cache.cc revision 11334
1/* 2 * Copyright (c) 2010-2015 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2002-2005 The Regents of The University of Michigan 15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc. 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Erik Hallnor 42 * Dave Greene 43 * Nathan Binkert 44 * Steve Reinhardt 45 * Ron Dreslinski 46 * Andreas Sandberg 47 */ 48 49/** 50 * @file 51 * Cache definitions. 52 */ 53 54#include "mem/cache/cache.hh" 55 56#include "base/misc.hh" 57#include "base/types.hh" 58#include "debug/Cache.hh" 59#include "debug/CachePort.hh" 60#include "debug/CacheTags.hh" 61#include "debug/CacheVerbose.hh" 62#include "mem/cache/blk.hh" 63#include "mem/cache/mshr.hh" 64#include "mem/cache/prefetch/base.hh" 65#include "sim/sim_exit.hh" 66 67Cache::Cache(const CacheParams *p) 68 : BaseCache(p, p->system->cacheLineSize()), 69 tags(p->tags), 70 prefetcher(p->prefetcher), 71 doFastWrites(true), 72 prefetchOnAccess(p->prefetch_on_access), 73 clusivity(p->clusivity), 74 writebackClean(p->writeback_clean), 75 tempBlockWriteback(nullptr), 76 writebackTempBlockAtomicEvent(this, false, 77 EventBase::Delayed_Writeback_Pri) 78{ 79 tempBlock = new CacheBlk(); 80 tempBlock->data = new uint8_t[blkSize]; 81 82 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this, 83 "CpuSidePort"); 84 memSidePort = new MemSidePort(p->name + ".mem_side", this, 85 "MemSidePort"); 86 87 tags->setCache(this); 88 if (prefetcher) 89 prefetcher->setCache(this); 90} 91 92Cache::~Cache() 93{ 94 delete [] tempBlock->data; 95 delete tempBlock; 96 97 delete cpuSidePort; 98 delete memSidePort; 99} 100 101void 102Cache::regStats() 103{ 104 BaseCache::regStats(); 105} 106 107void 108Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) 109{ 110 assert(pkt->isRequest()); 111 112 uint64_t overwrite_val; 113 bool overwrite_mem; 114 uint64_t condition_val64; 115 uint32_t condition_val32; 116 117 int offset = tags->extractBlkOffset(pkt->getAddr()); 118 uint8_t *blk_data = blk->data + offset; 119 120 assert(sizeof(uint64_t) >= pkt->getSize()); 121 122 overwrite_mem = true; 123 // keep a copy of our possible write value, and copy what is at the 124 // memory address into the packet 125 pkt->writeData((uint8_t *)&overwrite_val); 126 pkt->setData(blk_data); 127 128 if (pkt->req->isCondSwap()) { 129 if (pkt->getSize() == sizeof(uint64_t)) { 130 condition_val64 = pkt->req->getExtraData(); 131 overwrite_mem = !std::memcmp(&condition_val64, blk_data, 132 sizeof(uint64_t)); 133 } else if (pkt->getSize() == sizeof(uint32_t)) { 134 condition_val32 = (uint32_t)pkt->req->getExtraData(); 135 overwrite_mem = !std::memcmp(&condition_val32, blk_data, 136 sizeof(uint32_t)); 137 } else 138 panic("Invalid size for conditional read/write\n"); 139 } 140 141 if (overwrite_mem) { 142 std::memcpy(blk_data, &overwrite_val, pkt->getSize()); 143 blk->status |= BlkDirty; 144 } 145} 146 147 148void 149Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk, 150 bool deferred_response, bool pending_downgrade) 151{ 152 assert(pkt->isRequest()); 153 154 assert(blk && blk->isValid()); 155 // Occasionally this is not true... if we are a lower-level cache 156 // satisfying a string of Read and ReadEx requests from 157 // upper-level caches, a Read will mark the block as shared but we 158 // can satisfy a following ReadEx anyway since we can rely on the 159 // Read requester(s) to have buffered the ReadEx snoop and to 160 // invalidate their blocks after receiving them. 161 // assert(!pkt->needsWritable() || blk->isWritable()); 162 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); 163 164 // Check RMW operations first since both isRead() and 165 // isWrite() will be true for them 166 if (pkt->cmd == MemCmd::SwapReq) { 167 cmpAndSwap(blk, pkt); 168 } else if (pkt->isWrite()) { 169 // we have the block in a writable state and can go ahead, 170 // note that the line may be also be considered writable in 171 // downstream caches along the path to memory, but always 172 // Exclusive, and never Modified 173 assert(blk->isWritable()); 174 // Write or WriteLine at the first cache with block in writable state 175 if (blk->checkWrite(pkt)) { 176 pkt->writeDataToBlock(blk->data, blkSize); 177 } 178 // Always mark the line as dirty (and thus transition to the 179 // Modified state) even if we are a failed StoreCond so we 180 // supply data to any snoops that have appended themselves to 181 // this cache before knowing the store will fail. 182 blk->status |= BlkDirty; 183 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (write)\n", 184 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 185 } else if (pkt->isRead()) { 186 if (pkt->isLLSC()) { 187 blk->trackLoadLocked(pkt); 188 } 189 190 // all read responses have a data payload 191 assert(pkt->hasRespData()); 192 pkt->setDataFromBlock(blk->data, blkSize); 193 194 // determine if this read is from a (coherent) cache, or not 195 // by looking at the command type; we could potentially add a 196 // packet attribute such as 'FromCache' to make this check a 197 // bit cleaner 198 if (pkt->cmd == MemCmd::ReadExReq || 199 pkt->cmd == MemCmd::ReadSharedReq || 200 pkt->cmd == MemCmd::ReadCleanReq || 201 pkt->cmd == MemCmd::SCUpgradeFailReq) { 202 assert(pkt->getSize() == blkSize); 203 // special handling for coherent block requests from 204 // upper-level caches 205 if (pkt->needsWritable()) { 206 // sanity check 207 assert(pkt->cmd == MemCmd::ReadExReq || 208 pkt->cmd == MemCmd::SCUpgradeFailReq); 209 210 // if we have a dirty copy, make sure the recipient 211 // keeps it marked dirty (in the modified state) 212 if (blk->isDirty()) { 213 pkt->setCacheResponding(); 214 } 215 // on ReadExReq we give up our copy unconditionally, 216 // even if this cache is mostly inclusive, we may want 217 // to revisit this 218 invalidateBlock(blk); 219 } else if (blk->isWritable() && !pending_downgrade && 220 !pkt->hasSharers() && 221 pkt->cmd != MemCmd::ReadCleanReq) { 222 // we can give the requester a writable copy on a read 223 // request if: 224 // - we have a writable copy at this level (& below) 225 // - we don't have a pending snoop from below 226 // signaling another read request 227 // - no other cache above has a copy (otherwise it 228 // would have set hasSharers flag when 229 // snooping the packet) 230 // - the read has explicitly asked for a clean 231 // copy of the line 232 if (blk->isDirty()) { 233 // special considerations if we're owner: 234 if (!deferred_response) { 235 // respond with the line in Modified state 236 // (cacheResponding set, hasSharers not set) 237 pkt->setCacheResponding(); 238 239 if (clusivity == Enums::mostly_excl) { 240 // if this cache is mostly exclusive with 241 // respect to the cache above, drop the 242 // block, no need to first unset the dirty 243 // bit 244 invalidateBlock(blk); 245 } else { 246 // if this cache is mostly inclusive, we 247 // keep the block in the Exclusive state, 248 // and pass it upwards as Modified 249 // (writable and dirty), hence we have 250 // multiple caches, all on the same path 251 // towards memory, all considering the 252 // same block writable, but only one 253 // considering it Modified 254 255 // we get away with multiple caches (on 256 // the same path to memory) considering 257 // the block writeable as we always enter 258 // the cache hierarchy through a cache, 259 // and first snoop upwards in all other 260 // branches 261 blk->status &= ~BlkDirty; 262 } 263 } else { 264 // if we're responding after our own miss, 265 // there's a window where the recipient didn't 266 // know it was getting ownership and may not 267 // have responded to snoops correctly, so we 268 // have to respond with a shared line 269 pkt->setHasSharers(); 270 } 271 } 272 } else { 273 // otherwise only respond with a shared copy 274 pkt->setHasSharers(); 275 } 276 } 277 } else { 278 // Upgrade or Invalidate 279 assert(pkt->isUpgrade() || pkt->isInvalidate()); 280 281 // for invalidations we could be looking at the temp block 282 // (for upgrades we always allocate) 283 invalidateBlock(blk); 284 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (invalidation)\n", 285 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 286 } 287} 288 289 290///////////////////////////////////////////////////// 291// 292// MSHR helper functions 293// 294///////////////////////////////////////////////////// 295 296 297void 298Cache::markInService(MSHR *mshr, bool pending_modified_resp) 299{ 300 markInServiceInternal(mshr, pending_modified_resp); 301} 302 303///////////////////////////////////////////////////// 304// 305// Access path: requests coming in from the CPU side 306// 307///////////////////////////////////////////////////// 308 309bool 310Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 311 PacketList &writebacks) 312{ 313 // sanity check 314 assert(pkt->isRequest()); 315 316 chatty_assert(!(isReadOnly && pkt->isWrite()), 317 "Should never see a write in a read-only cache %s\n", 318 name()); 319 320 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__, 321 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 322 323 if (pkt->req->isUncacheable()) { 324 DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(), 325 pkt->req->isInstFetch() ? " (ifetch)" : "", 326 pkt->getAddr()); 327 328 // flush and invalidate any existing block 329 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure())); 330 if (old_blk && old_blk->isValid()) { 331 if (old_blk->isDirty() || writebackClean) 332 writebacks.push_back(writebackBlk(old_blk)); 333 else 334 writebacks.push_back(cleanEvictBlk(old_blk)); 335 tags->invalidate(old_blk); 336 old_blk->invalidate(); 337 } 338 339 blk = NULL; 340 // lookupLatency is the latency in case the request is uncacheable. 341 lat = lookupLatency; 342 return false; 343 } 344 345 ContextID id = pkt->req->hasContextId() ? 346 pkt->req->contextId() : InvalidContextID; 347 // Here lat is the value passed as parameter to accessBlock() function 348 // that can modify its value. 349 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id); 350 351 DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(), 352 pkt->req->isInstFetch() ? " (ifetch)" : "", 353 pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns", 354 blk ? "hit " + blk->print() : "miss"); 355 356 357 if (pkt->isEviction()) { 358 // We check for presence of block in above caches before issuing 359 // Writeback or CleanEvict to write buffer. Therefore the only 360 // possible cases can be of a CleanEvict packet coming from above 361 // encountering a Writeback generated in this cache peer cache and 362 // waiting in the write buffer. Cases of upper level peer caches 363 // generating CleanEvict and Writeback or simply CleanEvict and 364 // CleanEvict almost simultaneously will be caught by snoops sent out 365 // by crossbar. 366 std::vector<MSHR *> outgoing; 367 if (writeBuffer.findMatches(pkt->getAddr(), pkt->isSecure(), 368 outgoing)) { 369 assert(outgoing.size() == 1); 370 MSHR *wb_entry = outgoing[0]; 371 assert(wb_entry->getNumTargets() == 1); 372 PacketPtr wbPkt = wb_entry->getTarget()->pkt; 373 assert(wbPkt->isWriteback()); 374 375 if (pkt->isCleanEviction()) { 376 // The CleanEvict and WritebackClean snoops into other 377 // peer caches of the same level while traversing the 378 // crossbar. If a copy of the block is found, the 379 // packet is deleted in the crossbar. Hence, none of 380 // the other upper level caches connected to this 381 // cache have the block, so we can clear the 382 // BLOCK_CACHED flag in the Writeback if set and 383 // discard the CleanEvict by returning true. 384 wbPkt->clearBlockCached(); 385 return true; 386 } else { 387 assert(pkt->cmd == MemCmd::WritebackDirty); 388 // Dirty writeback from above trumps our clean 389 // writeback... discard here 390 // Note: markInService will remove entry from writeback buffer. 391 markInService(wb_entry, false); 392 delete wbPkt; 393 } 394 } 395 } 396 397 // Writeback handling is special case. We can write the block into 398 // the cache without having a writeable copy (or any copy at all). 399 if (pkt->isWriteback()) { 400 assert(blkSize == pkt->getSize()); 401 402 // we could get a clean writeback while we are having 403 // outstanding accesses to a block, do the simple thing for 404 // now and drop the clean writeback so that we do not upset 405 // any ordering/decisions about ownership already taken 406 if (pkt->cmd == MemCmd::WritebackClean && 407 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) { 408 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, " 409 "dropping\n", pkt->getAddr()); 410 return true; 411 } 412 413 if (blk == NULL) { 414 // need to do a replacement 415 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks); 416 if (blk == NULL) { 417 // no replaceable block available: give up, fwd to next level. 418 incMissCount(pkt); 419 return false; 420 } 421 tags->insertBlock(pkt, blk); 422 423 blk->status = (BlkValid | BlkReadable); 424 if (pkt->isSecure()) { 425 blk->status |= BlkSecure; 426 } 427 } 428 // only mark the block dirty if we got a writeback command, 429 // and leave it as is for a clean writeback 430 if (pkt->cmd == MemCmd::WritebackDirty) { 431 blk->status |= BlkDirty; 432 } 433 // if the packet does not have sharers, it is passing 434 // writable, and we got the writeback in Modified or Exclusive 435 // state, if not we are in the Owned or Shared state 436 if (!pkt->hasSharers()) { 437 blk->status |= BlkWritable; 438 } 439 // nothing else to do; writeback doesn't expect response 440 assert(!pkt->needsResponse()); 441 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize); 442 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 443 incHitCount(pkt); 444 return true; 445 } else if (pkt->cmd == MemCmd::CleanEvict) { 446 if (blk != NULL) { 447 // Found the block in the tags, need to stop CleanEvict from 448 // propagating further down the hierarchy. Returning true will 449 // treat the CleanEvict like a satisfied write request and delete 450 // it. 451 return true; 452 } 453 // We didn't find the block here, propagate the CleanEvict further 454 // down the memory hierarchy. Returning false will treat the CleanEvict 455 // like a Writeback which could not find a replaceable block so has to 456 // go to next level. 457 return false; 458 } else if ((blk != NULL) && 459 (pkt->needsWritable() ? blk->isWritable() : blk->isReadable())) { 460 // OK to satisfy access 461 incHitCount(pkt); 462 satisfyCpuSideRequest(pkt, blk); 463 return true; 464 } 465 466 // Can't satisfy access normally... either no block (blk == NULL) 467 // or have block but need writable 468 469 incMissCount(pkt); 470 471 if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) { 472 // complete miss on store conditional... just give up now 473 pkt->req->setExtraData(0); 474 return true; 475 } 476 477 return false; 478} 479 480void 481Cache::doWritebacks(PacketList& writebacks, Tick forward_time) 482{ 483 while (!writebacks.empty()) { 484 PacketPtr wbPkt = writebacks.front(); 485 // We use forwardLatency here because we are copying writebacks to 486 // write buffer. Call isCachedAbove for both Writebacks and 487 // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag 488 // in Writebacks and discard CleanEvicts. 489 if (isCachedAbove(wbPkt)) { 490 if (wbPkt->cmd == MemCmd::CleanEvict) { 491 // Delete CleanEvict because cached copies exist above. The 492 // packet destructor will delete the request object because 493 // this is a non-snoop request packet which does not require a 494 // response. 495 delete wbPkt; 496 } else if (wbPkt->cmd == MemCmd::WritebackClean) { 497 // clean writeback, do not send since the block is 498 // still cached above 499 assert(writebackClean); 500 delete wbPkt; 501 } else { 502 assert(wbPkt->cmd == MemCmd::WritebackDirty); 503 // Set BLOCK_CACHED flag in Writeback and send below, so that 504 // the Writeback does not reset the bit corresponding to this 505 // address in the snoop filter below. 506 wbPkt->setBlockCached(); 507 allocateWriteBuffer(wbPkt, forward_time); 508 } 509 } else { 510 // If the block is not cached above, send packet below. Both 511 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 512 // reset the bit corresponding to this address in the snoop filter 513 // below. 514 allocateWriteBuffer(wbPkt, forward_time); 515 } 516 writebacks.pop_front(); 517 } 518} 519 520void 521Cache::doWritebacksAtomic(PacketList& writebacks) 522{ 523 while (!writebacks.empty()) { 524 PacketPtr wbPkt = writebacks.front(); 525 // Call isCachedAbove for both Writebacks and CleanEvicts. If 526 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks 527 // and discard CleanEvicts. 528 if (isCachedAbove(wbPkt, false)) { 529 if (wbPkt->cmd == MemCmd::WritebackDirty) { 530 // Set BLOCK_CACHED flag in Writeback and send below, 531 // so that the Writeback does not reset the bit 532 // corresponding to this address in the snoop filter 533 // below. We can discard CleanEvicts because cached 534 // copies exist above. Atomic mode isCachedAbove 535 // modifies packet to set BLOCK_CACHED flag 536 memSidePort->sendAtomic(wbPkt); 537 } 538 } else { 539 // If the block is not cached above, send packet below. Both 540 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 541 // reset the bit corresponding to this address in the snoop filter 542 // below. 543 memSidePort->sendAtomic(wbPkt); 544 } 545 writebacks.pop_front(); 546 // In case of CleanEvicts, the packet destructor will delete the 547 // request object because this is a non-snoop request packet which 548 // does not require a response. 549 delete wbPkt; 550 } 551} 552 553 554void 555Cache::recvTimingSnoopResp(PacketPtr pkt) 556{ 557 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, 558 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 559 560 assert(pkt->isResponse()); 561 assert(!system->bypassCaches()); 562 563 // determine if the response is from a snoop request we created 564 // (in which case it should be in the outstandingSnoop), or if we 565 // merely forwarded someone else's snoop request 566 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == 567 outstandingSnoop.end(); 568 569 if (!forwardAsSnoop) { 570 // the packet came from this cache, so sink it here and do not 571 // forward it 572 assert(pkt->cmd == MemCmd::HardPFResp); 573 574 outstandingSnoop.erase(pkt->req); 575 576 DPRINTF(Cache, "Got prefetch response from above for addr " 577 "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 578 recvTimingResp(pkt); 579 return; 580 } 581 582 // forwardLatency is set here because there is a response from an 583 // upper level cache. 584 // To pay the delay that occurs if the packet comes from the bus, 585 // we charge also headerDelay. 586 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay; 587 // Reset the timing of the packet. 588 pkt->headerDelay = pkt->payloadDelay = 0; 589 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time); 590} 591 592void 593Cache::promoteWholeLineWrites(PacketPtr pkt) 594{ 595 // Cache line clearing instructions 596 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) && 597 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) { 598 pkt->cmd = MemCmd::WriteLineReq; 599 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n"); 600 } 601} 602 603bool 604Cache::recvTimingReq(PacketPtr pkt) 605{ 606 DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print()); 607 608 assert(pkt->isRequest()); 609 610 // Just forward the packet if caches are disabled. 611 if (system->bypassCaches()) { 612 // @todo This should really enqueue the packet rather 613 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt); 614 assert(success); 615 return true; 616 } 617 618 promoteWholeLineWrites(pkt); 619 620 if (pkt->cacheResponding()) { 621 // a cache above us (but not where the packet came from) is 622 // responding to the request, in other words it has the line 623 // in Modified or Owned state 624 DPRINTF(Cache, "Cache above responding to %#llx (%s): " 625 "not responding\n", 626 pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 627 628 // if the packet needs the block to be writable, and the cache 629 // that has promised to respond (setting the cache responding 630 // flag) is not providing writable (it is in Owned rather than 631 // the Modified state), we know that there may be other Shared 632 // copies in the system; go out and invalidate them all 633 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 634 635 // an upstream cache that had the line in Owned state 636 // (dirty, but not writable), is responding and thus 637 // transferring the dirty line from one branch of the 638 // cache hierarchy to another 639 640 // send out an express snoop and invalidate all other 641 // copies (snooping a packet that needs writable is the 642 // same as an invalidation), thus turning the Owned line 643 // into a Modified line, note that we don't invalidate the 644 // block in the current cache or any other cache on the 645 // path to memory 646 647 // create a downstream express snoop with cleared packet 648 // flags, there is no need to allocate any data as the 649 // packet is merely used to co-ordinate state transitions 650 Packet *snoop_pkt = new Packet(pkt, true, false); 651 652 // also reset the bus time that the original packet has 653 // not yet paid for 654 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0; 655 656 // make this an instantaneous express snoop, and let the 657 // other caches in the system know that the another cache 658 // is responding, because we have found the authorative 659 // copy (Modified or Owned) that will supply the right 660 // data 661 snoop_pkt->setExpressSnoop(); 662 snoop_pkt->setCacheResponding(); 663 664 // this express snoop travels towards the memory, and at 665 // every crossbar it is snooped upwards thus reaching 666 // every cache in the system 667 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt); 668 // express snoops always succeed 669 assert(success); 670 671 // main memory will delete the snoop packet 672 673 // queue for deletion, as opposed to immediate deletion, as 674 // the sending cache is still relying on the packet 675 pendingDelete.reset(pkt); 676 677 // no need to take any further action in this particular cache 678 // as an upstram cache has already committed to responding, 679 // and we have already sent out any express snoops in the 680 // section above to ensure all other copies in the system are 681 // invalidated 682 return true; 683 } 684 685 // anything that is merely forwarded pays for the forward latency and 686 // the delay provided by the crossbar 687 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 688 689 // We use lookupLatency here because it is used to specify the latency 690 // to access. 691 Cycles lat = lookupLatency; 692 CacheBlk *blk = NULL; 693 bool satisfied = false; 694 { 695 PacketList writebacks; 696 // Note that lat is passed by reference here. The function 697 // access() calls accessBlock() which can modify lat value. 698 satisfied = access(pkt, blk, lat, writebacks); 699 700 // copy writebacks to write buffer here to ensure they logically 701 // proceed anything happening below 702 doWritebacks(writebacks, forward_time); 703 } 704 705 // Here we charge the headerDelay that takes into account the latencies 706 // of the bus, if the packet comes from it. 707 // The latency charged it is just lat that is the value of lookupLatency 708 // modified by access() function, or if not just lookupLatency. 709 // In case of a hit we are neglecting response latency. 710 // In case of a miss we are neglecting forward latency. 711 Tick request_time = clockEdge(lat) + pkt->headerDelay; 712 // Here we reset the timing of the packet. 713 pkt->headerDelay = pkt->payloadDelay = 0; 714 715 // track time of availability of next prefetch, if any 716 Tick next_pf_time = MaxTick; 717 718 bool needsResponse = pkt->needsResponse(); 719 720 if (satisfied) { 721 // should never be satisfying an uncacheable access as we 722 // flush and invalidate any existing block as part of the 723 // lookup 724 assert(!pkt->req->isUncacheable()); 725 726 // hit (for all other request types) 727 728 if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) { 729 if (blk) 730 blk->status &= ~BlkHWPrefetched; 731 732 // Don't notify on SWPrefetch 733 if (!pkt->cmd.isSWPrefetch()) 734 next_pf_time = prefetcher->notify(pkt); 735 } 736 737 if (needsResponse) { 738 pkt->makeTimingResponse(); 739 // @todo: Make someone pay for this 740 pkt->headerDelay = pkt->payloadDelay = 0; 741 742 // In this case we are considering request_time that takes 743 // into account the delay of the xbar, if any, and just 744 // lat, neglecting responseLatency, modelling hit latency 745 // just as lookupLatency or or the value of lat overriden 746 // by access(), that calls accessBlock() function. 747 cpuSidePort->schedTimingResp(pkt, request_time, true); 748 } else { 749 DPRINTF(Cache, "%s satisfied %s addr %#llx, no response needed\n", 750 __func__, pkt->cmdString(), pkt->getAddr(), 751 pkt->getSize()); 752 753 // queue the packet for deletion, as the sending cache is 754 // still relying on it; if the block is found in access(), 755 // CleanEvict and Writeback messages will be deleted 756 // here as well 757 pendingDelete.reset(pkt); 758 } 759 } else { 760 // miss 761 762 Addr blk_addr = blockAlign(pkt->getAddr()); 763 764 // ignore any existing MSHR if we are dealing with an 765 // uncacheable request 766 MSHR *mshr = pkt->req->isUncacheable() ? nullptr : 767 mshrQueue.findMatch(blk_addr, pkt->isSecure()); 768 769 // Software prefetch handling: 770 // To keep the core from waiting on data it won't look at 771 // anyway, send back a response with dummy data. Miss handling 772 // will continue asynchronously. Unfortunately, the core will 773 // insist upon freeing original Packet/Request, so we have to 774 // create a new pair with a different lifecycle. Note that this 775 // processing happens before any MSHR munging on the behalf of 776 // this request because this new Request will be the one stored 777 // into the MSHRs, not the original. 778 if (pkt->cmd.isSWPrefetch()) { 779 assert(needsResponse); 780 assert(pkt->req->hasPaddr()); 781 assert(!pkt->req->isUncacheable()); 782 783 // There's no reason to add a prefetch as an additional target 784 // to an existing MSHR. If an outstanding request is already 785 // in progress, there is nothing for the prefetch to do. 786 // If this is the case, we don't even create a request at all. 787 PacketPtr pf = nullptr; 788 789 if (!mshr) { 790 // copy the request and create a new SoftPFReq packet 791 RequestPtr req = new Request(pkt->req->getPaddr(), 792 pkt->req->getSize(), 793 pkt->req->getFlags(), 794 pkt->req->masterId()); 795 pf = new Packet(req, pkt->cmd); 796 pf->allocate(); 797 assert(pf->getAddr() == pkt->getAddr()); 798 assert(pf->getSize() == pkt->getSize()); 799 } 800 801 pkt->makeTimingResponse(); 802 803 // request_time is used here, taking into account lat and the delay 804 // charged if the packet comes from the xbar. 805 cpuSidePort->schedTimingResp(pkt, request_time, true); 806 807 // If an outstanding request is in progress (we found an 808 // MSHR) this is set to null 809 pkt = pf; 810 } 811 812 if (mshr) { 813 /// MSHR hit 814 /// @note writebacks will be checked in getNextMSHR() 815 /// for any conflicting requests to the same block 816 817 //@todo remove hw_pf here 818 819 // Coalesce unless it was a software prefetch (see above). 820 if (pkt) { 821 assert(!pkt->isWriteback()); 822 // CleanEvicts corresponding to blocks which have 823 // outstanding requests in MSHRs are simply sunk here 824 if (pkt->cmd == MemCmd::CleanEvict) { 825 pendingDelete.reset(pkt); 826 } else { 827 DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n", 828 __func__, pkt->cmdString(), pkt->getAddr(), 829 pkt->getSize()); 830 831 assert(pkt->req->masterId() < system->maxMasters()); 832 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 833 // We use forward_time here because it is the same 834 // considering new targets. We have multiple 835 // requests for the same address here. It 836 // specifies the latency to allocate an internal 837 // buffer and to schedule an event to the queued 838 // port and also takes into account the additional 839 // delay of the xbar. 840 mshr->allocateTarget(pkt, forward_time, order++, 841 allocOnFill(pkt->cmd)); 842 if (mshr->getNumTargets() == numTarget) { 843 noTargetMSHR = mshr; 844 setBlocked(Blocked_NoTargets); 845 // need to be careful with this... if this mshr isn't 846 // ready yet (i.e. time > curTick()), we don't want to 847 // move it ahead of mshrs that are ready 848 // mshrQueue.moveToFront(mshr); 849 } 850 } 851 // We should call the prefetcher reguardless if the request is 852 // satisfied or not, reguardless if the request is in the MSHR or 853 // not. The request could be a ReadReq hit, but still not 854 // satisfied (potentially because of a prior write to the same 855 // cache line. So, even when not satisfied, tehre is an MSHR 856 // already allocated for this, we need to let the prefetcher know 857 // about the request 858 if (prefetcher) { 859 // Don't notify on SWPrefetch 860 if (!pkt->cmd.isSWPrefetch()) 861 next_pf_time = prefetcher->notify(pkt); 862 } 863 } 864 } else { 865 // no MSHR 866 assert(pkt->req->masterId() < system->maxMasters()); 867 if (pkt->req->isUncacheable()) { 868 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++; 869 } else { 870 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 871 } 872 873 if (pkt->isEviction() || 874 (pkt->req->isUncacheable() && pkt->isWrite())) { 875 // We use forward_time here because there is an 876 // uncached memory write, forwarded to WriteBuffer. 877 allocateWriteBuffer(pkt, forward_time); 878 } else { 879 if (blk && blk->isValid()) { 880 // should have flushed and have no valid block 881 assert(!pkt->req->isUncacheable()); 882 883 // If we have a write miss to a valid block, we 884 // need to mark the block non-readable. Otherwise 885 // if we allow reads while there's an outstanding 886 // write miss, the read could return stale data 887 // out of the cache block... a more aggressive 888 // system could detect the overlap (if any) and 889 // forward data out of the MSHRs, but we don't do 890 // that yet. Note that we do need to leave the 891 // block valid so that it stays in the cache, in 892 // case we get an upgrade response (and hence no 893 // new data) when the write miss completes. 894 // As long as CPUs do proper store/load forwarding 895 // internally, and have a sufficiently weak memory 896 // model, this is probably unnecessary, but at some 897 // point it must have seemed like we needed it... 898 assert(pkt->needsWritable()); 899 assert(!blk->isWritable()); 900 blk->status &= ~BlkReadable; 901 } 902 // Here we are using forward_time, modelling the latency of 903 // a miss (outbound) just as forwardLatency, neglecting the 904 // lookupLatency component. 905 allocateMissBuffer(pkt, forward_time); 906 } 907 908 if (prefetcher) { 909 // Don't notify on SWPrefetch 910 if (!pkt->cmd.isSWPrefetch()) 911 next_pf_time = prefetcher->notify(pkt); 912 } 913 } 914 } 915 916 if (next_pf_time != MaxTick) 917 schedMemSideSendEvent(next_pf_time); 918 919 return true; 920} 921 922 923// See comment in cache.hh. 924PacketPtr 925Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk, 926 bool needsWritable) const 927{ 928 bool blkValid = blk && blk->isValid(); 929 930 if (cpu_pkt->req->isUncacheable()) { 931 // note that at the point we see the uncacheable request we 932 // flush any block, but there could be an outstanding MSHR, 933 // and the cache could have filled again before we actually 934 // send out the forwarded uncacheable request (blk could thus 935 // be non-null) 936 return NULL; 937 } 938 939 if (!blkValid && 940 (cpu_pkt->isUpgrade() || 941 cpu_pkt->isEviction())) { 942 // Writebacks that weren't allocated in access() and upgrades 943 // from upper-level caches that missed completely just go 944 // through. 945 return NULL; 946 } 947 948 assert(cpu_pkt->needsResponse()); 949 950 MemCmd cmd; 951 // @TODO make useUpgrades a parameter. 952 // Note that ownership protocols require upgrade, otherwise a 953 // write miss on a shared owned block will generate a ReadExcl, 954 // which will clobber the owned copy. 955 const bool useUpgrades = true; 956 if (blkValid && useUpgrades) { 957 // only reason to be here is that blk is read only and we need 958 // it to be writable 959 assert(needsWritable); 960 assert(!blk->isWritable()); 961 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq; 962 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq || 963 cpu_pkt->cmd == MemCmd::StoreCondFailReq) { 964 // Even though this SC will fail, we still need to send out the 965 // request and get the data to supply it to other snoopers in the case 966 // where the determination the StoreCond fails is delayed due to 967 // all caches not being on the same local bus. 968 cmd = MemCmd::SCUpgradeFailReq; 969 } else if (cpu_pkt->cmd == MemCmd::WriteLineReq) { 970 // forward as invalidate to all other caches, this gives us 971 // the line in Exclusive state, and invalidates all other 972 // copies 973 cmd = MemCmd::InvalidateReq; 974 } else { 975 // block is invalid 976 cmd = needsWritable ? MemCmd::ReadExReq : 977 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq); 978 } 979 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize); 980 981 // if there are upstream caches that have already marked the 982 // packet as having sharers (not passing writable), pass that info 983 // downstream 984 if (cpu_pkt->hasSharers()) { 985 // note that cpu_pkt may have spent a considerable time in the 986 // MSHR queue and that the information could possibly be out 987 // of date, however, there is no harm in conservatively 988 // assuming the block has sharers 989 pkt->setHasSharers(); 990 DPRINTF(Cache, "%s passing hasSharers from %s to %s addr %#llx " 991 "size %d\n", 992 __func__, cpu_pkt->cmdString(), pkt->cmdString(), 993 pkt->getAddr(), pkt->getSize()); 994 } 995 996 // the packet should be block aligned 997 assert(pkt->getAddr() == blockAlign(pkt->getAddr())); 998 999 pkt->allocate(); 1000 DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n", 1001 __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(), 1002 pkt->getSize()); 1003 return pkt; 1004} 1005 1006 1007Tick 1008Cache::recvAtomic(PacketPtr pkt) 1009{ 1010 // We are in atomic mode so we pay just for lookupLatency here. 1011 Cycles lat = lookupLatency; 1012 1013 // Forward the request if the system is in cache bypass mode. 1014 if (system->bypassCaches()) 1015 return ticksToCycles(memSidePort->sendAtomic(pkt)); 1016 1017 promoteWholeLineWrites(pkt); 1018 1019 // follow the same flow as in recvTimingReq, and check if a cache 1020 // above us is responding 1021 if (pkt->cacheResponding()) { 1022 DPRINTF(Cache, "Cache above responding to %#llx (%s): " 1023 "not responding\n", 1024 pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 1025 1026 // if a cache is responding, and it had the line in Owned 1027 // rather than Modified state, we need to invalidate any 1028 // copies that are not on the same path to memory 1029 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 1030 lat += ticksToCycles(memSidePort->sendAtomic(pkt)); 1031 1032 return lat * clockPeriod(); 1033 } 1034 1035 // should assert here that there are no outstanding MSHRs or 1036 // writebacks... that would mean that someone used an atomic 1037 // access in timing mode 1038 1039 CacheBlk *blk = NULL; 1040 PacketList writebacks; 1041 bool satisfied = access(pkt, blk, lat, writebacks); 1042 1043 // handle writebacks resulting from the access here to ensure they 1044 // logically proceed anything happening below 1045 doWritebacksAtomic(writebacks); 1046 1047 if (!satisfied) { 1048 // MISS 1049 1050 PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsWritable()); 1051 1052 bool is_forward = (bus_pkt == NULL); 1053 1054 if (is_forward) { 1055 // just forwarding the same request to the next level 1056 // no local cache operation involved 1057 bus_pkt = pkt; 1058 } 1059 1060 DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n", 1061 bus_pkt->cmdString(), bus_pkt->getAddr(), 1062 bus_pkt->isSecure() ? "s" : "ns"); 1063 1064#if TRACING_ON 1065 CacheBlk::State old_state = blk ? blk->status : 0; 1066#endif 1067 1068 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt)); 1069 1070 // We are now dealing with the response handling 1071 DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n", 1072 bus_pkt->cmdString(), bus_pkt->getAddr(), 1073 bus_pkt->isSecure() ? "s" : "ns", 1074 old_state); 1075 1076 // If packet was a forward, the response (if any) is already 1077 // in place in the bus_pkt == pkt structure, so we don't need 1078 // to do anything. Otherwise, use the separate bus_pkt to 1079 // generate response to pkt and then delete it. 1080 if (!is_forward) { 1081 if (pkt->needsResponse()) { 1082 assert(bus_pkt->isResponse()); 1083 if (bus_pkt->isError()) { 1084 pkt->makeAtomicResponse(); 1085 pkt->copyError(bus_pkt); 1086 } else if (pkt->cmd == MemCmd::InvalidateReq) { 1087 if (blk) { 1088 // invalidate response to a cache that received 1089 // an invalidate request 1090 satisfyCpuSideRequest(pkt, blk); 1091 } 1092 } else if (pkt->cmd == MemCmd::WriteLineReq) { 1093 // note the use of pkt, not bus_pkt here. 1094 1095 // write-line request to the cache that promoted 1096 // the write to a whole line 1097 blk = handleFill(pkt, blk, writebacks, 1098 allocOnFill(pkt->cmd)); 1099 satisfyCpuSideRequest(pkt, blk); 1100 } else if (bus_pkt->isRead() || 1101 bus_pkt->cmd == MemCmd::UpgradeResp) { 1102 // we're updating cache state to allow us to 1103 // satisfy the upstream request from the cache 1104 blk = handleFill(bus_pkt, blk, writebacks, 1105 allocOnFill(pkt->cmd)); 1106 satisfyCpuSideRequest(pkt, blk); 1107 } else { 1108 // we're satisfying the upstream request without 1109 // modifying cache state, e.g., a write-through 1110 pkt->makeAtomicResponse(); 1111 } 1112 } 1113 delete bus_pkt; 1114 } 1115 } 1116 1117 // Note that we don't invoke the prefetcher at all in atomic mode. 1118 // It's not clear how to do it properly, particularly for 1119 // prefetchers that aggressively generate prefetch candidates and 1120 // rely on bandwidth contention to throttle them; these will tend 1121 // to pollute the cache in atomic mode since there is no bandwidth 1122 // contention. If we ever do want to enable prefetching in atomic 1123 // mode, though, this is the place to do it... see timingAccess() 1124 // for an example (though we'd want to issue the prefetch(es) 1125 // immediately rather than calling requestMemSideBus() as we do 1126 // there). 1127 1128 // do any writebacks resulting from the response handling 1129 doWritebacksAtomic(writebacks); 1130 1131 // if we used temp block, check to see if its valid and if so 1132 // clear it out, but only do so after the call to recvAtomic is 1133 // finished so that any downstream observers (such as a snoop 1134 // filter), first see the fill, and only then see the eviction 1135 if (blk == tempBlock && tempBlock->isValid()) { 1136 // the atomic CPU calls recvAtomic for fetch and load/store 1137 // sequentuially, and we may already have a tempBlock 1138 // writeback from the fetch that we have not yet sent 1139 if (tempBlockWriteback) { 1140 // if that is the case, write the prevoius one back, and 1141 // do not schedule any new event 1142 writebackTempBlockAtomic(); 1143 } else { 1144 // the writeback/clean eviction happens after the call to 1145 // recvAtomic has finished (but before any successive 1146 // calls), so that the response handling from the fill is 1147 // allowed to happen first 1148 schedule(writebackTempBlockAtomicEvent, curTick()); 1149 } 1150 1151 tempBlockWriteback = (blk->isDirty() || writebackClean) ? 1152 writebackBlk(blk) : cleanEvictBlk(blk); 1153 blk->invalidate(); 1154 } 1155 1156 if (pkt->needsResponse()) { 1157 pkt->makeAtomicResponse(); 1158 } 1159 1160 return lat * clockPeriod(); 1161} 1162 1163 1164void 1165Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide) 1166{ 1167 if (system->bypassCaches()) { 1168 // Packets from the memory side are snoop request and 1169 // shouldn't happen in bypass mode. 1170 assert(fromCpuSide); 1171 1172 // The cache should be flushed if we are in cache bypass mode, 1173 // so we don't need to check if we need to update anything. 1174 memSidePort->sendFunctional(pkt); 1175 return; 1176 } 1177 1178 Addr blk_addr = blockAlign(pkt->getAddr()); 1179 bool is_secure = pkt->isSecure(); 1180 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 1181 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 1182 1183 pkt->pushLabel(name()); 1184 1185 CacheBlkPrintWrapper cbpw(blk); 1186 1187 // Note that just because an L2/L3 has valid data doesn't mean an 1188 // L1 doesn't have a more up-to-date modified copy that still 1189 // needs to be found. As a result we always update the request if 1190 // we have it, but only declare it satisfied if we are the owner. 1191 1192 // see if we have data at all (owned or otherwise) 1193 bool have_data = blk && blk->isValid() 1194 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize, 1195 blk->data); 1196 1197 // data we have is dirty if marked as such or if we have an 1198 // in-service MSHR that is pending a modified line 1199 bool have_dirty = 1200 have_data && (blk->isDirty() || 1201 (mshr && mshr->inService && mshr->isPendingModified())); 1202 1203 bool done = have_dirty 1204 || cpuSidePort->checkFunctional(pkt) 1205 || mshrQueue.checkFunctional(pkt, blk_addr) 1206 || writeBuffer.checkFunctional(pkt, blk_addr) 1207 || memSidePort->checkFunctional(pkt); 1208 1209 DPRINTF(CacheVerbose, "functional %s %#llx (%s) %s%s%s\n", 1210 pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns", 1211 (blk && blk->isValid()) ? "valid " : "", 1212 have_data ? "data " : "", done ? "done " : ""); 1213 1214 // We're leaving the cache, so pop cache->name() label 1215 pkt->popLabel(); 1216 1217 if (done) { 1218 pkt->makeResponse(); 1219 } else { 1220 // if it came as a request from the CPU side then make sure it 1221 // continues towards the memory side 1222 if (fromCpuSide) { 1223 memSidePort->sendFunctional(pkt); 1224 } else if (forwardSnoops && cpuSidePort->isSnooping()) { 1225 // if it came from the memory side, it must be a snoop request 1226 // and we should only forward it if we are forwarding snoops 1227 cpuSidePort->sendFunctionalSnoop(pkt); 1228 } 1229 } 1230} 1231 1232 1233///////////////////////////////////////////////////// 1234// 1235// Response handling: responses from the memory side 1236// 1237///////////////////////////////////////////////////// 1238 1239 1240void 1241Cache::recvTimingResp(PacketPtr pkt) 1242{ 1243 assert(pkt->isResponse()); 1244 1245 // all header delay should be paid for by the crossbar, unless 1246 // this is a prefetch response from above 1247 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp, 1248 "%s saw a non-zero packet delay\n", name()); 1249 1250 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState); 1251 bool is_error = pkt->isError(); 1252 1253 assert(mshr); 1254 1255 if (is_error) { 1256 DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), " 1257 "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns", 1258 pkt->cmdString()); 1259 } 1260 1261 DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n", 1262 pkt->cmdString(), pkt->getAddr(), pkt->getSize(), 1263 pkt->isSecure() ? "s" : "ns"); 1264 1265 MSHRQueue *mq = mshr->queue; 1266 bool wasFull = mq->isFull(); 1267 1268 if (mshr == noTargetMSHR) { 1269 // we always clear at least one target 1270 clearBlocked(Blocked_NoTargets); 1271 noTargetMSHR = NULL; 1272 } 1273 1274 // Initial target is used just for stats 1275 MSHR::Target *initial_tgt = mshr->getTarget(); 1276 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); 1277 Tick miss_latency = curTick() - initial_tgt->recvTime; 1278 PacketList writebacks; 1279 // We need forward_time here because we have a call of 1280 // allocateWriteBuffer() that need this parameter to specify the 1281 // time to request the bus. In this case we use forward latency 1282 // because there is a writeback. We pay also here for headerDelay 1283 // that is charged of bus latencies if the packet comes from the 1284 // bus. 1285 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 1286 1287 if (pkt->req->isUncacheable()) { 1288 assert(pkt->req->masterId() < system->maxMasters()); 1289 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += 1290 miss_latency; 1291 } else { 1292 assert(pkt->req->masterId() < system->maxMasters()); 1293 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += 1294 miss_latency; 1295 } 1296 1297 // upgrade deferred targets if the response has no sharers, and is 1298 // thus passing writable 1299 if (!pkt->hasSharers()) { 1300 mshr->promoteWritable(); 1301 } 1302 1303 bool is_fill = !mshr->isForward && 1304 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp); 1305 1306 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 1307 1308 if (is_fill && !is_error) { 1309 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", 1310 pkt->getAddr()); 1311 1312 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill); 1313 assert(blk != NULL); 1314 } 1315 1316 // allow invalidation responses originating from write-line 1317 // requests to be discarded 1318 bool is_invalidate = pkt->isInvalidate(); 1319 1320 // First offset for critical word first calculations 1321 int initial_offset = initial_tgt->pkt->getOffset(blkSize); 1322 1323 while (mshr->hasTargets()) { 1324 MSHR::Target *target = mshr->getTarget(); 1325 Packet *tgt_pkt = target->pkt; 1326 1327 switch (target->source) { 1328 case MSHR::Target::FromCPU: 1329 Tick completion_time; 1330 // Here we charge on completion_time the delay of the xbar if the 1331 // packet comes from it, charged on headerDelay. 1332 completion_time = pkt->headerDelay; 1333 1334 // Software prefetch handling for cache closest to core 1335 if (tgt_pkt->cmd.isSWPrefetch()) { 1336 // a software prefetch would have already been ack'd immediately 1337 // with dummy data so the core would be able to retire it. 1338 // this request completes right here, so we deallocate it. 1339 delete tgt_pkt->req; 1340 delete tgt_pkt; 1341 break; // skip response 1342 } 1343 1344 // unlike the other packet flows, where data is found in other 1345 // caches or memory and brought back, write-line requests always 1346 // have the data right away, so the above check for "is fill?" 1347 // cannot actually be determined until examining the stored MSHR 1348 // state. We "catch up" with that logic here, which is duplicated 1349 // from above. 1350 if (tgt_pkt->cmd == MemCmd::WriteLineReq) { 1351 assert(!is_error); 1352 // we got the block in a writable state, so promote 1353 // any deferred targets if possible 1354 mshr->promoteWritable(); 1355 // NB: we use the original packet here and not the response! 1356 blk = handleFill(tgt_pkt, blk, writebacks, mshr->allocOnFill); 1357 assert(blk != NULL); 1358 1359 // treat as a fill, and discard the invalidation 1360 // response 1361 is_fill = true; 1362 is_invalidate = false; 1363 } 1364 1365 if (is_fill) { 1366 satisfyCpuSideRequest(tgt_pkt, blk, 1367 true, mshr->hasPostDowngrade()); 1368 1369 // How many bytes past the first request is this one 1370 int transfer_offset = 1371 tgt_pkt->getOffset(blkSize) - initial_offset; 1372 if (transfer_offset < 0) { 1373 transfer_offset += blkSize; 1374 } 1375 1376 // If not critical word (offset) return payloadDelay. 1377 // responseLatency is the latency of the return path 1378 // from lower level caches/memory to an upper level cache or 1379 // the core. 1380 completion_time += clockEdge(responseLatency) + 1381 (transfer_offset ? pkt->payloadDelay : 0); 1382 1383 assert(!tgt_pkt->req->isUncacheable()); 1384 1385 assert(tgt_pkt->req->masterId() < system->maxMasters()); 1386 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] += 1387 completion_time - target->recvTime; 1388 } else if (pkt->cmd == MemCmd::UpgradeFailResp) { 1389 // failed StoreCond upgrade 1390 assert(tgt_pkt->cmd == MemCmd::StoreCondReq || 1391 tgt_pkt->cmd == MemCmd::StoreCondFailReq || 1392 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq); 1393 // responseLatency is the latency of the return path 1394 // from lower level caches/memory to an upper level cache or 1395 // the core. 1396 completion_time += clockEdge(responseLatency) + 1397 pkt->payloadDelay; 1398 tgt_pkt->req->setExtraData(0); 1399 } else { 1400 // not a cache fill, just forwarding response 1401 // responseLatency is the latency of the return path 1402 // from lower level cahces/memory to the core. 1403 completion_time += clockEdge(responseLatency) + 1404 pkt->payloadDelay; 1405 if (pkt->isRead() && !is_error) { 1406 // sanity check 1407 assert(pkt->getAddr() == tgt_pkt->getAddr()); 1408 assert(pkt->getSize() >= tgt_pkt->getSize()); 1409 1410 tgt_pkt->setData(pkt->getConstPtr<uint8_t>()); 1411 } 1412 } 1413 tgt_pkt->makeTimingResponse(); 1414 // if this packet is an error copy that to the new packet 1415 if (is_error) 1416 tgt_pkt->copyError(pkt); 1417 if (tgt_pkt->cmd == MemCmd::ReadResp && 1418 (is_invalidate || mshr->hasPostInvalidate())) { 1419 // If intermediate cache got ReadRespWithInvalidate, 1420 // propagate that. Response should not have 1421 // isInvalidate() set otherwise. 1422 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate; 1423 DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n", 1424 __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr()); 1425 } 1426 // Reset the bus additional time as it is now accounted for 1427 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0; 1428 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true); 1429 break; 1430 1431 case MSHR::Target::FromPrefetcher: 1432 assert(tgt_pkt->cmd == MemCmd::HardPFReq); 1433 if (blk) 1434 blk->status |= BlkHWPrefetched; 1435 delete tgt_pkt->req; 1436 delete tgt_pkt; 1437 break; 1438 1439 case MSHR::Target::FromSnoop: 1440 // I don't believe that a snoop can be in an error state 1441 assert(!is_error); 1442 // response to snoop request 1443 DPRINTF(Cache, "processing deferred snoop...\n"); 1444 assert(!(is_invalidate && !mshr->hasPostInvalidate())); 1445 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate()); 1446 break; 1447 1448 default: 1449 panic("Illegal target->source enum %d\n", target->source); 1450 } 1451 1452 mshr->popTarget(); 1453 } 1454 1455 if (blk && blk->isValid()) { 1456 // an invalidate response stemming from a write line request 1457 // should not invalidate the block, so check if the 1458 // invalidation should be discarded 1459 if (is_invalidate || mshr->hasPostInvalidate()) { 1460 invalidateBlock(blk); 1461 } else if (mshr->hasPostDowngrade()) { 1462 blk->status &= ~BlkWritable; 1463 } 1464 } 1465 1466 if (mshr->promoteDeferredTargets()) { 1467 // avoid later read getting stale data while write miss is 1468 // outstanding.. see comment in timingAccess() 1469 if (blk) { 1470 blk->status &= ~BlkReadable; 1471 } 1472 mq = mshr->queue; 1473 mq->markPending(mshr); 1474 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay); 1475 } else { 1476 mq->deallocate(mshr); 1477 if (wasFull && !mq->isFull()) { 1478 clearBlocked((BlockedCause)mq->index); 1479 } 1480 1481 // Request the bus for a prefetch if this deallocation freed enough 1482 // MSHRs for a prefetch to take place 1483 if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) { 1484 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), 1485 clockEdge()); 1486 if (next_pf_time != MaxTick) 1487 schedMemSideSendEvent(next_pf_time); 1488 } 1489 } 1490 // reset the xbar additional timinig as it is now accounted for 1491 pkt->headerDelay = pkt->payloadDelay = 0; 1492 1493 // copy writebacks to write buffer 1494 doWritebacks(writebacks, forward_time); 1495 1496 // if we used temp block, check to see if its valid and then clear it out 1497 if (blk == tempBlock && tempBlock->isValid()) { 1498 // We use forwardLatency here because we are copying 1499 // Writebacks/CleanEvicts to write buffer. It specifies the latency to 1500 // allocate an internal buffer and to schedule an event to the 1501 // queued port. 1502 if (blk->isDirty() || writebackClean) { 1503 PacketPtr wbPkt = writebackBlk(blk); 1504 allocateWriteBuffer(wbPkt, forward_time); 1505 // Set BLOCK_CACHED flag if cached above. 1506 if (isCachedAbove(wbPkt)) 1507 wbPkt->setBlockCached(); 1508 } else { 1509 PacketPtr wcPkt = cleanEvictBlk(blk); 1510 // Check to see if block is cached above. If not allocate 1511 // write buffer 1512 if (isCachedAbove(wcPkt)) 1513 delete wcPkt; 1514 else 1515 allocateWriteBuffer(wcPkt, forward_time); 1516 } 1517 blk->invalidate(); 1518 } 1519 1520 DPRINTF(CacheVerbose, "Leaving %s with %s for addr %#llx\n", __func__, 1521 pkt->cmdString(), pkt->getAddr()); 1522 delete pkt; 1523} 1524 1525PacketPtr 1526Cache::writebackBlk(CacheBlk *blk) 1527{ 1528 chatty_assert(!isReadOnly || writebackClean, 1529 "Writeback from read-only cache"); 1530 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean)); 1531 1532 writebacks[Request::wbMasterId]++; 1533 1534 Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set), 1535 blkSize, 0, Request::wbMasterId); 1536 if (blk->isSecure()) 1537 req->setFlags(Request::SECURE); 1538 1539 req->taskId(blk->task_id); 1540 blk->task_id= ContextSwitchTaskId::Unknown; 1541 blk->tickInserted = curTick(); 1542 1543 PacketPtr pkt = 1544 new Packet(req, blk->isDirty() ? 1545 MemCmd::WritebackDirty : MemCmd::WritebackClean); 1546 1547 DPRINTF(Cache, "Create Writeback %#llx writable: %d, dirty: %d\n", 1548 pkt->getAddr(), blk->isWritable(), blk->isDirty()); 1549 1550 if (blk->isWritable()) { 1551 // not asserting shared means we pass the block in modified 1552 // state, mark our own block non-writeable 1553 blk->status &= ~BlkWritable; 1554 } else { 1555 // we are in the Owned state, tell the receiver 1556 pkt->setHasSharers(); 1557 } 1558 1559 // make sure the block is not marked dirty 1560 blk->status &= ~BlkDirty; 1561 1562 pkt->allocate(); 1563 std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize); 1564 1565 return pkt; 1566} 1567 1568PacketPtr 1569Cache::cleanEvictBlk(CacheBlk *blk) 1570{ 1571 assert(!writebackClean); 1572 assert(blk && blk->isValid() && !blk->isDirty()); 1573 // Creating a zero sized write, a message to the snoop filter 1574 Request *req = 1575 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0, 1576 Request::wbMasterId); 1577 if (blk->isSecure()) 1578 req->setFlags(Request::SECURE); 1579 1580 req->taskId(blk->task_id); 1581 blk->task_id = ContextSwitchTaskId::Unknown; 1582 blk->tickInserted = curTick(); 1583 1584 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict); 1585 pkt->allocate(); 1586 DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(), 1587 pkt->req->isInstFetch() ? " (ifetch)" : "", 1588 pkt->getAddr()); 1589 1590 return pkt; 1591} 1592 1593void 1594Cache::memWriteback() 1595{ 1596 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor); 1597 tags->forEachBlk(visitor); 1598} 1599 1600void 1601Cache::memInvalidate() 1602{ 1603 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor); 1604 tags->forEachBlk(visitor); 1605} 1606 1607bool 1608Cache::isDirty() const 1609{ 1610 CacheBlkIsDirtyVisitor visitor; 1611 tags->forEachBlk(visitor); 1612 1613 return visitor.isDirty(); 1614} 1615 1616bool 1617Cache::writebackVisitor(CacheBlk &blk) 1618{ 1619 if (blk.isDirty()) { 1620 assert(blk.isValid()); 1621 1622 Request request(tags->regenerateBlkAddr(blk.tag, blk.set), 1623 blkSize, 0, Request::funcMasterId); 1624 request.taskId(blk.task_id); 1625 1626 Packet packet(&request, MemCmd::WriteReq); 1627 packet.dataStatic(blk.data); 1628 1629 memSidePort->sendFunctional(&packet); 1630 1631 blk.status &= ~BlkDirty; 1632 } 1633 1634 return true; 1635} 1636 1637bool 1638Cache::invalidateVisitor(CacheBlk &blk) 1639{ 1640 1641 if (blk.isDirty()) 1642 warn_once("Invalidating dirty cache lines. Expect things to break.\n"); 1643 1644 if (blk.isValid()) { 1645 assert(!blk.isDirty()); 1646 tags->invalidate(&blk); 1647 blk.invalidate(); 1648 } 1649 1650 return true; 1651} 1652 1653CacheBlk* 1654Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks) 1655{ 1656 CacheBlk *blk = tags->findVictim(addr); 1657 1658 // It is valid to return NULL if there is no victim 1659 if (!blk) 1660 return nullptr; 1661 1662 if (blk->isValid()) { 1663 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set); 1664 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); 1665 if (repl_mshr) { 1666 // must be an outstanding upgrade request 1667 // on a block we're about to replace... 1668 assert(!blk->isWritable() || blk->isDirty()); 1669 assert(repl_mshr->needsWritable()); 1670 // too hard to replace block with transient state 1671 // allocation failed, block not inserted 1672 return NULL; 1673 } else { 1674 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n", 1675 repl_addr, blk->isSecure() ? "s" : "ns", 1676 addr, is_secure ? "s" : "ns", 1677 blk->isDirty() ? "writeback" : "clean"); 1678 1679 // Will send up Writeback/CleanEvict snoops via isCachedAbove 1680 // when pushing this writeback list into the write buffer. 1681 if (blk->isDirty() || writebackClean) { 1682 // Save writeback packet for handling by caller 1683 writebacks.push_back(writebackBlk(blk)); 1684 } else { 1685 writebacks.push_back(cleanEvictBlk(blk)); 1686 } 1687 } 1688 } 1689 1690 return blk; 1691} 1692 1693void 1694Cache::invalidateBlock(CacheBlk *blk) 1695{ 1696 if (blk != tempBlock) 1697 tags->invalidate(blk); 1698 blk->invalidate(); 1699} 1700 1701// Note that the reason we return a list of writebacks rather than 1702// inserting them directly in the write buffer is that this function 1703// is called by both atomic and timing-mode accesses, and in atomic 1704// mode we don't mess with the write buffer (we just perform the 1705// writebacks atomically once the original request is complete). 1706CacheBlk* 1707Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks, 1708 bool allocate) 1709{ 1710 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq); 1711 Addr addr = pkt->getAddr(); 1712 bool is_secure = pkt->isSecure(); 1713#if TRACING_ON 1714 CacheBlk::State old_state = blk ? blk->status : 0; 1715#endif 1716 1717 // When handling a fill, discard any CleanEvicts for the 1718 // same address in write buffer. 1719 Addr M5_VAR_USED blk_addr = blockAlign(pkt->getAddr()); 1720 std::vector<MSHR *> M5_VAR_USED wbs; 1721 assert (!writeBuffer.findMatches(blk_addr, is_secure, wbs)); 1722 1723 if (blk == NULL) { 1724 // better have read new data... 1725 assert(pkt->hasData()); 1726 1727 // only read responses and write-line requests have data; 1728 // note that we don't write the data here for write-line - that 1729 // happens in the subsequent satisfyCpuSideRequest. 1730 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq); 1731 1732 // need to do a replacement if allocating, otherwise we stick 1733 // with the temporary storage 1734 blk = allocate ? allocateBlock(addr, is_secure, writebacks) : NULL; 1735 1736 if (blk == NULL) { 1737 // No replaceable block or a mostly exclusive 1738 // cache... just use temporary storage to complete the 1739 // current request and then get rid of it 1740 assert(!tempBlock->isValid()); 1741 blk = tempBlock; 1742 tempBlock->set = tags->extractSet(addr); 1743 tempBlock->tag = tags->extractTag(addr); 1744 // @todo: set security state as well... 1745 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, 1746 is_secure ? "s" : "ns"); 1747 } else { 1748 tags->insertBlock(pkt, blk); 1749 } 1750 1751 // we should never be overwriting a valid block 1752 assert(!blk->isValid()); 1753 } else { 1754 // existing block... probably an upgrade 1755 assert(blk->tag == tags->extractTag(addr)); 1756 // either we're getting new data or the block should already be valid 1757 assert(pkt->hasData() || blk->isValid()); 1758 // don't clear block status... if block is already dirty we 1759 // don't want to lose that 1760 } 1761 1762 if (is_secure) 1763 blk->status |= BlkSecure; 1764 blk->status |= BlkValid | BlkReadable; 1765 1766 // sanity check for whole-line writes, which should always be 1767 // marked as writable as part of the fill, and then later marked 1768 // dirty as part of satisfyCpuSideRequest 1769 if (pkt->cmd == MemCmd::WriteLineReq) { 1770 assert(!pkt->hasSharers()); 1771 // at the moment other caches do not respond to the 1772 // invalidation requests corresponding to a whole-line write 1773 assert(!pkt->cacheResponding()); 1774 } 1775 1776 // here we deal with setting the appropriate state of the line, 1777 // and we start by looking at the hasSharers flag, and ignore the 1778 // cacheResponding flag (normally signalling dirty data) if the 1779 // packet has sharers, thus the line is never allocated as Owned 1780 // (dirty but not writable), and always ends up being either 1781 // Shared, Exclusive or Modified, see Packet::setCacheResponding 1782 // for more details 1783 if (!pkt->hasSharers()) { 1784 // we could get a writable line from memory (rather than a 1785 // cache) even in a read-only cache, note that we set this bit 1786 // even for a read-only cache, possibly revisit this decision 1787 blk->status |= BlkWritable; 1788 1789 // check if we got this via cache-to-cache transfer (i.e., from a 1790 // cache that had the block in Modified or Owned state) 1791 if (pkt->cacheResponding()) { 1792 // we got the block in Modified state, and invalidated the 1793 // owners copy 1794 blk->status |= BlkDirty; 1795 1796 chatty_assert(!isReadOnly, "Should never see dirty snoop response " 1797 "in read-only cache %s\n", name()); 1798 } 1799 } 1800 1801 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", 1802 addr, is_secure ? "s" : "ns", old_state, blk->print()); 1803 1804 // if we got new data, copy it in (checking for a read response 1805 // and a response that has data is the same in the end) 1806 if (pkt->isRead()) { 1807 // sanity checks 1808 assert(pkt->hasData()); 1809 assert(pkt->getSize() == blkSize); 1810 1811 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize); 1812 } 1813 // We pay for fillLatency here. 1814 blk->whenReady = clockEdge() + fillLatency * clockPeriod() + 1815 pkt->payloadDelay; 1816 1817 return blk; 1818} 1819 1820 1821///////////////////////////////////////////////////// 1822// 1823// Snoop path: requests coming in from the memory side 1824// 1825///////////////////////////////////////////////////// 1826 1827void 1828Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data, 1829 bool already_copied, bool pending_inval) 1830{ 1831 // sanity check 1832 assert(req_pkt->isRequest()); 1833 assert(req_pkt->needsResponse()); 1834 1835 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, 1836 req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize()); 1837 // timing-mode snoop responses require a new packet, unless we 1838 // already made a copy... 1839 PacketPtr pkt = req_pkt; 1840 if (!already_copied) 1841 // do not clear flags, and allocate space for data if the 1842 // packet needs it (the only packets that carry data are read 1843 // responses) 1844 pkt = new Packet(req_pkt, false, req_pkt->isRead()); 1845 1846 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() || 1847 pkt->hasSharers()); 1848 pkt->makeTimingResponse(); 1849 if (pkt->isRead()) { 1850 pkt->setDataFromBlock(blk_data, blkSize); 1851 } 1852 if (pkt->cmd == MemCmd::ReadResp && pending_inval) { 1853 // Assume we defer a response to a read from a far-away cache 1854 // A, then later defer a ReadExcl from a cache B on the same 1855 // bus as us. We'll assert cacheResponding in both cases, but 1856 // in the latter case cacheResponding will keep the 1857 // invalidation from reaching cache A. This special response 1858 // tells cache A that it gets the block to satisfy its read, 1859 // but must immediately invalidate it. 1860 pkt->cmd = MemCmd::ReadRespWithInvalidate; 1861 } 1862 // Here we consider forward_time, paying for just forward latency and 1863 // also charging the delay provided by the xbar. 1864 // forward_time is used as send_time in next allocateWriteBuffer(). 1865 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 1866 // Here we reset the timing of the packet. 1867 pkt->headerDelay = pkt->payloadDelay = 0; 1868 DPRINTF(CacheVerbose, 1869 "%s created response: %s addr %#llx size %d tick: %lu\n", 1870 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(), 1871 forward_time); 1872 memSidePort->schedTimingSnoopResp(pkt, forward_time, true); 1873} 1874 1875uint32_t 1876Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing, 1877 bool is_deferred, bool pending_inval) 1878{ 1879 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__, 1880 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 1881 // deferred snoops can only happen in timing mode 1882 assert(!(is_deferred && !is_timing)); 1883 // pending_inval only makes sense on deferred snoops 1884 assert(!(pending_inval && !is_deferred)); 1885 assert(pkt->isRequest()); 1886 1887 // the packet may get modified if we or a forwarded snooper 1888 // responds in atomic mode, so remember a few things about the 1889 // original packet up front 1890 bool invalidate = pkt->isInvalidate(); 1891 bool M5_VAR_USED needs_writable = pkt->needsWritable(); 1892 1893 // at the moment we could get an uncacheable write which does not 1894 // have the invalidate flag, and we need a suitable way of dealing 1895 // with this case 1896 panic_if(invalidate && pkt->req->isUncacheable(), 1897 "%s got an invalidating uncacheable snoop request %s to %#llx", 1898 name(), pkt->cmdString(), pkt->getAddr()); 1899 1900 uint32_t snoop_delay = 0; 1901 1902 if (forwardSnoops) { 1903 // first propagate snoop upward to see if anyone above us wants to 1904 // handle it. save & restore packet src since it will get 1905 // rewritten to be relative to cpu-side bus (if any) 1906 bool alreadyResponded = pkt->cacheResponding(); 1907 if (is_timing) { 1908 // copy the packet so that we can clear any flags before 1909 // forwarding it upwards, we also allocate data (passing 1910 // the pointer along in case of static data), in case 1911 // there is a snoop hit in upper levels 1912 Packet snoopPkt(pkt, true, true); 1913 snoopPkt.setExpressSnoop(); 1914 // the snoop packet does not need to wait any additional 1915 // time 1916 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0; 1917 cpuSidePort->sendTimingSnoopReq(&snoopPkt); 1918 1919 // add the header delay (including crossbar and snoop 1920 // delays) of the upward snoop to the snoop delay for this 1921 // cache 1922 snoop_delay += snoopPkt.headerDelay; 1923 1924 if (snoopPkt.cacheResponding()) { 1925 // cache-to-cache response from some upper cache 1926 assert(!alreadyResponded); 1927 pkt->setCacheResponding(); 1928 } 1929 // upstream cache has the block, or has an outstanding 1930 // MSHR, pass the flag on 1931 if (snoopPkt.hasSharers()) { 1932 pkt->setHasSharers(); 1933 } 1934 // If this request is a prefetch or clean evict and an upper level 1935 // signals block present, make sure to propagate the block 1936 // presence to the requester. 1937 if (snoopPkt.isBlockCached()) { 1938 pkt->setBlockCached(); 1939 } 1940 } else { 1941 cpuSidePort->sendAtomicSnoop(pkt); 1942 if (!alreadyResponded && pkt->cacheResponding()) { 1943 // cache-to-cache response from some upper cache: 1944 // forward response to original requester 1945 assert(pkt->isResponse()); 1946 } 1947 } 1948 } 1949 1950 if (!blk || !blk->isValid()) { 1951 DPRINTF(CacheVerbose, "%s snoop miss for %s addr %#llx size %d\n", 1952 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 1953 return snoop_delay; 1954 } else { 1955 DPRINTF(Cache, "%s snoop hit for %s addr %#llx size %d, " 1956 "old state is %s\n", __func__, pkt->cmdString(), 1957 pkt->getAddr(), pkt->getSize(), blk->print()); 1958 } 1959 1960 chatty_assert(!(isReadOnly && blk->isDirty()), 1961 "Should never have a dirty block in a read-only cache %s\n", 1962 name()); 1963 1964 // We may end up modifying both the block state and the packet (if 1965 // we respond in atomic mode), so just figure out what to do now 1966 // and then do it later. If we find dirty data while snooping for 1967 // an invalidate, we don't need to send a response. The 1968 // invalidation itself is taken care of below. 1969 bool respond = blk->isDirty() && pkt->needsResponse() && 1970 pkt->cmd != MemCmd::InvalidateReq; 1971 bool have_writable = blk->isWritable(); 1972 1973 // Invalidate any prefetch's from below that would strip write permissions 1974 // MemCmd::HardPFReq is only observed by upstream caches. After missing 1975 // above and in it's own cache, a new MemCmd::ReadReq is created that 1976 // downstream caches observe. 1977 if (pkt->mustCheckAbove()) { 1978 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from" 1979 " lower cache\n", pkt->getAddr(), pkt->cmdString()); 1980 pkt->setBlockCached(); 1981 return snoop_delay; 1982 } 1983 1984 if (pkt->isRead() && !invalidate) { 1985 // reading without requiring the line in a writable state 1986 assert(!needs_writable); 1987 pkt->setHasSharers(); 1988 1989 // if the requesting packet is uncacheable, retain the line in 1990 // the current state, otherwhise unset the writable flag, 1991 // which means we go from Modified to Owned (and will respond 1992 // below), remain in Owned (and will respond below), from 1993 // Exclusive to Shared, or remain in Shared 1994 if (!pkt->req->isUncacheable()) 1995 blk->status &= ~BlkWritable; 1996 } 1997 1998 if (respond) { 1999 // prevent anyone else from responding, cache as well as 2000 // memory, and also prevent any memory from even seeing the 2001 // request 2002 pkt->setCacheResponding(); 2003 if (have_writable) { 2004 // inform the cache hierarchy that this cache had the line 2005 // in the Modified state so that we avoid unnecessary 2006 // invalidations (see Packet::setResponderHadWritable) 2007 pkt->setResponderHadWritable(); 2008 2009 // in the case of an uncacheable request there is no point 2010 // in setting the responderHadWritable flag, but since the 2011 // recipient does not care there is no harm in doing so 2012 } else { 2013 // if the packet has needsWritable set we invalidate our 2014 // copy below and all other copies will be invalidates 2015 // through express snoops, and if needsWritable is not set 2016 // we already called setHasSharers above 2017 } 2018 2019 // if we are returning a writable and dirty (Modified) line, 2020 // we should be invalidating the line 2021 panic_if(!invalidate && !pkt->hasSharers(), 2022 "%s is passing a Modified line through %s to %#llx, " 2023 "but keeping the block", 2024 name(), pkt->cmdString(), pkt->getAddr()); 2025 2026 if (is_timing) { 2027 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval); 2028 } else { 2029 pkt->makeAtomicResponse(); 2030 // packets such as upgrades do not actually have any data 2031 // payload 2032 if (pkt->hasData()) 2033 pkt->setDataFromBlock(blk->data, blkSize); 2034 } 2035 } 2036 2037 if (!respond && is_timing && is_deferred) { 2038 // if it's a deferred timing snoop to which we are not 2039 // responding, then we've made a copy of both the request and 2040 // the packet, delete them here 2041 assert(pkt->needsResponse()); 2042 delete pkt->req; 2043 delete pkt; 2044 } 2045 2046 // Do this last in case it deallocates block data or something 2047 // like that 2048 if (invalidate) { 2049 invalidateBlock(blk); 2050 } 2051 2052 DPRINTF(Cache, "new state is %s\n", blk->print()); 2053 2054 return snoop_delay; 2055} 2056 2057 2058void 2059Cache::recvTimingSnoopReq(PacketPtr pkt) 2060{ 2061 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__, 2062 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 2063 2064 // Snoops shouldn't happen when bypassing caches 2065 assert(!system->bypassCaches()); 2066 2067 // no need to snoop requests that are not in range 2068 if (!inRange(pkt->getAddr())) { 2069 return; 2070 } 2071 2072 bool is_secure = pkt->isSecure(); 2073 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 2074 2075 Addr blk_addr = blockAlign(pkt->getAddr()); 2076 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 2077 2078 // Update the latency cost of the snoop so that the crossbar can 2079 // account for it. Do not overwrite what other neighbouring caches 2080 // have already done, rather take the maximum. The update is 2081 // tentative, for cases where we return before an upward snoop 2082 // happens below. 2083 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, 2084 lookupLatency * clockPeriod()); 2085 2086 // Inform request(Prefetch, CleanEvict or Writeback) from below of 2087 // MSHR hit, set setBlockCached. 2088 if (mshr && pkt->mustCheckAbove()) { 2089 DPRINTF(Cache, "Setting block cached for %s from" 2090 "lower cache on mshr hit %#x\n", 2091 pkt->cmdString(), pkt->getAddr()); 2092 pkt->setBlockCached(); 2093 return; 2094 } 2095 2096 // Let the MSHR itself track the snoop and decide whether we want 2097 // to go ahead and do the regular cache snoop 2098 if (mshr && mshr->handleSnoop(pkt, order++)) { 2099 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)." 2100 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns", 2101 mshr->print()); 2102 2103 if (mshr->getNumTargets() > numTarget) 2104 warn("allocating bonus target for snoop"); //handle later 2105 return; 2106 } 2107 2108 //We also need to check the writeback buffers and handle those 2109 std::vector<MSHR *> writebacks; 2110 if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) { 2111 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n", 2112 pkt->getAddr(), is_secure ? "s" : "ns"); 2113 2114 // Look through writebacks for any cachable writes. 2115 // We should only ever find a single match 2116 assert(writebacks.size() == 1); 2117 MSHR *wb_entry = writebacks[0]; 2118 // Expect to see only Writebacks and/or CleanEvicts here, both of 2119 // which should not be generated for uncacheable data. 2120 assert(!wb_entry->isUncacheable()); 2121 // There should only be a single request responsible for generating 2122 // Writebacks/CleanEvicts. 2123 assert(wb_entry->getNumTargets() == 1); 2124 PacketPtr wb_pkt = wb_entry->getTarget()->pkt; 2125 assert(wb_pkt->isEviction()); 2126 2127 if (pkt->isEviction()) { 2128 // if the block is found in the write queue, set the BLOCK_CACHED 2129 // flag for Writeback/CleanEvict snoop. On return the snoop will 2130 // propagate the BLOCK_CACHED flag in Writeback packets and prevent 2131 // any CleanEvicts from travelling down the memory hierarchy. 2132 pkt->setBlockCached(); 2133 DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit" 2134 " %#x\n", pkt->cmdString(), pkt->getAddr()); 2135 return; 2136 } 2137 2138 // conceptually writebacks are no different to other blocks in 2139 // this cache, so the behaviour is modelled after handleSnoop, 2140 // the difference being that instead of querying the block 2141 // state to determine if it is dirty and writable, we use the 2142 // command and fields of the writeback packet 2143 bool respond = wb_pkt->cmd == MemCmd::WritebackDirty && 2144 pkt->needsResponse() && pkt->cmd != MemCmd::InvalidateReq; 2145 bool have_writable = !wb_pkt->hasSharers(); 2146 bool invalidate = pkt->isInvalidate(); 2147 2148 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) { 2149 assert(!pkt->needsWritable()); 2150 pkt->setHasSharers(); 2151 wb_pkt->setHasSharers(); 2152 } 2153 2154 if (respond) { 2155 pkt->setCacheResponding(); 2156 2157 if (have_writable) { 2158 pkt->setResponderHadWritable(); 2159 } 2160 2161 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(), 2162 false, false); 2163 } 2164 2165 if (invalidate) { 2166 // Invalidation trumps our writeback... discard here 2167 // Note: markInService will remove entry from writeback buffer. 2168 markInService(wb_entry, false); 2169 delete wb_pkt; 2170 } 2171 } 2172 2173 // If this was a shared writeback, there may still be 2174 // other shared copies above that require invalidation. 2175 // We could be more selective and return here if the 2176 // request is non-exclusive or if the writeback is 2177 // exclusive. 2178 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false); 2179 2180 // Override what we did when we first saw the snoop, as we now 2181 // also have the cost of the upwards snoops to account for 2182 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay + 2183 lookupLatency * clockPeriod()); 2184} 2185 2186bool 2187Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) 2188{ 2189 // Express snoop responses from master to slave, e.g., from L1 to L2 2190 cache->recvTimingSnoopResp(pkt); 2191 return true; 2192} 2193 2194Tick 2195Cache::recvAtomicSnoop(PacketPtr pkt) 2196{ 2197 // Snoops shouldn't happen when bypassing caches 2198 assert(!system->bypassCaches()); 2199 2200 // no need to snoop requests that are not in range. 2201 if (!inRange(pkt->getAddr())) { 2202 return 0; 2203 } 2204 2205 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 2206 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false); 2207 return snoop_delay + lookupLatency * clockPeriod(); 2208} 2209 2210 2211MSHR * 2212Cache::getNextMSHR() 2213{ 2214 // Check both MSHR queue and write buffer for potential requests, 2215 // note that null does not mean there is no request, it could 2216 // simply be that it is not ready 2217 MSHR *miss_mshr = mshrQueue.getNextMSHR(); 2218 MSHR *write_mshr = writeBuffer.getNextMSHR(); 2219 2220 // If we got a write buffer request ready, first priority is a 2221 // full write buffer, otherwhise we favour the miss requests 2222 if (write_mshr && 2223 ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) || 2224 !miss_mshr)) { 2225 // need to search MSHR queue for conflicting earlier miss. 2226 MSHR *conflict_mshr = 2227 mshrQueue.findPending(write_mshr->blkAddr, 2228 write_mshr->isSecure); 2229 2230 if (conflict_mshr && conflict_mshr->order < write_mshr->order) { 2231 // Service misses in order until conflict is cleared. 2232 return conflict_mshr; 2233 2234 // @todo Note that we ignore the ready time of the conflict here 2235 } 2236 2237 // No conflicts; issue write 2238 return write_mshr; 2239 } else if (miss_mshr) { 2240 // need to check for conflicting earlier writeback 2241 MSHR *conflict_mshr = 2242 writeBuffer.findPending(miss_mshr->blkAddr, 2243 miss_mshr->isSecure); 2244 if (conflict_mshr) { 2245 // not sure why we don't check order here... it was in the 2246 // original code but commented out. 2247 2248 // The only way this happens is if we are 2249 // doing a write and we didn't have permissions 2250 // then subsequently saw a writeback (owned got evicted) 2251 // We need to make sure to perform the writeback first 2252 // To preserve the dirty data, then we can issue the write 2253 2254 // should we return write_mshr here instead? I.e. do we 2255 // have to flush writes in order? I don't think so... not 2256 // for Alpha anyway. Maybe for x86? 2257 return conflict_mshr; 2258 2259 // @todo Note that we ignore the ready time of the conflict here 2260 } 2261 2262 // No conflicts; issue read 2263 return miss_mshr; 2264 } 2265 2266 // fall through... no pending requests. Try a prefetch. 2267 assert(!miss_mshr && !write_mshr); 2268 if (prefetcher && mshrQueue.canPrefetch()) { 2269 // If we have a miss queue slot, we can try a prefetch 2270 PacketPtr pkt = prefetcher->getPacket(); 2271 if (pkt) { 2272 Addr pf_addr = blockAlign(pkt->getAddr()); 2273 if (!tags->findBlock(pf_addr, pkt->isSecure()) && 2274 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && 2275 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { 2276 // Update statistic on number of prefetches issued 2277 // (hwpf_mshr_misses) 2278 assert(pkt->req->masterId() < system->maxMasters()); 2279 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 2280 2281 // allocate an MSHR and return it, note 2282 // that we send the packet straight away, so do not 2283 // schedule the send 2284 return allocateMissBuffer(pkt, curTick(), false); 2285 } else { 2286 // free the request and packet 2287 delete pkt->req; 2288 delete pkt; 2289 } 2290 } 2291 } 2292 2293 return NULL; 2294} 2295 2296bool 2297Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const 2298{ 2299 if (!forwardSnoops) 2300 return false; 2301 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and 2302 // Writeback snoops into upper level caches to check for copies of the 2303 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict 2304 // packet, the cache can inform the crossbar below of presence or absence 2305 // of the block. 2306 if (is_timing) { 2307 Packet snoop_pkt(pkt, true, false); 2308 snoop_pkt.setExpressSnoop(); 2309 // Assert that packet is either Writeback or CleanEvict and not a 2310 // prefetch request because prefetch requests need an MSHR and may 2311 // generate a snoop response. 2312 assert(pkt->isEviction()); 2313 snoop_pkt.senderState = NULL; 2314 cpuSidePort->sendTimingSnoopReq(&snoop_pkt); 2315 // Writeback/CleanEvict snoops do not generate a snoop response. 2316 assert(!(snoop_pkt.cacheResponding())); 2317 return snoop_pkt.isBlockCached(); 2318 } else { 2319 cpuSidePort->sendAtomicSnoop(pkt); 2320 return pkt->isBlockCached(); 2321 } 2322} 2323 2324PacketPtr 2325Cache::getTimingPacket() 2326{ 2327 MSHR *mshr = getNextMSHR(); 2328 2329 if (mshr == NULL) { 2330 return NULL; 2331 } 2332 2333 // use request from 1st target 2334 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 2335 PacketPtr pkt = NULL; 2336 2337 DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__, 2338 tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize()); 2339 2340 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); 2341 2342 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) { 2343 // We need to check the caches above us to verify that 2344 // they don't have a copy of this block in the dirty state 2345 // at the moment. Without this check we could get a stale 2346 // copy from memory that might get used in place of the 2347 // dirty one. 2348 Packet snoop_pkt(tgt_pkt, true, false); 2349 snoop_pkt.setExpressSnoop(); 2350 // We are sending this packet upwards, but if it hits we will 2351 // get a snoop response that we end up treating just like a 2352 // normal response, hence it needs the MSHR as its sender 2353 // state 2354 snoop_pkt.senderState = mshr; 2355 cpuSidePort->sendTimingSnoopReq(&snoop_pkt); 2356 2357 // Check to see if the prefetch was squashed by an upper cache (to 2358 // prevent us from grabbing the line) or if a Check to see if a 2359 // writeback arrived between the time the prefetch was placed in 2360 // the MSHRs and when it was selected to be sent or if the 2361 // prefetch was squashed by an upper cache. 2362 2363 // It is important to check cacheResponding before 2364 // prefetchSquashed. If another cache has committed to 2365 // responding, it will be sending a dirty response which will 2366 // arrive at the MSHR allocated for this request. Checking the 2367 // prefetchSquash first may result in the MSHR being 2368 // prematurely deallocated. 2369 if (snoop_pkt.cacheResponding()) { 2370 auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req); 2371 assert(r.second); 2372 2373 // if we are getting a snoop response with no sharers it 2374 // will be allocated as Modified 2375 bool pending_modified_resp = !snoop_pkt.hasSharers(); 2376 markInService(mshr, pending_modified_resp); 2377 2378 DPRINTF(Cache, "Upward snoop of prefetch for addr" 2379 " %#x (%s) hit\n", 2380 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns"); 2381 return NULL; 2382 } 2383 2384 if (snoop_pkt.isBlockCached() || blk != NULL) { 2385 DPRINTF(Cache, "Block present, prefetch squashed by cache. " 2386 "Deallocating mshr target %#x.\n", 2387 mshr->blkAddr); 2388 // Deallocate the mshr target 2389 if (mshr->queue->forceDeallocateTarget(mshr)) { 2390 // Clear block if this deallocation resulted freed an 2391 // mshr when all had previously been utilized 2392 clearBlocked((BlockedCause)(mshr->queue->index)); 2393 } 2394 return NULL; 2395 } 2396 } 2397 2398 if (mshr->isForwardNoResponse()) { 2399 // no response expected, just forward packet as it is 2400 assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL); 2401 pkt = tgt_pkt; 2402 } else { 2403 pkt = getBusPacket(tgt_pkt, blk, mshr->needsWritable()); 2404 2405 mshr->isForward = (pkt == NULL); 2406 2407 if (mshr->isForward) { 2408 // not a cache block request, but a response is expected 2409 // make copy of current packet to forward, keep current 2410 // copy for response handling 2411 pkt = new Packet(tgt_pkt, false, true); 2412 if (pkt->isWrite()) { 2413 pkt->setData(tgt_pkt->getConstPtr<uint8_t>()); 2414 } 2415 } 2416 } 2417 2418 assert(pkt != NULL); 2419 // play it safe and append (rather than set) the sender state, as 2420 // forwarded packets may already have existing state 2421 pkt->pushSenderState(mshr); 2422 return pkt; 2423} 2424 2425 2426Tick 2427Cache::nextMSHRReadyTime() const 2428{ 2429 Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(), 2430 writeBuffer.nextMSHRReadyTime()); 2431 2432 // Don't signal prefetch ready time if no MSHRs available 2433 // Will signal once enoguh MSHRs are deallocated 2434 if (prefetcher && mshrQueue.canPrefetch()) { 2435 nextReady = std::min(nextReady, 2436 prefetcher->nextPrefetchReadyTime()); 2437 } 2438 2439 return nextReady; 2440} 2441 2442void 2443Cache::serialize(CheckpointOut &cp) const 2444{ 2445 bool dirty(isDirty()); 2446 2447 if (dirty) { 2448 warn("*** The cache still contains dirty data. ***\n"); 2449 warn(" Make sure to drain the system using the correct flags.\n"); 2450 warn(" This checkpoint will not restore correctly and dirty data in " 2451 "the cache will be lost!\n"); 2452 } 2453 2454 // Since we don't checkpoint the data in the cache, any dirty data 2455 // will be lost when restoring from a checkpoint of a system that 2456 // wasn't drained properly. Flag the checkpoint as invalid if the 2457 // cache contains dirty data. 2458 bool bad_checkpoint(dirty); 2459 SERIALIZE_SCALAR(bad_checkpoint); 2460} 2461 2462void 2463Cache::unserialize(CheckpointIn &cp) 2464{ 2465 bool bad_checkpoint; 2466 UNSERIALIZE_SCALAR(bad_checkpoint); 2467 if (bad_checkpoint) { 2468 fatal("Restoring from checkpoints with dirty caches is not supported " 2469 "in the classic memory system. Please remove any caches or " 2470 " drain them properly before taking checkpoints.\n"); 2471 } 2472} 2473 2474/////////////// 2475// 2476// CpuSidePort 2477// 2478/////////////// 2479 2480AddrRangeList 2481Cache::CpuSidePort::getAddrRanges() const 2482{ 2483 return cache->getAddrRanges(); 2484} 2485 2486bool 2487Cache::CpuSidePort::recvTimingReq(PacketPtr pkt) 2488{ 2489 assert(!cache->system->bypassCaches()); 2490 2491 bool success = false; 2492 2493 // always let express snoop packets through if even if blocked 2494 if (pkt->isExpressSnoop()) { 2495 // do not change the current retry state 2496 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt); 2497 assert(bypass_success); 2498 return true; 2499 } else if (blocked || mustSendRetry) { 2500 // either already committed to send a retry, or blocked 2501 success = false; 2502 } else { 2503 // pass it on to the cache, and let the cache decide if we 2504 // have to retry or not 2505 success = cache->recvTimingReq(pkt); 2506 } 2507 2508 // remember if we have to retry 2509 mustSendRetry = !success; 2510 return success; 2511} 2512 2513Tick 2514Cache::CpuSidePort::recvAtomic(PacketPtr pkt) 2515{ 2516 return cache->recvAtomic(pkt); 2517} 2518 2519void 2520Cache::CpuSidePort::recvFunctional(PacketPtr pkt) 2521{ 2522 // functional request 2523 cache->functionalAccess(pkt, true); 2524} 2525 2526Cache:: 2527CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache, 2528 const std::string &_label) 2529 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache) 2530{ 2531} 2532 2533Cache* 2534CacheParams::create() 2535{ 2536 assert(tags); 2537 2538 return new Cache(this); 2539} 2540/////////////// 2541// 2542// MemSidePort 2543// 2544/////////////// 2545 2546bool 2547Cache::MemSidePort::recvTimingResp(PacketPtr pkt) 2548{ 2549 cache->recvTimingResp(pkt); 2550 return true; 2551} 2552 2553// Express snooping requests to memside port 2554void 2555Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) 2556{ 2557 // handle snooping requests 2558 cache->recvTimingSnoopReq(pkt); 2559} 2560 2561Tick 2562Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) 2563{ 2564 return cache->recvAtomicSnoop(pkt); 2565} 2566 2567void 2568Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) 2569{ 2570 // functional snoop (note that in contrast to atomic we don't have 2571 // a specific functionalSnoop method, as they have the same 2572 // behaviour regardless) 2573 cache->functionalAccess(pkt, false); 2574} 2575 2576void 2577Cache::CacheReqPacketQueue::sendDeferredPacket() 2578{ 2579 // sanity check 2580 assert(!waitingOnRetry); 2581 2582 // there should never be any deferred request packets in the 2583 // queue, instead we resly on the cache to provide the packets 2584 // from the MSHR queue or write queue 2585 assert(deferredPacketReadyTime() == MaxTick); 2586 2587 // check for request packets (requests & writebacks) 2588 PacketPtr pkt = cache.getTimingPacket(); 2589 if (pkt == NULL) { 2590 // can happen if e.g. we attempt a writeback and fail, but 2591 // before the retry, the writeback is eliminated because 2592 // we snoop another cache's ReadEx. 2593 } else { 2594 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState); 2595 // in most cases getTimingPacket allocates a new packet, and 2596 // we must delete it unless it is successfully sent 2597 bool delete_pkt = !mshr->isForwardNoResponse(); 2598 2599 // let our snoop responses go first if there are responses to 2600 // the same addresses we are about to writeback, note that 2601 // this creates a dependency between requests and snoop 2602 // responses, but that should not be a problem since there is 2603 // a chain already and the key is that the snoop responses can 2604 // sink unconditionally 2605 if (snoopRespQueue.hasAddr(pkt->getAddr())) { 2606 DPRINTF(CachePort, "Waiting for snoop response to be sent\n"); 2607 Tick when = snoopRespQueue.deferredPacketReadyTime(); 2608 schedSendEvent(when); 2609 2610 if (delete_pkt) 2611 delete pkt; 2612 2613 return; 2614 } 2615 2616 2617 waitingOnRetry = !masterPort.sendTimingReq(pkt); 2618 2619 if (waitingOnRetry) { 2620 DPRINTF(CachePort, "now waiting on a retry\n"); 2621 if (delete_pkt) { 2622 // we are awaiting a retry, but we 2623 // delete the packet and will be creating a new packet 2624 // when we get the opportunity 2625 delete pkt; 2626 } 2627 // note that we have now masked any requestBus and 2628 // schedSendEvent (we will wait for a retry before 2629 // doing anything), and this is so even if we do not 2630 // care about this packet and might override it before 2631 // it gets retried 2632 } else { 2633 // As part of the call to sendTimingReq the packet is 2634 // forwarded to all neighbouring caches (and any caches 2635 // above them) as a snoop. Thus at this point we know if 2636 // any of the neighbouring caches are responding, and if 2637 // so, we know it is dirty, and we can determine if it is 2638 // being passed as Modified, making our MSHR the ordering 2639 // point 2640 bool pending_modified_resp = !pkt->hasSharers() && 2641 pkt->cacheResponding(); 2642 2643 cache.markInService(mshr, pending_modified_resp); 2644 } 2645 } 2646 2647 // if we succeeded and are not waiting for a retry, schedule the 2648 // next send considering when the next MSHR is ready, note that 2649 // snoop responses have their own packet queue and thus schedule 2650 // their own events 2651 if (!waitingOnRetry) { 2652 schedSendEvent(cache.nextMSHRReadyTime()); 2653 } 2654} 2655 2656Cache:: 2657MemSidePort::MemSidePort(const std::string &_name, Cache *_cache, 2658 const std::string &_label) 2659 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), 2660 _reqQueue(*_cache, *this, _snoopRespQueue, _label), 2661 _snoopRespQueue(*_cache, *this, _label), cache(_cache) 2662{ 2663} 2664