cache.cc revision 11452
1/* 2 * Copyright (c) 2010-2016 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2002-2005 The Regents of The University of Michigan 15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc. 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Erik Hallnor 42 * Dave Greene 43 * Nathan Binkert 44 * Steve Reinhardt 45 * Ron Dreslinski 46 * Andreas Sandberg 47 */ 48 49/** 50 * @file 51 * Cache definitions. 52 */ 53 54#include "mem/cache/cache.hh" 55 56#include "base/misc.hh" 57#include "base/types.hh" 58#include "debug/Cache.hh" 59#include "debug/CachePort.hh" 60#include "debug/CacheTags.hh" 61#include "debug/CacheVerbose.hh" 62#include "mem/cache/blk.hh" 63#include "mem/cache/mshr.hh" 64#include "mem/cache/prefetch/base.hh" 65#include "sim/sim_exit.hh" 66 67Cache::Cache(const CacheParams *p) 68 : BaseCache(p, p->system->cacheLineSize()), 69 tags(p->tags), 70 prefetcher(p->prefetcher), 71 doFastWrites(true), 72 prefetchOnAccess(p->prefetch_on_access), 73 clusivity(p->clusivity), 74 writebackClean(p->writeback_clean), 75 tempBlockWriteback(nullptr), 76 writebackTempBlockAtomicEvent(this, false, 77 EventBase::Delayed_Writeback_Pri) 78{ 79 tempBlock = new CacheBlk(); 80 tempBlock->data = new uint8_t[blkSize]; 81 82 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this, 83 "CpuSidePort"); 84 memSidePort = new MemSidePort(p->name + ".mem_side", this, 85 "MemSidePort"); 86 87 tags->setCache(this); 88 if (prefetcher) 89 prefetcher->setCache(this); 90} 91 92Cache::~Cache() 93{ 94 delete [] tempBlock->data; 95 delete tempBlock; 96 97 delete cpuSidePort; 98 delete memSidePort; 99} 100 101void 102Cache::regStats() 103{ 104 BaseCache::regStats(); 105} 106 107void 108Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) 109{ 110 assert(pkt->isRequest()); 111 112 uint64_t overwrite_val; 113 bool overwrite_mem; 114 uint64_t condition_val64; 115 uint32_t condition_val32; 116 117 int offset = tags->extractBlkOffset(pkt->getAddr()); 118 uint8_t *blk_data = blk->data + offset; 119 120 assert(sizeof(uint64_t) >= pkt->getSize()); 121 122 overwrite_mem = true; 123 // keep a copy of our possible write value, and copy what is at the 124 // memory address into the packet 125 pkt->writeData((uint8_t *)&overwrite_val); 126 pkt->setData(blk_data); 127 128 if (pkt->req->isCondSwap()) { 129 if (pkt->getSize() == sizeof(uint64_t)) { 130 condition_val64 = pkt->req->getExtraData(); 131 overwrite_mem = !std::memcmp(&condition_val64, blk_data, 132 sizeof(uint64_t)); 133 } else if (pkt->getSize() == sizeof(uint32_t)) { 134 condition_val32 = (uint32_t)pkt->req->getExtraData(); 135 overwrite_mem = !std::memcmp(&condition_val32, blk_data, 136 sizeof(uint32_t)); 137 } else 138 panic("Invalid size for conditional read/write\n"); 139 } 140 141 if (overwrite_mem) { 142 std::memcpy(blk_data, &overwrite_val, pkt->getSize()); 143 blk->status |= BlkDirty; 144 } 145} 146 147 148void 149Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk, 150 bool deferred_response, bool pending_downgrade) 151{ 152 assert(pkt->isRequest()); 153 154 assert(blk && blk->isValid()); 155 // Occasionally this is not true... if we are a lower-level cache 156 // satisfying a string of Read and ReadEx requests from 157 // upper-level caches, a Read will mark the block as shared but we 158 // can satisfy a following ReadEx anyway since we can rely on the 159 // Read requester(s) to have buffered the ReadEx snoop and to 160 // invalidate their blocks after receiving them. 161 // assert(!pkt->needsWritable() || blk->isWritable()); 162 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); 163 164 // Check RMW operations first since both isRead() and 165 // isWrite() will be true for them 166 if (pkt->cmd == MemCmd::SwapReq) { 167 cmpAndSwap(blk, pkt); 168 } else if (pkt->isWrite()) { 169 // we have the block in a writable state and can go ahead, 170 // note that the line may be also be considered writable in 171 // downstream caches along the path to memory, but always 172 // Exclusive, and never Modified 173 assert(blk->isWritable()); 174 // Write or WriteLine at the first cache with block in writable state 175 if (blk->checkWrite(pkt)) { 176 pkt->writeDataToBlock(blk->data, blkSize); 177 } 178 // Always mark the line as dirty (and thus transition to the 179 // Modified state) even if we are a failed StoreCond so we 180 // supply data to any snoops that have appended themselves to 181 // this cache before knowing the store will fail. 182 blk->status |= BlkDirty; 183 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (write)\n", 184 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 185 } else if (pkt->isRead()) { 186 if (pkt->isLLSC()) { 187 blk->trackLoadLocked(pkt); 188 } 189 190 // all read responses have a data payload 191 assert(pkt->hasRespData()); 192 pkt->setDataFromBlock(blk->data, blkSize); 193 194 // determine if this read is from a (coherent) cache, or not 195 // by looking at the command type; we could potentially add a 196 // packet attribute such as 'FromCache' to make this check a 197 // bit cleaner 198 if (pkt->cmd == MemCmd::ReadExReq || 199 pkt->cmd == MemCmd::ReadSharedReq || 200 pkt->cmd == MemCmd::ReadCleanReq || 201 pkt->cmd == MemCmd::SCUpgradeFailReq) { 202 assert(pkt->getSize() == blkSize); 203 // special handling for coherent block requests from 204 // upper-level caches 205 if (pkt->needsWritable()) { 206 // sanity check 207 assert(pkt->cmd == MemCmd::ReadExReq || 208 pkt->cmd == MemCmd::SCUpgradeFailReq); 209 210 // if we have a dirty copy, make sure the recipient 211 // keeps it marked dirty (in the modified state) 212 if (blk->isDirty()) { 213 pkt->setCacheResponding(); 214 } 215 // on ReadExReq we give up our copy unconditionally, 216 // even if this cache is mostly inclusive, we may want 217 // to revisit this 218 invalidateBlock(blk); 219 } else if (blk->isWritable() && !pending_downgrade && 220 !pkt->hasSharers() && 221 pkt->cmd != MemCmd::ReadCleanReq) { 222 // we can give the requester a writable copy on a read 223 // request if: 224 // - we have a writable copy at this level (& below) 225 // - we don't have a pending snoop from below 226 // signaling another read request 227 // - no other cache above has a copy (otherwise it 228 // would have set hasSharers flag when 229 // snooping the packet) 230 // - the read has explicitly asked for a clean 231 // copy of the line 232 if (blk->isDirty()) { 233 // special considerations if we're owner: 234 if (!deferred_response) { 235 // respond with the line in Modified state 236 // (cacheResponding set, hasSharers not set) 237 pkt->setCacheResponding(); 238 239 if (clusivity == Enums::mostly_excl) { 240 // if this cache is mostly exclusive with 241 // respect to the cache above, drop the 242 // block, no need to first unset the dirty 243 // bit 244 invalidateBlock(blk); 245 } else { 246 // if this cache is mostly inclusive, we 247 // keep the block in the Exclusive state, 248 // and pass it upwards as Modified 249 // (writable and dirty), hence we have 250 // multiple caches, all on the same path 251 // towards memory, all considering the 252 // same block writable, but only one 253 // considering it Modified 254 255 // we get away with multiple caches (on 256 // the same path to memory) considering 257 // the block writeable as we always enter 258 // the cache hierarchy through a cache, 259 // and first snoop upwards in all other 260 // branches 261 blk->status &= ~BlkDirty; 262 } 263 } else { 264 // if we're responding after our own miss, 265 // there's a window where the recipient didn't 266 // know it was getting ownership and may not 267 // have responded to snoops correctly, so we 268 // have to respond with a shared line 269 pkt->setHasSharers(); 270 } 271 } 272 } else { 273 // otherwise only respond with a shared copy 274 pkt->setHasSharers(); 275 } 276 } 277 } else { 278 // Upgrade or Invalidate 279 assert(pkt->isUpgrade() || pkt->isInvalidate()); 280 281 // for invalidations we could be looking at the temp block 282 // (for upgrades we always allocate) 283 invalidateBlock(blk); 284 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (invalidation)\n", 285 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 286 } 287} 288 289///////////////////////////////////////////////////// 290// 291// Access path: requests coming in from the CPU side 292// 293///////////////////////////////////////////////////// 294 295bool 296Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 297 PacketList &writebacks) 298{ 299 // sanity check 300 assert(pkt->isRequest()); 301 302 chatty_assert(!(isReadOnly && pkt->isWrite()), 303 "Should never see a write in a read-only cache %s\n", 304 name()); 305 306 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__, 307 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 308 309 if (pkt->req->isUncacheable()) { 310 DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(), 311 pkt->req->isInstFetch() ? " (ifetch)" : "", 312 pkt->getAddr()); 313 314 // flush and invalidate any existing block 315 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure())); 316 if (old_blk && old_blk->isValid()) { 317 if (old_blk->isDirty() || writebackClean) 318 writebacks.push_back(writebackBlk(old_blk)); 319 else 320 writebacks.push_back(cleanEvictBlk(old_blk)); 321 tags->invalidate(old_blk); 322 old_blk->invalidate(); 323 } 324 325 blk = NULL; 326 // lookupLatency is the latency in case the request is uncacheable. 327 lat = lookupLatency; 328 return false; 329 } 330 331 ContextID id = pkt->req->hasContextId() ? 332 pkt->req->contextId() : InvalidContextID; 333 // Here lat is the value passed as parameter to accessBlock() function 334 // that can modify its value. 335 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id); 336 337 DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(), 338 pkt->req->isInstFetch() ? " (ifetch)" : "", 339 pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns", 340 blk ? "hit " + blk->print() : "miss"); 341 342 343 if (pkt->isEviction()) { 344 // We check for presence of block in above caches before issuing 345 // Writeback or CleanEvict to write buffer. Therefore the only 346 // possible cases can be of a CleanEvict packet coming from above 347 // encountering a Writeback generated in this cache peer cache and 348 // waiting in the write buffer. Cases of upper level peer caches 349 // generating CleanEvict and Writeback or simply CleanEvict and 350 // CleanEvict almost simultaneously will be caught by snoops sent out 351 // by crossbar. 352 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(), 353 pkt->isSecure()); 354 if (wb_entry) { 355 assert(wb_entry->getNumTargets() == 1); 356 PacketPtr wbPkt = wb_entry->getTarget()->pkt; 357 assert(wbPkt->isWriteback()); 358 359 if (pkt->isCleanEviction()) { 360 // The CleanEvict and WritebackClean snoops into other 361 // peer caches of the same level while traversing the 362 // crossbar. If a copy of the block is found, the 363 // packet is deleted in the crossbar. Hence, none of 364 // the other upper level caches connected to this 365 // cache have the block, so we can clear the 366 // BLOCK_CACHED flag in the Writeback if set and 367 // discard the CleanEvict by returning true. 368 wbPkt->clearBlockCached(); 369 return true; 370 } else { 371 assert(pkt->cmd == MemCmd::WritebackDirty); 372 // Dirty writeback from above trumps our clean 373 // writeback... discard here 374 // Note: markInService will remove entry from writeback buffer. 375 markInService(wb_entry); 376 delete wbPkt; 377 } 378 } 379 } 380 381 // Writeback handling is special case. We can write the block into 382 // the cache without having a writeable copy (or any copy at all). 383 if (pkt->isWriteback()) { 384 assert(blkSize == pkt->getSize()); 385 386 // we could get a clean writeback while we are having 387 // outstanding accesses to a block, do the simple thing for 388 // now and drop the clean writeback so that we do not upset 389 // any ordering/decisions about ownership already taken 390 if (pkt->cmd == MemCmd::WritebackClean && 391 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) { 392 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, " 393 "dropping\n", pkt->getAddr()); 394 return true; 395 } 396 397 if (blk == NULL) { 398 // need to do a replacement 399 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks); 400 if (blk == NULL) { 401 // no replaceable block available: give up, fwd to next level. 402 incMissCount(pkt); 403 return false; 404 } 405 tags->insertBlock(pkt, blk); 406 407 blk->status = (BlkValid | BlkReadable); 408 if (pkt->isSecure()) { 409 blk->status |= BlkSecure; 410 } 411 } 412 // only mark the block dirty if we got a writeback command, 413 // and leave it as is for a clean writeback 414 if (pkt->cmd == MemCmd::WritebackDirty) { 415 blk->status |= BlkDirty; 416 } 417 // if the packet does not have sharers, it is passing 418 // writable, and we got the writeback in Modified or Exclusive 419 // state, if not we are in the Owned or Shared state 420 if (!pkt->hasSharers()) { 421 blk->status |= BlkWritable; 422 } 423 // nothing else to do; writeback doesn't expect response 424 assert(!pkt->needsResponse()); 425 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize); 426 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 427 incHitCount(pkt); 428 return true; 429 } else if (pkt->cmd == MemCmd::CleanEvict) { 430 if (blk != NULL) { 431 // Found the block in the tags, need to stop CleanEvict from 432 // propagating further down the hierarchy. Returning true will 433 // treat the CleanEvict like a satisfied write request and delete 434 // it. 435 return true; 436 } 437 // We didn't find the block here, propagate the CleanEvict further 438 // down the memory hierarchy. Returning false will treat the CleanEvict 439 // like a Writeback which could not find a replaceable block so has to 440 // go to next level. 441 return false; 442 } else if ((blk != NULL) && 443 (pkt->needsWritable() ? blk->isWritable() : blk->isReadable())) { 444 // OK to satisfy access 445 incHitCount(pkt); 446 satisfyCpuSideRequest(pkt, blk); 447 return true; 448 } 449 450 // Can't satisfy access normally... either no block (blk == NULL) 451 // or have block but need writable 452 453 incMissCount(pkt); 454 455 if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) { 456 // complete miss on store conditional... just give up now 457 pkt->req->setExtraData(0); 458 return true; 459 } 460 461 return false; 462} 463 464void 465Cache::doWritebacks(PacketList& writebacks, Tick forward_time) 466{ 467 while (!writebacks.empty()) { 468 PacketPtr wbPkt = writebacks.front(); 469 // We use forwardLatency here because we are copying writebacks to 470 // write buffer. Call isCachedAbove for both Writebacks and 471 // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag 472 // in Writebacks and discard CleanEvicts. 473 if (isCachedAbove(wbPkt)) { 474 if (wbPkt->cmd == MemCmd::CleanEvict) { 475 // Delete CleanEvict because cached copies exist above. The 476 // packet destructor will delete the request object because 477 // this is a non-snoop request packet which does not require a 478 // response. 479 delete wbPkt; 480 } else if (wbPkt->cmd == MemCmd::WritebackClean) { 481 // clean writeback, do not send since the block is 482 // still cached above 483 assert(writebackClean); 484 delete wbPkt; 485 } else { 486 assert(wbPkt->cmd == MemCmd::WritebackDirty); 487 // Set BLOCK_CACHED flag in Writeback and send below, so that 488 // the Writeback does not reset the bit corresponding to this 489 // address in the snoop filter below. 490 wbPkt->setBlockCached(); 491 allocateWriteBuffer(wbPkt, forward_time); 492 } 493 } else { 494 // If the block is not cached above, send packet below. Both 495 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 496 // reset the bit corresponding to this address in the snoop filter 497 // below. 498 allocateWriteBuffer(wbPkt, forward_time); 499 } 500 writebacks.pop_front(); 501 } 502} 503 504void 505Cache::doWritebacksAtomic(PacketList& writebacks) 506{ 507 while (!writebacks.empty()) { 508 PacketPtr wbPkt = writebacks.front(); 509 // Call isCachedAbove for both Writebacks and CleanEvicts. If 510 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks 511 // and discard CleanEvicts. 512 if (isCachedAbove(wbPkt, false)) { 513 if (wbPkt->cmd == MemCmd::WritebackDirty) { 514 // Set BLOCK_CACHED flag in Writeback and send below, 515 // so that the Writeback does not reset the bit 516 // corresponding to this address in the snoop filter 517 // below. We can discard CleanEvicts because cached 518 // copies exist above. Atomic mode isCachedAbove 519 // modifies packet to set BLOCK_CACHED flag 520 memSidePort->sendAtomic(wbPkt); 521 } 522 } else { 523 // If the block is not cached above, send packet below. Both 524 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 525 // reset the bit corresponding to this address in the snoop filter 526 // below. 527 memSidePort->sendAtomic(wbPkt); 528 } 529 writebacks.pop_front(); 530 // In case of CleanEvicts, the packet destructor will delete the 531 // request object because this is a non-snoop request packet which 532 // does not require a response. 533 delete wbPkt; 534 } 535} 536 537 538void 539Cache::recvTimingSnoopResp(PacketPtr pkt) 540{ 541 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, 542 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 543 544 assert(pkt->isResponse()); 545 assert(!system->bypassCaches()); 546 547 // determine if the response is from a snoop request we created 548 // (in which case it should be in the outstandingSnoop), or if we 549 // merely forwarded someone else's snoop request 550 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 551 outstandingSnoop.end(); 552 553 if (!forwardAsSnoop) { 554 // the packet came from this cache, so sink it here and do not 555 // forward it 556 assert(pkt->cmd == MemCmd::HardPFResp); 557 558 outstandingSnoop.erase(pkt->req); 559 560 DPRINTF(Cache, "Got prefetch response from above for addr " 561 "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 562 recvTimingResp(pkt); 563 return; 564 } 565 566 // forwardLatency is set here because there is a response from an 567 // upper level cache. 568 // To pay the delay that occurs if the packet comes from the bus, 569 // we charge also headerDelay. 570 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay; 571 // Reset the timing of the packet. 572 pkt->headerDelay = pkt->payloadDelay = 0; 573 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time); 574} 575 576void 577Cache::promoteWholeLineWrites(PacketPtr pkt) 578{ 579 // Cache line clearing instructions 580 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) && 581 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) { 582 pkt->cmd = MemCmd::WriteLineReq; 583 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n"); 584 } 585} 586 587bool 588Cache::recvTimingReq(PacketPtr pkt) 589{ 590 DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print()); 591 592 assert(pkt->isRequest()); 593 594 // Just forward the packet if caches are disabled. 595 if (system->bypassCaches()) { 596 // @todo This should really enqueue the packet rather 597 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt); 598 assert(success); 599 return true; 600 } 601 602 promoteWholeLineWrites(pkt); 603 604 if (pkt->cacheResponding()) { 605 // a cache above us (but not where the packet came from) is 606 // responding to the request, in other words it has the line 607 // in Modified or Owned state 608 DPRINTF(Cache, "Cache above responding to %#llx (%s): " 609 "not responding\n", 610 pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 611 612 // if the packet needs the block to be writable, and the cache 613 // that has promised to respond (setting the cache responding 614 // flag) is not providing writable (it is in Owned rather than 615 // the Modified state), we know that there may be other Shared 616 // copies in the system; go out and invalidate them all 617 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 618 619 // an upstream cache that had the line in Owned state 620 // (dirty, but not writable), is responding and thus 621 // transferring the dirty line from one branch of the 622 // cache hierarchy to another 623 624 // send out an express snoop and invalidate all other 625 // copies (snooping a packet that needs writable is the 626 // same as an invalidation), thus turning the Owned line 627 // into a Modified line, note that we don't invalidate the 628 // block in the current cache or any other cache on the 629 // path to memory 630 631 // create a downstream express snoop with cleared packet 632 // flags, there is no need to allocate any data as the 633 // packet is merely used to co-ordinate state transitions 634 Packet *snoop_pkt = new Packet(pkt, true, false); 635 636 // also reset the bus time that the original packet has 637 // not yet paid for 638 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0; 639 640 // make this an instantaneous express snoop, and let the 641 // other caches in the system know that the another cache 642 // is responding, because we have found the authorative 643 // copy (Modified or Owned) that will supply the right 644 // data 645 snoop_pkt->setExpressSnoop(); 646 snoop_pkt->setCacheResponding(); 647 648 // this express snoop travels towards the memory, and at 649 // every crossbar it is snooped upwards thus reaching 650 // every cache in the system 651 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt); 652 // express snoops always succeed 653 assert(success); 654 655 // main memory will delete the snoop packet 656 657 // queue for deletion, as opposed to immediate deletion, as 658 // the sending cache is still relying on the packet 659 pendingDelete.reset(pkt); 660 661 // no need to take any further action in this particular cache 662 // as an upstram cache has already committed to responding, 663 // and we have already sent out any express snoops in the 664 // section above to ensure all other copies in the system are 665 // invalidated 666 return true; 667 } 668 669 // anything that is merely forwarded pays for the forward latency and 670 // the delay provided by the crossbar 671 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 672 673 // We use lookupLatency here because it is used to specify the latency 674 // to access. 675 Cycles lat = lookupLatency; 676 CacheBlk *blk = NULL; 677 bool satisfied = false; 678 { 679 PacketList writebacks; 680 // Note that lat is passed by reference here. The function 681 // access() calls accessBlock() which can modify lat value. 682 satisfied = access(pkt, blk, lat, writebacks); 683 684 // copy writebacks to write buffer here to ensure they logically 685 // proceed anything happening below 686 doWritebacks(writebacks, forward_time); 687 } 688 689 // Here we charge the headerDelay that takes into account the latencies 690 // of the bus, if the packet comes from it. 691 // The latency charged it is just lat that is the value of lookupLatency 692 // modified by access() function, or if not just lookupLatency. 693 // In case of a hit we are neglecting response latency. 694 // In case of a miss we are neglecting forward latency. 695 Tick request_time = clockEdge(lat) + pkt->headerDelay; 696 // Here we reset the timing of the packet. 697 pkt->headerDelay = pkt->payloadDelay = 0; 698 699 // track time of availability of next prefetch, if any 700 Tick next_pf_time = MaxTick; 701 702 bool needsResponse = pkt->needsResponse(); 703 704 if (satisfied) { 705 // should never be satisfying an uncacheable access as we 706 // flush and invalidate any existing block as part of the 707 // lookup 708 assert(!pkt->req->isUncacheable()); 709 710 // hit (for all other request types) 711 712 if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) { 713 if (blk) 714 blk->status &= ~BlkHWPrefetched; 715 716 // Don't notify on SWPrefetch 717 if (!pkt->cmd.isSWPrefetch()) 718 next_pf_time = prefetcher->notify(pkt); 719 } 720 721 if (needsResponse) { 722 pkt->makeTimingResponse(); 723 // @todo: Make someone pay for this 724 pkt->headerDelay = pkt->payloadDelay = 0; 725 726 // In this case we are considering request_time that takes 727 // into account the delay of the xbar, if any, and just 728 // lat, neglecting responseLatency, modelling hit latency 729 // just as lookupLatency or or the value of lat overriden 730 // by access(), that calls accessBlock() function. 731 cpuSidePort->schedTimingResp(pkt, request_time, true); 732 } else { 733 DPRINTF(Cache, "%s satisfied %s addr %#llx, no response needed\n", 734 __func__, pkt->cmdString(), pkt->getAddr(), 735 pkt->getSize()); 736 737 // queue the packet for deletion, as the sending cache is 738 // still relying on it; if the block is found in access(), 739 // CleanEvict and Writeback messages will be deleted 740 // here as well 741 pendingDelete.reset(pkt); 742 } 743 } else { 744 // miss 745 746 Addr blk_addr = blockAlign(pkt->getAddr()); 747 748 // ignore any existing MSHR if we are dealing with an 749 // uncacheable request 750 MSHR *mshr = pkt->req->isUncacheable() ? nullptr : 751 mshrQueue.findMatch(blk_addr, pkt->isSecure()); 752 753 // Software prefetch handling: 754 // To keep the core from waiting on data it won't look at 755 // anyway, send back a response with dummy data. Miss handling 756 // will continue asynchronously. Unfortunately, the core will 757 // insist upon freeing original Packet/Request, so we have to 758 // create a new pair with a different lifecycle. Note that this 759 // processing happens before any MSHR munging on the behalf of 760 // this request because this new Request will be the one stored 761 // into the MSHRs, not the original. 762 if (pkt->cmd.isSWPrefetch()) { 763 assert(needsResponse); 764 assert(pkt->req->hasPaddr()); 765 assert(!pkt->req->isUncacheable()); 766 767 // There's no reason to add a prefetch as an additional target 768 // to an existing MSHR. If an outstanding request is already 769 // in progress, there is nothing for the prefetch to do. 770 // If this is the case, we don't even create a request at all. 771 PacketPtr pf = nullptr; 772 773 if (!mshr) { 774 // copy the request and create a new SoftPFReq packet 775 RequestPtr req = new Request(pkt->req->getPaddr(), 776 pkt->req->getSize(), 777 pkt->req->getFlags(), 778 pkt->req->masterId()); 779 pf = new Packet(req, pkt->cmd); 780 pf->allocate(); 781 assert(pf->getAddr() == pkt->getAddr()); 782 assert(pf->getSize() == pkt->getSize()); 783 } 784 785 pkt->makeTimingResponse(); 786 787 // request_time is used here, taking into account lat and the delay 788 // charged if the packet comes from the xbar. 789 cpuSidePort->schedTimingResp(pkt, request_time, true); 790 791 // If an outstanding request is in progress (we found an 792 // MSHR) this is set to null 793 pkt = pf; 794 } 795 796 if (mshr) { 797 /// MSHR hit 798 /// @note writebacks will be checked in getNextMSHR() 799 /// for any conflicting requests to the same block 800 801 //@todo remove hw_pf here 802 803 // Coalesce unless it was a software prefetch (see above). 804 if (pkt) { 805 assert(!pkt->isWriteback()); 806 // CleanEvicts corresponding to blocks which have 807 // outstanding requests in MSHRs are simply sunk here 808 if (pkt->cmd == MemCmd::CleanEvict) { 809 pendingDelete.reset(pkt); 810 } else { 811 DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n", 812 __func__, pkt->cmdString(), pkt->getAddr(), 813 pkt->getSize()); 814 815 assert(pkt->req->masterId() < system->maxMasters()); 816 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 817 // We use forward_time here because it is the same 818 // considering new targets. We have multiple 819 // requests for the same address here. It 820 // specifies the latency to allocate an internal 821 // buffer and to schedule an event to the queued 822 // port and also takes into account the additional 823 // delay of the xbar. 824 mshr->allocateTarget(pkt, forward_time, order++, 825 allocOnFill(pkt->cmd)); 826 if (mshr->getNumTargets() == numTarget) { 827 noTargetMSHR = mshr; 828 setBlocked(Blocked_NoTargets); 829 // need to be careful with this... if this mshr isn't 830 // ready yet (i.e. time > curTick()), we don't want to 831 // move it ahead of mshrs that are ready 832 // mshrQueue.moveToFront(mshr); 833 } 834 } 835 // We should call the prefetcher reguardless if the request is 836 // satisfied or not, reguardless if the request is in the MSHR or 837 // not. The request could be a ReadReq hit, but still not 838 // satisfied (potentially because of a prior write to the same 839 // cache line. So, even when not satisfied, tehre is an MSHR 840 // already allocated for this, we need to let the prefetcher know 841 // about the request 842 if (prefetcher) { 843 // Don't notify on SWPrefetch 844 if (!pkt->cmd.isSWPrefetch()) 845 next_pf_time = prefetcher->notify(pkt); 846 } 847 } 848 } else { 849 // no MSHR 850 assert(pkt->req->masterId() < system->maxMasters()); 851 if (pkt->req->isUncacheable()) { 852 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++; 853 } else { 854 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 855 } 856 857 if (pkt->isEviction() || 858 (pkt->req->isUncacheable() && pkt->isWrite())) { 859 // We use forward_time here because there is an 860 // uncached memory write, forwarded to WriteBuffer. 861 allocateWriteBuffer(pkt, forward_time); 862 } else { 863 if (blk && blk->isValid()) { 864 // should have flushed and have no valid block 865 assert(!pkt->req->isUncacheable()); 866 867 // If we have a write miss to a valid block, we 868 // need to mark the block non-readable. Otherwise 869 // if we allow reads while there's an outstanding 870 // write miss, the read could return stale data 871 // out of the cache block... a more aggressive 872 // system could detect the overlap (if any) and 873 // forward data out of the MSHRs, but we don't do 874 // that yet. Note that we do need to leave the 875 // block valid so that it stays in the cache, in 876 // case we get an upgrade response (and hence no 877 // new data) when the write miss completes. 878 // As long as CPUs do proper store/load forwarding 879 // internally, and have a sufficiently weak memory 880 // model, this is probably unnecessary, but at some 881 // point it must have seemed like we needed it... 882 assert(pkt->needsWritable()); 883 assert(!blk->isWritable()); 884 blk->status &= ~BlkReadable; 885 } 886 // Here we are using forward_time, modelling the latency of 887 // a miss (outbound) just as forwardLatency, neglecting the 888 // lookupLatency component. 889 allocateMissBuffer(pkt, forward_time); 890 } 891 892 if (prefetcher) { 893 // Don't notify on SWPrefetch 894 if (!pkt->cmd.isSWPrefetch()) 895 next_pf_time = prefetcher->notify(pkt); 896 } 897 } 898 } 899 900 if (next_pf_time != MaxTick) 901 schedMemSideSendEvent(next_pf_time); 902 903 return true; 904} 905 906PacketPtr 907Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk, 908 bool needsWritable) const 909{ 910 // should never see evictions here 911 assert(!cpu_pkt->isEviction()); 912 913 bool blkValid = blk && blk->isValid(); 914 915 if (cpu_pkt->req->isUncacheable() || 916 (!blkValid && cpu_pkt->isUpgrade())) { 917 // uncacheable requests and upgrades from upper-level caches 918 // that missed completely just go through as is 919 return nullptr; 920 } 921 922 assert(cpu_pkt->needsResponse()); 923 924 MemCmd cmd; 925 // @TODO make useUpgrades a parameter. 926 // Note that ownership protocols require upgrade, otherwise a 927 // write miss on a shared owned block will generate a ReadExcl, 928 // which will clobber the owned copy. 929 const bool useUpgrades = true; 930 if (blkValid && useUpgrades) { 931 // only reason to be here is that blk is read only and we need 932 // it to be writable 933 assert(needsWritable); 934 assert(!blk->isWritable()); 935 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq; 936 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq || 937 cpu_pkt->cmd == MemCmd::StoreCondFailReq) { 938 // Even though this SC will fail, we still need to send out the 939 // request and get the data to supply it to other snoopers in the case 940 // where the determination the StoreCond fails is delayed due to 941 // all caches not being on the same local bus. 942 cmd = MemCmd::SCUpgradeFailReq; 943 } else if (cpu_pkt->cmd == MemCmd::WriteLineReq || 944 cpu_pkt->cmd == MemCmd::InvalidateReq) { 945 // forward as invalidate to all other caches, this gives us 946 // the line in Exclusive state, and invalidates all other 947 // copies 948 cmd = MemCmd::InvalidateReq; 949 } else { 950 // block is invalid 951 cmd = needsWritable ? MemCmd::ReadExReq : 952 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq); 953 } 954 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize); 955 956 // if there are upstream caches that have already marked the 957 // packet as having sharers (not passing writable), pass that info 958 // downstream 959 if (cpu_pkt->hasSharers()) { 960 // note that cpu_pkt may have spent a considerable time in the 961 // MSHR queue and that the information could possibly be out 962 // of date, however, there is no harm in conservatively 963 // assuming the block has sharers 964 pkt->setHasSharers(); 965 DPRINTF(Cache, "%s passing hasSharers from %s to %s addr %#llx " 966 "size %d\n", 967 __func__, cpu_pkt->cmdString(), pkt->cmdString(), 968 pkt->getAddr(), pkt->getSize()); 969 } 970 971 // the packet should be block aligned 972 assert(pkt->getAddr() == blockAlign(pkt->getAddr())); 973 974 pkt->allocate(); 975 DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n", 976 __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(), 977 pkt->getSize()); 978 return pkt; 979} 980 981 982Tick 983Cache::recvAtomic(PacketPtr pkt) 984{ 985 // We are in atomic mode so we pay just for lookupLatency here. 986 Cycles lat = lookupLatency; 987 988 // Forward the request if the system is in cache bypass mode. 989 if (system->bypassCaches()) 990 return ticksToCycles(memSidePort->sendAtomic(pkt)); 991 992 promoteWholeLineWrites(pkt); 993 994 // follow the same flow as in recvTimingReq, and check if a cache 995 // above us is responding 996 if (pkt->cacheResponding()) { 997 DPRINTF(Cache, "Cache above responding to %#llx (%s): " 998 "not responding\n", 999 pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 1000 1001 // if a cache is responding, and it had the line in Owned 1002 // rather than Modified state, we need to invalidate any 1003 // copies that are not on the same path to memory 1004 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 1005 lat += ticksToCycles(memSidePort->sendAtomic(pkt)); 1006 1007 return lat * clockPeriod(); 1008 } 1009 1010 // should assert here that there are no outstanding MSHRs or 1011 // writebacks... that would mean that someone used an atomic 1012 // access in timing mode 1013 1014 CacheBlk *blk = NULL; 1015 PacketList writebacks; 1016 bool satisfied = access(pkt, blk, lat, writebacks); 1017 1018 // handle writebacks resulting from the access here to ensure they 1019 // logically proceed anything happening below 1020 doWritebacksAtomic(writebacks); 1021 1022 if (!satisfied) { 1023 // MISS 1024 1025 // deal with the packets that go through the write path of 1026 // the cache, i.e. any evictions and uncacheable writes 1027 if (pkt->isEviction() || 1028 (pkt->req->isUncacheable() && pkt->isWrite())) { 1029 lat += ticksToCycles(memSidePort->sendAtomic(pkt)); 1030 return lat * clockPeriod(); 1031 } 1032 // only misses left 1033 1034 PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable()); 1035 1036 bool is_forward = (bus_pkt == NULL); 1037 1038 if (is_forward) { 1039 // just forwarding the same request to the next level 1040 // no local cache operation involved 1041 bus_pkt = pkt; 1042 } 1043 1044 DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n", 1045 bus_pkt->cmdString(), bus_pkt->getAddr(), 1046 bus_pkt->isSecure() ? "s" : "ns"); 1047 1048#if TRACING_ON 1049 CacheBlk::State old_state = blk ? blk->status : 0; 1050#endif 1051 1052 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt)); 1053 1054 bool is_invalidate = bus_pkt->isInvalidate(); 1055 1056 // We are now dealing with the response handling 1057 DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n", 1058 bus_pkt->cmdString(), bus_pkt->getAddr(), 1059 bus_pkt->isSecure() ? "s" : "ns", 1060 old_state); 1061 1062 // If packet was a forward, the response (if any) is already 1063 // in place in the bus_pkt == pkt structure, so we don't need 1064 // to do anything. Otherwise, use the separate bus_pkt to 1065 // generate response to pkt and then delete it. 1066 if (!is_forward) { 1067 if (pkt->needsResponse()) { 1068 assert(bus_pkt->isResponse()); 1069 if (bus_pkt->isError()) { 1070 pkt->makeAtomicResponse(); 1071 pkt->copyError(bus_pkt); 1072 } else if (pkt->cmd == MemCmd::WriteLineReq) { 1073 // note the use of pkt, not bus_pkt here. 1074 1075 // write-line request to the cache that promoted 1076 // the write to a whole line 1077 blk = handleFill(pkt, blk, writebacks, 1078 allocOnFill(pkt->cmd)); 1079 assert(blk != NULL); 1080 is_invalidate = false; 1081 satisfyCpuSideRequest(pkt, blk); 1082 } else if (bus_pkt->isRead() || 1083 bus_pkt->cmd == MemCmd::UpgradeResp) { 1084 // we're updating cache state to allow us to 1085 // satisfy the upstream request from the cache 1086 blk = handleFill(bus_pkt, blk, writebacks, 1087 allocOnFill(pkt->cmd)); 1088 satisfyCpuSideRequest(pkt, blk); 1089 } else { 1090 // we're satisfying the upstream request without 1091 // modifying cache state, e.g., a write-through 1092 pkt->makeAtomicResponse(); 1093 } 1094 } 1095 delete bus_pkt; 1096 } 1097 1098 if (is_invalidate && blk && blk->isValid()) { 1099 invalidateBlock(blk); 1100 } 1101 } 1102 1103 // Note that we don't invoke the prefetcher at all in atomic mode. 1104 // It's not clear how to do it properly, particularly for 1105 // prefetchers that aggressively generate prefetch candidates and 1106 // rely on bandwidth contention to throttle them; these will tend 1107 // to pollute the cache in atomic mode since there is no bandwidth 1108 // contention. If we ever do want to enable prefetching in atomic 1109 // mode, though, this is the place to do it... see timingAccess() 1110 // for an example (though we'd want to issue the prefetch(es) 1111 // immediately rather than calling requestMemSideBus() as we do 1112 // there). 1113 1114 // do any writebacks resulting from the response handling 1115 doWritebacksAtomic(writebacks); 1116 1117 // if we used temp block, check to see if its valid and if so 1118 // clear it out, but only do so after the call to recvAtomic is 1119 // finished so that any downstream observers (such as a snoop 1120 // filter), first see the fill, and only then see the eviction 1121 if (blk == tempBlock && tempBlock->isValid()) { 1122 // the atomic CPU calls recvAtomic for fetch and load/store 1123 // sequentuially, and we may already have a tempBlock 1124 // writeback from the fetch that we have not yet sent 1125 if (tempBlockWriteback) { 1126 // if that is the case, write the prevoius one back, and 1127 // do not schedule any new event 1128 writebackTempBlockAtomic(); 1129 } else { 1130 // the writeback/clean eviction happens after the call to 1131 // recvAtomic has finished (but before any successive 1132 // calls), so that the response handling from the fill is 1133 // allowed to happen first 1134 schedule(writebackTempBlockAtomicEvent, curTick()); 1135 } 1136 1137 tempBlockWriteback = (blk->isDirty() || writebackClean) ? 1138 writebackBlk(blk) : cleanEvictBlk(blk); 1139 blk->invalidate(); 1140 } 1141 1142 if (pkt->needsResponse()) { 1143 pkt->makeAtomicResponse(); 1144 } 1145 1146 return lat * clockPeriod(); 1147} 1148 1149 1150void 1151Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide) 1152{ 1153 if (system->bypassCaches()) { 1154 // Packets from the memory side are snoop request and 1155 // shouldn't happen in bypass mode. 1156 assert(fromCpuSide); 1157 1158 // The cache should be flushed if we are in cache bypass mode, 1159 // so we don't need to check if we need to update anything. 1160 memSidePort->sendFunctional(pkt); 1161 return; 1162 } 1163 1164 Addr blk_addr = blockAlign(pkt->getAddr()); 1165 bool is_secure = pkt->isSecure(); 1166 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 1167 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 1168 1169 pkt->pushLabel(name()); 1170 1171 CacheBlkPrintWrapper cbpw(blk); 1172 1173 // Note that just because an L2/L3 has valid data doesn't mean an 1174 // L1 doesn't have a more up-to-date modified copy that still 1175 // needs to be found. As a result we always update the request if 1176 // we have it, but only declare it satisfied if we are the owner. 1177 1178 // see if we have data at all (owned or otherwise) 1179 bool have_data = blk && blk->isValid() 1180 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize, 1181 blk->data); 1182 1183 // data we have is dirty if marked as such or if we have an 1184 // in-service MSHR that is pending a modified line 1185 bool have_dirty = 1186 have_data && (blk->isDirty() || 1187 (mshr && mshr->inService && mshr->isPendingModified())); 1188 1189 bool done = have_dirty 1190 || cpuSidePort->checkFunctional(pkt) 1191 || mshrQueue.checkFunctional(pkt, blk_addr) 1192 || writeBuffer.checkFunctional(pkt, blk_addr) 1193 || memSidePort->checkFunctional(pkt); 1194 1195 DPRINTF(CacheVerbose, "functional %s %#llx (%s) %s%s%s\n", 1196 pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns", 1197 (blk && blk->isValid()) ? "valid " : "", 1198 have_data ? "data " : "", done ? "done " : ""); 1199 1200 // We're leaving the cache, so pop cache->name() label 1201 pkt->popLabel(); 1202 1203 if (done) { 1204 pkt->makeResponse(); 1205 } else { 1206 // if it came as a request from the CPU side then make sure it 1207 // continues towards the memory side 1208 if (fromCpuSide) { 1209 memSidePort->sendFunctional(pkt); 1210 } else if (forwardSnoops && cpuSidePort->isSnooping()) { 1211 // if it came from the memory side, it must be a snoop request 1212 // and we should only forward it if we are forwarding snoops 1213 cpuSidePort->sendFunctionalSnoop(pkt); 1214 } 1215 } 1216} 1217 1218 1219///////////////////////////////////////////////////// 1220// 1221// Response handling: responses from the memory side 1222// 1223///////////////////////////////////////////////////// 1224 1225 1226void 1227Cache::handleUncacheableWriteResp(PacketPtr pkt) 1228{ 1229 WriteQueueEntry *wq_entry = 1230 dynamic_cast<WriteQueueEntry*>(pkt->senderState); 1231 assert(wq_entry); 1232 1233 WriteQueueEntry::Target *target = wq_entry->getTarget(); 1234 Packet *tgt_pkt = target->pkt; 1235 1236 // we send out invalidation reqs and get invalidation 1237 // responses for write-line requests 1238 assert(tgt_pkt->cmd != MemCmd::WriteLineReq); 1239 1240 int stats_cmd_idx = tgt_pkt->cmdToIndex(); 1241 Tick miss_latency = curTick() - target->recvTime; 1242 assert(pkt->req->masterId() < system->maxMasters()); 1243 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += 1244 miss_latency; 1245 1246 tgt_pkt->makeTimingResponse(); 1247 // if this packet is an error copy that to the new packet 1248 if (pkt->isError()) 1249 tgt_pkt->copyError(pkt); 1250 // Reset the bus additional time as it is now accounted for 1251 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0; 1252 Tick completion_time = clockEdge(responseLatency) + 1253 pkt->headerDelay + pkt->payloadDelay; 1254 1255 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true); 1256 1257 wq_entry->popTarget(); 1258 assert(!wq_entry->hasTargets()); 1259 1260 bool wasFull = writeBuffer.isFull(); 1261 writeBuffer.deallocate(wq_entry); 1262 1263 if (wasFull && !writeBuffer.isFull()) { 1264 clearBlocked(Blocked_NoWBBuffers); 1265 } 1266 1267 delete pkt; 1268} 1269 1270void 1271Cache::recvTimingResp(PacketPtr pkt) 1272{ 1273 assert(pkt->isResponse()); 1274 1275 // all header delay should be paid for by the crossbar, unless 1276 // this is a prefetch response from above 1277 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp, 1278 "%s saw a non-zero packet delay\n", name()); 1279 1280 bool is_error = pkt->isError(); 1281 1282 if (is_error) { 1283 DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), " 1284 "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns", 1285 pkt->cmdString()); 1286 } 1287 1288 DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n", 1289 pkt->cmdString(), pkt->getAddr(), pkt->getSize(), 1290 pkt->isSecure() ? "s" : "ns"); 1291 1292 // if this is a write, we should be looking at an uncacheable 1293 // write 1294 if (pkt->isWrite()) { 1295 assert(pkt->req->isUncacheable()); 1296 handleUncacheableWriteResp(pkt); 1297 return; 1298 } 1299 1300 // we have dealt with any (uncacheable) writes above, from here on 1301 // we know we are dealing with an MSHR due to a miss or a prefetch 1302 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState); 1303 assert(mshr); 1304 1305 if (mshr == noTargetMSHR) { 1306 // we always clear at least one target 1307 clearBlocked(Blocked_NoTargets); 1308 noTargetMSHR = NULL; 1309 } 1310 1311 // Initial target is used just for stats 1312 MSHR::Target *initial_tgt = mshr->getTarget(); 1313 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); 1314 Tick miss_latency = curTick() - initial_tgt->recvTime; 1315 1316 if (pkt->req->isUncacheable()) { 1317 assert(pkt->req->masterId() < system->maxMasters()); 1318 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += 1319 miss_latency; 1320 } else { 1321 assert(pkt->req->masterId() < system->maxMasters()); 1322 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += 1323 miss_latency; 1324 } 1325 1326 bool wasFull = mshrQueue.isFull(); 1327 1328 PacketList writebacks; 1329 1330 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 1331 1332 // upgrade deferred targets if the response has no sharers, and is 1333 // thus passing writable 1334 if (!pkt->hasSharers()) { 1335 mshr->promoteWritable(); 1336 } 1337 1338 bool is_fill = !mshr->isForward && 1339 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp); 1340 1341 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 1342 1343 if (is_fill && !is_error) { 1344 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", 1345 pkt->getAddr()); 1346 1347 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill); 1348 assert(blk != NULL); 1349 } 1350 1351 // allow invalidation responses originating from write-line 1352 // requests to be discarded 1353 bool is_invalidate = pkt->isInvalidate(); 1354 1355 // First offset for critical word first calculations 1356 int initial_offset = initial_tgt->pkt->getOffset(blkSize); 1357 1358 while (mshr->hasTargets()) { 1359 MSHR::Target *target = mshr->getTarget(); 1360 Packet *tgt_pkt = target->pkt; 1361 1362 switch (target->source) { 1363 case MSHR::Target::FromCPU: 1364 Tick completion_time; 1365 // Here we charge on completion_time the delay of the xbar if the 1366 // packet comes from it, charged on headerDelay. 1367 completion_time = pkt->headerDelay; 1368 1369 // Software prefetch handling for cache closest to core 1370 if (tgt_pkt->cmd.isSWPrefetch()) { 1371 // a software prefetch would have already been ack'd immediately 1372 // with dummy data so the core would be able to retire it. 1373 // this request completes right here, so we deallocate it. 1374 delete tgt_pkt->req; 1375 delete tgt_pkt; 1376 break; // skip response 1377 } 1378 1379 // unlike the other packet flows, where data is found in other 1380 // caches or memory and brought back, write-line requests always 1381 // have the data right away, so the above check for "is fill?" 1382 // cannot actually be determined until examining the stored MSHR 1383 // state. We "catch up" with that logic here, which is duplicated 1384 // from above. 1385 if (tgt_pkt->cmd == MemCmd::WriteLineReq) { 1386 assert(!is_error); 1387 // we got the block in a writable state, so promote 1388 // any deferred targets if possible 1389 mshr->promoteWritable(); 1390 // NB: we use the original packet here and not the response! 1391 blk = handleFill(tgt_pkt, blk, writebacks, mshr->allocOnFill); 1392 assert(blk != NULL); 1393 1394 // treat as a fill, and discard the invalidation 1395 // response 1396 is_fill = true; 1397 is_invalidate = false; 1398 } 1399 1400 if (is_fill) { 1401 satisfyCpuSideRequest(tgt_pkt, blk, 1402 true, mshr->hasPostDowngrade()); 1403 1404 // How many bytes past the first request is this one 1405 int transfer_offset = 1406 tgt_pkt->getOffset(blkSize) - initial_offset; 1407 if (transfer_offset < 0) { 1408 transfer_offset += blkSize; 1409 } 1410 1411 // If not critical word (offset) return payloadDelay. 1412 // responseLatency is the latency of the return path 1413 // from lower level caches/memory to an upper level cache or 1414 // the core. 1415 completion_time += clockEdge(responseLatency) + 1416 (transfer_offset ? pkt->payloadDelay : 0); 1417 1418 assert(!tgt_pkt->req->isUncacheable()); 1419 1420 assert(tgt_pkt->req->masterId() < system->maxMasters()); 1421 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] += 1422 completion_time - target->recvTime; 1423 } else if (pkt->cmd == MemCmd::UpgradeFailResp) { 1424 // failed StoreCond upgrade 1425 assert(tgt_pkt->cmd == MemCmd::StoreCondReq || 1426 tgt_pkt->cmd == MemCmd::StoreCondFailReq || 1427 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq); 1428 // responseLatency is the latency of the return path 1429 // from lower level caches/memory to an upper level cache or 1430 // the core. 1431 completion_time += clockEdge(responseLatency) + 1432 pkt->payloadDelay; 1433 tgt_pkt->req->setExtraData(0); 1434 } else { 1435 // not a cache fill, just forwarding response 1436 // responseLatency is the latency of the return path 1437 // from lower level cahces/memory to the core. 1438 completion_time += clockEdge(responseLatency) + 1439 pkt->payloadDelay; 1440 if (pkt->isRead() && !is_error) { 1441 // sanity check 1442 assert(pkt->getAddr() == tgt_pkt->getAddr()); 1443 assert(pkt->getSize() >= tgt_pkt->getSize()); 1444 1445 tgt_pkt->setData(pkt->getConstPtr<uint8_t>()); 1446 } 1447 } 1448 tgt_pkt->makeTimingResponse(); 1449 // if this packet is an error copy that to the new packet 1450 if (is_error) 1451 tgt_pkt->copyError(pkt); 1452 if (tgt_pkt->cmd == MemCmd::ReadResp && 1453 (is_invalidate || mshr->hasPostInvalidate())) { 1454 // If intermediate cache got ReadRespWithInvalidate, 1455 // propagate that. Response should not have 1456 // isInvalidate() set otherwise. 1457 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate; 1458 DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n", 1459 __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr()); 1460 } 1461 // Reset the bus additional time as it is now accounted for 1462 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0; 1463 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true); 1464 break; 1465 1466 case MSHR::Target::FromPrefetcher: 1467 assert(tgt_pkt->cmd == MemCmd::HardPFReq); 1468 if (blk) 1469 blk->status |= BlkHWPrefetched; 1470 delete tgt_pkt->req; 1471 delete tgt_pkt; 1472 break; 1473 1474 case MSHR::Target::FromSnoop: 1475 // I don't believe that a snoop can be in an error state 1476 assert(!is_error); 1477 // response to snoop request 1478 DPRINTF(Cache, "processing deferred snoop...\n"); 1479 assert(!(is_invalidate && !mshr->hasPostInvalidate())); 1480 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate()); 1481 break; 1482 1483 default: 1484 panic("Illegal target->source enum %d\n", target->source); 1485 } 1486 1487 mshr->popTarget(); 1488 } 1489 1490 if (blk && blk->isValid()) { 1491 // an invalidate response stemming from a write line request 1492 // should not invalidate the block, so check if the 1493 // invalidation should be discarded 1494 if (is_invalidate || mshr->hasPostInvalidate()) { 1495 invalidateBlock(blk); 1496 } else if (mshr->hasPostDowngrade()) { 1497 blk->status &= ~BlkWritable; 1498 } 1499 } 1500 1501 if (mshr->promoteDeferredTargets()) { 1502 // avoid later read getting stale data while write miss is 1503 // outstanding.. see comment in timingAccess() 1504 if (blk) { 1505 blk->status &= ~BlkReadable; 1506 } 1507 mshrQueue.markPending(mshr); 1508 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay); 1509 } else { 1510 mshrQueue.deallocate(mshr); 1511 if (wasFull && !mshrQueue.isFull()) { 1512 clearBlocked(Blocked_NoMSHRs); 1513 } 1514 1515 // Request the bus for a prefetch if this deallocation freed enough 1516 // MSHRs for a prefetch to take place 1517 if (prefetcher && mshrQueue.canPrefetch()) { 1518 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), 1519 clockEdge()); 1520 if (next_pf_time != MaxTick) 1521 schedMemSideSendEvent(next_pf_time); 1522 } 1523 } 1524 // reset the xbar additional timinig as it is now accounted for 1525 pkt->headerDelay = pkt->payloadDelay = 0; 1526 1527 // copy writebacks to write buffer 1528 doWritebacks(writebacks, forward_time); 1529 1530 // if we used temp block, check to see if its valid and then clear it out 1531 if (blk == tempBlock && tempBlock->isValid()) { 1532 // We use forwardLatency here because we are copying 1533 // Writebacks/CleanEvicts to write buffer. It specifies the latency to 1534 // allocate an internal buffer and to schedule an event to the 1535 // queued port. 1536 if (blk->isDirty() || writebackClean) { 1537 PacketPtr wbPkt = writebackBlk(blk); 1538 allocateWriteBuffer(wbPkt, forward_time); 1539 // Set BLOCK_CACHED flag if cached above. 1540 if (isCachedAbove(wbPkt)) 1541 wbPkt->setBlockCached(); 1542 } else { 1543 PacketPtr wcPkt = cleanEvictBlk(blk); 1544 // Check to see if block is cached above. If not allocate 1545 // write buffer 1546 if (isCachedAbove(wcPkt)) 1547 delete wcPkt; 1548 else 1549 allocateWriteBuffer(wcPkt, forward_time); 1550 } 1551 blk->invalidate(); 1552 } 1553 1554 DPRINTF(CacheVerbose, "Leaving %s with %s for addr %#llx\n", __func__, 1555 pkt->cmdString(), pkt->getAddr()); 1556 delete pkt; 1557} 1558 1559PacketPtr 1560Cache::writebackBlk(CacheBlk *blk) 1561{ 1562 chatty_assert(!isReadOnly || writebackClean, 1563 "Writeback from read-only cache"); 1564 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean)); 1565 1566 writebacks[Request::wbMasterId]++; 1567 1568 Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set), 1569 blkSize, 0, Request::wbMasterId); 1570 if (blk->isSecure()) 1571 req->setFlags(Request::SECURE); 1572 1573 req->taskId(blk->task_id); 1574 blk->task_id= ContextSwitchTaskId::Unknown; 1575 blk->tickInserted = curTick(); 1576 1577 PacketPtr pkt = 1578 new Packet(req, blk->isDirty() ? 1579 MemCmd::WritebackDirty : MemCmd::WritebackClean); 1580 1581 DPRINTF(Cache, "Create Writeback %#llx writable: %d, dirty: %d\n", 1582 pkt->getAddr(), blk->isWritable(), blk->isDirty()); 1583 1584 if (blk->isWritable()) { 1585 // not asserting shared means we pass the block in modified 1586 // state, mark our own block non-writeable 1587 blk->status &= ~BlkWritable; 1588 } else { 1589 // we are in the Owned state, tell the receiver 1590 pkt->setHasSharers(); 1591 } 1592 1593 // make sure the block is not marked dirty 1594 blk->status &= ~BlkDirty; 1595 1596 pkt->allocate(); 1597 std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize); 1598 1599 return pkt; 1600} 1601 1602PacketPtr 1603Cache::cleanEvictBlk(CacheBlk *blk) 1604{ 1605 assert(!writebackClean); 1606 assert(blk && blk->isValid() && !blk->isDirty()); 1607 // Creating a zero sized write, a message to the snoop filter 1608 Request *req = 1609 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0, 1610 Request::wbMasterId); 1611 if (blk->isSecure()) 1612 req->setFlags(Request::SECURE); 1613 1614 req->taskId(blk->task_id); 1615 blk->task_id = ContextSwitchTaskId::Unknown; 1616 blk->tickInserted = curTick(); 1617 1618 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict); 1619 pkt->allocate(); 1620 DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(), 1621 pkt->req->isInstFetch() ? " (ifetch)" : "", 1622 pkt->getAddr()); 1623 1624 return pkt; 1625} 1626 1627void 1628Cache::memWriteback() 1629{ 1630 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor); 1631 tags->forEachBlk(visitor); 1632} 1633 1634void 1635Cache::memInvalidate() 1636{ 1637 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor); 1638 tags->forEachBlk(visitor); 1639} 1640 1641bool 1642Cache::isDirty() const 1643{ 1644 CacheBlkIsDirtyVisitor visitor; 1645 tags->forEachBlk(visitor); 1646 1647 return visitor.isDirty(); 1648} 1649 1650bool 1651Cache::writebackVisitor(CacheBlk &blk) 1652{ 1653 if (blk.isDirty()) { 1654 assert(blk.isValid()); 1655 1656 Request request(tags->regenerateBlkAddr(blk.tag, blk.set), 1657 blkSize, 0, Request::funcMasterId); 1658 request.taskId(blk.task_id); 1659 1660 Packet packet(&request, MemCmd::WriteReq); 1661 packet.dataStatic(blk.data); 1662 1663 memSidePort->sendFunctional(&packet); 1664 1665 blk.status &= ~BlkDirty; 1666 } 1667 1668 return true; 1669} 1670 1671bool 1672Cache::invalidateVisitor(CacheBlk &blk) 1673{ 1674 1675 if (blk.isDirty()) 1676 warn_once("Invalidating dirty cache lines. Expect things to break.\n"); 1677 1678 if (blk.isValid()) { 1679 assert(!blk.isDirty()); 1680 tags->invalidate(&blk); 1681 blk.invalidate(); 1682 } 1683 1684 return true; 1685} 1686 1687CacheBlk* 1688Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks) 1689{ 1690 CacheBlk *blk = tags->findVictim(addr); 1691 1692 // It is valid to return NULL if there is no victim 1693 if (!blk) 1694 return nullptr; 1695 1696 if (blk->isValid()) { 1697 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set); 1698 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); 1699 if (repl_mshr) { 1700 // must be an outstanding upgrade request 1701 // on a block we're about to replace... 1702 assert(!blk->isWritable() || blk->isDirty()); 1703 assert(repl_mshr->needsWritable()); 1704 // too hard to replace block with transient state 1705 // allocation failed, block not inserted 1706 return NULL; 1707 } else { 1708 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n", 1709 repl_addr, blk->isSecure() ? "s" : "ns", 1710 addr, is_secure ? "s" : "ns", 1711 blk->isDirty() ? "writeback" : "clean"); 1712 1713 if (blk->wasPrefetched()) { 1714 unusedPrefetches++; 1715 } 1716 // Will send up Writeback/CleanEvict snoops via isCachedAbove 1717 // when pushing this writeback list into the write buffer. 1718 if (blk->isDirty() || writebackClean) { 1719 // Save writeback packet for handling by caller 1720 writebacks.push_back(writebackBlk(blk)); 1721 } else { 1722 writebacks.push_back(cleanEvictBlk(blk)); 1723 } 1724 } 1725 } 1726 1727 return blk; 1728} 1729 1730void 1731Cache::invalidateBlock(CacheBlk *blk) 1732{ 1733 if (blk != tempBlock) 1734 tags->invalidate(blk); 1735 blk->invalidate(); 1736} 1737 1738// Note that the reason we return a list of writebacks rather than 1739// inserting them directly in the write buffer is that this function 1740// is called by both atomic and timing-mode accesses, and in atomic 1741// mode we don't mess with the write buffer (we just perform the 1742// writebacks atomically once the original request is complete). 1743CacheBlk* 1744Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks, 1745 bool allocate) 1746{ 1747 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq); 1748 Addr addr = pkt->getAddr(); 1749 bool is_secure = pkt->isSecure(); 1750#if TRACING_ON 1751 CacheBlk::State old_state = blk ? blk->status : 0; 1752#endif 1753 1754 // When handling a fill, we should have no writes to this line. 1755 assert(addr == blockAlign(addr)); 1756 assert(!writeBuffer.findMatch(addr, is_secure)); 1757 1758 if (blk == NULL) { 1759 // better have read new data... 1760 assert(pkt->hasData()); 1761 1762 // only read responses and write-line requests have data; 1763 // note that we don't write the data here for write-line - that 1764 // happens in the subsequent satisfyCpuSideRequest. 1765 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq); 1766 1767 // need to do a replacement if allocating, otherwise we stick 1768 // with the temporary storage 1769 blk = allocate ? allocateBlock(addr, is_secure, writebacks) : NULL; 1770 1771 if (blk == NULL) { 1772 // No replaceable block or a mostly exclusive 1773 // cache... just use temporary storage to complete the 1774 // current request and then get rid of it 1775 assert(!tempBlock->isValid()); 1776 blk = tempBlock; 1777 tempBlock->set = tags->extractSet(addr); 1778 tempBlock->tag = tags->extractTag(addr); 1779 // @todo: set security state as well... 1780 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, 1781 is_secure ? "s" : "ns"); 1782 } else { 1783 tags->insertBlock(pkt, blk); 1784 } 1785 1786 // we should never be overwriting a valid block 1787 assert(!blk->isValid()); 1788 } else { 1789 // existing block... probably an upgrade 1790 assert(blk->tag == tags->extractTag(addr)); 1791 // either we're getting new data or the block should already be valid 1792 assert(pkt->hasData() || blk->isValid()); 1793 // don't clear block status... if block is already dirty we 1794 // don't want to lose that 1795 } 1796 1797 if (is_secure) 1798 blk->status |= BlkSecure; 1799 blk->status |= BlkValid | BlkReadable; 1800 1801 // sanity check for whole-line writes, which should always be 1802 // marked as writable as part of the fill, and then later marked 1803 // dirty as part of satisfyCpuSideRequest 1804 if (pkt->cmd == MemCmd::WriteLineReq) { 1805 assert(!pkt->hasSharers()); 1806 // at the moment other caches do not respond to the 1807 // invalidation requests corresponding to a whole-line write 1808 assert(!pkt->cacheResponding()); 1809 } 1810 1811 // here we deal with setting the appropriate state of the line, 1812 // and we start by looking at the hasSharers flag, and ignore the 1813 // cacheResponding flag (normally signalling dirty data) if the 1814 // packet has sharers, thus the line is never allocated as Owned 1815 // (dirty but not writable), and always ends up being either 1816 // Shared, Exclusive or Modified, see Packet::setCacheResponding 1817 // for more details 1818 if (!pkt->hasSharers()) { 1819 // we could get a writable line from memory (rather than a 1820 // cache) even in a read-only cache, note that we set this bit 1821 // even for a read-only cache, possibly revisit this decision 1822 blk->status |= BlkWritable; 1823 1824 // check if we got this via cache-to-cache transfer (i.e., from a 1825 // cache that had the block in Modified or Owned state) 1826 if (pkt->cacheResponding()) { 1827 // we got the block in Modified state, and invalidated the 1828 // owners copy 1829 blk->status |= BlkDirty; 1830 1831 chatty_assert(!isReadOnly, "Should never see dirty snoop response " 1832 "in read-only cache %s\n", name()); 1833 } 1834 } 1835 1836 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", 1837 addr, is_secure ? "s" : "ns", old_state, blk->print()); 1838 1839 // if we got new data, copy it in (checking for a read response 1840 // and a response that has data is the same in the end) 1841 if (pkt->isRead()) { 1842 // sanity checks 1843 assert(pkt->hasData()); 1844 assert(pkt->getSize() == blkSize); 1845 1846 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize); 1847 } 1848 // We pay for fillLatency here. 1849 blk->whenReady = clockEdge() + fillLatency * clockPeriod() + 1850 pkt->payloadDelay; 1851 1852 return blk; 1853} 1854 1855 1856///////////////////////////////////////////////////// 1857// 1858// Snoop path: requests coming in from the memory side 1859// 1860///////////////////////////////////////////////////// 1861 1862void 1863Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data, 1864 bool already_copied, bool pending_inval) 1865{ 1866 // sanity check 1867 assert(req_pkt->isRequest()); 1868 assert(req_pkt->needsResponse()); 1869 1870 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, 1871 req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize()); 1872 // timing-mode snoop responses require a new packet, unless we 1873 // already made a copy... 1874 PacketPtr pkt = req_pkt; 1875 if (!already_copied) 1876 // do not clear flags, and allocate space for data if the 1877 // packet needs it (the only packets that carry data are read 1878 // responses) 1879 pkt = new Packet(req_pkt, false, req_pkt->isRead()); 1880 1881 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() || 1882 pkt->hasSharers()); 1883 pkt->makeTimingResponse(); 1884 if (pkt->isRead()) { 1885 pkt->setDataFromBlock(blk_data, blkSize); 1886 } 1887 if (pkt->cmd == MemCmd::ReadResp && pending_inval) { 1888 // Assume we defer a response to a read from a far-away cache 1889 // A, then later defer a ReadExcl from a cache B on the same 1890 // bus as us. We'll assert cacheResponding in both cases, but 1891 // in the latter case cacheResponding will keep the 1892 // invalidation from reaching cache A. This special response 1893 // tells cache A that it gets the block to satisfy its read, 1894 // but must immediately invalidate it. 1895 pkt->cmd = MemCmd::ReadRespWithInvalidate; 1896 } 1897 // Here we consider forward_time, paying for just forward latency and 1898 // also charging the delay provided by the xbar. 1899 // forward_time is used as send_time in next allocateWriteBuffer(). 1900 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 1901 // Here we reset the timing of the packet. 1902 pkt->headerDelay = pkt->payloadDelay = 0; 1903 DPRINTF(CacheVerbose, 1904 "%s created response: %s addr %#llx size %d tick: %lu\n", 1905 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(), 1906 forward_time); 1907 memSidePort->schedTimingSnoopResp(pkt, forward_time, true); 1908} 1909 1910uint32_t 1911Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing, 1912 bool is_deferred, bool pending_inval) 1913{ 1914 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__, 1915 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 1916 // deferred snoops can only happen in timing mode 1917 assert(!(is_deferred && !is_timing)); 1918 // pending_inval only makes sense on deferred snoops 1919 assert(!(pending_inval && !is_deferred)); 1920 assert(pkt->isRequest()); 1921 1922 // the packet may get modified if we or a forwarded snooper 1923 // responds in atomic mode, so remember a few things about the 1924 // original packet up front 1925 bool invalidate = pkt->isInvalidate(); 1926 bool M5_VAR_USED needs_writable = pkt->needsWritable(); 1927 1928 // at the moment we could get an uncacheable write which does not 1929 // have the invalidate flag, and we need a suitable way of dealing 1930 // with this case 1931 panic_if(invalidate && pkt->req->isUncacheable(), 1932 "%s got an invalidating uncacheable snoop request %s to %#llx", 1933 name(), pkt->cmdString(), pkt->getAddr()); 1934 1935 uint32_t snoop_delay = 0; 1936 1937 if (forwardSnoops) { 1938 // first propagate snoop upward to see if anyone above us wants to 1939 // handle it. save & restore packet src since it will get 1940 // rewritten to be relative to cpu-side bus (if any) 1941 bool alreadyResponded = pkt->cacheResponding(); 1942 if (is_timing) { 1943 // copy the packet so that we can clear any flags before 1944 // forwarding it upwards, we also allocate data (passing 1945 // the pointer along in case of static data), in case 1946 // there is a snoop hit in upper levels 1947 Packet snoopPkt(pkt, true, true); 1948 snoopPkt.setExpressSnoop(); 1949 // the snoop packet does not need to wait any additional 1950 // time 1951 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0; 1952 cpuSidePort->sendTimingSnoopReq(&snoopPkt); 1953 1954 // add the header delay (including crossbar and snoop 1955 // delays) of the upward snoop to the snoop delay for this 1956 // cache 1957 snoop_delay += snoopPkt.headerDelay; 1958 1959 if (snoopPkt.cacheResponding()) { 1960 // cache-to-cache response from some upper cache 1961 assert(!alreadyResponded); 1962 pkt->setCacheResponding(); 1963 } 1964 // upstream cache has the block, or has an outstanding 1965 // MSHR, pass the flag on 1966 if (snoopPkt.hasSharers()) { 1967 pkt->setHasSharers(); 1968 } 1969 // If this request is a prefetch or clean evict and an upper level 1970 // signals block present, make sure to propagate the block 1971 // presence to the requester. 1972 if (snoopPkt.isBlockCached()) { 1973 pkt->setBlockCached(); 1974 } 1975 } else { 1976 cpuSidePort->sendAtomicSnoop(pkt); 1977 if (!alreadyResponded && pkt->cacheResponding()) { 1978 // cache-to-cache response from some upper cache: 1979 // forward response to original requester 1980 assert(pkt->isResponse()); 1981 } 1982 } 1983 } 1984 1985 if (!blk || !blk->isValid()) { 1986 DPRINTF(CacheVerbose, "%s snoop miss for %s addr %#llx size %d\n", 1987 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 1988 return snoop_delay; 1989 } else { 1990 DPRINTF(Cache, "%s snoop hit for %s addr %#llx size %d, " 1991 "old state is %s\n", __func__, pkt->cmdString(), 1992 pkt->getAddr(), pkt->getSize(), blk->print()); 1993 } 1994 1995 chatty_assert(!(isReadOnly && blk->isDirty()), 1996 "Should never have a dirty block in a read-only cache %s\n", 1997 name()); 1998 1999 // We may end up modifying both the block state and the packet (if 2000 // we respond in atomic mode), so just figure out what to do now 2001 // and then do it later. If we find dirty data while snooping for 2002 // an invalidate, we don't need to send a response. The 2003 // invalidation itself is taken care of below. 2004 bool respond = blk->isDirty() && pkt->needsResponse() && 2005 pkt->cmd != MemCmd::InvalidateReq; 2006 bool have_writable = blk->isWritable(); 2007 2008 // Invalidate any prefetch's from below that would strip write permissions 2009 // MemCmd::HardPFReq is only observed by upstream caches. After missing 2010 // above and in it's own cache, a new MemCmd::ReadReq is created that 2011 // downstream caches observe. 2012 if (pkt->mustCheckAbove()) { 2013 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from" 2014 " lower cache\n", pkt->getAddr(), pkt->cmdString()); 2015 pkt->setBlockCached(); 2016 return snoop_delay; 2017 } 2018 2019 if (pkt->isRead() && !invalidate) { 2020 // reading without requiring the line in a writable state 2021 assert(!needs_writable); 2022 pkt->setHasSharers(); 2023 2024 // if the requesting packet is uncacheable, retain the line in 2025 // the current state, otherwhise unset the writable flag, 2026 // which means we go from Modified to Owned (and will respond 2027 // below), remain in Owned (and will respond below), from 2028 // Exclusive to Shared, or remain in Shared 2029 if (!pkt->req->isUncacheable()) 2030 blk->status &= ~BlkWritable; 2031 } 2032 2033 if (respond) { 2034 // prevent anyone else from responding, cache as well as 2035 // memory, and also prevent any memory from even seeing the 2036 // request 2037 pkt->setCacheResponding(); 2038 if (have_writable) { 2039 // inform the cache hierarchy that this cache had the line 2040 // in the Modified state so that we avoid unnecessary 2041 // invalidations (see Packet::setResponderHadWritable) 2042 pkt->setResponderHadWritable(); 2043 2044 // in the case of an uncacheable request there is no point 2045 // in setting the responderHadWritable flag, but since the 2046 // recipient does not care there is no harm in doing so 2047 } else { 2048 // if the packet has needsWritable set we invalidate our 2049 // copy below and all other copies will be invalidates 2050 // through express snoops, and if needsWritable is not set 2051 // we already called setHasSharers above 2052 } 2053 2054 // if we are returning a writable and dirty (Modified) line, 2055 // we should be invalidating the line 2056 panic_if(!invalidate && !pkt->hasSharers(), 2057 "%s is passing a Modified line through %s to %#llx, " 2058 "but keeping the block", 2059 name(), pkt->cmdString(), pkt->getAddr()); 2060 2061 if (is_timing) { 2062 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval); 2063 } else { 2064 pkt->makeAtomicResponse(); 2065 // packets such as upgrades do not actually have any data 2066 // payload 2067 if (pkt->hasData()) 2068 pkt->setDataFromBlock(blk->data, blkSize); 2069 } 2070 } 2071 2072 if (!respond && is_timing && is_deferred) { 2073 // if it's a deferred timing snoop to which we are not 2074 // responding, then we've made a copy of both the request and 2075 // the packet, delete them here 2076 assert(pkt->needsResponse()); 2077 delete pkt->req; 2078 delete pkt; 2079 } 2080 2081 // Do this last in case it deallocates block data or something 2082 // like that 2083 if (invalidate) { 2084 invalidateBlock(blk); 2085 } 2086 2087 DPRINTF(Cache, "new state is %s\n", blk->print()); 2088 2089 return snoop_delay; 2090} 2091 2092 2093void 2094Cache::recvTimingSnoopReq(PacketPtr pkt) 2095{ 2096 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__, 2097 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 2098 2099 // Snoops shouldn't happen when bypassing caches 2100 assert(!system->bypassCaches()); 2101 2102 // no need to snoop requests that are not in range 2103 if (!inRange(pkt->getAddr())) { 2104 return; 2105 } 2106 2107 bool is_secure = pkt->isSecure(); 2108 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 2109 2110 Addr blk_addr = blockAlign(pkt->getAddr()); 2111 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 2112 2113 // Update the latency cost of the snoop so that the crossbar can 2114 // account for it. Do not overwrite what other neighbouring caches 2115 // have already done, rather take the maximum. The update is 2116 // tentative, for cases where we return before an upward snoop 2117 // happens below. 2118 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, 2119 lookupLatency * clockPeriod()); 2120 2121 // Inform request(Prefetch, CleanEvict or Writeback) from below of 2122 // MSHR hit, set setBlockCached. 2123 if (mshr && pkt->mustCheckAbove()) { 2124 DPRINTF(Cache, "Setting block cached for %s from" 2125 "lower cache on mshr hit %#x\n", 2126 pkt->cmdString(), pkt->getAddr()); 2127 pkt->setBlockCached(); 2128 return; 2129 } 2130 2131 // Let the MSHR itself track the snoop and decide whether we want 2132 // to go ahead and do the regular cache snoop 2133 if (mshr && mshr->handleSnoop(pkt, order++)) { 2134 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)." 2135 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns", 2136 mshr->print()); 2137 2138 if (mshr->getNumTargets() > numTarget) 2139 warn("allocating bonus target for snoop"); //handle later 2140 return; 2141 } 2142 2143 //We also need to check the writeback buffers and handle those 2144 WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure); 2145 if (wb_entry) { 2146 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n", 2147 pkt->getAddr(), is_secure ? "s" : "ns"); 2148 // Expect to see only Writebacks and/or CleanEvicts here, both of 2149 // which should not be generated for uncacheable data. 2150 assert(!wb_entry->isUncacheable()); 2151 // There should only be a single request responsible for generating 2152 // Writebacks/CleanEvicts. 2153 assert(wb_entry->getNumTargets() == 1); 2154 PacketPtr wb_pkt = wb_entry->getTarget()->pkt; 2155 assert(wb_pkt->isEviction()); 2156 2157 if (pkt->isEviction()) { 2158 // if the block is found in the write queue, set the BLOCK_CACHED 2159 // flag for Writeback/CleanEvict snoop. On return the snoop will 2160 // propagate the BLOCK_CACHED flag in Writeback packets and prevent 2161 // any CleanEvicts from travelling down the memory hierarchy. 2162 pkt->setBlockCached(); 2163 DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit" 2164 " %#x\n", pkt->cmdString(), pkt->getAddr()); 2165 return; 2166 } 2167 2168 // conceptually writebacks are no different to other blocks in 2169 // this cache, so the behaviour is modelled after handleSnoop, 2170 // the difference being that instead of querying the block 2171 // state to determine if it is dirty and writable, we use the 2172 // command and fields of the writeback packet 2173 bool respond = wb_pkt->cmd == MemCmd::WritebackDirty && 2174 pkt->needsResponse() && pkt->cmd != MemCmd::InvalidateReq; 2175 bool have_writable = !wb_pkt->hasSharers(); 2176 bool invalidate = pkt->isInvalidate(); 2177 2178 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) { 2179 assert(!pkt->needsWritable()); 2180 pkt->setHasSharers(); 2181 wb_pkt->setHasSharers(); 2182 } 2183 2184 if (respond) { 2185 pkt->setCacheResponding(); 2186 2187 if (have_writable) { 2188 pkt->setResponderHadWritable(); 2189 } 2190 2191 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(), 2192 false, false); 2193 } 2194 2195 if (invalidate) { 2196 // Invalidation trumps our writeback... discard here 2197 // Note: markInService will remove entry from writeback buffer. 2198 markInService(wb_entry); 2199 delete wb_pkt; 2200 } 2201 } 2202 2203 // If this was a shared writeback, there may still be 2204 // other shared copies above that require invalidation. 2205 // We could be more selective and return here if the 2206 // request is non-exclusive or if the writeback is 2207 // exclusive. 2208 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false); 2209 2210 // Override what we did when we first saw the snoop, as we now 2211 // also have the cost of the upwards snoops to account for 2212 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay + 2213 lookupLatency * clockPeriod()); 2214} 2215 2216bool 2217Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) 2218{ 2219 // Express snoop responses from master to slave, e.g., from L1 to L2 2220 cache->recvTimingSnoopResp(pkt); 2221 return true; 2222} 2223 2224Tick 2225Cache::recvAtomicSnoop(PacketPtr pkt) 2226{ 2227 // Snoops shouldn't happen when bypassing caches 2228 assert(!system->bypassCaches()); 2229 2230 // no need to snoop requests that are not in range. 2231 if (!inRange(pkt->getAddr())) { 2232 return 0; 2233 } 2234 2235 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 2236 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false); 2237 return snoop_delay + lookupLatency * clockPeriod(); 2238} 2239 2240 2241QueueEntry* 2242Cache::getNextQueueEntry() 2243{ 2244 // Check both MSHR queue and write buffer for potential requests, 2245 // note that null does not mean there is no request, it could 2246 // simply be that it is not ready 2247 MSHR *miss_mshr = mshrQueue.getNext(); 2248 WriteQueueEntry *wq_entry = writeBuffer.getNext(); 2249 2250 // If we got a write buffer request ready, first priority is a 2251 // full write buffer (but only if we have no uncacheable write 2252 // responses outstanding, possibly revisit this last part), 2253 // otherwhise we favour the miss requests 2254 if (wq_entry && 2255 ((writeBuffer.isFull() && writeBuffer.numInService() == 0) || 2256 !miss_mshr)) { 2257 // need to search MSHR queue for conflicting earlier miss. 2258 MSHR *conflict_mshr = 2259 mshrQueue.findPending(wq_entry->blkAddr, 2260 wq_entry->isSecure); 2261 2262 if (conflict_mshr && conflict_mshr->order < wq_entry->order) { 2263 // Service misses in order until conflict is cleared. 2264 return conflict_mshr; 2265 2266 // @todo Note that we ignore the ready time of the conflict here 2267 } 2268 2269 // No conflicts; issue write 2270 return wq_entry; 2271 } else if (miss_mshr) { 2272 // need to check for conflicting earlier writeback 2273 WriteQueueEntry *conflict_mshr = 2274 writeBuffer.findPending(miss_mshr->blkAddr, 2275 miss_mshr->isSecure); 2276 if (conflict_mshr) { 2277 // not sure why we don't check order here... it was in the 2278 // original code but commented out. 2279 2280 // The only way this happens is if we are 2281 // doing a write and we didn't have permissions 2282 // then subsequently saw a writeback (owned got evicted) 2283 // We need to make sure to perform the writeback first 2284 // To preserve the dirty data, then we can issue the write 2285 2286 // should we return wq_entry here instead? I.e. do we 2287 // have to flush writes in order? I don't think so... not 2288 // for Alpha anyway. Maybe for x86? 2289 return conflict_mshr; 2290 2291 // @todo Note that we ignore the ready time of the conflict here 2292 } 2293 2294 // No conflicts; issue read 2295 return miss_mshr; 2296 } 2297 2298 // fall through... no pending requests. Try a prefetch. 2299 assert(!miss_mshr && !wq_entry); 2300 if (prefetcher && mshrQueue.canPrefetch()) { 2301 // If we have a miss queue slot, we can try a prefetch 2302 PacketPtr pkt = prefetcher->getPacket(); 2303 if (pkt) { 2304 Addr pf_addr = blockAlign(pkt->getAddr()); 2305 if (!tags->findBlock(pf_addr, pkt->isSecure()) && 2306 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && 2307 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { 2308 // Update statistic on number of prefetches issued 2309 // (hwpf_mshr_misses) 2310 assert(pkt->req->masterId() < system->maxMasters()); 2311 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 2312 2313 // allocate an MSHR and return it, note 2314 // that we send the packet straight away, so do not 2315 // schedule the send 2316 return allocateMissBuffer(pkt, curTick(), false); 2317 } else { 2318 // free the request and packet 2319 delete pkt->req; 2320 delete pkt; 2321 } 2322 } 2323 } 2324 2325 return nullptr; 2326} 2327 2328bool 2329Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const 2330{ 2331 if (!forwardSnoops) 2332 return false; 2333 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and 2334 // Writeback snoops into upper level caches to check for copies of the 2335 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict 2336 // packet, the cache can inform the crossbar below of presence or absence 2337 // of the block. 2338 if (is_timing) { 2339 Packet snoop_pkt(pkt, true, false); 2340 snoop_pkt.setExpressSnoop(); 2341 // Assert that packet is either Writeback or CleanEvict and not a 2342 // prefetch request because prefetch requests need an MSHR and may 2343 // generate a snoop response. 2344 assert(pkt->isEviction()); 2345 snoop_pkt.senderState = NULL; 2346 cpuSidePort->sendTimingSnoopReq(&snoop_pkt); 2347 // Writeback/CleanEvict snoops do not generate a snoop response. 2348 assert(!(snoop_pkt.cacheResponding())); 2349 return snoop_pkt.isBlockCached(); 2350 } else { 2351 cpuSidePort->sendAtomicSnoop(pkt); 2352 return pkt->isBlockCached(); 2353 } 2354} 2355 2356Tick 2357Cache::nextQueueReadyTime() const 2358{ 2359 Tick nextReady = std::min(mshrQueue.nextReadyTime(), 2360 writeBuffer.nextReadyTime()); 2361 2362 // Don't signal prefetch ready time if no MSHRs available 2363 // Will signal once enoguh MSHRs are deallocated 2364 if (prefetcher && mshrQueue.canPrefetch()) { 2365 nextReady = std::min(nextReady, 2366 prefetcher->nextPrefetchReadyTime()); 2367 } 2368 2369 return nextReady; 2370} 2371 2372bool 2373Cache::sendMSHRQueuePacket(MSHR* mshr) 2374{ 2375 assert(mshr); 2376 2377 // use request from 1st target 2378 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 2379 2380 DPRINTF(Cache, "%s MSHR %s for addr %#llx size %d\n", __func__, 2381 tgt_pkt->cmdString(), tgt_pkt->getAddr(), 2382 tgt_pkt->getSize()); 2383 2384 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); 2385 2386 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) { 2387 // we should never have hardware prefetches to allocated 2388 // blocks 2389 assert(blk == NULL); 2390 2391 // We need to check the caches above us to verify that 2392 // they don't have a copy of this block in the dirty state 2393 // at the moment. Without this check we could get a stale 2394 // copy from memory that might get used in place of the 2395 // dirty one. 2396 Packet snoop_pkt(tgt_pkt, true, false); 2397 snoop_pkt.setExpressSnoop(); 2398 // We are sending this packet upwards, but if it hits we will 2399 // get a snoop response that we end up treating just like a 2400 // normal response, hence it needs the MSHR as its sender 2401 // state 2402 snoop_pkt.senderState = mshr; 2403 cpuSidePort->sendTimingSnoopReq(&snoop_pkt); 2404 2405 // Check to see if the prefetch was squashed by an upper cache (to 2406 // prevent us from grabbing the line) or if a Check to see if a 2407 // writeback arrived between the time the prefetch was placed in 2408 // the MSHRs and when it was selected to be sent or if the 2409 // prefetch was squashed by an upper cache. 2410 2411 // It is important to check cacheResponding before 2412 // prefetchSquashed. If another cache has committed to 2413 // responding, it will be sending a dirty response which will 2414 // arrive at the MSHR allocated for this request. Checking the 2415 // prefetchSquash first may result in the MSHR being 2416 // prematurely deallocated. 2417 if (snoop_pkt.cacheResponding()) { 2418 auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req); 2419 assert(r.second); 2420 2421 // if we are getting a snoop response with no sharers it 2422 // will be allocated as Modified 2423 bool pending_modified_resp = !snoop_pkt.hasSharers(); 2424 markInService(mshr, pending_modified_resp); 2425 2426 DPRINTF(Cache, "Upward snoop of prefetch for addr" 2427 " %#x (%s) hit\n", 2428 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns"); 2429 return false; 2430 } 2431 2432 if (snoop_pkt.isBlockCached()) { 2433 DPRINTF(Cache, "Block present, prefetch squashed by cache. " 2434 "Deallocating mshr target %#x.\n", 2435 mshr->blkAddr); 2436 2437 // Deallocate the mshr target 2438 if (mshrQueue.forceDeallocateTarget(mshr)) { 2439 // Clear block if this deallocation resulted freed an 2440 // mshr when all had previously been utilized 2441 clearBlocked(Blocked_NoMSHRs); 2442 } 2443 return false; 2444 } 2445 } 2446 2447 // either a prefetch that is not present upstream, or a normal 2448 // MSHR request, proceed to get the packet to send downstream 2449 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable()); 2450 2451 mshr->isForward = (pkt == NULL); 2452 2453 if (mshr->isForward) { 2454 // not a cache block request, but a response is expected 2455 // make copy of current packet to forward, keep current 2456 // copy for response handling 2457 pkt = new Packet(tgt_pkt, false, true); 2458 assert(!pkt->isWrite()); 2459 } 2460 2461 // play it safe and append (rather than set) the sender state, 2462 // as forwarded packets may already have existing state 2463 pkt->pushSenderState(mshr); 2464 2465 if (!memSidePort->sendTimingReq(pkt)) { 2466 // we are awaiting a retry, but we 2467 // delete the packet and will be creating a new packet 2468 // when we get the opportunity 2469 delete pkt; 2470 2471 // note that we have now masked any requestBus and 2472 // schedSendEvent (we will wait for a retry before 2473 // doing anything), and this is so even if we do not 2474 // care about this packet and might override it before 2475 // it gets retried 2476 return true; 2477 } else { 2478 // As part of the call to sendTimingReq the packet is 2479 // forwarded to all neighbouring caches (and any caches 2480 // above them) as a snoop. Thus at this point we know if 2481 // any of the neighbouring caches are responding, and if 2482 // so, we know it is dirty, and we can determine if it is 2483 // being passed as Modified, making our MSHR the ordering 2484 // point 2485 bool pending_modified_resp = !pkt->hasSharers() && 2486 pkt->cacheResponding(); 2487 markInService(mshr, pending_modified_resp); 2488 return false; 2489 } 2490} 2491 2492bool 2493Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry) 2494{ 2495 assert(wq_entry); 2496 2497 // always a single target for write queue entries 2498 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt; 2499 2500 DPRINTF(Cache, "%s write %s for addr %#llx size %d\n", __func__, 2501 tgt_pkt->cmdString(), tgt_pkt->getAddr(), 2502 tgt_pkt->getSize()); 2503 2504 PacketPtr pkt = nullptr; 2505 bool delete_pkt = false; 2506 2507 if (tgt_pkt->isEviction()) { 2508 assert(!wq_entry->isUncacheable()); 2509 // no response expected, just forward packet as it is 2510 pkt = tgt_pkt; 2511 } else { 2512 // the only thing we deal with besides eviction commands 2513 // are uncacheable writes 2514 assert(tgt_pkt->req->isUncacheable() && tgt_pkt->isWrite()); 2515 // not a cache block request, but a response is expected 2516 // make copy of current packet to forward, keep current 2517 // copy for response handling 2518 pkt = new Packet(tgt_pkt, false, true); 2519 pkt->setData(tgt_pkt->getConstPtr<uint8_t>()); 2520 delete_pkt = true; 2521 } 2522 2523 pkt->pushSenderState(wq_entry); 2524 2525 if (!memSidePort->sendTimingReq(pkt)) { 2526 if (delete_pkt) { 2527 // we are awaiting a retry, but we 2528 // delete the packet and will be creating a new packet 2529 // when we get the opportunity 2530 delete pkt; 2531 } 2532 // note that we have now masked any requestBus and 2533 // schedSendEvent (we will wait for a retry before 2534 // doing anything), and this is so even if we do not 2535 // care about this packet and might override it before 2536 // it gets retried 2537 return true; 2538 } else { 2539 markInService(wq_entry); 2540 return false; 2541 } 2542} 2543 2544void 2545Cache::serialize(CheckpointOut &cp) const 2546{ 2547 bool dirty(isDirty()); 2548 2549 if (dirty) { 2550 warn("*** The cache still contains dirty data. ***\n"); 2551 warn(" Make sure to drain the system using the correct flags.\n"); 2552 warn(" This checkpoint will not restore correctly and dirty data in " 2553 "the cache will be lost!\n"); 2554 } 2555 2556 // Since we don't checkpoint the data in the cache, any dirty data 2557 // will be lost when restoring from a checkpoint of a system that 2558 // wasn't drained properly. Flag the checkpoint as invalid if the 2559 // cache contains dirty data. 2560 bool bad_checkpoint(dirty); 2561 SERIALIZE_SCALAR(bad_checkpoint); 2562} 2563 2564void 2565Cache::unserialize(CheckpointIn &cp) 2566{ 2567 bool bad_checkpoint; 2568 UNSERIALIZE_SCALAR(bad_checkpoint); 2569 if (bad_checkpoint) { 2570 fatal("Restoring from checkpoints with dirty caches is not supported " 2571 "in the classic memory system. Please remove any caches or " 2572 " drain them properly before taking checkpoints.\n"); 2573 } 2574} 2575 2576/////////////// 2577// 2578// CpuSidePort 2579// 2580/////////////// 2581 2582AddrRangeList 2583Cache::CpuSidePort::getAddrRanges() const 2584{ 2585 return cache->getAddrRanges(); 2586} 2587 2588bool 2589Cache::CpuSidePort::recvTimingReq(PacketPtr pkt) 2590{ 2591 assert(!cache->system->bypassCaches()); 2592 2593 bool success = false; 2594 2595 // always let express snoop packets through if even if blocked 2596 if (pkt->isExpressSnoop()) { 2597 // do not change the current retry state 2598 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt); 2599 assert(bypass_success); 2600 return true; 2601 } else if (blocked || mustSendRetry) { 2602 // either already committed to send a retry, or blocked 2603 success = false; 2604 } else { 2605 // pass it on to the cache, and let the cache decide if we 2606 // have to retry or not 2607 success = cache->recvTimingReq(pkt); 2608 } 2609 2610 // remember if we have to retry 2611 mustSendRetry = !success; 2612 return success; 2613} 2614 2615Tick 2616Cache::CpuSidePort::recvAtomic(PacketPtr pkt) 2617{ 2618 return cache->recvAtomic(pkt); 2619} 2620 2621void 2622Cache::CpuSidePort::recvFunctional(PacketPtr pkt) 2623{ 2624 // functional request 2625 cache->functionalAccess(pkt, true); 2626} 2627 2628Cache:: 2629CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache, 2630 const std::string &_label) 2631 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache) 2632{ 2633} 2634 2635Cache* 2636CacheParams::create() 2637{ 2638 assert(tags); 2639 2640 return new Cache(this); 2641} 2642/////////////// 2643// 2644// MemSidePort 2645// 2646/////////////// 2647 2648bool 2649Cache::MemSidePort::recvTimingResp(PacketPtr pkt) 2650{ 2651 cache->recvTimingResp(pkt); 2652 return true; 2653} 2654 2655// Express snooping requests to memside port 2656void 2657Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) 2658{ 2659 // handle snooping requests 2660 cache->recvTimingSnoopReq(pkt); 2661} 2662 2663Tick 2664Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) 2665{ 2666 return cache->recvAtomicSnoop(pkt); 2667} 2668 2669void 2670Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) 2671{ 2672 // functional snoop (note that in contrast to atomic we don't have 2673 // a specific functionalSnoop method, as they have the same 2674 // behaviour regardless) 2675 cache->functionalAccess(pkt, false); 2676} 2677 2678void 2679Cache::CacheReqPacketQueue::sendDeferredPacket() 2680{ 2681 // sanity check 2682 assert(!waitingOnRetry); 2683 2684 // there should never be any deferred request packets in the 2685 // queue, instead we resly on the cache to provide the packets 2686 // from the MSHR queue or write queue 2687 assert(deferredPacketReadyTime() == MaxTick); 2688 2689 // check for request packets (requests & writebacks) 2690 QueueEntry* entry = cache.getNextQueueEntry(); 2691 2692 if (!entry) { 2693 // can happen if e.g. we attempt a writeback and fail, but 2694 // before the retry, the writeback is eliminated because 2695 // we snoop another cache's ReadEx. 2696 } else { 2697 // let our snoop responses go first if there are responses to 2698 // the same addresses 2699 if (checkConflictingSnoop(entry->blkAddr)) { 2700 return; 2701 } 2702 waitingOnRetry = entry->sendPacket(cache); 2703 } 2704 2705 // if we succeeded and are not waiting for a retry, schedule the 2706 // next send considering when the next queue is ready, note that 2707 // snoop responses have their own packet queue and thus schedule 2708 // their own events 2709 if (!waitingOnRetry) { 2710 schedSendEvent(cache.nextQueueReadyTime()); 2711 } 2712} 2713 2714Cache:: 2715MemSidePort::MemSidePort(const std::string &_name, Cache *_cache, 2716 const std::string &_label) 2717 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), 2718 _reqQueue(*_cache, *this, _snoopRespQueue, _label), 2719 _snoopRespQueue(*_cache, *this, _label), cache(_cache) 2720{ 2721} 2722