cache.cc revision 11453:dd9763792521
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nathan Binkert
44 *          Steve Reinhardt
45 *          Ron Dreslinski
46 *          Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/misc.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "debug/CacheVerbose.hh"
62#include "mem/cache/blk.hh"
63#include "mem/cache/mshr.hh"
64#include "mem/cache/prefetch/base.hh"
65#include "sim/sim_exit.hh"
66
67Cache::Cache(const CacheParams *p)
68    : BaseCache(p, p->system->cacheLineSize()),
69      tags(p->tags),
70      prefetcher(p->prefetcher),
71      doFastWrites(true),
72      prefetchOnAccess(p->prefetch_on_access),
73      clusivity(p->clusivity),
74      writebackClean(p->writeback_clean),
75      tempBlockWriteback(nullptr),
76      writebackTempBlockAtomicEvent(this, false,
77                                    EventBase::Delayed_Writeback_Pri)
78{
79    tempBlock = new CacheBlk();
80    tempBlock->data = new uint8_t[blkSize];
81
82    cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
83                                  "CpuSidePort");
84    memSidePort = new MemSidePort(p->name + ".mem_side", this,
85                                  "MemSidePort");
86
87    tags->setCache(this);
88    if (prefetcher)
89        prefetcher->setCache(this);
90}
91
92Cache::~Cache()
93{
94    delete [] tempBlock->data;
95    delete tempBlock;
96
97    delete cpuSidePort;
98    delete memSidePort;
99}
100
101void
102Cache::regStats()
103{
104    BaseCache::regStats();
105}
106
107void
108Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
109{
110    assert(pkt->isRequest());
111
112    uint64_t overwrite_val;
113    bool overwrite_mem;
114    uint64_t condition_val64;
115    uint32_t condition_val32;
116
117    int offset = tags->extractBlkOffset(pkt->getAddr());
118    uint8_t *blk_data = blk->data + offset;
119
120    assert(sizeof(uint64_t) >= pkt->getSize());
121
122    overwrite_mem = true;
123    // keep a copy of our possible write value, and copy what is at the
124    // memory address into the packet
125    pkt->writeData((uint8_t *)&overwrite_val);
126    pkt->setData(blk_data);
127
128    if (pkt->req->isCondSwap()) {
129        if (pkt->getSize() == sizeof(uint64_t)) {
130            condition_val64 = pkt->req->getExtraData();
131            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
132                                         sizeof(uint64_t));
133        } else if (pkt->getSize() == sizeof(uint32_t)) {
134            condition_val32 = (uint32_t)pkt->req->getExtraData();
135            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
136                                         sizeof(uint32_t));
137        } else
138            panic("Invalid size for conditional read/write\n");
139    }
140
141    if (overwrite_mem) {
142        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
143        blk->status |= BlkDirty;
144    }
145}
146
147
148void
149Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
150                             bool deferred_response, bool pending_downgrade)
151{
152    assert(pkt->isRequest());
153
154    assert(blk && blk->isValid());
155    // Occasionally this is not true... if we are a lower-level cache
156    // satisfying a string of Read and ReadEx requests from
157    // upper-level caches, a Read will mark the block as shared but we
158    // can satisfy a following ReadEx anyway since we can rely on the
159    // Read requester(s) to have buffered the ReadEx snoop and to
160    // invalidate their blocks after receiving them.
161    // assert(!pkt->needsWritable() || blk->isWritable());
162    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
163
164    // Check RMW operations first since both isRead() and
165    // isWrite() will be true for them
166    if (pkt->cmd == MemCmd::SwapReq) {
167        cmpAndSwap(blk, pkt);
168    } else if (pkt->isWrite()) {
169        // we have the block in a writable state and can go ahead,
170        // note that the line may be also be considered writable in
171        // downstream caches along the path to memory, but always
172        // Exclusive, and never Modified
173        assert(blk->isWritable());
174        // Write or WriteLine at the first cache with block in writable state
175        if (blk->checkWrite(pkt)) {
176            pkt->writeDataToBlock(blk->data, blkSize);
177        }
178        // Always mark the line as dirty (and thus transition to the
179        // Modified state) even if we are a failed StoreCond so we
180        // supply data to any snoops that have appended themselves to
181        // this cache before knowing the store will fail.
182        blk->status |= BlkDirty;
183        DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (write)\n",
184                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
185    } else if (pkt->isRead()) {
186        if (pkt->isLLSC()) {
187            blk->trackLoadLocked(pkt);
188        }
189
190        // all read responses have a data payload
191        assert(pkt->hasRespData());
192        pkt->setDataFromBlock(blk->data, blkSize);
193
194        // determine if this read is from a (coherent) cache, or not
195        // by looking at the command type; we could potentially add a
196        // packet attribute such as 'FromCache' to make this check a
197        // bit cleaner
198        if (pkt->cmd == MemCmd::ReadExReq ||
199            pkt->cmd == MemCmd::ReadSharedReq ||
200            pkt->cmd == MemCmd::ReadCleanReq ||
201            pkt->cmd == MemCmd::SCUpgradeFailReq) {
202            assert(pkt->getSize() == blkSize);
203            // special handling for coherent block requests from
204            // upper-level caches
205            if (pkt->needsWritable()) {
206                // sanity check
207                assert(pkt->cmd == MemCmd::ReadExReq ||
208                       pkt->cmd == MemCmd::SCUpgradeFailReq);
209
210                // if we have a dirty copy, make sure the recipient
211                // keeps it marked dirty (in the modified state)
212                if (blk->isDirty()) {
213                    pkt->setCacheResponding();
214                }
215                // on ReadExReq we give up our copy unconditionally,
216                // even if this cache is mostly inclusive, we may want
217                // to revisit this
218                invalidateBlock(blk);
219            } else if (blk->isWritable() && !pending_downgrade &&
220                       !pkt->hasSharers() &&
221                       pkt->cmd != MemCmd::ReadCleanReq) {
222                // we can give the requester a writable copy on a read
223                // request if:
224                // - we have a writable copy at this level (& below)
225                // - we don't have a pending snoop from below
226                //   signaling another read request
227                // - no other cache above has a copy (otherwise it
228                //   would have set hasSharers flag when
229                //   snooping the packet)
230                // - the read has explicitly asked for a clean
231                //   copy of the line
232                if (blk->isDirty()) {
233                    // special considerations if we're owner:
234                    if (!deferred_response) {
235                        // respond with the line in Modified state
236                        // (cacheResponding set, hasSharers not set)
237                        pkt->setCacheResponding();
238
239                        if (clusivity == Enums::mostly_excl) {
240                            // if this cache is mostly exclusive with
241                            // respect to the cache above, drop the
242                            // block, no need to first unset the dirty
243                            // bit
244                            invalidateBlock(blk);
245                        } else {
246                            // if this cache is mostly inclusive, we
247                            // keep the block in the Exclusive state,
248                            // and pass it upwards as Modified
249                            // (writable and dirty), hence we have
250                            // multiple caches, all on the same path
251                            // towards memory, all considering the
252                            // same block writable, but only one
253                            // considering it Modified
254
255                            // we get away with multiple caches (on
256                            // the same path to memory) considering
257                            // the block writeable as we always enter
258                            // the cache hierarchy through a cache,
259                            // and first snoop upwards in all other
260                            // branches
261                            blk->status &= ~BlkDirty;
262                        }
263                    } else {
264                        // if we're responding after our own miss,
265                        // there's a window where the recipient didn't
266                        // know it was getting ownership and may not
267                        // have responded to snoops correctly, so we
268                        // have to respond with a shared line
269                        pkt->setHasSharers();
270                    }
271                }
272            } else {
273                // otherwise only respond with a shared copy
274                pkt->setHasSharers();
275            }
276        }
277    } else {
278        // Upgrade or Invalidate
279        assert(pkt->isUpgrade() || pkt->isInvalidate());
280
281        // for invalidations we could be looking at the temp block
282        // (for upgrades we always allocate)
283        invalidateBlock(blk);
284        DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (invalidation)\n",
285                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
286    }
287}
288
289/////////////////////////////////////////////////////
290//
291// Access path: requests coming in from the CPU side
292//
293/////////////////////////////////////////////////////
294
295bool
296Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
297              PacketList &writebacks)
298{
299    // sanity check
300    assert(pkt->isRequest());
301
302    chatty_assert(!(isReadOnly && pkt->isWrite()),
303                  "Should never see a write in a read-only cache %s\n",
304                  name());
305
306    DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
307            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
308
309    if (pkt->req->isUncacheable()) {
310        DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
311                pkt->req->isInstFetch() ? " (ifetch)" : "",
312                pkt->getAddr());
313
314        // flush and invalidate any existing block
315        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
316        if (old_blk && old_blk->isValid()) {
317            if (old_blk->isDirty() || writebackClean)
318                writebacks.push_back(writebackBlk(old_blk));
319            else
320                writebacks.push_back(cleanEvictBlk(old_blk));
321            tags->invalidate(old_blk);
322            old_blk->invalidate();
323        }
324
325        blk = NULL;
326        // lookupLatency is the latency in case the request is uncacheable.
327        lat = lookupLatency;
328        return false;
329    }
330
331    ContextID id = pkt->req->hasContextId() ?
332        pkt->req->contextId() : InvalidContextID;
333    // Here lat is the value passed as parameter to accessBlock() function
334    // that can modify its value.
335    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
336
337    DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
338            pkt->req->isInstFetch() ? " (ifetch)" : "",
339            pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
340            blk ? "hit " + blk->print() : "miss");
341
342
343    if (pkt->isEviction()) {
344        // We check for presence of block in above caches before issuing
345        // Writeback or CleanEvict to write buffer. Therefore the only
346        // possible cases can be of a CleanEvict packet coming from above
347        // encountering a Writeback generated in this cache peer cache and
348        // waiting in the write buffer. Cases of upper level peer caches
349        // generating CleanEvict and Writeback or simply CleanEvict and
350        // CleanEvict almost simultaneously will be caught by snoops sent out
351        // by crossbar.
352        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
353                                                          pkt->isSecure());
354        if (wb_entry) {
355            assert(wb_entry->getNumTargets() == 1);
356            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
357            assert(wbPkt->isWriteback());
358
359            if (pkt->isCleanEviction()) {
360                // The CleanEvict and WritebackClean snoops into other
361                // peer caches of the same level while traversing the
362                // crossbar. If a copy of the block is found, the
363                // packet is deleted in the crossbar. Hence, none of
364                // the other upper level caches connected to this
365                // cache have the block, so we can clear the
366                // BLOCK_CACHED flag in the Writeback if set and
367                // discard the CleanEvict by returning true.
368                wbPkt->clearBlockCached();
369                return true;
370            } else {
371                assert(pkt->cmd == MemCmd::WritebackDirty);
372                // Dirty writeback from above trumps our clean
373                // writeback... discard here
374                // Note: markInService will remove entry from writeback buffer.
375                markInService(wb_entry);
376                delete wbPkt;
377            }
378        }
379    }
380
381    // Writeback handling is special case.  We can write the block into
382    // the cache without having a writeable copy (or any copy at all).
383    if (pkt->isWriteback()) {
384        assert(blkSize == pkt->getSize());
385
386        // we could get a clean writeback while we are having
387        // outstanding accesses to a block, do the simple thing for
388        // now and drop the clean writeback so that we do not upset
389        // any ordering/decisions about ownership already taken
390        if (pkt->cmd == MemCmd::WritebackClean &&
391            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
392            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
393                    "dropping\n", pkt->getAddr());
394            return true;
395        }
396
397        if (blk == NULL) {
398            // need to do a replacement
399            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
400            if (blk == NULL) {
401                // no replaceable block available: give up, fwd to next level.
402                incMissCount(pkt);
403                return false;
404            }
405            tags->insertBlock(pkt, blk);
406
407            blk->status = (BlkValid | BlkReadable);
408            if (pkt->isSecure()) {
409                blk->status |= BlkSecure;
410            }
411        }
412        // only mark the block dirty if we got a writeback command,
413        // and leave it as is for a clean writeback
414        if (pkt->cmd == MemCmd::WritebackDirty) {
415            blk->status |= BlkDirty;
416        }
417        // if the packet does not have sharers, it is passing
418        // writable, and we got the writeback in Modified or Exclusive
419        // state, if not we are in the Owned or Shared state
420        if (!pkt->hasSharers()) {
421            blk->status |= BlkWritable;
422        }
423        // nothing else to do; writeback doesn't expect response
424        assert(!pkt->needsResponse());
425        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
426        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
427        incHitCount(pkt);
428        return true;
429    } else if (pkt->cmd == MemCmd::CleanEvict) {
430        if (blk != NULL) {
431            // Found the block in the tags, need to stop CleanEvict from
432            // propagating further down the hierarchy. Returning true will
433            // treat the CleanEvict like a satisfied write request and delete
434            // it.
435            return true;
436        }
437        // We didn't find the block here, propagate the CleanEvict further
438        // down the memory hierarchy. Returning false will treat the CleanEvict
439        // like a Writeback which could not find a replaceable block so has to
440        // go to next level.
441        return false;
442    } else if ((blk != NULL) &&
443               (pkt->needsWritable() ? blk->isWritable() : blk->isReadable())) {
444        // OK to satisfy access
445        incHitCount(pkt);
446        satisfyCpuSideRequest(pkt, blk);
447        return true;
448    }
449
450    // Can't satisfy access normally... either no block (blk == NULL)
451    // or have block but need writable
452
453    incMissCount(pkt);
454
455    if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) {
456        // complete miss on store conditional... just give up now
457        pkt->req->setExtraData(0);
458        return true;
459    }
460
461    return false;
462}
463
464void
465Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
466{
467    while (!writebacks.empty()) {
468        PacketPtr wbPkt = writebacks.front();
469        // We use forwardLatency here because we are copying writebacks to
470        // write buffer.  Call isCachedAbove for both Writebacks and
471        // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
472        // in Writebacks and discard CleanEvicts.
473        if (isCachedAbove(wbPkt)) {
474            if (wbPkt->cmd == MemCmd::CleanEvict) {
475                // Delete CleanEvict because cached copies exist above. The
476                // packet destructor will delete the request object because
477                // this is a non-snoop request packet which does not require a
478                // response.
479                delete wbPkt;
480            } else if (wbPkt->cmd == MemCmd::WritebackClean) {
481                // clean writeback, do not send since the block is
482                // still cached above
483                assert(writebackClean);
484                delete wbPkt;
485            } else {
486                assert(wbPkt->cmd == MemCmd::WritebackDirty);
487                // Set BLOCK_CACHED flag in Writeback and send below, so that
488                // the Writeback does not reset the bit corresponding to this
489                // address in the snoop filter below.
490                wbPkt->setBlockCached();
491                allocateWriteBuffer(wbPkt, forward_time);
492            }
493        } else {
494            // If the block is not cached above, send packet below. Both
495            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
496            // reset the bit corresponding to this address in the snoop filter
497            // below.
498            allocateWriteBuffer(wbPkt, forward_time);
499        }
500        writebacks.pop_front();
501    }
502}
503
504void
505Cache::doWritebacksAtomic(PacketList& writebacks)
506{
507    while (!writebacks.empty()) {
508        PacketPtr wbPkt = writebacks.front();
509        // Call isCachedAbove for both Writebacks and CleanEvicts. If
510        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
511        // and discard CleanEvicts.
512        if (isCachedAbove(wbPkt, false)) {
513            if (wbPkt->cmd == MemCmd::WritebackDirty) {
514                // Set BLOCK_CACHED flag in Writeback and send below,
515                // so that the Writeback does not reset the bit
516                // corresponding to this address in the snoop filter
517                // below. We can discard CleanEvicts because cached
518                // copies exist above. Atomic mode isCachedAbove
519                // modifies packet to set BLOCK_CACHED flag
520                memSidePort->sendAtomic(wbPkt);
521            }
522        } else {
523            // If the block is not cached above, send packet below. Both
524            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
525            // reset the bit corresponding to this address in the snoop filter
526            // below.
527            memSidePort->sendAtomic(wbPkt);
528        }
529        writebacks.pop_front();
530        // In case of CleanEvicts, the packet destructor will delete the
531        // request object because this is a non-snoop request packet which
532        // does not require a response.
533        delete wbPkt;
534    }
535}
536
537
538void
539Cache::recvTimingSnoopResp(PacketPtr pkt)
540{
541    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
542            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
543
544    assert(pkt->isResponse());
545    assert(!system->bypassCaches());
546
547    // determine if the response is from a snoop request we created
548    // (in which case it should be in the outstandingSnoop), or if we
549    // merely forwarded someone else's snoop request
550    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
551        outstandingSnoop.end();
552
553    if (!forwardAsSnoop) {
554        // the packet came from this cache, so sink it here and do not
555        // forward it
556        assert(pkt->cmd == MemCmd::HardPFResp);
557
558        outstandingSnoop.erase(pkt->req);
559
560        DPRINTF(Cache, "Got prefetch response from above for addr "
561                "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
562        recvTimingResp(pkt);
563        return;
564    }
565
566    // forwardLatency is set here because there is a response from an
567    // upper level cache.
568    // To pay the delay that occurs if the packet comes from the bus,
569    // we charge also headerDelay.
570    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
571    // Reset the timing of the packet.
572    pkt->headerDelay = pkt->payloadDelay = 0;
573    memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
574}
575
576void
577Cache::promoteWholeLineWrites(PacketPtr pkt)
578{
579    // Cache line clearing instructions
580    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
581        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
582        pkt->cmd = MemCmd::WriteLineReq;
583        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
584    }
585}
586
587bool
588Cache::recvTimingReq(PacketPtr pkt)
589{
590    DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
591
592    assert(pkt->isRequest());
593
594    // Just forward the packet if caches are disabled.
595    if (system->bypassCaches()) {
596        // @todo This should really enqueue the packet rather
597        bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
598        assert(success);
599        return true;
600    }
601
602    promoteWholeLineWrites(pkt);
603
604    if (pkt->cacheResponding()) {
605        // a cache above us (but not where the packet came from) is
606        // responding to the request, in other words it has the line
607        // in Modified or Owned state
608        DPRINTF(Cache, "Cache above responding to %#llx (%s): "
609                "not responding\n",
610                pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
611
612        // if the packet needs the block to be writable, and the cache
613        // that has promised to respond (setting the cache responding
614        // flag) is not providing writable (it is in Owned rather than
615        // the Modified state), we know that there may be other Shared
616        // copies in the system; go out and invalidate them all
617        assert(pkt->needsWritable() && !pkt->responderHadWritable());
618
619        // an upstream cache that had the line in Owned state
620        // (dirty, but not writable), is responding and thus
621        // transferring the dirty line from one branch of the
622        // cache hierarchy to another
623
624        // send out an express snoop and invalidate all other
625        // copies (snooping a packet that needs writable is the
626        // same as an invalidation), thus turning the Owned line
627        // into a Modified line, note that we don't invalidate the
628        // block in the current cache or any other cache on the
629        // path to memory
630
631        // create a downstream express snoop with cleared packet
632        // flags, there is no need to allocate any data as the
633        // packet is merely used to co-ordinate state transitions
634        Packet *snoop_pkt = new Packet(pkt, true, false);
635
636        // also reset the bus time that the original packet has
637        // not yet paid for
638        snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
639
640        // make this an instantaneous express snoop, and let the
641        // other caches in the system know that the another cache
642        // is responding, because we have found the authorative
643        // copy (Modified or Owned) that will supply the right
644        // data
645        snoop_pkt->setExpressSnoop();
646        snoop_pkt->setCacheResponding();
647
648        // this express snoop travels towards the memory, and at
649        // every crossbar it is snooped upwards thus reaching
650        // every cache in the system
651        bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
652        // express snoops always succeed
653        assert(success);
654
655        // main memory will delete the snoop packet
656
657        // queue for deletion, as opposed to immediate deletion, as
658        // the sending cache is still relying on the packet
659        pendingDelete.reset(pkt);
660
661        // no need to take any further action in this particular cache
662        // as an upstram cache has already committed to responding,
663        // and we have already sent out any express snoops in the
664        // section above to ensure all other copies in the system are
665        // invalidated
666        return true;
667    }
668
669    // anything that is merely forwarded pays for the forward latency and
670    // the delay provided by the crossbar
671    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
672
673    // We use lookupLatency here because it is used to specify the latency
674    // to access.
675    Cycles lat = lookupLatency;
676    CacheBlk *blk = NULL;
677    bool satisfied = false;
678    {
679        PacketList writebacks;
680        // Note that lat is passed by reference here. The function
681        // access() calls accessBlock() which can modify lat value.
682        satisfied = access(pkt, blk, lat, writebacks);
683
684        // copy writebacks to write buffer here to ensure they logically
685        // proceed anything happening below
686        doWritebacks(writebacks, forward_time);
687    }
688
689    // Here we charge the headerDelay that takes into account the latencies
690    // of the bus, if the packet comes from it.
691    // The latency charged it is just lat that is the value of lookupLatency
692    // modified by access() function, or if not just lookupLatency.
693    // In case of a hit we are neglecting response latency.
694    // In case of a miss we are neglecting forward latency.
695    Tick request_time = clockEdge(lat) + pkt->headerDelay;
696    // Here we reset the timing of the packet.
697    pkt->headerDelay = pkt->payloadDelay = 0;
698
699    // track time of availability of next prefetch, if any
700    Tick next_pf_time = MaxTick;
701
702    bool needsResponse = pkt->needsResponse();
703
704    if (satisfied) {
705        // should never be satisfying an uncacheable access as we
706        // flush and invalidate any existing block as part of the
707        // lookup
708        assert(!pkt->req->isUncacheable());
709
710        // hit (for all other request types)
711
712        if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
713            if (blk)
714                blk->status &= ~BlkHWPrefetched;
715
716            // Don't notify on SWPrefetch
717            if (!pkt->cmd.isSWPrefetch())
718                next_pf_time = prefetcher->notify(pkt);
719        }
720
721        if (needsResponse) {
722            pkt->makeTimingResponse();
723            // @todo: Make someone pay for this
724            pkt->headerDelay = pkt->payloadDelay = 0;
725
726            // In this case we are considering request_time that takes
727            // into account the delay of the xbar, if any, and just
728            // lat, neglecting responseLatency, modelling hit latency
729            // just as lookupLatency or or the value of lat overriden
730            // by access(), that calls accessBlock() function.
731            cpuSidePort->schedTimingResp(pkt, request_time, true);
732        } else {
733            DPRINTF(Cache, "%s satisfied %s addr %#llx, no response needed\n",
734                    __func__, pkt->cmdString(), pkt->getAddr(),
735                    pkt->getSize());
736
737            // queue the packet for deletion, as the sending cache is
738            // still relying on it; if the block is found in access(),
739            // CleanEvict and Writeback messages will be deleted
740            // here as well
741            pendingDelete.reset(pkt);
742        }
743    } else {
744        // miss
745
746        Addr blk_addr = blockAlign(pkt->getAddr());
747
748        // ignore any existing MSHR if we are dealing with an
749        // uncacheable request
750        MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
751            mshrQueue.findMatch(blk_addr, pkt->isSecure());
752
753        // Software prefetch handling:
754        // To keep the core from waiting on data it won't look at
755        // anyway, send back a response with dummy data. Miss handling
756        // will continue asynchronously. Unfortunately, the core will
757        // insist upon freeing original Packet/Request, so we have to
758        // create a new pair with a different lifecycle. Note that this
759        // processing happens before any MSHR munging on the behalf of
760        // this request because this new Request will be the one stored
761        // into the MSHRs, not the original.
762        if (pkt->cmd.isSWPrefetch()) {
763            assert(needsResponse);
764            assert(pkt->req->hasPaddr());
765            assert(!pkt->req->isUncacheable());
766
767            // There's no reason to add a prefetch as an additional target
768            // to an existing MSHR. If an outstanding request is already
769            // in progress, there is nothing for the prefetch to do.
770            // If this is the case, we don't even create a request at all.
771            PacketPtr pf = nullptr;
772
773            if (!mshr) {
774                // copy the request and create a new SoftPFReq packet
775                RequestPtr req = new Request(pkt->req->getPaddr(),
776                                             pkt->req->getSize(),
777                                             pkt->req->getFlags(),
778                                             pkt->req->masterId());
779                pf = new Packet(req, pkt->cmd);
780                pf->allocate();
781                assert(pf->getAddr() == pkt->getAddr());
782                assert(pf->getSize() == pkt->getSize());
783            }
784
785            pkt->makeTimingResponse();
786
787            // request_time is used here, taking into account lat and the delay
788            // charged if the packet comes from the xbar.
789            cpuSidePort->schedTimingResp(pkt, request_time, true);
790
791            // If an outstanding request is in progress (we found an
792            // MSHR) this is set to null
793            pkt = pf;
794        }
795
796        if (mshr) {
797            /// MSHR hit
798            /// @note writebacks will be checked in getNextMSHR()
799            /// for any conflicting requests to the same block
800
801            //@todo remove hw_pf here
802
803            // Coalesce unless it was a software prefetch (see above).
804            if (pkt) {
805                assert(!pkt->isWriteback());
806                // CleanEvicts corresponding to blocks which have
807                // outstanding requests in MSHRs are simply sunk here
808                if (pkt->cmd == MemCmd::CleanEvict) {
809                    pendingDelete.reset(pkt);
810                } else {
811                    DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n",
812                            __func__, pkt->cmdString(), pkt->getAddr(),
813                            pkt->getSize());
814
815                    assert(pkt->req->masterId() < system->maxMasters());
816                    mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
817                    // We use forward_time here because it is the same
818                    // considering new targets. We have multiple
819                    // requests for the same address here. It
820                    // specifies the latency to allocate an internal
821                    // buffer and to schedule an event to the queued
822                    // port and also takes into account the additional
823                    // delay of the xbar.
824                    mshr->allocateTarget(pkt, forward_time, order++,
825                                         allocOnFill(pkt->cmd));
826                    if (mshr->getNumTargets() == numTarget) {
827                        noTargetMSHR = mshr;
828                        setBlocked(Blocked_NoTargets);
829                        // need to be careful with this... if this mshr isn't
830                        // ready yet (i.e. time > curTick()), we don't want to
831                        // move it ahead of mshrs that are ready
832                        // mshrQueue.moveToFront(mshr);
833                    }
834                }
835                // We should call the prefetcher reguardless if the request is
836                // satisfied or not, reguardless if the request is in the MSHR or
837                // not.  The request could be a ReadReq hit, but still not
838                // satisfied (potentially because of a prior write to the same
839                // cache line.  So, even when not satisfied, tehre is an MSHR
840                // already allocated for this, we need to let the prefetcher know
841                // about the request
842                if (prefetcher) {
843                    // Don't notify on SWPrefetch
844                    if (!pkt->cmd.isSWPrefetch())
845                        next_pf_time = prefetcher->notify(pkt);
846                }
847            }
848        } else {
849            // no MSHR
850            assert(pkt->req->masterId() < system->maxMasters());
851            if (pkt->req->isUncacheable()) {
852                mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
853            } else {
854                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
855            }
856
857            if (pkt->isEviction() ||
858                (pkt->req->isUncacheable() && pkt->isWrite())) {
859                // We use forward_time here because there is an
860                // uncached memory write, forwarded to WriteBuffer.
861                allocateWriteBuffer(pkt, forward_time);
862            } else {
863                if (blk && blk->isValid()) {
864                    // should have flushed and have no valid block
865                    assert(!pkt->req->isUncacheable());
866
867                    // If we have a write miss to a valid block, we
868                    // need to mark the block non-readable.  Otherwise
869                    // if we allow reads while there's an outstanding
870                    // write miss, the read could return stale data
871                    // out of the cache block... a more aggressive
872                    // system could detect the overlap (if any) and
873                    // forward data out of the MSHRs, but we don't do
874                    // that yet.  Note that we do need to leave the
875                    // block valid so that it stays in the cache, in
876                    // case we get an upgrade response (and hence no
877                    // new data) when the write miss completes.
878                    // As long as CPUs do proper store/load forwarding
879                    // internally, and have a sufficiently weak memory
880                    // model, this is probably unnecessary, but at some
881                    // point it must have seemed like we needed it...
882                    assert(pkt->needsWritable());
883                    assert(!blk->isWritable());
884                    blk->status &= ~BlkReadable;
885                }
886                // Here we are using forward_time, modelling the latency of
887                // a miss (outbound) just as forwardLatency, neglecting the
888                // lookupLatency component.
889                allocateMissBuffer(pkt, forward_time);
890            }
891
892            if (prefetcher) {
893                // Don't notify on SWPrefetch
894                if (!pkt->cmd.isSWPrefetch())
895                    next_pf_time = prefetcher->notify(pkt);
896            }
897        }
898    }
899
900    if (next_pf_time != MaxTick)
901        schedMemSideSendEvent(next_pf_time);
902
903    return true;
904}
905
906PacketPtr
907Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
908                        bool needsWritable) const
909{
910    // should never see evictions here
911    assert(!cpu_pkt->isEviction());
912
913    bool blkValid = blk && blk->isValid();
914
915    if (cpu_pkt->req->isUncacheable() ||
916        (!blkValid && cpu_pkt->isUpgrade())) {
917        // uncacheable requests and upgrades from upper-level caches
918        // that missed completely just go through as is
919        return nullptr;
920    }
921
922    assert(cpu_pkt->needsResponse());
923
924    MemCmd cmd;
925    // @TODO make useUpgrades a parameter.
926    // Note that ownership protocols require upgrade, otherwise a
927    // write miss on a shared owned block will generate a ReadExcl,
928    // which will clobber the owned copy.
929    const bool useUpgrades = true;
930    if (blkValid && useUpgrades) {
931        // only reason to be here is that blk is read only and we need
932        // it to be writable
933        assert(needsWritable);
934        assert(!blk->isWritable());
935        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
936    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
937               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
938        // Even though this SC will fail, we still need to send out the
939        // request and get the data to supply it to other snoopers in the case
940        // where the determination the StoreCond fails is delayed due to
941        // all caches not being on the same local bus.
942        cmd = MemCmd::SCUpgradeFailReq;
943    } else if (cpu_pkt->cmd == MemCmd::WriteLineReq ||
944               cpu_pkt->cmd == MemCmd::InvalidateReq) {
945        // forward as invalidate to all other caches, this gives us
946        // the line in Exclusive state, and invalidates all other
947        // copies
948        cmd = MemCmd::InvalidateReq;
949    } else {
950        // block is invalid
951        cmd = needsWritable ? MemCmd::ReadExReq :
952            (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
953    }
954    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
955
956    // if there are upstream caches that have already marked the
957    // packet as having sharers (not passing writable), pass that info
958    // downstream
959    if (cpu_pkt->hasSharers()) {
960        // note that cpu_pkt may have spent a considerable time in the
961        // MSHR queue and that the information could possibly be out
962        // of date, however, there is no harm in conservatively
963        // assuming the block has sharers
964        pkt->setHasSharers();
965        DPRINTF(Cache, "%s passing hasSharers from %s to %s addr %#llx "
966                "size %d\n",
967                __func__, cpu_pkt->cmdString(), pkt->cmdString(),
968                pkt->getAddr(), pkt->getSize());
969    }
970
971    // the packet should be block aligned
972    assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
973
974    pkt->allocate();
975    DPRINTF(Cache, "%s created %s from %s for  addr %#llx size %d\n",
976            __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
977            pkt->getSize());
978    return pkt;
979}
980
981
982Tick
983Cache::recvAtomic(PacketPtr pkt)
984{
985    // We are in atomic mode so we pay just for lookupLatency here.
986    Cycles lat = lookupLatency;
987
988    // Forward the request if the system is in cache bypass mode.
989    if (system->bypassCaches())
990        return ticksToCycles(memSidePort->sendAtomic(pkt));
991
992    promoteWholeLineWrites(pkt);
993
994    // follow the same flow as in recvTimingReq, and check if a cache
995    // above us is responding
996    if (pkt->cacheResponding()) {
997        DPRINTF(Cache, "Cache above responding to %#llx (%s): "
998                "not responding\n",
999                pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
1000
1001        // if a cache is responding, and it had the line in Owned
1002        // rather than Modified state, we need to invalidate any
1003        // copies that are not on the same path to memory
1004        assert(pkt->needsWritable() && !pkt->responderHadWritable());
1005        lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1006
1007        return lat * clockPeriod();
1008    }
1009
1010    // should assert here that there are no outstanding MSHRs or
1011    // writebacks... that would mean that someone used an atomic
1012    // access in timing mode
1013
1014    CacheBlk *blk = NULL;
1015    PacketList writebacks;
1016    bool satisfied = access(pkt, blk, lat, writebacks);
1017
1018    // handle writebacks resulting from the access here to ensure they
1019    // logically proceed anything happening below
1020    doWritebacksAtomic(writebacks);
1021
1022    if (!satisfied) {
1023        // MISS
1024
1025        // deal with the packets that go through the write path of
1026        // the cache, i.e. any evictions and uncacheable writes
1027        if (pkt->isEviction() ||
1028            (pkt->req->isUncacheable() && pkt->isWrite())) {
1029            lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1030            return lat * clockPeriod();
1031        }
1032        // only misses left
1033
1034        PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
1035
1036        bool is_forward = (bus_pkt == NULL);
1037
1038        if (is_forward) {
1039            // just forwarding the same request to the next level
1040            // no local cache operation involved
1041            bus_pkt = pkt;
1042        }
1043
1044        DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
1045                bus_pkt->cmdString(), bus_pkt->getAddr(),
1046                bus_pkt->isSecure() ? "s" : "ns");
1047
1048#if TRACING_ON
1049        CacheBlk::State old_state = blk ? blk->status : 0;
1050#endif
1051
1052        lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1053
1054        bool is_invalidate = bus_pkt->isInvalidate();
1055
1056        // We are now dealing with the response handling
1057        DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n",
1058                bus_pkt->cmdString(), bus_pkt->getAddr(),
1059                bus_pkt->isSecure() ? "s" : "ns",
1060                old_state);
1061
1062        // If packet was a forward, the response (if any) is already
1063        // in place in the bus_pkt == pkt structure, so we don't need
1064        // to do anything.  Otherwise, use the separate bus_pkt to
1065        // generate response to pkt and then delete it.
1066        if (!is_forward) {
1067            if (pkt->needsResponse()) {
1068                assert(bus_pkt->isResponse());
1069                if (bus_pkt->isError()) {
1070                    pkt->makeAtomicResponse();
1071                    pkt->copyError(bus_pkt);
1072                } else if (pkt->cmd == MemCmd::WriteLineReq) {
1073                    // note the use of pkt, not bus_pkt here.
1074
1075                    // write-line request to the cache that promoted
1076                    // the write to a whole line
1077                    blk = handleFill(pkt, blk, writebacks,
1078                                     allocOnFill(pkt->cmd));
1079                    assert(blk != NULL);
1080                    is_invalidate = false;
1081                    satisfyCpuSideRequest(pkt, blk);
1082                } else if (bus_pkt->isRead() ||
1083                           bus_pkt->cmd == MemCmd::UpgradeResp) {
1084                    // we're updating cache state to allow us to
1085                    // satisfy the upstream request from the cache
1086                    blk = handleFill(bus_pkt, blk, writebacks,
1087                                     allocOnFill(pkt->cmd));
1088                    satisfyCpuSideRequest(pkt, blk);
1089                } else {
1090                    // we're satisfying the upstream request without
1091                    // modifying cache state, e.g., a write-through
1092                    pkt->makeAtomicResponse();
1093                }
1094            }
1095            delete bus_pkt;
1096        }
1097
1098        if (is_invalidate && blk && blk->isValid()) {
1099            invalidateBlock(blk);
1100        }
1101    }
1102
1103    // Note that we don't invoke the prefetcher at all in atomic mode.
1104    // It's not clear how to do it properly, particularly for
1105    // prefetchers that aggressively generate prefetch candidates and
1106    // rely on bandwidth contention to throttle them; these will tend
1107    // to pollute the cache in atomic mode since there is no bandwidth
1108    // contention.  If we ever do want to enable prefetching in atomic
1109    // mode, though, this is the place to do it... see timingAccess()
1110    // for an example (though we'd want to issue the prefetch(es)
1111    // immediately rather than calling requestMemSideBus() as we do
1112    // there).
1113
1114    // do any writebacks resulting from the response handling
1115    doWritebacksAtomic(writebacks);
1116
1117    // if we used temp block, check to see if its valid and if so
1118    // clear it out, but only do so after the call to recvAtomic is
1119    // finished so that any downstream observers (such as a snoop
1120    // filter), first see the fill, and only then see the eviction
1121    if (blk == tempBlock && tempBlock->isValid()) {
1122        // the atomic CPU calls recvAtomic for fetch and load/store
1123        // sequentuially, and we may already have a tempBlock
1124        // writeback from the fetch that we have not yet sent
1125        if (tempBlockWriteback) {
1126            // if that is the case, write the prevoius one back, and
1127            // do not schedule any new event
1128            writebackTempBlockAtomic();
1129        } else {
1130            // the writeback/clean eviction happens after the call to
1131            // recvAtomic has finished (but before any successive
1132            // calls), so that the response handling from the fill is
1133            // allowed to happen first
1134            schedule(writebackTempBlockAtomicEvent, curTick());
1135        }
1136
1137        tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1138            writebackBlk(blk) : cleanEvictBlk(blk);
1139        blk->invalidate();
1140    }
1141
1142    if (pkt->needsResponse()) {
1143        pkt->makeAtomicResponse();
1144    }
1145
1146    return lat * clockPeriod();
1147}
1148
1149
1150void
1151Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1152{
1153    if (system->bypassCaches()) {
1154        // Packets from the memory side are snoop request and
1155        // shouldn't happen in bypass mode.
1156        assert(fromCpuSide);
1157
1158        // The cache should be flushed if we are in cache bypass mode,
1159        // so we don't need to check if we need to update anything.
1160        memSidePort->sendFunctional(pkt);
1161        return;
1162    }
1163
1164    Addr blk_addr = blockAlign(pkt->getAddr());
1165    bool is_secure = pkt->isSecure();
1166    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1167    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1168
1169    pkt->pushLabel(name());
1170
1171    CacheBlkPrintWrapper cbpw(blk);
1172
1173    // Note that just because an L2/L3 has valid data doesn't mean an
1174    // L1 doesn't have a more up-to-date modified copy that still
1175    // needs to be found.  As a result we always update the request if
1176    // we have it, but only declare it satisfied if we are the owner.
1177
1178    // see if we have data at all (owned or otherwise)
1179    bool have_data = blk && blk->isValid()
1180        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1181                                blk->data);
1182
1183    // data we have is dirty if marked as such or if we have an
1184    // in-service MSHR that is pending a modified line
1185    bool have_dirty =
1186        have_data && (blk->isDirty() ||
1187                      (mshr && mshr->inService && mshr->isPendingModified()));
1188
1189    bool done = have_dirty
1190        || cpuSidePort->checkFunctional(pkt)
1191        || mshrQueue.checkFunctional(pkt, blk_addr)
1192        || writeBuffer.checkFunctional(pkt, blk_addr)
1193        || memSidePort->checkFunctional(pkt);
1194
1195    DPRINTF(CacheVerbose, "functional %s %#llx (%s) %s%s%s\n",
1196            pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1197            (blk && blk->isValid()) ? "valid " : "",
1198            have_data ? "data " : "", done ? "done " : "");
1199
1200    // We're leaving the cache, so pop cache->name() label
1201    pkt->popLabel();
1202
1203    if (done) {
1204        pkt->makeResponse();
1205    } else {
1206        // if it came as a request from the CPU side then make sure it
1207        // continues towards the memory side
1208        if (fromCpuSide) {
1209            memSidePort->sendFunctional(pkt);
1210        } else if (forwardSnoops && cpuSidePort->isSnooping()) {
1211            // if it came from the memory side, it must be a snoop request
1212            // and we should only forward it if we are forwarding snoops
1213            cpuSidePort->sendFunctionalSnoop(pkt);
1214        }
1215    }
1216}
1217
1218
1219/////////////////////////////////////////////////////
1220//
1221// Response handling: responses from the memory side
1222//
1223/////////////////////////////////////////////////////
1224
1225
1226void
1227Cache::handleUncacheableWriteResp(PacketPtr pkt)
1228{
1229    Tick completion_time = clockEdge(responseLatency) +
1230        pkt->headerDelay + pkt->payloadDelay;
1231
1232    // Reset the bus additional time as it is now accounted for
1233    pkt->headerDelay = pkt->payloadDelay = 0;
1234
1235    cpuSidePort->schedTimingResp(pkt, completion_time, true);
1236}
1237
1238void
1239Cache::recvTimingResp(PacketPtr pkt)
1240{
1241    assert(pkt->isResponse());
1242
1243    // all header delay should be paid for by the crossbar, unless
1244    // this is a prefetch response from above
1245    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1246             "%s saw a non-zero packet delay\n", name());
1247
1248    bool is_error = pkt->isError();
1249
1250    if (is_error) {
1251        DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1252                "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1253                pkt->cmdString());
1254    }
1255
1256    DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1257            pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1258            pkt->isSecure() ? "s" : "ns");
1259
1260    // if this is a write, we should be looking at an uncacheable
1261    // write
1262    if (pkt->isWrite()) {
1263        assert(pkt->req->isUncacheable());
1264        handleUncacheableWriteResp(pkt);
1265        return;
1266    }
1267
1268    // we have dealt with any (uncacheable) writes above, from here on
1269    // we know we are dealing with an MSHR due to a miss or a prefetch
1270    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
1271    assert(mshr);
1272
1273    if (mshr == noTargetMSHR) {
1274        // we always clear at least one target
1275        clearBlocked(Blocked_NoTargets);
1276        noTargetMSHR = NULL;
1277    }
1278
1279    // Initial target is used just for stats
1280    MSHR::Target *initial_tgt = mshr->getTarget();
1281    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1282    Tick miss_latency = curTick() - initial_tgt->recvTime;
1283
1284    if (pkt->req->isUncacheable()) {
1285        assert(pkt->req->masterId() < system->maxMasters());
1286        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1287            miss_latency;
1288    } else {
1289        assert(pkt->req->masterId() < system->maxMasters());
1290        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1291            miss_latency;
1292    }
1293
1294    bool wasFull = mshrQueue.isFull();
1295
1296    PacketList writebacks;
1297
1298    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1299
1300    // upgrade deferred targets if the response has no sharers, and is
1301    // thus passing writable
1302    if (!pkt->hasSharers()) {
1303        mshr->promoteWritable();
1304    }
1305
1306    bool is_fill = !mshr->isForward &&
1307        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1308
1309    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1310
1311    if (is_fill && !is_error) {
1312        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1313                pkt->getAddr());
1314
1315        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill);
1316        assert(blk != NULL);
1317    }
1318
1319    // allow invalidation responses originating from write-line
1320    // requests to be discarded
1321    bool is_invalidate = pkt->isInvalidate();
1322
1323    // First offset for critical word first calculations
1324    int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1325
1326    while (mshr->hasTargets()) {
1327        MSHR::Target *target = mshr->getTarget();
1328        Packet *tgt_pkt = target->pkt;
1329
1330        switch (target->source) {
1331          case MSHR::Target::FromCPU:
1332            Tick completion_time;
1333            // Here we charge on completion_time the delay of the xbar if the
1334            // packet comes from it, charged on headerDelay.
1335            completion_time = pkt->headerDelay;
1336
1337            // Software prefetch handling for cache closest to core
1338            if (tgt_pkt->cmd.isSWPrefetch()) {
1339                // a software prefetch would have already been ack'd immediately
1340                // with dummy data so the core would be able to retire it.
1341                // this request completes right here, so we deallocate it.
1342                delete tgt_pkt->req;
1343                delete tgt_pkt;
1344                break; // skip response
1345            }
1346
1347            // unlike the other packet flows, where data is found in other
1348            // caches or memory and brought back, write-line requests always
1349            // have the data right away, so the above check for "is fill?"
1350            // cannot actually be determined until examining the stored MSHR
1351            // state. We "catch up" with that logic here, which is duplicated
1352            // from above.
1353            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1354                assert(!is_error);
1355                // we got the block in a writable state, so promote
1356                // any deferred targets if possible
1357                mshr->promoteWritable();
1358                // NB: we use the original packet here and not the response!
1359                blk = handleFill(tgt_pkt, blk, writebacks, mshr->allocOnFill);
1360                assert(blk != NULL);
1361
1362                // treat as a fill, and discard the invalidation
1363                // response
1364                is_fill = true;
1365                is_invalidate = false;
1366            }
1367
1368            if (is_fill) {
1369                satisfyCpuSideRequest(tgt_pkt, blk,
1370                                      true, mshr->hasPostDowngrade());
1371
1372                // How many bytes past the first request is this one
1373                int transfer_offset =
1374                    tgt_pkt->getOffset(blkSize) - initial_offset;
1375                if (transfer_offset < 0) {
1376                    transfer_offset += blkSize;
1377                }
1378
1379                // If not critical word (offset) return payloadDelay.
1380                // responseLatency is the latency of the return path
1381                // from lower level caches/memory to an upper level cache or
1382                // the core.
1383                completion_time += clockEdge(responseLatency) +
1384                    (transfer_offset ? pkt->payloadDelay : 0);
1385
1386                assert(!tgt_pkt->req->isUncacheable());
1387
1388                assert(tgt_pkt->req->masterId() < system->maxMasters());
1389                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1390                    completion_time - target->recvTime;
1391            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1392                // failed StoreCond upgrade
1393                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1394                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1395                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1396                // responseLatency is the latency of the return path
1397                // from lower level caches/memory to an upper level cache or
1398                // the core.
1399                completion_time += clockEdge(responseLatency) +
1400                    pkt->payloadDelay;
1401                tgt_pkt->req->setExtraData(0);
1402            } else {
1403                // not a cache fill, just forwarding response
1404                // responseLatency is the latency of the return path
1405                // from lower level cahces/memory to the core.
1406                completion_time += clockEdge(responseLatency) +
1407                    pkt->payloadDelay;
1408                if (pkt->isRead() && !is_error) {
1409                    // sanity check
1410                    assert(pkt->getAddr() == tgt_pkt->getAddr());
1411                    assert(pkt->getSize() >= tgt_pkt->getSize());
1412
1413                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1414                }
1415            }
1416            tgt_pkt->makeTimingResponse();
1417            // if this packet is an error copy that to the new packet
1418            if (is_error)
1419                tgt_pkt->copyError(pkt);
1420            if (tgt_pkt->cmd == MemCmd::ReadResp &&
1421                (is_invalidate || mshr->hasPostInvalidate())) {
1422                // If intermediate cache got ReadRespWithInvalidate,
1423                // propagate that.  Response should not have
1424                // isInvalidate() set otherwise.
1425                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1426                DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1427                        __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1428            }
1429            // Reset the bus additional time as it is now accounted for
1430            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1431            cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1432            break;
1433
1434          case MSHR::Target::FromPrefetcher:
1435            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1436            if (blk)
1437                blk->status |= BlkHWPrefetched;
1438            delete tgt_pkt->req;
1439            delete tgt_pkt;
1440            break;
1441
1442          case MSHR::Target::FromSnoop:
1443            // I don't believe that a snoop can be in an error state
1444            assert(!is_error);
1445            // response to snoop request
1446            DPRINTF(Cache, "processing deferred snoop...\n");
1447            assert(!(is_invalidate && !mshr->hasPostInvalidate()));
1448            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1449            break;
1450
1451          default:
1452            panic("Illegal target->source enum %d\n", target->source);
1453        }
1454
1455        mshr->popTarget();
1456    }
1457
1458    if (blk && blk->isValid()) {
1459        // an invalidate response stemming from a write line request
1460        // should not invalidate the block, so check if the
1461        // invalidation should be discarded
1462        if (is_invalidate || mshr->hasPostInvalidate()) {
1463            invalidateBlock(blk);
1464        } else if (mshr->hasPostDowngrade()) {
1465            blk->status &= ~BlkWritable;
1466        }
1467    }
1468
1469    if (mshr->promoteDeferredTargets()) {
1470        // avoid later read getting stale data while write miss is
1471        // outstanding.. see comment in timingAccess()
1472        if (blk) {
1473            blk->status &= ~BlkReadable;
1474        }
1475        mshrQueue.markPending(mshr);
1476        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1477    } else {
1478        mshrQueue.deallocate(mshr);
1479        if (wasFull && !mshrQueue.isFull()) {
1480            clearBlocked(Blocked_NoMSHRs);
1481        }
1482
1483        // Request the bus for a prefetch if this deallocation freed enough
1484        // MSHRs for a prefetch to take place
1485        if (prefetcher && mshrQueue.canPrefetch()) {
1486            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1487                                         clockEdge());
1488            if (next_pf_time != MaxTick)
1489                schedMemSideSendEvent(next_pf_time);
1490        }
1491    }
1492    // reset the xbar additional timinig  as it is now accounted for
1493    pkt->headerDelay = pkt->payloadDelay = 0;
1494
1495    // copy writebacks to write buffer
1496    doWritebacks(writebacks, forward_time);
1497
1498    // if we used temp block, check to see if its valid and then clear it out
1499    if (blk == tempBlock && tempBlock->isValid()) {
1500        // We use forwardLatency here because we are copying
1501        // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1502        // allocate an internal buffer and to schedule an event to the
1503        // queued port.
1504        if (blk->isDirty() || writebackClean) {
1505            PacketPtr wbPkt = writebackBlk(blk);
1506            allocateWriteBuffer(wbPkt, forward_time);
1507            // Set BLOCK_CACHED flag if cached above.
1508            if (isCachedAbove(wbPkt))
1509                wbPkt->setBlockCached();
1510        } else {
1511            PacketPtr wcPkt = cleanEvictBlk(blk);
1512            // Check to see if block is cached above. If not allocate
1513            // write buffer
1514            if (isCachedAbove(wcPkt))
1515                delete wcPkt;
1516            else
1517                allocateWriteBuffer(wcPkt, forward_time);
1518        }
1519        blk->invalidate();
1520    }
1521
1522    DPRINTF(CacheVerbose, "Leaving %s with %s for addr %#llx\n", __func__,
1523            pkt->cmdString(), pkt->getAddr());
1524    delete pkt;
1525}
1526
1527PacketPtr
1528Cache::writebackBlk(CacheBlk *blk)
1529{
1530    chatty_assert(!isReadOnly || writebackClean,
1531                  "Writeback from read-only cache");
1532    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1533
1534    writebacks[Request::wbMasterId]++;
1535
1536    Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1537                               blkSize, 0, Request::wbMasterId);
1538    if (blk->isSecure())
1539        req->setFlags(Request::SECURE);
1540
1541    req->taskId(blk->task_id);
1542    blk->task_id= ContextSwitchTaskId::Unknown;
1543    blk->tickInserted = curTick();
1544
1545    PacketPtr pkt =
1546        new Packet(req, blk->isDirty() ?
1547                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1548
1549    DPRINTF(Cache, "Create Writeback %#llx writable: %d, dirty: %d\n",
1550            pkt->getAddr(), blk->isWritable(), blk->isDirty());
1551
1552    if (blk->isWritable()) {
1553        // not asserting shared means we pass the block in modified
1554        // state, mark our own block non-writeable
1555        blk->status &= ~BlkWritable;
1556    } else {
1557        // we are in the Owned state, tell the receiver
1558        pkt->setHasSharers();
1559    }
1560
1561    // make sure the block is not marked dirty
1562    blk->status &= ~BlkDirty;
1563
1564    pkt->allocate();
1565    std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1566
1567    return pkt;
1568}
1569
1570PacketPtr
1571Cache::cleanEvictBlk(CacheBlk *blk)
1572{
1573    assert(!writebackClean);
1574    assert(blk && blk->isValid() && !blk->isDirty());
1575    // Creating a zero sized write, a message to the snoop filter
1576    Request *req =
1577        new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1578                    Request::wbMasterId);
1579    if (blk->isSecure())
1580        req->setFlags(Request::SECURE);
1581
1582    req->taskId(blk->task_id);
1583    blk->task_id = ContextSwitchTaskId::Unknown;
1584    blk->tickInserted = curTick();
1585
1586    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1587    pkt->allocate();
1588    DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1589            pkt->req->isInstFetch() ? " (ifetch)" : "",
1590            pkt->getAddr());
1591
1592    return pkt;
1593}
1594
1595void
1596Cache::memWriteback()
1597{
1598    CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1599    tags->forEachBlk(visitor);
1600}
1601
1602void
1603Cache::memInvalidate()
1604{
1605    CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1606    tags->forEachBlk(visitor);
1607}
1608
1609bool
1610Cache::isDirty() const
1611{
1612    CacheBlkIsDirtyVisitor visitor;
1613    tags->forEachBlk(visitor);
1614
1615    return visitor.isDirty();
1616}
1617
1618bool
1619Cache::writebackVisitor(CacheBlk &blk)
1620{
1621    if (blk.isDirty()) {
1622        assert(blk.isValid());
1623
1624        Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1625                        blkSize, 0, Request::funcMasterId);
1626        request.taskId(blk.task_id);
1627
1628        Packet packet(&request, MemCmd::WriteReq);
1629        packet.dataStatic(blk.data);
1630
1631        memSidePort->sendFunctional(&packet);
1632
1633        blk.status &= ~BlkDirty;
1634    }
1635
1636    return true;
1637}
1638
1639bool
1640Cache::invalidateVisitor(CacheBlk &blk)
1641{
1642
1643    if (blk.isDirty())
1644        warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1645
1646    if (blk.isValid()) {
1647        assert(!blk.isDirty());
1648        tags->invalidate(&blk);
1649        blk.invalidate();
1650    }
1651
1652    return true;
1653}
1654
1655CacheBlk*
1656Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1657{
1658    CacheBlk *blk = tags->findVictim(addr);
1659
1660    // It is valid to return NULL if there is no victim
1661    if (!blk)
1662        return nullptr;
1663
1664    if (blk->isValid()) {
1665        Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1666        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1667        if (repl_mshr) {
1668            // must be an outstanding upgrade request
1669            // on a block we're about to replace...
1670            assert(!blk->isWritable() || blk->isDirty());
1671            assert(repl_mshr->needsWritable());
1672            // too hard to replace block with transient state
1673            // allocation failed, block not inserted
1674            return NULL;
1675        } else {
1676            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n",
1677                    repl_addr, blk->isSecure() ? "s" : "ns",
1678                    addr, is_secure ? "s" : "ns",
1679                    blk->isDirty() ? "writeback" : "clean");
1680
1681            if (blk->wasPrefetched()) {
1682                unusedPrefetches++;
1683            }
1684            // Will send up Writeback/CleanEvict snoops via isCachedAbove
1685            // when pushing this writeback list into the write buffer.
1686            if (blk->isDirty() || writebackClean) {
1687                // Save writeback packet for handling by caller
1688                writebacks.push_back(writebackBlk(blk));
1689            } else {
1690                writebacks.push_back(cleanEvictBlk(blk));
1691            }
1692        }
1693    }
1694
1695    return blk;
1696}
1697
1698void
1699Cache::invalidateBlock(CacheBlk *blk)
1700{
1701    if (blk != tempBlock)
1702        tags->invalidate(blk);
1703    blk->invalidate();
1704}
1705
1706// Note that the reason we return a list of writebacks rather than
1707// inserting them directly in the write buffer is that this function
1708// is called by both atomic and timing-mode accesses, and in atomic
1709// mode we don't mess with the write buffer (we just perform the
1710// writebacks atomically once the original request is complete).
1711CacheBlk*
1712Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1713                  bool allocate)
1714{
1715    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1716    Addr addr = pkt->getAddr();
1717    bool is_secure = pkt->isSecure();
1718#if TRACING_ON
1719    CacheBlk::State old_state = blk ? blk->status : 0;
1720#endif
1721
1722    // When handling a fill, we should have no writes to this line.
1723    assert(addr == blockAlign(addr));
1724    assert(!writeBuffer.findMatch(addr, is_secure));
1725
1726    if (blk == NULL) {
1727        // better have read new data...
1728        assert(pkt->hasData());
1729
1730        // only read responses and write-line requests have data;
1731        // note that we don't write the data here for write-line - that
1732        // happens in the subsequent satisfyCpuSideRequest.
1733        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1734
1735        // need to do a replacement if allocating, otherwise we stick
1736        // with the temporary storage
1737        blk = allocate ? allocateBlock(addr, is_secure, writebacks) : NULL;
1738
1739        if (blk == NULL) {
1740            // No replaceable block or a mostly exclusive
1741            // cache... just use temporary storage to complete the
1742            // current request and then get rid of it
1743            assert(!tempBlock->isValid());
1744            blk = tempBlock;
1745            tempBlock->set = tags->extractSet(addr);
1746            tempBlock->tag = tags->extractTag(addr);
1747            // @todo: set security state as well...
1748            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1749                    is_secure ? "s" : "ns");
1750        } else {
1751            tags->insertBlock(pkt, blk);
1752        }
1753
1754        // we should never be overwriting a valid block
1755        assert(!blk->isValid());
1756    } else {
1757        // existing block... probably an upgrade
1758        assert(blk->tag == tags->extractTag(addr));
1759        // either we're getting new data or the block should already be valid
1760        assert(pkt->hasData() || blk->isValid());
1761        // don't clear block status... if block is already dirty we
1762        // don't want to lose that
1763    }
1764
1765    if (is_secure)
1766        blk->status |= BlkSecure;
1767    blk->status |= BlkValid | BlkReadable;
1768
1769    // sanity check for whole-line writes, which should always be
1770    // marked as writable as part of the fill, and then later marked
1771    // dirty as part of satisfyCpuSideRequest
1772    if (pkt->cmd == MemCmd::WriteLineReq) {
1773        assert(!pkt->hasSharers());
1774        // at the moment other caches do not respond to the
1775        // invalidation requests corresponding to a whole-line write
1776        assert(!pkt->cacheResponding());
1777    }
1778
1779    // here we deal with setting the appropriate state of the line,
1780    // and we start by looking at the hasSharers flag, and ignore the
1781    // cacheResponding flag (normally signalling dirty data) if the
1782    // packet has sharers, thus the line is never allocated as Owned
1783    // (dirty but not writable), and always ends up being either
1784    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1785    // for more details
1786    if (!pkt->hasSharers()) {
1787        // we could get a writable line from memory (rather than a
1788        // cache) even in a read-only cache, note that we set this bit
1789        // even for a read-only cache, possibly revisit this decision
1790        blk->status |= BlkWritable;
1791
1792        // check if we got this via cache-to-cache transfer (i.e., from a
1793        // cache that had the block in Modified or Owned state)
1794        if (pkt->cacheResponding()) {
1795            // we got the block in Modified state, and invalidated the
1796            // owners copy
1797            blk->status |= BlkDirty;
1798
1799            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1800                          "in read-only cache %s\n", name());
1801        }
1802    }
1803
1804    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1805            addr, is_secure ? "s" : "ns", old_state, blk->print());
1806
1807    // if we got new data, copy it in (checking for a read response
1808    // and a response that has data is the same in the end)
1809    if (pkt->isRead()) {
1810        // sanity checks
1811        assert(pkt->hasData());
1812        assert(pkt->getSize() == blkSize);
1813
1814        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1815    }
1816    // We pay for fillLatency here.
1817    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1818        pkt->payloadDelay;
1819
1820    return blk;
1821}
1822
1823
1824/////////////////////////////////////////////////////
1825//
1826// Snoop path: requests coming in from the memory side
1827//
1828/////////////////////////////////////////////////////
1829
1830void
1831Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1832                              bool already_copied, bool pending_inval)
1833{
1834    // sanity check
1835    assert(req_pkt->isRequest());
1836    assert(req_pkt->needsResponse());
1837
1838    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1839            req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1840    // timing-mode snoop responses require a new packet, unless we
1841    // already made a copy...
1842    PacketPtr pkt = req_pkt;
1843    if (!already_copied)
1844        // do not clear flags, and allocate space for data if the
1845        // packet needs it (the only packets that carry data are read
1846        // responses)
1847        pkt = new Packet(req_pkt, false, req_pkt->isRead());
1848
1849    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1850           pkt->hasSharers());
1851    pkt->makeTimingResponse();
1852    if (pkt->isRead()) {
1853        pkt->setDataFromBlock(blk_data, blkSize);
1854    }
1855    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1856        // Assume we defer a response to a read from a far-away cache
1857        // A, then later defer a ReadExcl from a cache B on the same
1858        // bus as us. We'll assert cacheResponding in both cases, but
1859        // in the latter case cacheResponding will keep the
1860        // invalidation from reaching cache A. This special response
1861        // tells cache A that it gets the block to satisfy its read,
1862        // but must immediately invalidate it.
1863        pkt->cmd = MemCmd::ReadRespWithInvalidate;
1864    }
1865    // Here we consider forward_time, paying for just forward latency and
1866    // also charging the delay provided by the xbar.
1867    // forward_time is used as send_time in next allocateWriteBuffer().
1868    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1869    // Here we reset the timing of the packet.
1870    pkt->headerDelay = pkt->payloadDelay = 0;
1871    DPRINTF(CacheVerbose,
1872            "%s created response: %s addr %#llx size %d tick: %lu\n",
1873            __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1874            forward_time);
1875    memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1876}
1877
1878uint32_t
1879Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1880                   bool is_deferred, bool pending_inval)
1881{
1882    DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
1883            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1884    // deferred snoops can only happen in timing mode
1885    assert(!(is_deferred && !is_timing));
1886    // pending_inval only makes sense on deferred snoops
1887    assert(!(pending_inval && !is_deferred));
1888    assert(pkt->isRequest());
1889
1890    // the packet may get modified if we or a forwarded snooper
1891    // responds in atomic mode, so remember a few things about the
1892    // original packet up front
1893    bool invalidate = pkt->isInvalidate();
1894    bool M5_VAR_USED needs_writable = pkt->needsWritable();
1895
1896    // at the moment we could get an uncacheable write which does not
1897    // have the invalidate flag, and we need a suitable way of dealing
1898    // with this case
1899    panic_if(invalidate && pkt->req->isUncacheable(),
1900             "%s got an invalidating uncacheable snoop request %s to %#llx",
1901             name(), pkt->cmdString(), pkt->getAddr());
1902
1903    uint32_t snoop_delay = 0;
1904
1905    if (forwardSnoops) {
1906        // first propagate snoop upward to see if anyone above us wants to
1907        // handle it.  save & restore packet src since it will get
1908        // rewritten to be relative to cpu-side bus (if any)
1909        bool alreadyResponded = pkt->cacheResponding();
1910        if (is_timing) {
1911            // copy the packet so that we can clear any flags before
1912            // forwarding it upwards, we also allocate data (passing
1913            // the pointer along in case of static data), in case
1914            // there is a snoop hit in upper levels
1915            Packet snoopPkt(pkt, true, true);
1916            snoopPkt.setExpressSnoop();
1917            // the snoop packet does not need to wait any additional
1918            // time
1919            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1920            cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1921
1922            // add the header delay (including crossbar and snoop
1923            // delays) of the upward snoop to the snoop delay for this
1924            // cache
1925            snoop_delay += snoopPkt.headerDelay;
1926
1927            if (snoopPkt.cacheResponding()) {
1928                // cache-to-cache response from some upper cache
1929                assert(!alreadyResponded);
1930                pkt->setCacheResponding();
1931            }
1932            // upstream cache has the block, or has an outstanding
1933            // MSHR, pass the flag on
1934            if (snoopPkt.hasSharers()) {
1935                pkt->setHasSharers();
1936            }
1937            // If this request is a prefetch or clean evict and an upper level
1938            // signals block present, make sure to propagate the block
1939            // presence to the requester.
1940            if (snoopPkt.isBlockCached()) {
1941                pkt->setBlockCached();
1942            }
1943        } else {
1944            cpuSidePort->sendAtomicSnoop(pkt);
1945            if (!alreadyResponded && pkt->cacheResponding()) {
1946                // cache-to-cache response from some upper cache:
1947                // forward response to original requester
1948                assert(pkt->isResponse());
1949            }
1950        }
1951    }
1952
1953    if (!blk || !blk->isValid()) {
1954        DPRINTF(CacheVerbose, "%s snoop miss for %s addr %#llx size %d\n",
1955                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1956        return snoop_delay;
1957    } else {
1958        DPRINTF(Cache, "%s snoop hit for %s addr %#llx size %d, "
1959                "old state is %s\n", __func__, pkt->cmdString(),
1960                pkt->getAddr(), pkt->getSize(), blk->print());
1961    }
1962
1963    chatty_assert(!(isReadOnly && blk->isDirty()),
1964                  "Should never have a dirty block in a read-only cache %s\n",
1965                  name());
1966
1967    // We may end up modifying both the block state and the packet (if
1968    // we respond in atomic mode), so just figure out what to do now
1969    // and then do it later. If we find dirty data while snooping for
1970    // an invalidate, we don't need to send a response. The
1971    // invalidation itself is taken care of below.
1972    bool respond = blk->isDirty() && pkt->needsResponse() &&
1973        pkt->cmd != MemCmd::InvalidateReq;
1974    bool have_writable = blk->isWritable();
1975
1976    // Invalidate any prefetch's from below that would strip write permissions
1977    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
1978    // above and in it's own cache, a new MemCmd::ReadReq is created that
1979    // downstream caches observe.
1980    if (pkt->mustCheckAbove()) {
1981        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from"
1982                " lower cache\n", pkt->getAddr(), pkt->cmdString());
1983        pkt->setBlockCached();
1984        return snoop_delay;
1985    }
1986
1987    if (pkt->isRead() && !invalidate) {
1988        // reading without requiring the line in a writable state
1989        assert(!needs_writable);
1990        pkt->setHasSharers();
1991
1992        // if the requesting packet is uncacheable, retain the line in
1993        // the current state, otherwhise unset the writable flag,
1994        // which means we go from Modified to Owned (and will respond
1995        // below), remain in Owned (and will respond below), from
1996        // Exclusive to Shared, or remain in Shared
1997        if (!pkt->req->isUncacheable())
1998            blk->status &= ~BlkWritable;
1999    }
2000
2001    if (respond) {
2002        // prevent anyone else from responding, cache as well as
2003        // memory, and also prevent any memory from even seeing the
2004        // request
2005        pkt->setCacheResponding();
2006        if (have_writable) {
2007            // inform the cache hierarchy that this cache had the line
2008            // in the Modified state so that we avoid unnecessary
2009            // invalidations (see Packet::setResponderHadWritable)
2010            pkt->setResponderHadWritable();
2011
2012            // in the case of an uncacheable request there is no point
2013            // in setting the responderHadWritable flag, but since the
2014            // recipient does not care there is no harm in doing so
2015        } else {
2016            // if the packet has needsWritable set we invalidate our
2017            // copy below and all other copies will be invalidates
2018            // through express snoops, and if needsWritable is not set
2019            // we already called setHasSharers above
2020        }
2021
2022        // if we are returning a writable and dirty (Modified) line,
2023        // we should be invalidating the line
2024        panic_if(!invalidate && !pkt->hasSharers(),
2025                 "%s is passing a Modified line through %s to %#llx, "
2026                 "but keeping the block",
2027                 name(), pkt->cmdString(), pkt->getAddr());
2028
2029        if (is_timing) {
2030            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2031        } else {
2032            pkt->makeAtomicResponse();
2033            // packets such as upgrades do not actually have any data
2034            // payload
2035            if (pkt->hasData())
2036                pkt->setDataFromBlock(blk->data, blkSize);
2037        }
2038    }
2039
2040    if (!respond && is_timing && is_deferred) {
2041        // if it's a deferred timing snoop to which we are not
2042        // responding, then we've made a copy of both the request and
2043        // the packet, delete them here
2044        assert(pkt->needsResponse());
2045        delete pkt->req;
2046        delete pkt;
2047    }
2048
2049    // Do this last in case it deallocates block data or something
2050    // like that
2051    if (invalidate) {
2052        invalidateBlock(blk);
2053    }
2054
2055    DPRINTF(Cache, "new state is %s\n", blk->print());
2056
2057    return snoop_delay;
2058}
2059
2060
2061void
2062Cache::recvTimingSnoopReq(PacketPtr pkt)
2063{
2064    DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
2065            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
2066
2067    // Snoops shouldn't happen when bypassing caches
2068    assert(!system->bypassCaches());
2069
2070    // no need to snoop requests that are not in range
2071    if (!inRange(pkt->getAddr())) {
2072        return;
2073    }
2074
2075    bool is_secure = pkt->isSecure();
2076    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2077
2078    Addr blk_addr = blockAlign(pkt->getAddr());
2079    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2080
2081    // Update the latency cost of the snoop so that the crossbar can
2082    // account for it. Do not overwrite what other neighbouring caches
2083    // have already done, rather take the maximum. The update is
2084    // tentative, for cases where we return before an upward snoop
2085    // happens below.
2086    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2087                                         lookupLatency * clockPeriod());
2088
2089    // Inform request(Prefetch, CleanEvict or Writeback) from below of
2090    // MSHR hit, set setBlockCached.
2091    if (mshr && pkt->mustCheckAbove()) {
2092        DPRINTF(Cache, "Setting block cached for %s from"
2093                "lower cache on mshr hit %#x\n",
2094                pkt->cmdString(), pkt->getAddr());
2095        pkt->setBlockCached();
2096        return;
2097    }
2098
2099    // Let the MSHR itself track the snoop and decide whether we want
2100    // to go ahead and do the regular cache snoop
2101    if (mshr && mshr->handleSnoop(pkt, order++)) {
2102        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2103                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2104                mshr->print());
2105
2106        if (mshr->getNumTargets() > numTarget)
2107            warn("allocating bonus target for snoop"); //handle later
2108        return;
2109    }
2110
2111    //We also need to check the writeback buffers and handle those
2112    WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
2113    if (wb_entry) {
2114        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2115                pkt->getAddr(), is_secure ? "s" : "ns");
2116        // Expect to see only Writebacks and/or CleanEvicts here, both of
2117        // which should not be generated for uncacheable data.
2118        assert(!wb_entry->isUncacheable());
2119        // There should only be a single request responsible for generating
2120        // Writebacks/CleanEvicts.
2121        assert(wb_entry->getNumTargets() == 1);
2122        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2123        assert(wb_pkt->isEviction());
2124
2125        if (pkt->isEviction()) {
2126            // if the block is found in the write queue, set the BLOCK_CACHED
2127            // flag for Writeback/CleanEvict snoop. On return the snoop will
2128            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2129            // any CleanEvicts from travelling down the memory hierarchy.
2130            pkt->setBlockCached();
2131            DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
2132                    " %#x\n", pkt->cmdString(), pkt->getAddr());
2133            return;
2134        }
2135
2136        // conceptually writebacks are no different to other blocks in
2137        // this cache, so the behaviour is modelled after handleSnoop,
2138        // the difference being that instead of querying the block
2139        // state to determine if it is dirty and writable, we use the
2140        // command and fields of the writeback packet
2141        bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
2142            pkt->needsResponse() && pkt->cmd != MemCmd::InvalidateReq;
2143        bool have_writable = !wb_pkt->hasSharers();
2144        bool invalidate = pkt->isInvalidate();
2145
2146        if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
2147            assert(!pkt->needsWritable());
2148            pkt->setHasSharers();
2149            wb_pkt->setHasSharers();
2150        }
2151
2152        if (respond) {
2153            pkt->setCacheResponding();
2154
2155            if (have_writable) {
2156                pkt->setResponderHadWritable();
2157            }
2158
2159            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2160                                   false, false);
2161        }
2162
2163        if (invalidate) {
2164            // Invalidation trumps our writeback... discard here
2165            // Note: markInService will remove entry from writeback buffer.
2166            markInService(wb_entry);
2167            delete wb_pkt;
2168        }
2169    }
2170
2171    // If this was a shared writeback, there may still be
2172    // other shared copies above that require invalidation.
2173    // We could be more selective and return here if the
2174    // request is non-exclusive or if the writeback is
2175    // exclusive.
2176    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2177
2178    // Override what we did when we first saw the snoop, as we now
2179    // also have the cost of the upwards snoops to account for
2180    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2181                                         lookupLatency * clockPeriod());
2182}
2183
2184bool
2185Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2186{
2187    // Express snoop responses from master to slave, e.g., from L1 to L2
2188    cache->recvTimingSnoopResp(pkt);
2189    return true;
2190}
2191
2192Tick
2193Cache::recvAtomicSnoop(PacketPtr pkt)
2194{
2195    // Snoops shouldn't happen when bypassing caches
2196    assert(!system->bypassCaches());
2197
2198    // no need to snoop requests that are not in range.
2199    if (!inRange(pkt->getAddr())) {
2200        return 0;
2201    }
2202
2203    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2204    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2205    return snoop_delay + lookupLatency * clockPeriod();
2206}
2207
2208
2209QueueEntry*
2210Cache::getNextQueueEntry()
2211{
2212    // Check both MSHR queue and write buffer for potential requests,
2213    // note that null does not mean there is no request, it could
2214    // simply be that it is not ready
2215    MSHR *miss_mshr  = mshrQueue.getNext();
2216    WriteQueueEntry *wq_entry = writeBuffer.getNext();
2217
2218    // If we got a write buffer request ready, first priority is a
2219    // full write buffer, otherwise we favour the miss requests
2220    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
2221        // need to search MSHR queue for conflicting earlier miss.
2222        MSHR *conflict_mshr =
2223            mshrQueue.findPending(wq_entry->blkAddr,
2224                                  wq_entry->isSecure);
2225
2226        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
2227            // Service misses in order until conflict is cleared.
2228            return conflict_mshr;
2229
2230            // @todo Note that we ignore the ready time of the conflict here
2231        }
2232
2233        // No conflicts; issue write
2234        return wq_entry;
2235    } else if (miss_mshr) {
2236        // need to check for conflicting earlier writeback
2237        WriteQueueEntry *conflict_mshr =
2238            writeBuffer.findPending(miss_mshr->blkAddr,
2239                                    miss_mshr->isSecure);
2240        if (conflict_mshr) {
2241            // not sure why we don't check order here... it was in the
2242            // original code but commented out.
2243
2244            // The only way this happens is if we are
2245            // doing a write and we didn't have permissions
2246            // then subsequently saw a writeback (owned got evicted)
2247            // We need to make sure to perform the writeback first
2248            // To preserve the dirty data, then we can issue the write
2249
2250            // should we return wq_entry here instead?  I.e. do we
2251            // have to flush writes in order?  I don't think so... not
2252            // for Alpha anyway.  Maybe for x86?
2253            return conflict_mshr;
2254
2255            // @todo Note that we ignore the ready time of the conflict here
2256        }
2257
2258        // No conflicts; issue read
2259        return miss_mshr;
2260    }
2261
2262    // fall through... no pending requests.  Try a prefetch.
2263    assert(!miss_mshr && !wq_entry);
2264    if (prefetcher && mshrQueue.canPrefetch()) {
2265        // If we have a miss queue slot, we can try a prefetch
2266        PacketPtr pkt = prefetcher->getPacket();
2267        if (pkt) {
2268            Addr pf_addr = blockAlign(pkt->getAddr());
2269            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2270                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2271                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2272                // Update statistic on number of prefetches issued
2273                // (hwpf_mshr_misses)
2274                assert(pkt->req->masterId() < system->maxMasters());
2275                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2276
2277                // allocate an MSHR and return it, note
2278                // that we send the packet straight away, so do not
2279                // schedule the send
2280                return allocateMissBuffer(pkt, curTick(), false);
2281            } else {
2282                // free the request and packet
2283                delete pkt->req;
2284                delete pkt;
2285            }
2286        }
2287    }
2288
2289    return nullptr;
2290}
2291
2292bool
2293Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2294{
2295    if (!forwardSnoops)
2296        return false;
2297    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2298    // Writeback snoops into upper level caches to check for copies of the
2299    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2300    // packet, the cache can inform the crossbar below of presence or absence
2301    // of the block.
2302    if (is_timing) {
2303        Packet snoop_pkt(pkt, true, false);
2304        snoop_pkt.setExpressSnoop();
2305        // Assert that packet is either Writeback or CleanEvict and not a
2306        // prefetch request because prefetch requests need an MSHR and may
2307        // generate a snoop response.
2308        assert(pkt->isEviction());
2309        snoop_pkt.senderState = NULL;
2310        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2311        // Writeback/CleanEvict snoops do not generate a snoop response.
2312        assert(!(snoop_pkt.cacheResponding()));
2313        return snoop_pkt.isBlockCached();
2314    } else {
2315        cpuSidePort->sendAtomicSnoop(pkt);
2316        return pkt->isBlockCached();
2317    }
2318}
2319
2320Tick
2321Cache::nextQueueReadyTime() const
2322{
2323    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
2324                              writeBuffer.nextReadyTime());
2325
2326    // Don't signal prefetch ready time if no MSHRs available
2327    // Will signal once enoguh MSHRs are deallocated
2328    if (prefetcher && mshrQueue.canPrefetch()) {
2329        nextReady = std::min(nextReady,
2330                             prefetcher->nextPrefetchReadyTime());
2331    }
2332
2333    return nextReady;
2334}
2335
2336bool
2337Cache::sendMSHRQueuePacket(MSHR* mshr)
2338{
2339    assert(mshr);
2340
2341    // use request from 1st target
2342    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2343
2344    DPRINTF(Cache, "%s MSHR %s for addr %#llx size %d\n", __func__,
2345            tgt_pkt->cmdString(), tgt_pkt->getAddr(),
2346            tgt_pkt->getSize());
2347
2348    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2349
2350    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2351        // we should never have hardware prefetches to allocated
2352        // blocks
2353        assert(blk == NULL);
2354
2355        // We need to check the caches above us to verify that
2356        // they don't have a copy of this block in the dirty state
2357        // at the moment. Without this check we could get a stale
2358        // copy from memory that might get used in place of the
2359        // dirty one.
2360        Packet snoop_pkt(tgt_pkt, true, false);
2361        snoop_pkt.setExpressSnoop();
2362        // We are sending this packet upwards, but if it hits we will
2363        // get a snoop response that we end up treating just like a
2364        // normal response, hence it needs the MSHR as its sender
2365        // state
2366        snoop_pkt.senderState = mshr;
2367        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2368
2369        // Check to see if the prefetch was squashed by an upper cache (to
2370        // prevent us from grabbing the line) or if a Check to see if a
2371        // writeback arrived between the time the prefetch was placed in
2372        // the MSHRs and when it was selected to be sent or if the
2373        // prefetch was squashed by an upper cache.
2374
2375        // It is important to check cacheResponding before
2376        // prefetchSquashed. If another cache has committed to
2377        // responding, it will be sending a dirty response which will
2378        // arrive at the MSHR allocated for this request. Checking the
2379        // prefetchSquash first may result in the MSHR being
2380        // prematurely deallocated.
2381        if (snoop_pkt.cacheResponding()) {
2382            auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2383            assert(r.second);
2384
2385            // if we are getting a snoop response with no sharers it
2386            // will be allocated as Modified
2387            bool pending_modified_resp = !snoop_pkt.hasSharers();
2388            markInService(mshr, pending_modified_resp);
2389
2390            DPRINTF(Cache, "Upward snoop of prefetch for addr"
2391                    " %#x (%s) hit\n",
2392                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2393            return false;
2394        }
2395
2396        if (snoop_pkt.isBlockCached()) {
2397            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
2398                    "Deallocating mshr target %#x.\n",
2399                    mshr->blkAddr);
2400
2401            // Deallocate the mshr target
2402            if (mshrQueue.forceDeallocateTarget(mshr)) {
2403                // Clear block if this deallocation resulted freed an
2404                // mshr when all had previously been utilized
2405                clearBlocked(Blocked_NoMSHRs);
2406            }
2407            return false;
2408        }
2409    }
2410
2411    // either a prefetch that is not present upstream, or a normal
2412    // MSHR request, proceed to get the packet to send downstream
2413    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
2414
2415    mshr->isForward = (pkt == NULL);
2416
2417    if (mshr->isForward) {
2418        // not a cache block request, but a response is expected
2419        // make copy of current packet to forward, keep current
2420        // copy for response handling
2421        pkt = new Packet(tgt_pkt, false, true);
2422        assert(!pkt->isWrite());
2423    }
2424
2425    // play it safe and append (rather than set) the sender state,
2426    // as forwarded packets may already have existing state
2427    pkt->pushSenderState(mshr);
2428
2429    if (!memSidePort->sendTimingReq(pkt)) {
2430        // we are awaiting a retry, but we
2431        // delete the packet and will be creating a new packet
2432        // when we get the opportunity
2433        delete pkt;
2434
2435        // note that we have now masked any requestBus and
2436        // schedSendEvent (we will wait for a retry before
2437        // doing anything), and this is so even if we do not
2438        // care about this packet and might override it before
2439        // it gets retried
2440        return true;
2441    } else {
2442        // As part of the call to sendTimingReq the packet is
2443        // forwarded to all neighbouring caches (and any caches
2444        // above them) as a snoop. Thus at this point we know if
2445        // any of the neighbouring caches are responding, and if
2446        // so, we know it is dirty, and we can determine if it is
2447        // being passed as Modified, making our MSHR the ordering
2448        // point
2449        bool pending_modified_resp = !pkt->hasSharers() &&
2450            pkt->cacheResponding();
2451        markInService(mshr, pending_modified_resp);
2452        return false;
2453    }
2454}
2455
2456bool
2457Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
2458{
2459    assert(wq_entry);
2460
2461    // always a single target for write queue entries
2462    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
2463
2464    DPRINTF(Cache, "%s write %s for addr %#llx size %d\n", __func__,
2465            tgt_pkt->cmdString(), tgt_pkt->getAddr(),
2466            tgt_pkt->getSize());
2467
2468    // forward as is, both for evictions and uncacheable writes
2469    if (!memSidePort->sendTimingReq(tgt_pkt)) {
2470        // note that we have now masked any requestBus and
2471        // schedSendEvent (we will wait for a retry before
2472        // doing anything), and this is so even if we do not
2473        // care about this packet and might override it before
2474        // it gets retried
2475        return true;
2476    } else {
2477        markInService(wq_entry);
2478        return false;
2479    }
2480}
2481
2482void
2483Cache::serialize(CheckpointOut &cp) const
2484{
2485    bool dirty(isDirty());
2486
2487    if (dirty) {
2488        warn("*** The cache still contains dirty data. ***\n");
2489        warn("    Make sure to drain the system using the correct flags.\n");
2490        warn("    This checkpoint will not restore correctly and dirty data in "
2491             "the cache will be lost!\n");
2492    }
2493
2494    // Since we don't checkpoint the data in the cache, any dirty data
2495    // will be lost when restoring from a checkpoint of a system that
2496    // wasn't drained properly. Flag the checkpoint as invalid if the
2497    // cache contains dirty data.
2498    bool bad_checkpoint(dirty);
2499    SERIALIZE_SCALAR(bad_checkpoint);
2500}
2501
2502void
2503Cache::unserialize(CheckpointIn &cp)
2504{
2505    bool bad_checkpoint;
2506    UNSERIALIZE_SCALAR(bad_checkpoint);
2507    if (bad_checkpoint) {
2508        fatal("Restoring from checkpoints with dirty caches is not supported "
2509              "in the classic memory system. Please remove any caches or "
2510              " drain them properly before taking checkpoints.\n");
2511    }
2512}
2513
2514///////////////
2515//
2516// CpuSidePort
2517//
2518///////////////
2519
2520AddrRangeList
2521Cache::CpuSidePort::getAddrRanges() const
2522{
2523    return cache->getAddrRanges();
2524}
2525
2526bool
2527Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2528{
2529    assert(!cache->system->bypassCaches());
2530
2531    bool success = false;
2532
2533    // always let express snoop packets through if even if blocked
2534    if (pkt->isExpressSnoop()) {
2535        // do not change the current retry state
2536        bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2537        assert(bypass_success);
2538        return true;
2539    } else if (blocked || mustSendRetry) {
2540        // either already committed to send a retry, or blocked
2541        success = false;
2542    } else {
2543        // pass it on to the cache, and let the cache decide if we
2544        // have to retry or not
2545        success = cache->recvTimingReq(pkt);
2546    }
2547
2548    // remember if we have to retry
2549    mustSendRetry = !success;
2550    return success;
2551}
2552
2553Tick
2554Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2555{
2556    return cache->recvAtomic(pkt);
2557}
2558
2559void
2560Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2561{
2562    // functional request
2563    cache->functionalAccess(pkt, true);
2564}
2565
2566Cache::
2567CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2568                         const std::string &_label)
2569    : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2570{
2571}
2572
2573Cache*
2574CacheParams::create()
2575{
2576    assert(tags);
2577
2578    return new Cache(this);
2579}
2580///////////////
2581//
2582// MemSidePort
2583//
2584///////////////
2585
2586bool
2587Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2588{
2589    cache->recvTimingResp(pkt);
2590    return true;
2591}
2592
2593// Express snooping requests to memside port
2594void
2595Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2596{
2597    // handle snooping requests
2598    cache->recvTimingSnoopReq(pkt);
2599}
2600
2601Tick
2602Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2603{
2604    return cache->recvAtomicSnoop(pkt);
2605}
2606
2607void
2608Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2609{
2610    // functional snoop (note that in contrast to atomic we don't have
2611    // a specific functionalSnoop method, as they have the same
2612    // behaviour regardless)
2613    cache->functionalAccess(pkt, false);
2614}
2615
2616void
2617Cache::CacheReqPacketQueue::sendDeferredPacket()
2618{
2619    // sanity check
2620    assert(!waitingOnRetry);
2621
2622    // there should never be any deferred request packets in the
2623    // queue, instead we resly on the cache to provide the packets
2624    // from the MSHR queue or write queue
2625    assert(deferredPacketReadyTime() == MaxTick);
2626
2627    // check for request packets (requests & writebacks)
2628    QueueEntry* entry = cache.getNextQueueEntry();
2629
2630    if (!entry) {
2631        // can happen if e.g. we attempt a writeback and fail, but
2632        // before the retry, the writeback is eliminated because
2633        // we snoop another cache's ReadEx.
2634    } else {
2635        // let our snoop responses go first if there are responses to
2636        // the same addresses
2637        if (checkConflictingSnoop(entry->blkAddr)) {
2638            return;
2639        }
2640        waitingOnRetry = entry->sendPacket(cache);
2641    }
2642
2643    // if we succeeded and are not waiting for a retry, schedule the
2644    // next send considering when the next queue is ready, note that
2645    // snoop responses have their own packet queue and thus schedule
2646    // their own events
2647    if (!waitingOnRetry) {
2648        schedSendEvent(cache.nextQueueReadyTime());
2649    }
2650}
2651
2652Cache::
2653MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2654                         const std::string &_label)
2655    : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2656      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2657      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2658{
2659}
2660