            } else {
273                // otherwise only respond with a shared copy
274                pkt->setHasSharers();
275            }
276        }
277    } else {
278        // Upgrade or Invalidate
279        assert(pkt->isUpgrade() || pkt->isInvalidate());
280
281        // for invalidations we could be looking at the temp block
282        // (for upgrades we always allocate)
283        invalidateBlock(blk);
284        DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (invalidation)\n",
285                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
286    }
287}
288
289/////////////////////////////////////////////////////
290//
291// Access path: requests coming in from the CPU side
292//
293/////////////////////////////////////////////////////
294
295bool
296Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
297              PacketList &writebacks)
298{
299    // sanity check
300    assert(pkt->isRequest());
301
302    chatty_assert(!(isReadOnly && pkt->isWrite()),
303                  "Should never see a write in a read-only cache %s\n",
304                  name());
305
306    DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
307            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
308
309    if (pkt->req->isUncacheable()) {
310        DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
311                pkt->req->isInstFetch() ? " (ifetch)" : "",
312                pkt->getAddr());
313
314        // flush and invalidate any existing block
315        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
316        if (old_blk && old_blk->isValid()) {
317            if (old_blk->isDirty() || writebackClean)
318                writebacks.push_back(writebackBlk(old_blk));
319            else
320                writebacks.push_back(cleanEvictBlk(old_blk));
321            tags->invalidate(old_blk);
322            old_blk->invalidate();
323        }
324
325        blk = nullptr;
326        // lookupLatency is the latency in case the request is uncacheable.
327        lat = lookupLatency;
328        return false;
329    }
330
331    ContextID id = pkt->req->hasContextId() ?
332        pkt->req->contextId() : InvalidContextID;
333    // Here lat is the value passed as parameter to accessBlock() function
334    // that can modify its value.
335    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
336
337    DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
338            pkt->req->isInstFetch() ? " (ifetch)" : "",
339            pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
340            blk ? "hit " + blk->print() : "miss");
341
342
343    if (pkt->isEviction()) {
344        // We check for presence of block in above caches before issuing
345        // Writeback or CleanEvict to write buffer. Therefore the only
346        // possible cases can be of a CleanEvict packet coming from above
347        // encountering a Writeback generated in this cache peer cache and
348        // waiting in the write buffer. Cases of upper level peer caches
349        // generating CleanEvict and Writeback or simply CleanEvict and
350        // CleanEvict almost simultaneously will be caught by snoops sent out
351        // by crossbar.
352        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
353                                                          pkt->isSecure());
354        if (wb_entry) {
355            assert(wb_entry->getNumTargets() == 1);
356            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
357            assert(wbPkt->isWriteback());
358
359            if (pkt->isCleanEviction()) {
360                // The CleanEvict and WritebackClean snoops into other
361                // peer caches of the same level while traversing the
362                // crossbar. If a copy of the block is found, the
363                // packet is deleted in the crossbar. Hence, none of
364                // the other upper level caches connected to this
365                // cache have the block, so we can clear the
366                // BLOCK_CACHED flag in the Writeback if set and
367                // discard the CleanEvict by returning true.
368                wbPkt->clearBlockCached();
369                return true;
370            } else {
371                assert(pkt->cmd == MemCmd::WritebackDirty);
372                // Dirty writeback from above trumps our clean
373                // writeback... discard here
374                // Note: markInService will remove entry from writeback buffer.
375                markInService(wb_entry);
376                delete wbPkt;
377            }
378        }
379    }
380
381    // Writeback handling is special case.  We can write the block into
382    // the cache without having a writeable copy (or any copy at all).
383    if (pkt->isWriteback()) {
384        assert(blkSize == pkt->getSize());
385
386        // we could get a clean writeback while we are having
387        // outstanding accesses to a block, do the simple thing for
388        // now and drop the clean writeback so that we do not upset
389        // any ordering/decisions about ownership already taken
390        if (pkt->cmd == MemCmd::WritebackClean &&
391            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
392            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
393                    "dropping\n", pkt->getAddr());
394            return true;
395        }
396
397        if (blk == nullptr) {
398            // need to do a replacement
399            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
400            if (blk == nullptr) {
401                // no replaceable block available: give up, fwd to next level.
402                incMissCount(pkt);
403                return false;
404            }
405            tags->insertBlock(pkt, blk);
406
407            blk->status = (BlkValid | BlkReadable);
408            if (pkt->isSecure()) {
409                blk->status |= BlkSecure;
410            }
411        }
412        // only mark the block dirty if we got a writeback command,
413        // and leave it as is for a clean writeback
414        if (pkt->cmd == MemCmd::WritebackDirty) {
415            blk->status |= BlkDirty;
416        }
417        // if the packet does not have sharers, it is passing
418        // writable, and we got the writeback in Modified or Exclusive
419        // state, if not we are in the Owned or Shared state
420        if (!pkt->hasSharers()) {
421            blk->status |= BlkWritable;
422        }
423        // nothing else to do; writeback doesn't expect response
424        assert(!pkt->needsResponse());
425        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
426        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
427        incHitCount(pkt);
428        return true;
429    } else if (pkt->cmd == MemCmd::CleanEvict) {
430        if (blk != nullptr) {
431            // Found the block in the tags, need to stop CleanEvict from
432            // propagating further down the hierarchy. Returning true will
433            // treat the CleanEvict like a satisfied write request and delete
434            // it.
435            return true;
436        }
437        // We didn't find the block here, propagate the CleanEvict further
438        // down the memory hierarchy. Returning false will treat the CleanEvict
439        // like a Writeback which could not find a replaceable block so has to
440        // go to next level.
441        return false;
442    } else if ((blk != nullptr) &&
443               (pkt->needsWritable() ? blk->isWritable() :
444                blk->isReadable())) {
445        // OK to satisfy access
446        incHitCount(pkt);
447        satisfyCpuSideRequest(pkt, blk);
448        return true;
449    }
450
451    // Can't satisfy access normally... either no block (blk == nullptr)
452    // or have block but need writable
453
454    incMissCount(pkt);
455
456    if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) {
457        // complete miss on store conditional... just give up now
458        pkt->req->setExtraData(0);
459        return true;
460    }
461
462    return false;
463}
464
465void
466Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
467{
468    while (!writebacks.empty()) {
469        PacketPtr wbPkt = writebacks.front();
470        // We use forwardLatency here because we are copying writebacks to
471        // write buffer.  Call isCachedAbove for both Writebacks and
472        // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
473        // in Writebacks and discard CleanEvicts.
474        if (isCachedAbove(wbPkt)) {
475            if (wbPkt->cmd == MemCmd::CleanEvict) {
476                // Delete CleanEvict because cached copies exist above. The
477                // packet destructor will delete the request object because
478                // this is a non-snoop request packet which does not require a
479                // response.
480                delete wbPkt;
481            } else if (wbPkt->cmd == MemCmd::WritebackClean) {
482                // clean writeback, do not send since the block is
483                // still cached above
484                assert(writebackClean);
485                delete wbPkt;
486            } else {
487                assert(wbPkt->cmd == MemCmd::WritebackDirty);
488                // Set BLOCK_CACHED flag in Writeback and send below, so that
489                // the Writeback does not reset the bit corresponding to this
490                // address in the snoop filter below.
491                wbPkt->setBlockCached();
492                allocateWriteBuffer(wbPkt, forward_time);
493            }
494        } else {
495            // If the block is not cached above, send packet below. Both
496            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
497            // reset the bit corresponding to this address in the snoop filter
498            // below.
499            allocateWriteBuffer(wbPkt, forward_time);
500        }
501        writebacks.pop_front();
502    }
503}
504
505void
506Cache::doWritebacksAtomic(PacketList& writebacks)
507{
508    while (!writebacks.empty()) {
509        PacketPtr wbPkt = writebacks.front();
510        // Call isCachedAbove for both Writebacks and CleanEvicts. If
511        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
512        // and discard CleanEvicts.
513        if (isCachedAbove(wbPkt, false)) {
514            if (wbPkt->cmd == MemCmd::WritebackDirty) {
515                // Set BLOCK_CACHED flag in Writeback and send below,
516                // so that the Writeback does not reset the bit
517                // corresponding to this address in the snoop filter
518                // below. We can discard CleanEvicts because cached
519                // copies exist above. Atomic mode isCachedAbove
520                // modifies packet to set BLOCK_CACHED flag
521                memSidePort->sendAtomic(wbPkt);
522            }
523        } else {
524            // If the block is not cached above, send packet below. Both
525            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
526            // reset the bit corresponding to this address in the snoop filter
527            // below.
528            memSidePort->sendAtomic(wbPkt);
529        }
530        writebacks.pop_front();
531        // In case of CleanEvicts, the packet destructor will delete the
532        // request object because this is a non-snoop request packet which
533        // does not require a response.
534        delete wbPkt;
535    }
536}
537
538
539void
540Cache::recvTimingSnoopResp(PacketPtr pkt)
541{
542    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
543            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
544
545    assert(pkt->isResponse());
546    assert(!system->bypassCaches());
547
548    // determine if the response is from a snoop request we created
549    // (in which case it should be in the outstandingSnoop), or if we
550    // merely forwarded someone else's snoop request
551    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
552        outstandingSnoop.end();
553
554    if (!forwardAsSnoop) {
555        // the packet came from this cache, so sink it here and do not
556        // forward it
557        assert(pkt->cmd == MemCmd::HardPFResp);
558
559        outstandingSnoop.erase(pkt->req);
560
561        DPRINTF(Cache, "Got prefetch response from above for addr "
562                "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
563        recvTimingResp(pkt);
564        return;
565    }
566
567    // forwardLatency is set here because there is a response from an
568    // upper level cache.
569    // To pay the delay that occurs if the packet comes from the bus,
570    // we charge also headerDelay.
571    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
572    // Reset the timing of the packet.
573    pkt->headerDelay = pkt->payloadDelay = 0;
574    memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
575}
576
577void
578Cache::promoteWholeLineWrites(PacketPtr pkt)
579{
580    // Cache line clearing instructions
581    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
582        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
583        pkt->cmd = MemCmd::WriteLineReq;
584        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
585    }
586}
587
588bool
589Cache::recvTimingReq(PacketPtr pkt)
590{
591    DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
592
593    assert(pkt->isRequest());
594
595    // Just forward the packet if caches are disabled.
596    if (system->bypassCaches()) {
597        // @todo This should really enqueue the packet rather
598        bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
599        assert(success);
600        return true;
601    }
602
603    promoteWholeLineWrites(pkt);
604
605    if (pkt->cacheResponding()) {
606        // a cache above us (but not where the packet came from) is
607        // responding to the request, in other words it has the line
608        // in Modified or Owned state
609        DPRINTF(Cache, "Cache above responding to %#llx (%s): "
610                "not responding\n",
611                pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
612
613        // if the packet needs the block to be writable, and the cache
614        // that has promised to respond (setting the cache responding
615        // flag) is not providing writable (it is in Owned rather than
616        // the Modified state), we know that there may be other Shared
617        // copies in the system; go out and invalidate them all
618        assert(pkt->needsWritable() && !pkt->responderHadWritable());
619
620        // an upstream cache that had the line in Owned state
621        // (dirty, but not writable), is responding and thus
622        // transferring the dirty line from one branch of the
623        // cache hierarchy to another
624
625        // send out an express snoop and invalidate all other
626        // copies (snooping a packet that needs writable is the
627        // same as an invalidation), thus turning the Owned line
628        // into a Modified line, note that we don't invalidate the
629        // block in the current cache or any other cache on the
630        // path to memory
631
632        // create a downstream express snoop with cleared packet
633        // flags, there is no need to allocate any data as the
634        // packet is merely used to co-ordinate state transitions
635        Packet *snoop_pkt = new Packet(pkt, true, false);
636
637        // also reset the bus time that the original packet has
638        // not yet paid for
639        snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
640
641        // make this an instantaneous express snoop, and let the
642        // other caches in the system know that the another cache
643        // is responding, because we have found the authorative
644        // copy (Modified or Owned) that will supply the right
645        // data
646        snoop_pkt->setExpressSnoop();
647        snoop_pkt->setCacheResponding();
648
649        // this express snoop travels towards the memory, and at
650        // every crossbar it is snooped upwards thus reaching
651        // every cache in the system
652        bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
653        // express snoops always succeed
654        assert(success);
655
656        // main memory will delete the snoop packet
657
658        // queue for deletion, as opposed to immediate deletion, as
659        // the sending cache is still relying on the packet
660        pendingDelete.reset(pkt);
661
662        // no need to take any further action in this particular cache
663        // as an upstram cache has already committed to responding,
664        // and we have already sent out any express snoops in the
665        // section above to ensure all other copies in the system are
666        // invalidated
667        return true;
668    }
669
670    // anything that is merely forwarded pays for the forward latency and
671    // the delay provided by the crossbar
672    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
673
674    // We use lookupLatency here because it is used to specify the latency
675    // to access.
676    Cycles lat = lookupLatency;
677    CacheBlk *blk = nullptr;
678    bool satisfied = false;
679    {
680        PacketList writebacks;
681        // Note that lat is passed by reference here. The function
682        // access() calls accessBlock() which can modify lat value.
683        satisfied = access(pkt, blk, lat, writebacks);
684
685        // copy writebacks to write buffer here to ensure they logically
686        // proceed anything happening below
687        doWritebacks(writebacks, forward_time);
688    }
689
690    // Here we charge the headerDelay that takes into account the latencies
691    // of the bus, if the packet comes from it.
692    // The latency charged it is just lat that is the value of lookupLatency
693    // modified by access() function, or if not just lookupLatency.
694    // In case of a hit we are neglecting response latency.
695    // In case of a miss we are neglecting forward latency.
696    Tick request_time = clockEdge(lat) + pkt->headerDelay;
697    // Here we reset the timing of the packet.
698    pkt->headerDelay = pkt->payloadDelay = 0;
699
700    // track time of availability of next prefetch, if any
701    Tick next_pf_time = MaxTick;
702
703    bool needsResponse = pkt->needsResponse();
704
705    if (satisfied) {
706        // should never be satisfying an uncacheable access as we
707        // flush and invalidate any existing block as part of the
708        // lookup
709        assert(!pkt->req->isUncacheable());
710
711        // hit (for all other request types)
712
713        if (prefetcher && (prefetchOnAccess ||
714                           (blk && blk->wasPrefetched()))) {
715            if (blk)
716                blk->status &= ~BlkHWPrefetched;
717
718            // Don't notify on SWPrefetch
719            if (!pkt->cmd.isSWPrefetch())
720                next_pf_time = prefetcher->notify(pkt);
721        }
722
723        if (needsResponse) {
724            pkt->makeTimingResponse();
725            // @todo: Make someone pay for this
726            pkt->headerDelay = pkt->payloadDelay = 0;
727
728            // In this case we are considering request_time that takes
729            // into account the delay of the xbar, if any, and just
730            // lat, neglecting responseLatency, modelling hit latency
731            // just as lookupLatency or or the value of lat overriden
732            // by access(), that calls accessBlock() function.
733            cpuSidePort->schedTimingResp(pkt, request_time, true);
734        } else {
735            DPRINTF(Cache, "%s satisfied %s addr %#llx, no response needed\n",
736                    __func__, pkt->cmdString(), pkt->getAddr(),
737                    pkt->getSize());
738
739            // queue the packet for deletion, as the sending cache is
740            // still relying on it; if the block is found in access(),
741            // CleanEvict and Writeback messages will be deleted
742            // here as well
743            pendingDelete.reset(pkt);
744        }
745    } else {
746        // miss
747
748        Addr blk_addr = blockAlign(pkt->getAddr());
749
750        // ignore any existing MSHR if we are dealing with an
751        // uncacheable request
752        MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
753            mshrQueue.findMatch(blk_addr, pkt->isSecure());
754
755        // Software prefetch handling:
756        // To keep the core from waiting on data it won't look at
757        // anyway, send back a response with dummy data. Miss handling
758        // will continue asynchronously. Unfortunately, the core will
759        // insist upon freeing original Packet/Request, so we have to
760        // create a new pair with a different lifecycle. Note that this
761        // processing happens before any MSHR munging on the behalf of
762        // this request because this new Request will be the one stored
763        // into the MSHRs, not the original.
764        if (pkt->cmd.isSWPrefetch()) {
765            assert(needsResponse);
766            assert(pkt->req->hasPaddr());
767            assert(!pkt->req->isUncacheable());
768
769            // There's no reason to add a prefetch as an additional target
770            // to an existing MSHR. If an outstanding request is already
771            // in progress, there is nothing for the prefetch to do.
772            // If this is the case, we don't even create a request at all.
773            PacketPtr pf = nullptr;
774
775            if (!mshr) {
776                // copy the request and create a new SoftPFReq packet
777                RequestPtr req = new Request(pkt->req->getPaddr(),
778                                             pkt->req->getSize(),
779                                             pkt->req->getFlags(),
780                                             pkt->req->masterId());
781                pf = new Packet(req, pkt->cmd);
782                pf->allocate();
783                assert(pf->getAddr() == pkt->getAddr());
784                assert(pf->getSize() == pkt->getSize());
785            }
786
787            pkt->makeTimingResponse();
788
789            // request_time is used here, taking into account lat and the delay
790            // charged if the packet comes from the xbar.
791            cpuSidePort->schedTimingResp(pkt, request_time, true);
792
793            // If an outstanding request is in progress (we found an
794            // MSHR) this is set to null
795            pkt = pf;
796        }
797
798        if (mshr) {
799            /// MSHR hit
800            /// @note writebacks will be checked in getNextMSHR()
801            /// for any conflicting requests to the same block
802
803            //@todo remove hw_pf here
804
805            // Coalesce unless it was a software prefetch (see above).
806            if (pkt) {
807                assert(!pkt->isWriteback());
808                // CleanEvicts corresponding to blocks which have
809                // outstanding requests in MSHRs are simply sunk here
810                if (pkt->cmd == MemCmd::CleanEvict) {
811                    pendingDelete.reset(pkt);
812                } else {
813                    DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx "
814                            "size %d\n", __func__, pkt->cmdString(),
815                            pkt->getAddr(), pkt->getSize());
816
817                    assert(pkt->req->masterId() < system->maxMasters());
818                    mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
819                    // We use forward_time here because it is the same
820                    // considering new targets. We have multiple
821                    // requests for the same address here. It
822                    // specifies the latency to allocate an internal
823                    // buffer and to schedule an event to the queued
824                    // port and also takes into account the additional
825                    // delay of the xbar.
826                    mshr->allocateTarget(pkt, forward_time, order++,
827                                         allocOnFill(pkt->cmd));
828                    if (mshr->getNumTargets() == numTarget) {
829                        noTargetMSHR = mshr;
830                        setBlocked(Blocked_NoTargets);
831                        // need to be careful with this... if this mshr isn't
832                        // ready yet (i.e. time > curTick()), we don't want to
833                        // move it ahead of mshrs that are ready
834                        // mshrQueue.moveToFront(mshr);
835                    }
836                }
837                // We should call the prefetcher reguardless if the request is
838                // satisfied or not, reguardless if the request is in the MSHR
839                // or not.  The request could be a ReadReq hit, but still not
840                // satisfied (potentially because of a prior write to the same
841                // cache line.  So, even when not satisfied, tehre is an MSHR
842                // already allocated for this, we need to let the prefetcher
843                // know about the request
844                if (prefetcher) {
845                    // Don't notify on SWPrefetch
846                    if (!pkt->cmd.isSWPrefetch())
847                        next_pf_time = prefetcher->notify(pkt);
848                }
849            }
850        } else {
851            // no MSHR
852            assert(pkt->req->masterId() < system->maxMasters());
853            if (pkt->req->isUncacheable()) {
854                mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
855            } else {
856                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
857            }
858
859            if (pkt->isEviction() ||
860                (pkt->req->isUncacheable() && pkt->isWrite())) {
861                // We use forward_time here because there is an
862                // uncached memory write, forwarded to WriteBuffer.
863                allocateWriteBuffer(pkt, forward_time);
864            } else {
865                if (blk && blk->isValid()) {
866                    // should have flushed and have no valid block
867                    assert(!pkt->req->isUncacheable());
868
869                    // If we have a write miss to a valid block, we
870                    // need to mark the block non-readable.  Otherwise
871                    // if we allow reads while there's an outstanding
872                    // write miss, the read could return stale data
873                    // out of the cache block... a more aggressive
874                    // system could detect the overlap (if any) and
875                    // forward data out of the MSHRs, but we don't do
876                    // that yet.  Note that we do need to leave the
877                    // block valid so that it stays in the cache, in
878                    // case we get an upgrade response (and hence no
879                    // new data) when the write miss completes.
880                    // As long as CPUs do proper store/load forwarding
881                    // internally, and have a sufficiently weak memory
882                    // model, this is probably unnecessary, but at some
883                    // point it must have seemed like we needed it...
884                    assert(pkt->needsWritable());
885                    assert(!blk->isWritable());
886                    blk->status &= ~BlkReadable;
887                }
888                // Here we are using forward_time, modelling the latency of
889                // a miss (outbound) just as forwardLatency, neglecting the
890                // lookupLatency component.
891                allocateMissBuffer(pkt, forward_time);
892            }
893
894            if (prefetcher) {
895                // Don't notify on SWPrefetch
896                if (!pkt->cmd.isSWPrefetch())
897                    next_pf_time = prefetcher->notify(pkt);
898            }
899        }
900    }
901
902    if (next_pf_time != MaxTick)
903        schedMemSideSendEvent(next_pf_time);
904
905    return true;
906}
907
908PacketPtr
909Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
910                        bool needsWritable) const
911{
912    // should never see evictions here
913    assert(!cpu_pkt->isEviction());
914
915    bool blkValid = blk && blk->isValid();
916
917    if (cpu_pkt->req->isUncacheable() ||
918        (!blkValid && cpu_pkt->isUpgrade())) {
919        // uncacheable requests and upgrades from upper-level caches
920        // that missed completely just go through as is
921        return nullptr;
922    }
923
924    assert(cpu_pkt->needsResponse());
925
926    MemCmd cmd;
927    // @TODO make useUpgrades a parameter.
928    // Note that ownership protocols require upgrade, otherwise a
929    // write miss on a shared owned block will generate a ReadExcl,
930    // which will clobber the owned copy.
931    const bool useUpgrades = true;
932    if (blkValid && useUpgrades) {
933        // only reason to be here is that blk is read only and we need
934        // it to be writable
935        assert(needsWritable);
936        assert(!blk->isWritable());
937        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
938    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
939               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
940        // Even though this SC will fail, we still need to send out the
941        // request and get the data to supply it to other snoopers in the case
942        // where the determination the StoreCond fails is delayed due to
943        // all caches not being on the same local bus.
944        cmd = MemCmd::SCUpgradeFailReq;
945    } else if (cpu_pkt->cmd == MemCmd::WriteLineReq ||
946               cpu_pkt->cmd == MemCmd::InvalidateReq) {
947        // forward as invalidate to all other caches, this gives us
948        // the line in Exclusive state, and invalidates all other
949        // copies
950        cmd = MemCmd::InvalidateReq;
951    } else {
952        // block is invalid
953        cmd = needsWritable ? MemCmd::ReadExReq :
954            (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
955    }
956    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
957
958    // if there are upstream caches that have already marked the
959    // packet as having sharers (not passing writable), pass that info
960    // downstream
961    if (cpu_pkt->hasSharers()) {
962        // note that cpu_pkt may have spent a considerable time in the
963        // MSHR queue and that the information could possibly be out
964        // of date, however, there is no harm in conservatively
965        // assuming the block has sharers
966        pkt->setHasSharers();
967        DPRINTF(Cache, "%s passing hasSharers from %s to %s addr %#llx "
968                "size %d\n",
969                __func__, cpu_pkt->cmdString(), pkt->cmdString(),
970                pkt->getAddr(), pkt->getSize());
971    }
972
973    // the packet should be block aligned
974    assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
975
976    pkt->allocate();
977    DPRINTF(Cache, "%s created %s from %s for  addr %#llx size %d\n",
978            __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
979            pkt->getSize());
980    return pkt;
981}
982
983
984Tick
985Cache::recvAtomic(PacketPtr pkt)
986{
987    // We are in atomic mode so we pay just for lookupLatency here.
988    Cycles lat = lookupLatency;
989
990    // Forward the request if the system is in cache bypass mode.
991    if (system->bypassCaches())
992        return ticksToCycles(memSidePort->sendAtomic(pkt));
993
994    promoteWholeLineWrites(pkt);
995
996    // follow the same flow as in recvTimingReq, and check if a cache
997    // above us is responding
998    if (pkt->cacheResponding()) {
999        DPRINTF(Cache, "Cache above responding to %#llx (%s): "
1000                "not responding\n",
1001                pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
1002
1003        // if a cache is responding, and it had the line in Owned
1004        // rather than Modified state, we need to invalidate any
1005        // copies that are not on the same path to memory
1006        assert(pkt->needsWritable() && !pkt->responderHadWritable());
1007        lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1008
1009        return lat * clockPeriod();
1010    }
1011
1012    // should assert here that there are no outstanding MSHRs or
1013    // writebacks... that would mean that someone used an atomic
1014    // access in timing mode
1015
1016    CacheBlk *blk = nullptr;
1017    PacketList writebacks;
1018    bool satisfied = access(pkt, blk, lat, writebacks);
1019
1020    // handle writebacks resulting from the access here to ensure they
1021    // logically proceed anything happening below
1022    doWritebacksAtomic(writebacks);
1023
1024    if (!satisfied) {
1025        // MISS
1026
1027        // deal with the packets that go through the write path of
1028        // the cache, i.e. any evictions and uncacheable writes
1029        if (pkt->isEviction() ||
1030            (pkt->req->isUncacheable() && pkt->isWrite())) {
1031            lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1032            return lat * clockPeriod();
1033        }
1034        // only misses left
1035
1036        PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
1037
1038        bool is_forward = (bus_pkt == nullptr);
1039
1040        if (is_forward) {
1041            // just forwarding the same request to the next level
1042            // no local cache operation involved
1043            bus_pkt = pkt;
1044        }
1045
1046        DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
1047                bus_pkt->cmdString(), bus_pkt->getAddr(),
1048                bus_pkt->isSecure() ? "s" : "ns");
1049
1050#if TRACING_ON
1051        CacheBlk::State old_state = blk ? blk->status : 0;
1052#endif
1053
1054        lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1055
1056        bool is_invalidate = bus_pkt->isInvalidate();
1057
1058        // We are now dealing with the response handling
1059        DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in "
1060                "state %i\n", bus_pkt->cmdString(), bus_pkt->getAddr(),
1061                bus_pkt->isSecure() ? "s" : "ns",
1062                old_state);
1063
1064        // If packet was a forward, the response (if any) is already
1065        // in place in the bus_pkt == pkt structure, so we don't need
1066        // to do anything.  Otherwise, use the separate bus_pkt to
1067        // generate response to pkt and then delete it.
1068        if (!is_forward) {
1069            if (pkt->needsResponse()) {
1070                assert(bus_pkt->isResponse());
1071                if (bus_pkt->isError()) {
1072                    pkt->makeAtomicResponse();
1073                    pkt->copyError(bus_pkt);
1074                } else if (pkt->cmd == MemCmd::WriteLineReq) {
1075                    // note the use of pkt, not bus_pkt here.
1076
1077                    // write-line request to the cache that promoted
1078                    // the write to a whole line
1079                    blk = handleFill(pkt, blk, writebacks,
1080                                     allocOnFill(pkt->cmd));
1081                    assert(blk != NULL);
1082                    is_invalidate = false;
1083                    satisfyCpuSideRequest(pkt, blk);
1084                } else if (bus_pkt->isRead() ||
1085                           bus_pkt->cmd == MemCmd::UpgradeResp) {
1086                    // we're updating cache state to allow us to
1087                    // satisfy the upstream request from the cache
1088                    blk = handleFill(bus_pkt, blk, writebacks,
1089                                     allocOnFill(pkt->cmd));
1090                    satisfyCpuSideRequest(pkt, blk);
1091                } else {
1092                    // we're satisfying the upstream request without
1093                    // modifying cache state, e.g., a write-through
1094                    pkt->makeAtomicResponse();
1095                }
1096            }
1097            delete bus_pkt;
1098        }
1099
1100        if (is_invalidate && blk && blk->isValid()) {
1101            invalidateBlock(blk);
1102        }
1103    }
1104
1105    // Note that we don't invoke the prefetcher at all in atomic mode.
1106    // It's not clear how to do it properly, particularly for
1107    // prefetchers that aggressively generate prefetch candidates and
1108    // rely on bandwidth contention to throttle them; these will tend
1109    // to pollute the cache in atomic mode since there is no bandwidth
1110    // contention.  If we ever do want to enable prefetching in atomic
1111    // mode, though, this is the place to do it... see timingAccess()
1112    // for an example (though we'd want to issue the prefetch(es)
1113    // immediately rather than calling requestMemSideBus() as we do
1114    // there).
1115
1116    // do any writebacks resulting from the response handling
1117    doWritebacksAtomic(writebacks);
1118
1119    // if we used temp block, check to see if its valid and if so
1120    // clear it out, but only do so after the call to recvAtomic is
1121    // finished so that any downstream observers (such as a snoop
1122    // filter), first see the fill, and only then see the eviction
1123    if (blk == tempBlock && tempBlock->isValid()) {
1124        // the atomic CPU calls recvAtomic for fetch and load/store
1125        // sequentuially, and we may already have a tempBlock
1126        // writeback from the fetch that we have not yet sent
1127        if (tempBlockWriteback) {
1128            // if that is the case, write the prevoius one back, and
1129            // do not schedule any new event
1130            writebackTempBlockAtomic();
1131        } else {
1132            // the writeback/clean eviction happens after the call to
1133            // recvAtomic has finished (but before any successive
1134            // calls), so that the response handling from the fill is
1135            // allowed to happen first
1136            schedule(writebackTempBlockAtomicEvent, curTick());
1137        }
1138
1139        tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1140            writebackBlk(blk) : cleanEvictBlk(blk);
1141        blk->invalidate();
1142    }
1143
1144    if (pkt->needsResponse()) {
1145        pkt->makeAtomicResponse();
1146    }
1147
1148    return lat * clockPeriod();
1149}
1150
1151
1152void
1153Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1154{
1155    if (system->bypassCaches()) {
1156        // Packets from the memory side are snoop request and
1157        // shouldn't happen in bypass mode.
1158        assert(fromCpuSide);
1159
1160        // The cache should be flushed if we are in cache bypass mode,
1161        // so we don't need to check if we need to update anything.
1162        memSidePort->sendFunctional(pkt);
1163        return;
1164    }
1165
1166    Addr blk_addr = blockAlign(pkt->getAddr());
1167    bool is_secure = pkt->isSecure();
1168    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1169    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1170
1171    pkt->pushLabel(name());
1172
1173    CacheBlkPrintWrapper cbpw(blk);
1174
1175    // Note that just because an L2/L3 has valid data doesn't mean an
1176    // L1 doesn't have a more up-to-date modified copy that still
1177    // needs to be found.  As a result we always update the request if
1178    // we have it, but only declare it satisfied if we are the owner.
1179
1180    // see if we have data at all (owned or otherwise)
1181    bool have_data = blk && blk->isValid()
1182        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1183                                blk->data);
1184
1185    // data we have is dirty if marked as such or if we have an
1186    // in-service MSHR that is pending a modified line
1187    bool have_dirty =
1188        have_data && (blk->isDirty() ||
1189                      (mshr && mshr->inService && mshr->isPendingModified()));
1190
1191    bool done = have_dirty
1192        || cpuSidePort->checkFunctional(pkt)
1193        || mshrQueue.checkFunctional(pkt, blk_addr)
1194        || writeBuffer.checkFunctional(pkt, blk_addr)
1195        || memSidePort->checkFunctional(pkt);
1196
1197    DPRINTF(CacheVerbose, "functional %s %#llx (%s) %s%s%s\n",
1198            pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1199            (blk && blk->isValid()) ? "valid " : "",
1200            have_data ? "data " : "", done ? "done " : "");
1201
1202    // We're leaving the cache, so pop cache->name() label
1203    pkt->popLabel();
1204
1205    if (done) {
1206        pkt->makeResponse();
1207    } else {
1208        // if it came as a request from the CPU side then make sure it
1209        // continues towards the memory side
1210        if (fromCpuSide) {
1211            memSidePort->sendFunctional(pkt);
1212        } else if (cpuSidePort->isSnooping()) {
1213            // if it came from the memory side, it must be a snoop request
1214            // and we should only forward it if we are forwarding snoops
1215            cpuSidePort->sendFunctionalSnoop(pkt);
1216        }
1217    }
1218}
1219
1220
1221/////////////////////////////////////////////////////
1222//
1223// Response handling: responses from the memory side
1224//
1225/////////////////////////////////////////////////////
1226
1227
1228void
1229Cache::handleUncacheableWriteResp(PacketPtr pkt)
1230{
1231    Tick completion_time = clockEdge(responseLatency) +
1232        pkt->headerDelay + pkt->payloadDelay;
1233
1234    // Reset the bus additional time as it is now accounted for
1235    pkt->headerDelay = pkt->payloadDelay = 0;
1236
1237    cpuSidePort->schedTimingResp(pkt, completion_time, true);
1238}
1239
1240void
1241Cache::recvTimingResp(PacketPtr pkt)
1242{
1243    assert(pkt->isResponse());
1244
1245    // all header delay should be paid for by the crossbar, unless
1246    // this is a prefetch response from above
1247    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1248             "%s saw a non-zero packet delay\n", name());
1249
1250    bool is_error = pkt->isError();
1251
1252    if (is_error) {
1253        DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1254                "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1255                pkt->cmdString());
1256    }
1257
1258    DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1259            pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1260            pkt->isSecure() ? "s" : "ns");
1261
1262    // if this is a write, we should be looking at an uncacheable
1263    // write
1264    if (pkt->isWrite()) {
1265        assert(pkt->req->isUncacheable());
1266        handleUncacheableWriteResp(pkt);
1267        return;
1268    }
1269
1270    // we have dealt with any (uncacheable) writes above, from here on
1271    // we know we are dealing with an MSHR due to a miss or a prefetch
1272    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
1273    assert(mshr);
1274
1275    if (mshr == noTargetMSHR) {
1276        // we always clear at least one target
1277        clearBlocked(Blocked_NoTargets);
1278        noTargetMSHR = nullptr;
1279    }
1280
1281    // Initial target is used just for stats
1282    MSHR::Target *initial_tgt = mshr->getTarget();
1283    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1284    Tick miss_latency = curTick() - initial_tgt->recvTime;
1285
1286    if (pkt->req->isUncacheable()) {
1287        assert(pkt->req->masterId() < system->maxMasters());
1288        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1289            miss_latency;
1290    } else {
1291        assert(pkt->req->masterId() < system->maxMasters());
1292        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1293            miss_latency;
1294    }
1295
1296    bool wasFull = mshrQueue.isFull();
1297
1298    PacketList writebacks;
1299
1300    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1301
1302    // upgrade deferred targets if the response has no sharers, and is
1303    // thus passing writable
1304    if (!pkt->hasSharers()) {
1305        mshr->promoteWritable();
1306    }
1307
1308    bool is_fill = !mshr->isForward &&
1309        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1310
1311    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1312
1313    if (is_fill && !is_error) {
1314        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1315                pkt->getAddr());
1316
1317        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill);
1318        assert(blk != nullptr);
1319    }
1320
1321    // allow invalidation responses originating from write-line
1322    // requests to be discarded
1323    bool is_invalidate = pkt->isInvalidate();
1324
1325    // First offset for critical word first calculations
1326    int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1327
1328    while (mshr->hasTargets()) {
1329        MSHR::Target *target = mshr->getTarget();
1330        Packet *tgt_pkt = target->pkt;
1331
1332        switch (target->source) {
1333          case MSHR::Target::FromCPU:
1334            Tick completion_time;
1335            // Here we charge on completion_time the delay of the xbar if the
1336            // packet comes from it, charged on headerDelay.
1337            completion_time = pkt->headerDelay;
1338
1339            // Software prefetch handling for cache closest to core
1340            if (tgt_pkt->cmd.isSWPrefetch()) {
1341                // a software prefetch would have already been ack'd
1342                // immediately with dummy data so the core would be able to
1343                // retire it. This request completes right here, so we
1344                // deallocate it.
1345                delete tgt_pkt->req;
1346                delete tgt_pkt;
1347                break; // skip response
1348            }
1349
1350            // unlike the other packet flows, where data is found in other
1351            // caches or memory and brought back, write-line requests always
1352            // have the data right away, so the above check for "is fill?"
1353            // cannot actually be determined until examining the stored MSHR
1354            // state. We "catch up" with that logic here, which is duplicated
1355            // from above.
1356            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1357                assert(!is_error);
1358                // we got the block in a writable state, so promote
1359                // any deferred targets if possible
1360                mshr->promoteWritable();
1361                // NB: we use the original packet here and not the response!
1362                blk = handleFill(tgt_pkt, blk, writebacks, mshr->allocOnFill);
1363                assert(blk != nullptr);
1364
1365                // treat as a fill, and discard the invalidation
1366                // response
1367                is_fill = true;
1368                is_invalidate = false;
1369            }
1370
1371            if (is_fill) {
1372                satisfyCpuSideRequest(tgt_pkt, blk,
1373                                      true, mshr->hasPostDowngrade());
1374
1375                // How many bytes past the first request is this one
1376                int transfer_offset =
1377                    tgt_pkt->getOffset(blkSize) - initial_offset;
1378                if (transfer_offset < 0) {
1379                    transfer_offset += blkSize;
1380                }
1381
1382                // If not critical word (offset) return payloadDelay.
1383                // responseLatency is the latency of the return path
1384                // from lower level caches/memory to an upper level cache or
1385                // the core.
1386                completion_time += clockEdge(responseLatency) +
1387                    (transfer_offset ? pkt->payloadDelay : 0);
1388
1389                assert(!tgt_pkt->req->isUncacheable());
1390
1391                assert(tgt_pkt->req->masterId() < system->maxMasters());
1392                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1393                    completion_time - target->recvTime;
1394            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1395                // failed StoreCond upgrade
1396                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1397                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1398                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1399                // responseLatency is the latency of the return path
1400                // from lower level caches/memory to an upper level cache or
1401                // the core.
1402                completion_time += clockEdge(responseLatency) +
1403                    pkt->payloadDelay;
1404                tgt_pkt->req->setExtraData(0);
1405            } else {
1406                // not a cache fill, just forwarding response
1407                // responseLatency is the latency of the return path
1408                // from lower level cahces/memory to the core.
1409                completion_time += clockEdge(responseLatency) +
1410                    pkt->payloadDelay;
1411                if (pkt->isRead() && !is_error) {
1412                    // sanity check
1413                    assert(pkt->getAddr() == tgt_pkt->getAddr());
1414                    assert(pkt->getSize() >= tgt_pkt->getSize());
1415
1416                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1417                }
1418            }
1419            tgt_pkt->makeTimingResponse();
1420            // if this packet is an error copy that to the new packet
1421            if (is_error)
1422                tgt_pkt->copyError(pkt);
1423            if (tgt_pkt->cmd == MemCmd::ReadResp &&
1424                (is_invalidate || mshr->hasPostInvalidate())) {
1425                // If intermediate cache got ReadRespWithInvalidate,
1426                // propagate that.  Response should not have
1427                // isInvalidate() set otherwise.
1428                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1429                DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1430                        __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1431            }
1432            // Reset the bus additional time as it is now accounted for
1433            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1434            cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1435            break;
1436
1437          case MSHR::Target::FromPrefetcher:
1438            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1439            if (blk)
1440                blk->status |= BlkHWPrefetched;
1441            delete tgt_pkt->req;
1442            delete tgt_pkt;
1443            break;
1444
1445          case MSHR::Target::FromSnoop:
1446            // I don't believe that a snoop can be in an error state
1447            assert(!is_error);
1448            // response to snoop request
1449            DPRINTF(Cache, "processing deferred snoop...\n");
1450            assert(!(is_invalidate && !mshr->hasPostInvalidate()));
1451            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1452            break;
1453
1454          default:
1455            panic("Illegal target->source enum %d\n", target->source);
1456        }
1457
1458        mshr->popTarget();
1459    }
1460
1461    if (blk && blk->isValid()) {
1462        // an invalidate response stemming from a write line request
1463        // should not invalidate the block, so check if the
1464        // invalidation should be discarded
1465        if (is_invalidate || mshr->hasPostInvalidate()) {
1466            invalidateBlock(blk);
1467        } else if (mshr->hasPostDowngrade()) {
1468            blk->status &= ~BlkWritable;
1469        }
1470    }
1471
1472    if (mshr->promoteDeferredTargets()) {
1473        // avoid later read getting stale data while write miss is
1474        // outstanding.. see comment in timingAccess()
1475        if (blk) {
1476            blk->status &= ~BlkReadable;
1477        }
1478        mshrQueue.markPending(mshr);
1479        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1480    } else {
1481        mshrQueue.deallocate(mshr);
1482        if (wasFull && !mshrQueue.isFull()) {
1483            clearBlocked(Blocked_NoMSHRs);
1484        }
1485
1486        // Request the bus for a prefetch if this deallocation freed enough
1487        // MSHRs for a prefetch to take place
1488        if (prefetcher && mshrQueue.canPrefetch()) {
1489            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1490                                         clockEdge());
1491            if (next_pf_time != MaxTick)
1492                schedMemSideSendEvent(next_pf_time);
1493        }
1494    }
1495    // reset the xbar additional timinig  as it is now accounted for
1496    pkt->headerDelay = pkt->payloadDelay = 0;
1497
1498    // copy writebacks to write buffer
1499    doWritebacks(writebacks, forward_time);
1500
1501    // if we used temp block, check to see if its valid and then clear it out
1502    if (blk == tempBlock && tempBlock->isValid()) {
1503        // We use forwardLatency here because we are copying
1504        // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1505        // allocate an internal buffer and to schedule an event to the
1506        // queued port.
1507        if (blk->isDirty() || writebackClean) {
1508            PacketPtr wbPkt = writebackBlk(blk);
1509            allocateWriteBuffer(wbPkt, forward_time);
1510            // Set BLOCK_CACHED flag if cached above.
1511            if (isCachedAbove(wbPkt))
1512                wbPkt->setBlockCached();
1513        } else {
1514            PacketPtr wcPkt = cleanEvictBlk(blk);
1515            // Check to see if block is cached above. If not allocate
1516            // write buffer
1517            if (isCachedAbove(wcPkt))
1518                delete wcPkt;
1519            else
1520                allocateWriteBuffer(wcPkt, forward_time);
1521        }
1522        blk->invalidate();
1523    }
1524
1525    DPRINTF(CacheVerbose, "Leaving %s with %s for addr %#llx\n", __func__,
1526            pkt->cmdString(), pkt->getAddr());
1527    delete pkt;
1528}
1529
1530PacketPtr
1531Cache::writebackBlk(CacheBlk *blk)
1532{
1533    chatty_assert(!isReadOnly || writebackClean,
1534                  "Writeback from read-only cache");
1535    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1536
1537    writebacks[Request::wbMasterId]++;
1538
1539    Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1540                               blkSize, 0, Request::wbMasterId);
1541    if (blk->isSecure())
1542        req->setFlags(Request::SECURE);
1543
1544    req->taskId(blk->task_id);
1545    blk->task_id= ContextSwitchTaskId::Unknown;
1546    blk->tickInserted = curTick();
1547
1548    PacketPtr pkt =
1549        new Packet(req, blk->isDirty() ?
1550                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1551
1552    DPRINTF(Cache, "Create Writeback %#llx writable: %d, dirty: %d\n",
1553            pkt->getAddr(), blk->isWritable(), blk->isDirty());
1554
1555    if (blk->isWritable()) {
1556        // not asserting shared means we pass the block in modified
1557        // state, mark our own block non-writeable
1558        blk->status &= ~BlkWritable;
1559    } else {
1560        // we are in the Owned state, tell the receiver
1561        pkt->setHasSharers();
1562    }
1563
1564    // make sure the block is not marked dirty
1565    blk->status &= ~BlkDirty;
1566
1567    pkt->allocate();
1568    std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1569
1570    return pkt;
1571}
1572
1573PacketPtr
1574Cache::cleanEvictBlk(CacheBlk *blk)
1575{
1576    assert(!writebackClean);
1577    assert(blk && blk->isValid() && !blk->isDirty());
1578    // Creating a zero sized write, a message to the snoop filter
1579    Request *req =
1580        new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1581                    Request::wbMasterId);
1582    if (blk->isSecure())
1583        req->setFlags(Request::SECURE);
1584
1585    req->taskId(blk->task_id);
1586    blk->task_id = ContextSwitchTaskId::Unknown;
1587    blk->tickInserted = curTick();
1588
1589    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1590    pkt->allocate();
1591    DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1592            pkt->req->isInstFetch() ? " (ifetch)" : "",
1593            pkt->getAddr());
1594
1595    return pkt;
1596}
1597
1598void
1599Cache::memWriteback()
1600{
1601    CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1602    tags->forEachBlk(visitor);
1603}
1604
1605void
1606Cache::memInvalidate()
1607{
1608    CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1609    tags->forEachBlk(visitor);
1610}
1611
1612bool
1613Cache::isDirty() const
1614{
1615    CacheBlkIsDirtyVisitor visitor;
1616    tags->forEachBlk(visitor);
1617
1618    return visitor.isDirty();
1619}
1620
1621bool
1622Cache::writebackVisitor(CacheBlk &blk)
1623{
1624    if (blk.isDirty()) {
1625        assert(blk.isValid());
1626
1627        Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1628                        blkSize, 0, Request::funcMasterId);
1629        request.taskId(blk.task_id);
1630
1631        Packet packet(&request, MemCmd::WriteReq);
1632        packet.dataStatic(blk.data);
1633
1634        memSidePort->sendFunctional(&packet);
1635
1636        blk.status &= ~BlkDirty;
1637    }
1638
1639    return true;
1640}
1641
1642bool
1643Cache::invalidateVisitor(CacheBlk &blk)
1644{
1645
1646    if (blk.isDirty())
1647        warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1648
1649    if (blk.isValid()) {
1650        assert(!blk.isDirty());
1651        tags->invalidate(&blk);
1652        blk.invalidate();
1653    }
1654
1655    return true;
1656}
1657
1658CacheBlk*
1659Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1660{
1661    CacheBlk *blk = tags->findVictim(addr);
1662
1663    // It is valid to return nullptr if there is no victim
1664    if (!blk)
1665        return nullptr;
1666
1667    if (blk->isValid()) {
1668        Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1669        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1670        if (repl_mshr) {
1671            // must be an outstanding upgrade request
1672            // on a block we're about to replace...
1673            assert(!blk->isWritable() || blk->isDirty());
1674            assert(repl_mshr->needsWritable());
1675            // too hard to replace block with transient state
1676            // allocation failed, block not inserted
1677            return nullptr;
1678        } else {
1679            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1680                    "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
1681                    addr, is_secure ? "s" : "ns",
1682                    blk->isDirty() ? "writeback" : "clean");
1683
1684            if (blk->wasPrefetched()) {
1685                unusedPrefetches++;
1686            }
1687            // Will send up Writeback/CleanEvict snoops via isCachedAbove
1688            // when pushing this writeback list into the write buffer.
1689            if (blk->isDirty() || writebackClean) {
1690                // Save writeback packet for handling by caller
1691                writebacks.push_back(writebackBlk(blk));
1692            } else {
1693                writebacks.push_back(cleanEvictBlk(blk));
1694            }
1695        }
1696    }
1697
1698    return blk;
1699}
1700
1701void
1702Cache::invalidateBlock(CacheBlk *blk)
1703{
1704    if (blk != tempBlock)
1705        tags->invalidate(blk);
1706    blk->invalidate();
1707}
1708
1709// Note that the reason we return a list of writebacks rather than
1710// inserting them directly in the write buffer is that this function
1711// is called by both atomic and timing-mode accesses, and in atomic
1712// mode we don't mess with the write buffer (we just perform the
1713// writebacks atomically once the original request is complete).
1714CacheBlk*
1715Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1716                  bool allocate)
1717{
1718    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1719    Addr addr = pkt->getAddr();
1720    bool is_secure = pkt->isSecure();
1721#if TRACING_ON
1722    CacheBlk::State old_state = blk ? blk->status : 0;
1723#endif
1724
1725    // When handling a fill, we should have no writes to this line.
1726    assert(addr == blockAlign(addr));
1727    assert(!writeBuffer.findMatch(addr, is_secure));
1728
1729    if (blk == nullptr) {
1730        // better have read new data...
1731        assert(pkt->hasData());
1732
1733        // only read responses and write-line requests have data;
1734        // note that we don't write the data here for write-line - that
1735        // happens in the subsequent satisfyCpuSideRequest.
1736        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1737
1738        // need to do a replacement if allocating, otherwise we stick
1739        // with the temporary storage
1740        blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
1741
1742        if (blk == nullptr) {
1743            // No replaceable block or a mostly exclusive
1744            // cache... just use temporary storage to complete the
1745            // current request and then get rid of it
1746            assert(!tempBlock->isValid());
1747            blk = tempBlock;
1748            tempBlock->set = tags->extractSet(addr);
1749            tempBlock->tag = tags->extractTag(addr);
1750            // @todo: set security state as well...
1751            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1752                    is_secure ? "s" : "ns");
1753        } else {
1754            tags->insertBlock(pkt, blk);
1755        }
1756
1757        // we should never be overwriting a valid block
1758        assert(!blk->isValid());
1759    } else {
1760        // existing block... probably an upgrade
1761        assert(blk->tag == tags->extractTag(addr));
1762        // either we're getting new data or the block should already be valid
1763        assert(pkt->hasData() || blk->isValid());
1764        // don't clear block status... if block is already dirty we
1765        // don't want to lose that
1766    }
1767
1768    if (is_secure)
1769        blk->status |= BlkSecure;
1770    blk->status |= BlkValid | BlkReadable;
1771
1772    // sanity check for whole-line writes, which should always be
1773    // marked as writable as part of the fill, and then later marked
1774    // dirty as part of satisfyCpuSideRequest
1775    if (pkt->cmd == MemCmd::WriteLineReq) {
1776        assert(!pkt->hasSharers());
1777        // at the moment other caches do not respond to the
1778        // invalidation requests corresponding to a whole-line write
1779        assert(!pkt->cacheResponding());
1780    }
1781
1782    // here we deal with setting the appropriate state of the line,
1783    // and we start by looking at the hasSharers flag, and ignore the
1784    // cacheResponding flag (normally signalling dirty data) if the
1785    // packet has sharers, thus the line is never allocated as Owned
1786    // (dirty but not writable), and always ends up being either
1787    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1788    // for more details
1789    if (!pkt->hasSharers()) {
1790        // we could get a writable line from memory (rather than a
1791        // cache) even in a read-only cache, note that we set this bit
1792        // even for a read-only cache, possibly revisit this decision
1793        blk->status |= BlkWritable;
1794
1795        // check if we got this via cache-to-cache transfer (i.e., from a
1796        // cache that had the block in Modified or Owned state)
1797        if (pkt->cacheResponding()) {
1798            // we got the block in Modified state, and invalidated the
1799            // owners copy
1800            blk->status |= BlkDirty;
1801
1802            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1803                          "in read-only cache %s\n", name());
1804        }
1805    }
1806
1807    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1808            addr, is_secure ? "s" : "ns", old_state, blk->print());
1809
1810    // if we got new data, copy it in (checking for a read response
1811    // and a response that has data is the same in the end)
1812    if (pkt->isRead()) {
1813        // sanity checks
1814        assert(pkt->hasData());
1815        assert(pkt->getSize() == blkSize);
1816
1817        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1818    }
1819    // We pay for fillLatency here.
1820    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1821        pkt->payloadDelay;
1822
1823    return blk;
1824}
1825
1826
1827/////////////////////////////////////////////////////
1828//
1829// Snoop path: requests coming in from the memory side
1830//
1831/////////////////////////////////////////////////////
1832
1833void
1834Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1835                              bool already_copied, bool pending_inval)
1836{
1837    // sanity check
1838    assert(req_pkt->isRequest());
1839    assert(req_pkt->needsResponse());
1840
1841    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1842            req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1843    // timing-mode snoop responses require a new packet, unless we
1844    // already made a copy...
1845    PacketPtr pkt = req_pkt;
1846    if (!already_copied)
1847        // do not clear flags, and allocate space for data if the
1848        // packet needs it (the only packets that carry data are read
1849        // responses)
1850        pkt = new Packet(req_pkt, false, req_pkt->isRead());
1851
1852    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1853           pkt->hasSharers());
1854    pkt->makeTimingResponse();
1855    if (pkt->isRead()) {
1856        pkt->setDataFromBlock(blk_data, blkSize);
1857    }
1858    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1859        // Assume we defer a response to a read from a far-away cache
1860        // A, then later defer a ReadExcl from a cache B on the same
1861        // bus as us. We'll assert cacheResponding in both cases, but
1862        // in the latter case cacheResponding will keep the
1863        // invalidation from reaching cache A. This special response
1864        // tells cache A that it gets the block to satisfy its read,
1865        // but must immediately invalidate it.
1866        pkt->cmd = MemCmd::ReadRespWithInvalidate;
1867    }
1868    // Here we consider forward_time, paying for just forward latency and
1869    // also charging the delay provided by the xbar.
1870    // forward_time is used as send_time in next allocateWriteBuffer().
1871    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1872    // Here we reset the timing of the packet.
1873    pkt->headerDelay = pkt->payloadDelay = 0;
1874    DPRINTF(CacheVerbose,
1875            "%s created response: %s addr %#llx size %d tick: %lu\n",
1876            __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1877            forward_time);
1878    memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1879}
1880
1881uint32_t
1882Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1883                   bool is_deferred, bool pending_inval)
1884{
1885    DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
1886            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1887    // deferred snoops can only happen in timing mode
1888    assert(!(is_deferred && !is_timing));
1889    // pending_inval only makes sense on deferred snoops
1890    assert(!(pending_inval && !is_deferred));
1891    assert(pkt->isRequest());
1892
1893    // the packet may get modified if we or a forwarded snooper
1894    // responds in atomic mode, so remember a few things about the
1895    // original packet up front
1896    bool invalidate = pkt->isInvalidate();
1897    bool M5_VAR_USED needs_writable = pkt->needsWritable();
1898
1899    // at the moment we could get an uncacheable write which does not
1900    // have the invalidate flag, and we need a suitable way of dealing
1901    // with this case
1902    panic_if(invalidate && pkt->req->isUncacheable(),
1903             "%s got an invalidating uncacheable snoop request %s to %#llx",
1904             name(), pkt->cmdString(), pkt->getAddr());
1905
1906    uint32_t snoop_delay = 0;
1907
1908    if (forwardSnoops) {
1909        // first propagate snoop upward to see if anyone above us wants to
1910        // handle it.  save & restore packet src since it will get
1911        // rewritten to be relative to cpu-side bus (if any)
1912        bool alreadyResponded = pkt->cacheResponding();
1913        if (is_timing) {
1914            // copy the packet so that we can clear any flags before
1915            // forwarding it upwards, we also allocate data (passing
1916            // the pointer along in case of static data), in case
1917            // there is a snoop hit in upper levels
1918            Packet snoopPkt(pkt, true, true);
1919            snoopPkt.setExpressSnoop();
1920            // the snoop packet does not need to wait any additional
1921            // time
1922            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1923            cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1924
1925            // add the header delay (including crossbar and snoop
1926            // delays) of the upward snoop to the snoop delay for this
1927            // cache
1928            snoop_delay += snoopPkt.headerDelay;
1929
1930            if (snoopPkt.cacheResponding()) {
1931                // cache-to-cache response from some upper cache
1932                assert(!alreadyResponded);
1933                pkt->setCacheResponding();
1934            }
1935            // upstream cache has the block, or has an outstanding
1936            // MSHR, pass the flag on
1937            if (snoopPkt.hasSharers()) {
1938                pkt->setHasSharers();
1939            }
1940            // If this request is a prefetch or clean evict and an upper level
1941            // signals block present, make sure to propagate the block
1942            // presence to the requester.
1943            if (snoopPkt.isBlockCached()) {
1944                pkt->setBlockCached();
1945            }
1946        } else {
1947            cpuSidePort->sendAtomicSnoop(pkt);
1948            if (!alreadyResponded && pkt->cacheResponding()) {
1949                // cache-to-cache response from some upper cache:
1950                // forward response to original requester
1951                assert(pkt->isResponse());
1952            }
1953        }
1954    }
1955
1956    if (!blk || !blk->isValid()) {
1957        if (is_deferred) {
1958            // we no longer have the block, and will not respond, but a
1959            // packet was allocated in MSHR::handleSnoop and we have
1960            // to delete it
1961            assert(pkt->needsResponse());
1962
1963            // we have passed the block to a cache upstream, that
1964            // cache should be responding
1965            assert(pkt->cacheResponding());
1966
1967            delete pkt;
1968        }
1969
1970        DPRINTF(CacheVerbose, "%s snoop miss for %s addr %#llx size %d\n",
1971                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1972        return snoop_delay;
1973    } else {
1974        DPRINTF(Cache, "%s snoop hit for %s addr %#llx size %d, "
1975                "old state is %s\n", __func__, pkt->cmdString(),
1976                pkt->getAddr(), pkt->getSize(), blk->print());
1977    }
1978
1979    chatty_assert(!(isReadOnly && blk->isDirty()),
1980                  "Should never have a dirty block in a read-only cache %s\n",
1981                  name());
1982
1983    // We may end up modifying both the block state and the packet (if
1984    // we respond in atomic mode), so just figure out what to do now
1985    // and then do it later. If we find dirty data while snooping for
1986    // an invalidate, we don't need to send a response. The
1987    // invalidation itself is taken care of below.
1988    bool respond = blk->isDirty() && pkt->needsResponse() &&
1989        pkt->cmd != MemCmd::InvalidateReq;
1990    bool have_writable = blk->isWritable();
1991
1992    // Invalidate any prefetch's from below that would strip write permissions
1993    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
1994    // above and in it's own cache, a new MemCmd::ReadReq is created that
1995    // downstream caches observe.
1996    if (pkt->mustCheckAbove()) {
1997        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
1998                "from lower cache\n", pkt->getAddr(), pkt->cmdString());
1999        pkt->setBlockCached();
2000        return snoop_delay;
2001    }
2002
2003    if (pkt->isRead() && !invalidate) {
2004        // reading without requiring the line in a writable state
2005        assert(!needs_writable);
2006        pkt->setHasSharers();
2007
2008        // if the requesting packet is uncacheable, retain the line in
2009        // the current state, otherwhise unset the writable flag,
2010        // which means we go from Modified to Owned (and will respond
2011        // below), remain in Owned (and will respond below), from
2012        // Exclusive to Shared, or remain in Shared
2013        if (!pkt->req->isUncacheable())
2014            blk->status &= ~BlkWritable;
2015    }
2016
2017    if (respond) {
2018        // prevent anyone else from responding, cache as well as
2019        // memory, and also prevent any memory from even seeing the
2020        // request
2021        pkt->setCacheResponding();
2022        if (have_writable) {
2023            // inform the cache hierarchy that this cache had the line
2024            // in the Modified state so that we avoid unnecessary
2025            // invalidations (see Packet::setResponderHadWritable)
2026            pkt->setResponderHadWritable();
2027
2028            // in the case of an uncacheable request there is no point
2029            // in setting the responderHadWritable flag, but since the
2030            // recipient does not care there is no harm in doing so
2031        } else {
2032            // if the packet has needsWritable set we invalidate our
2033            // copy below and all other copies will be invalidates
2034            // through express snoops, and if needsWritable is not set
2035            // we already called setHasSharers above
2036        }
2037
2038        // if we are returning a writable and dirty (Modified) line,
2039        // we should be invalidating the line
2040        panic_if(!invalidate && !pkt->hasSharers(),
2041                 "%s is passing a Modified line through %s to %#llx, "
2042                 "but keeping the block",
2043                 name(), pkt->cmdString(), pkt->getAddr());
2044
2045        if (is_timing) {
2046            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2047        } else {
2048            pkt->makeAtomicResponse();
2049            // packets such as upgrades do not actually have any data
2050            // payload
2051            if (pkt->hasData())
2052                pkt->setDataFromBlock(blk->data, blkSize);
2053        }
2054    }
2055
2056    if (!respond && is_timing && is_deferred) {
2057        // if it's a deferred timing snoop to which we are not
2058        // responding, then we've made a copy of both the request and
2059        // the packet, delete them here
2060        assert(pkt->needsResponse());
2061        assert(!pkt->cacheResponding());
2062        delete pkt->req;
2063        delete pkt;
2064    }
2065
2066    // Do this last in case it deallocates block data or something
2067    // like that
2068    if (invalidate) {
2069        invalidateBlock(blk);
2070    }
2071
2072    DPRINTF(Cache, "new state is %s\n", blk->print());
2073
2074    return snoop_delay;
2075}
2076
2077
2078void
2079Cache::recvTimingSnoopReq(PacketPtr pkt)
2080{
2081    DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
2082            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
2083
2084    // Snoops shouldn't happen when bypassing caches
2085    assert(!system->bypassCaches());
2086
2087    // no need to snoop requests that are not in range
2088    if (!inRange(pkt->getAddr())) {
2089        return;
2090    }
2091
2092    bool is_secure = pkt->isSecure();
2093    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2094
2095    Addr blk_addr = blockAlign(pkt->getAddr());
2096    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2097
2098    // Update the latency cost of the snoop so that the crossbar can
2099    // account for it. Do not overwrite what other neighbouring caches
2100    // have already done, rather take the maximum. The update is
2101    // tentative, for cases where we return before an upward snoop
2102    // happens below.
2103    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2104                                         lookupLatency * clockPeriod());
2105
2106    // Inform request(Prefetch, CleanEvict or Writeback) from below of
2107    // MSHR hit, set setBlockCached.
2108    if (mshr && pkt->mustCheckAbove()) {
2109        DPRINTF(Cache, "Setting block cached for %s from"
2110                "lower cache on mshr hit %#x\n",
2111                pkt->cmdString(), pkt->getAddr());
2112        pkt->setBlockCached();
2113        return;
2114    }
2115
2116    // Let the MSHR itself track the snoop and decide whether we want
2117    // to go ahead and do the regular cache snoop
2118    if (mshr && mshr->handleSnoop(pkt, order++)) {
2119        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2120                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2121                mshr->print());
2122
2123        if (mshr->getNumTargets() > numTarget)
2124            warn("allocating bonus target for snoop"); //handle later
2125        return;
2126    }
2127
2128    //We also need to check the writeback buffers and handle those
2129    WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
2130    if (wb_entry) {
2131        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2132                pkt->getAddr(), is_secure ? "s" : "ns");
2133        // Expect to see only Writebacks and/or CleanEvicts here, both of
2134        // which should not be generated for uncacheable data.
2135        assert(!wb_entry->isUncacheable());
2136        // There should only be a single request responsible for generating
2137        // Writebacks/CleanEvicts.
2138        assert(wb_entry->getNumTargets() == 1);
2139        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2140        assert(wb_pkt->isEviction());
2141
2142        if (pkt->isEviction()) {
2143            // if the block is found in the write queue, set the BLOCK_CACHED
2144            // flag for Writeback/CleanEvict snoop. On return the snoop will
2145            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2146            // any CleanEvicts from travelling down the memory hierarchy.
2147            pkt->setBlockCached();
2148            DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
2149                    " %#x\n", pkt->cmdString(), pkt->getAddr());
2150            return;
2151        }
2152
2153        // conceptually writebacks are no different to other blocks in
2154        // this cache, so the behaviour is modelled after handleSnoop,
2155        // the difference being that instead of querying the block
2156        // state to determine if it is dirty and writable, we use the
2157        // command and fields of the writeback packet
2158        bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
2159            pkt->needsResponse() && pkt->cmd != MemCmd::InvalidateReq;
2160        bool have_writable = !wb_pkt->hasSharers();
2161        bool invalidate = pkt->isInvalidate();
2162
2163        if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
2164            assert(!pkt->needsWritable());
2165            pkt->setHasSharers();
2166            wb_pkt->setHasSharers();
2167        }
2168
2169        if (respond) {
2170            pkt->setCacheResponding();
2171
2172            if (have_writable) {
2173                pkt->setResponderHadWritable();
2174            }
2175
2176            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2177                                   false, false);
2178        }
2179
2180        if (invalidate) {
2181            // Invalidation trumps our writeback... discard here
2182            // Note: markInService will remove entry from writeback buffer.
2183            markInService(wb_entry);
2184            delete wb_pkt;
2185        }
2186    }
2187
2188    // If this was a shared writeback, there may still be
2189    // other shared copies above that require invalidation.
2190    // We could be more selective and return here if the
2191    // request is non-exclusive or if the writeback is
2192    // exclusive.
2193    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2194
2195    // Override what we did when we first saw the snoop, as we now
2196    // also have the cost of the upwards snoops to account for
2197    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2198                                         lookupLatency * clockPeriod());
2199}
2200
2201bool
2202Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2203{
2204    // Express snoop responses from master to slave, e.g., from L1 to L2
2205    cache->recvTimingSnoopResp(pkt);
2206    return true;
2207}
2208
2209Tick
2210Cache::recvAtomicSnoop(PacketPtr pkt)
2211{
2212    // Snoops shouldn't happen when bypassing caches
2213    assert(!system->bypassCaches());
2214
2215    // no need to snoop requests that are not in range.
2216    if (!inRange(pkt->getAddr())) {
2217        return 0;
2218    }
2219
2220    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2221    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2222    return snoop_delay + lookupLatency * clockPeriod();
2223}
2224
2225
2226QueueEntry*
2227Cache::getNextQueueEntry()
2228{
2229    // Check both MSHR queue and write buffer for potential requests,
2230    // note that null does not mean there is no request, it could
2231    // simply be that it is not ready
2232    MSHR *miss_mshr  = mshrQueue.getNext();
2233    WriteQueueEntry *wq_entry = writeBuffer.getNext();
2234
2235    // If we got a write buffer request ready, first priority is a
2236    // full write buffer, otherwise we favour the miss requests
2237    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
2238        // need to search MSHR queue for conflicting earlier miss.
2239        MSHR *conflict_mshr =
2240            mshrQueue.findPending(wq_entry->blkAddr,
2241                                  wq_entry->isSecure);
2242
2243        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
2244            // Service misses in order until conflict is cleared.
2245            return conflict_mshr;
2246
2247            // @todo Note that we ignore the ready time of the conflict here
2248        }
2249
2250        // No conflicts; issue write
2251        return wq_entry;
2252    } else if (miss_mshr) {
2253        // need to check for conflicting earlier writeback
2254        WriteQueueEntry *conflict_mshr =
2255            writeBuffer.findPending(miss_mshr->blkAddr,
2256                                    miss_mshr->isSecure);
2257        if (conflict_mshr) {
2258            // not sure why we don't check order here... it was in the
2259            // original code but commented out.
2260
2261            // The only way this happens is if we are
2262            // doing a write and we didn't have permissions
2263            // then subsequently saw a writeback (owned got evicted)
2264            // We need to make sure to perform the writeback first
2265            // To preserve the dirty data, then we can issue the write
2266
2267            // should we return wq_entry here instead?  I.e. do we
2268            // have to flush writes in order?  I don't think so... not
2269            // for Alpha anyway.  Maybe for x86?
2270            return conflict_mshr;
2271
2272            // @todo Note that we ignore the ready time of the conflict here
2273        }
2274
2275        // No conflicts; issue read
2276        return miss_mshr;
2277    }
2278
2279    // fall through... no pending requests.  Try a prefetch.
2280    assert(!miss_mshr && !wq_entry);
2281    if (prefetcher && mshrQueue.canPrefetch()) {
2282        // If we have a miss queue slot, we can try a prefetch
2283        PacketPtr pkt = prefetcher->getPacket();
2284        if (pkt) {
2285            Addr pf_addr = blockAlign(pkt->getAddr());
2286            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2287                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2288                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2289                // Update statistic on number of prefetches issued
2290                // (hwpf_mshr_misses)
2291                assert(pkt->req->masterId() < system->maxMasters());
2292                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2293
2294                // allocate an MSHR and return it, note
2295                // that we send the packet straight away, so do not
2296                // schedule the send
2297                return allocateMissBuffer(pkt, curTick(), false);
2298            } else {
2299                // free the request and packet
2300                delete pkt->req;
2301                delete pkt;
2302            }
2303        }
2304    }
2305
2306    return nullptr;
2307}
2308
2309bool
2310Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2311{
2312    if (!forwardSnoops)
2313        return false;
2314    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2315    // Writeback snoops into upper level caches to check for copies of the
2316    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2317    // packet, the cache can inform the crossbar below of presence or absence
2318    // of the block.
2319    if (is_timing) {
2320        Packet snoop_pkt(pkt, true, false);
2321        snoop_pkt.setExpressSnoop();
2322        // Assert that packet is either Writeback or CleanEvict and not a
2323        // prefetch request because prefetch requests need an MSHR and may
2324        // generate a snoop response.
2325        assert(pkt->isEviction());
2326        snoop_pkt.senderState = nullptr;
2327        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2328        // Writeback/CleanEvict snoops do not generate a snoop response.
2329        assert(!(snoop_pkt.cacheResponding()));
2330        return snoop_pkt.isBlockCached();
2331    } else {
2332        cpuSidePort->sendAtomicSnoop(pkt);
2333        return pkt->isBlockCached();
2334    }
2335}
2336
2337Tick
2338Cache::nextQueueReadyTime() const
2339{
2340    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
2341                              writeBuffer.nextReadyTime());
2342
2343    // Don't signal prefetch ready time if no MSHRs available
2344    // Will signal once enoguh MSHRs are deallocated
2345    if (prefetcher && mshrQueue.canPrefetch()) {
2346        nextReady = std::min(nextReady,
2347                             prefetcher->nextPrefetchReadyTime());
2348    }
2349
2350    return nextReady;
2351}
2352
2353bool
2354Cache::sendMSHRQueuePacket(MSHR* mshr)
2355{
2356    assert(mshr);
2357
2358    // use request from 1st target
2359    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2360
2361    DPRINTF(Cache, "%s MSHR %s for addr %#llx size %d\n", __func__,
2362            tgt_pkt->cmdString(), tgt_pkt->getAddr(),
2363            tgt_pkt->getSize());
2364
2365    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2366
2367    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2368        // we should never have hardware prefetches to allocated
2369        // blocks
2370        assert(blk == nullptr);
2371
2372        // We need to check the caches above us to verify that
2373        // they don't have a copy of this block in the dirty state
2374        // at the moment. Without this check we could get a stale
2375        // copy from memory that might get used in place of the
2376        // dirty one.
2377        Packet snoop_pkt(tgt_pkt, true, false);
2378        snoop_pkt.setExpressSnoop();
2379        // We are sending this packet upwards, but if it hits we will
2380        // get a snoop response that we end up treating just like a
2381        // normal response, hence it needs the MSHR as its sender
2382        // state
2383        snoop_pkt.senderState = mshr;
2384        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2385
2386        // Check to see if the prefetch was squashed by an upper cache (to
2387        // prevent us from grabbing the line) or if a Check to see if a
2388        // writeback arrived between the time the prefetch was placed in
2389        // the MSHRs and when it was selected to be sent or if the
2390        // prefetch was squashed by an upper cache.
2391
2392        // It is important to check cacheResponding before
2393        // prefetchSquashed. If another cache has committed to
2394        // responding, it will be sending a dirty response which will
2395        // arrive at the MSHR allocated for this request. Checking the
2396        // prefetchSquash first may result in the MSHR being
2397        // prematurely deallocated.
2398        if (snoop_pkt.cacheResponding()) {
2399            auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2400            assert(r.second);
2401
2402            // if we are getting a snoop response with no sharers it
2403            // will be allocated as Modified
2404            bool pending_modified_resp = !snoop_pkt.hasSharers();
2405            markInService(mshr, pending_modified_resp);
2406
2407            DPRINTF(Cache, "Upward snoop of prefetch for addr"
2408                    " %#x (%s) hit\n",
2409                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2410            return false;
2411        }
2412
2413        if (snoop_pkt.isBlockCached()) {
2414            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
2415                    "Deallocating mshr target %#x.\n",
2416                    mshr->blkAddr);
2417
2418            // Deallocate the mshr target
2419            if (mshrQueue.forceDeallocateTarget(mshr)) {
2420                // Clear block if this deallocation resulted freed an
2421                // mshr when all had previously been utilized
2422                clearBlocked(Blocked_NoMSHRs);
2423            }
2424            return false;
2425        }
2426    }
2427
2428    // either a prefetch that is not present upstream, or a normal
2429    // MSHR request, proceed to get the packet to send downstream
2430    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
2431
2432    mshr->isForward = (pkt == nullptr);
2433
2434    if (mshr->isForward) {
2435        // not a cache block request, but a response is expected
2436        // make copy of current packet to forward, keep current
2437        // copy for response handling
2438        pkt = new Packet(tgt_pkt, false, true);
2439        assert(!pkt->isWrite());
2440    }
2441
2442    // play it safe and append (rather than set) the sender state,
2443    // as forwarded packets may already have existing state
2444    pkt->pushSenderState(mshr);
2445
2446    if (!memSidePort->sendTimingReq(pkt)) {
2447        // we are awaiting a retry, but we
2448        // delete the packet and will be creating a new packet
2449        // when we get the opportunity
2450        delete pkt;
2451
2452        // note that we have now masked any requestBus and
2453        // schedSendEvent (we will wait for a retry before
2454        // doing anything), and this is so even if we do not
2455        // care about this packet and might override it before
2456        // it gets retried
2457        return true;
2458    } else {
2459        // As part of the call to sendTimingReq the packet is
2460        // forwarded to all neighbouring caches (and any caches
2461        // above them) as a snoop. Thus at this point we know if
2462        // any of the neighbouring caches are responding, and if
2463        // so, we know it is dirty, and we can determine if it is
2464        // being passed as Modified, making our MSHR the ordering
2465        // point
2466        bool pending_modified_resp = !pkt->hasSharers() &&
2467            pkt->cacheResponding();
2468        markInService(mshr, pending_modified_resp);
2469        return false;
2470    }
2471}
2472
2473bool
2474Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
2475{
2476    assert(wq_entry);
2477
2478    // always a single target for write queue entries
2479    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
2480
2481    DPRINTF(Cache, "%s write %s for addr %#llx size %d\n", __func__,
2482            tgt_pkt->cmdString(), tgt_pkt->getAddr(),
2483            tgt_pkt->getSize());
2484
2485    // forward as is, both for evictions and uncacheable writes
2486    if (!memSidePort->sendTimingReq(tgt_pkt)) {
2487        // note that we have now masked any requestBus and
2488        // schedSendEvent (we will wait for a retry before
2489        // doing anything), and this is so even if we do not
2490        // care about this packet and might override it before
2491        // it gets retried
2492        return true;
2493    } else {
2494        markInService(wq_entry);
2495        return false;
2496    }
2497}
2498
2499void
2500Cache::serialize(CheckpointOut &cp) const
2501{
2502    bool dirty(isDirty());
2503
2504    if (dirty) {
2505        warn("*** The cache still contains dirty data. ***\n");
2506        warn("    Make sure to drain the system using the correct flags.\n");
2507        warn("    This checkpoint will not restore correctly and dirty data "
2508             "    in the cache will be lost!\n");
2509    }
2510
2511    // Since we don't checkpoint the data in the cache, any dirty data
2512    // will be lost when restoring from a checkpoint of a system that
2513    // wasn't drained properly. Flag the checkpoint as invalid if the
2514    // cache contains dirty data.
2515    bool bad_checkpoint(dirty);
2516    SERIALIZE_SCALAR(bad_checkpoint);
2517}
2518
2519void
2520Cache::unserialize(CheckpointIn &cp)
2521{
2522    bool bad_checkpoint;
2523    UNSERIALIZE_SCALAR(bad_checkpoint);
2524    if (bad_checkpoint) {
2525        fatal("Restoring from checkpoints with dirty caches is not supported "
2526              "in the classic memory system. Please remove any caches or "
2527              " drain them properly before taking checkpoints.\n");
2528    }
2529}
2530
2531///////////////
2532//
2533// CpuSidePort
2534//
2535///////////////
2536
2537AddrRangeList
2538Cache::CpuSidePort::getAddrRanges() const
2539{
2540    return cache->getAddrRanges();
2541}
2542
2543bool
2544Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2545{
2546    assert(!cache->system->bypassCaches());
2547
2548    bool success = false;
2549
2550    // always let express snoop packets through if even if blocked
2551    if (pkt->isExpressSnoop()) {
2552        // do not change the current retry state
2553        bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2554        assert(bypass_success);
2555        return true;
2556    } else if (blocked || mustSendRetry) {
2557        // either already committed to send a retry, or blocked
2558        success = false;
2559    } else {
2560        // pass it on to the cache, and let the cache decide if we
2561        // have to retry or not
2562        success = cache->recvTimingReq(pkt);
2563    }
2564
2565    // remember if we have to retry
2566    mustSendRetry = !success;
2567    return success;
2568}
2569
2570Tick
2571Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2572{
2573    return cache->recvAtomic(pkt);
2574}
2575
2576void
2577Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2578{
2579    // functional request
2580    cache->functionalAccess(pkt, true);
2581}
2582
2583Cache::
2584CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2585                         const std::string &_label)
2586    : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2587{
2588}
2589
2590Cache*
2591CacheParams::create()
2592{
2593    assert(tags);
2594
2595    return new Cache(this);
2596}
2597///////////////
2598//
2599// MemSidePort
2600//
2601///////////////
2602
2603bool
2604Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2605{
2606    cache->recvTimingResp(pkt);
2607    return true;
2608}
2609
2610// Express snooping requests to memside port
2611void
2612Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2613{
2614    // handle snooping requests
2615    cache->recvTimingSnoopReq(pkt);
2616}
2617
2618Tick
2619Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2620{
2621    return cache->recvAtomicSnoop(pkt);
2622}
2623
2624void
2625Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2626{
2627    // functional snoop (note that in contrast to atomic we don't have
2628    // a specific functionalSnoop method, as they have the same
2629    // behaviour regardless)
2630    cache->functionalAccess(pkt, false);
2631}
2632
2633void
2634Cache::CacheReqPacketQueue::sendDeferredPacket()
2635{
2636    // sanity check
2637    assert(!waitingOnRetry);
2638
2639    // there should never be any deferred request packets in the
2640    // queue, instead we resly on the cache to provide the packets
2641    // from the MSHR queue or write queue
2642    assert(deferredPacketReadyTime() == MaxTick);
2643
2644    // check for request packets (requests & writebacks)
2645    QueueEntry* entry = cache.getNextQueueEntry();
2646
2647    if (!entry) {
2648        // can happen if e.g. we attempt a writeback and fail, but
2649        // before the retry, the writeback is eliminated because
2650        // we snoop another cache's ReadEx.
2651    } else {
2652        // let our snoop responses go first if there are responses to
2653        // the same addresses
2654        if (checkConflictingSnoop(entry->blkAddr)) {
2655            return;
2656        }
2657        waitingOnRetry = entry->sendPacket(cache);
2658    }
2659
2660    // if we succeeded and are not waiting for a retry, schedule the
2661    // next send considering when the next queue is ready, note that
2662    // snoop responses have their own packet queue and thus schedule
2663    // their own events
2664    if (!waitingOnRetry) {
2665        schedSendEvent(cache.nextQueueReadyTime());
2666    }
2667}
2668
2669Cache::
2670MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2671                         const std::string &_label)
2672    : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2673      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2674      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2675{
2676}
2677