cache.cc revision 11199
1/* 2 * Copyright (c) 2010-2015 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2002-2005 The Regents of The University of Michigan 15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc. 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Erik Hallnor 42 * Dave Greene 43 * Nathan Binkert 44 * Steve Reinhardt 45 * Ron Dreslinski 46 * Andreas Sandberg 47 */ 48 49/** 50 * @file 51 * Cache definitions. 52 */ 53 54#include "mem/cache/cache.hh" 55 56#include "base/misc.hh" 57#include "base/types.hh" 58#include "debug/Cache.hh" 59#include "debug/CachePort.hh" 60#include "debug/CacheTags.hh" 61#include "mem/cache/blk.hh" 62#include "mem/cache/mshr.hh" 63#include "mem/cache/prefetch/base.hh" 64#include "sim/sim_exit.hh" 65 66Cache::Cache(const CacheParams *p) 67 : BaseCache(p, p->system->cacheLineSize()), 68 tags(p->tags), 69 prefetcher(p->prefetcher), 70 doFastWrites(true), 71 prefetchOnAccess(p->prefetch_on_access), 72 clusivity(p->clusivity), 73 writebackClean(p->writeback_clean), 74 tempBlockWriteback(nullptr), 75 writebackTempBlockAtomicEvent(this, false, 76 EventBase::Delayed_Writeback_Pri) 77{ 78 tempBlock = new CacheBlk(); 79 tempBlock->data = new uint8_t[blkSize]; 80 81 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this, 82 "CpuSidePort"); 83 memSidePort = new MemSidePort(p->name + ".mem_side", this, 84 "MemSidePort"); 85 86 tags->setCache(this); 87 if (prefetcher) 88 prefetcher->setCache(this); 89} 90 91Cache::~Cache() 92{ 93 delete [] tempBlock->data; 94 delete tempBlock; 95 96 delete cpuSidePort; 97 delete memSidePort; 98} 99 100void 101Cache::regStats() 102{ 103 BaseCache::regStats(); 104} 105 106void 107Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) 108{ 109 assert(pkt->isRequest()); 110 111 uint64_t overwrite_val; 112 bool overwrite_mem; 113 uint64_t condition_val64; 114 uint32_t condition_val32; 115 116 int offset = tags->extractBlkOffset(pkt->getAddr()); 117 uint8_t *blk_data = blk->data + offset; 118 119 assert(sizeof(uint64_t) >= pkt->getSize()); 120 121 overwrite_mem = true; 122 // keep a copy of our possible write value, and copy what is at the 123 // memory address into the packet 124 pkt->writeData((uint8_t *)&overwrite_val); 125 pkt->setData(blk_data); 126 127 if (pkt->req->isCondSwap()) { 128 if (pkt->getSize() == sizeof(uint64_t)) { 129 condition_val64 = pkt->req->getExtraData(); 130 overwrite_mem = !std::memcmp(&condition_val64, blk_data, 131 sizeof(uint64_t)); 132 } else if (pkt->getSize() == sizeof(uint32_t)) { 133 condition_val32 = (uint32_t)pkt->req->getExtraData(); 134 overwrite_mem = !std::memcmp(&condition_val32, blk_data, 135 sizeof(uint32_t)); 136 } else 137 panic("Invalid size for conditional read/write\n"); 138 } 139 140 if (overwrite_mem) { 141 std::memcpy(blk_data, &overwrite_val, pkt->getSize()); 142 blk->status |= BlkDirty; 143 } 144} 145 146 147void 148Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk, 149 bool deferred_response, bool pending_downgrade) 150{ 151 assert(pkt->isRequest()); 152 153 assert(blk && blk->isValid()); 154 // Occasionally this is not true... if we are a lower-level cache 155 // satisfying a string of Read and ReadEx requests from 156 // upper-level caches, a Read will mark the block as shared but we 157 // can satisfy a following ReadEx anyway since we can rely on the 158 // Read requester(s) to have buffered the ReadEx snoop and to 159 // invalidate their blocks after receiving them. 160 // assert(!pkt->needsExclusive() || blk->isWritable()); 161 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); 162 163 // Check RMW operations first since both isRead() and 164 // isWrite() will be true for them 165 if (pkt->cmd == MemCmd::SwapReq) { 166 cmpAndSwap(blk, pkt); 167 } else if (pkt->isWrite()) { 168 assert(blk->isWritable()); 169 // Write or WriteLine at the first cache with block in Exclusive 170 if (blk->checkWrite(pkt)) { 171 pkt->writeDataToBlock(blk->data, blkSize); 172 } 173 // Always mark the line as dirty even if we are a failed 174 // StoreCond so we supply data to any snoops that have 175 // appended themselves to this cache before knowing the store 176 // will fail. 177 blk->status |= BlkDirty; 178 DPRINTF(Cache, "%s for %s addr %#llx size %d (write)\n", __func__, 179 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 180 } else if (pkt->isRead()) { 181 if (pkt->isLLSC()) { 182 blk->trackLoadLocked(pkt); 183 } 184 pkt->setDataFromBlock(blk->data, blkSize); 185 // determine if this read is from a (coherent) cache, or not 186 // by looking at the command type; we could potentially add a 187 // packet attribute such as 'FromCache' to make this check a 188 // bit cleaner 189 if (pkt->cmd == MemCmd::ReadExReq || 190 pkt->cmd == MemCmd::ReadSharedReq || 191 pkt->cmd == MemCmd::ReadCleanReq || 192 pkt->cmd == MemCmd::SCUpgradeFailReq) { 193 assert(pkt->getSize() == blkSize); 194 // special handling for coherent block requests from 195 // upper-level caches 196 if (pkt->needsExclusive()) { 197 // sanity check 198 assert(pkt->cmd == MemCmd::ReadExReq || 199 pkt->cmd == MemCmd::SCUpgradeFailReq); 200 201 // if we have a dirty copy, make sure the recipient 202 // keeps it marked dirty 203 if (blk->isDirty()) { 204 pkt->assertMemInhibit(); 205 } 206 // on ReadExReq we give up our copy unconditionally, 207 // even if this cache is mostly inclusive, we may want 208 // to revisit this 209 invalidateBlock(blk); 210 } else if (blk->isWritable() && !pending_downgrade && 211 !pkt->sharedAsserted() && 212 pkt->cmd != MemCmd::ReadCleanReq) { 213 // we can give the requester an exclusive copy (by not 214 // asserting shared line) on a read request if: 215 // - we have an exclusive copy at this level (& below) 216 // - we don't have a pending snoop from below 217 // signaling another read request 218 // - no other cache above has a copy (otherwise it 219 // would have asseretd shared line on request) 220 // - we are not satisfying an instruction fetch (this 221 // prevents dirty data in the i-cache) 222 223 if (blk->isDirty()) { 224 // special considerations if we're owner: 225 if (!deferred_response) { 226 // if we are responding immediately and can 227 // signal that we're transferring ownership 228 // (inhibit set) along with exclusivity 229 // (shared not set), do so 230 pkt->assertMemInhibit(); 231 232 // if this cache is mostly inclusive, we keep 233 // the block as writable (exclusive), and pass 234 // it upwards as writable and dirty 235 // (modified), hence we have multiple caches 236 // considering the same block writable, 237 // something that we get away with due to the 238 // fact that: 1) this cache has been 239 // considered the ordering points and 240 // responded to all snoops up till now, and 2) 241 // we always snoop upwards before consulting 242 // the local cache, both on a normal request 243 // (snooping done by the crossbar), and on a 244 // snoop 245 blk->status &= ~BlkDirty; 246 247 // if this cache is mostly exclusive with 248 // respect to the cache above, drop the block 249 if (clusivity == Enums::mostly_excl) { 250 invalidateBlock(blk); 251 } 252 } else { 253 // if we're responding after our own miss, 254 // there's a window where the recipient didn't 255 // know it was getting ownership and may not 256 // have responded to snoops correctly, so we 257 // can't pass off ownership *or* exclusivity 258 pkt->assertShared(); 259 } 260 } 261 } else { 262 // otherwise only respond with a shared copy 263 pkt->assertShared(); 264 } 265 } 266 } else { 267 // Upgrade or Invalidate, since we have it Exclusively (E or 268 // M), we ack then invalidate. 269 assert(pkt->isUpgrade() || pkt->isInvalidate()); 270 271 // for invalidations we could be looking at the temp block 272 // (for upgrades we always allocate) 273 invalidateBlock(blk); 274 DPRINTF(Cache, "%s for %s addr %#llx size %d (invalidation)\n", 275 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 276 } 277} 278 279 280///////////////////////////////////////////////////// 281// 282// MSHR helper functions 283// 284///////////////////////////////////////////////////// 285 286 287void 288Cache::markInService(MSHR *mshr, bool pending_dirty_resp) 289{ 290 markInServiceInternal(mshr, pending_dirty_resp); 291} 292 293///////////////////////////////////////////////////// 294// 295// Access path: requests coming in from the CPU side 296// 297///////////////////////////////////////////////////// 298 299bool 300Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 301 PacketList &writebacks) 302{ 303 // sanity check 304 assert(pkt->isRequest()); 305 306 chatty_assert(!(isReadOnly && pkt->isWrite()), 307 "Should never see a write in a read-only cache %s\n", 308 name()); 309 310 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, 311 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 312 313 if (pkt->req->isUncacheable()) { 314 DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(), 315 pkt->req->isInstFetch() ? " (ifetch)" : "", 316 pkt->getAddr()); 317 318 // flush and invalidate any existing block 319 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure())); 320 if (old_blk && old_blk->isValid()) { 321 if (old_blk->isDirty() || writebackClean) 322 writebacks.push_back(writebackBlk(old_blk)); 323 else 324 writebacks.push_back(cleanEvictBlk(old_blk)); 325 tags->invalidate(old_blk); 326 old_blk->invalidate(); 327 } 328 329 blk = NULL; 330 // lookupLatency is the latency in case the request is uncacheable. 331 lat = lookupLatency; 332 return false; 333 } 334 335 ContextID id = pkt->req->hasContextId() ? 336 pkt->req->contextId() : InvalidContextID; 337 // Here lat is the value passed as parameter to accessBlock() function 338 // that can modify its value. 339 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id); 340 341 DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(), 342 pkt->req->isInstFetch() ? " (ifetch)" : "", 343 pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns", 344 blk ? "hit " + blk->print() : "miss"); 345 346 347 if (pkt->isEviction()) { 348 // We check for presence of block in above caches before issuing 349 // Writeback or CleanEvict to write buffer. Therefore the only 350 // possible cases can be of a CleanEvict packet coming from above 351 // encountering a Writeback generated in this cache peer cache and 352 // waiting in the write buffer. Cases of upper level peer caches 353 // generating CleanEvict and Writeback or simply CleanEvict and 354 // CleanEvict almost simultaneously will be caught by snoops sent out 355 // by crossbar. 356 std::vector<MSHR *> outgoing; 357 if (writeBuffer.findMatches(pkt->getAddr(), pkt->isSecure(), 358 outgoing)) { 359 assert(outgoing.size() == 1); 360 MSHR *wb_entry = outgoing[0]; 361 assert(wb_entry->getNumTargets() == 1); 362 PacketPtr wbPkt = wb_entry->getTarget()->pkt; 363 assert(wbPkt->isWriteback()); 364 365 if (pkt->isCleanEviction()) { 366 // The CleanEvict and WritebackClean snoops into other 367 // peer caches of the same level while traversing the 368 // crossbar. If a copy of the block is found, the 369 // packet is deleted in the crossbar. Hence, none of 370 // the other upper level caches connected to this 371 // cache have the block, so we can clear the 372 // BLOCK_CACHED flag in the Writeback if set and 373 // discard the CleanEvict by returning true. 374 wbPkt->clearBlockCached(); 375 return true; 376 } else { 377 assert(pkt->cmd == MemCmd::WritebackDirty); 378 // Dirty writeback from above trumps our clean 379 // writeback... discard here 380 // Note: markInService will remove entry from writeback buffer. 381 markInService(wb_entry, false); 382 delete wbPkt; 383 } 384 } 385 } 386 387 // Writeback handling is special case. We can write the block into 388 // the cache without having a writeable copy (or any copy at all). 389 if (pkt->isWriteback()) { 390 assert(blkSize == pkt->getSize()); 391 392 // we could get a clean writeback while we are having 393 // outstanding accesses to a block, do the simple thing for 394 // now and drop the clean writeback so that we do not upset 395 // any ordering/decisions about ownership already taken 396 if (pkt->cmd == MemCmd::WritebackClean && 397 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) { 398 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, " 399 "dropping\n", pkt->getAddr()); 400 return true; 401 } 402 403 if (blk == NULL) { 404 // need to do a replacement 405 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks); 406 if (blk == NULL) { 407 // no replaceable block available: give up, fwd to next level. 408 incMissCount(pkt); 409 return false; 410 } 411 tags->insertBlock(pkt, blk); 412 413 blk->status = (BlkValid | BlkReadable); 414 if (pkt->isSecure()) { 415 blk->status |= BlkSecure; 416 } 417 } 418 // only mark the block dirty if we got a writeback command, 419 // and leave it as is for a clean writeback 420 if (pkt->cmd == MemCmd::WritebackDirty) { 421 blk->status |= BlkDirty; 422 } 423 // if shared is not asserted we got the writeback in modified 424 // state, if it is asserted we are in the owned state 425 if (!pkt->sharedAsserted()) { 426 blk->status |= BlkWritable; 427 } 428 // nothing else to do; writeback doesn't expect response 429 assert(!pkt->needsResponse()); 430 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize); 431 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 432 incHitCount(pkt); 433 return true; 434 } else if (pkt->cmd == MemCmd::CleanEvict) { 435 if (blk != NULL) { 436 // Found the block in the tags, need to stop CleanEvict from 437 // propagating further down the hierarchy. Returning true will 438 // treat the CleanEvict like a satisfied write request and delete 439 // it. 440 return true; 441 } 442 // We didn't find the block here, propagate the CleanEvict further 443 // down the memory hierarchy. Returning false will treat the CleanEvict 444 // like a Writeback which could not find a replaceable block so has to 445 // go to next level. 446 return false; 447 } else if ((blk != NULL) && 448 (pkt->needsExclusive() ? blk->isWritable() 449 : blk->isReadable())) { 450 // OK to satisfy access 451 incHitCount(pkt); 452 satisfyCpuSideRequest(pkt, blk); 453 return true; 454 } 455 456 // Can't satisfy access normally... either no block (blk == NULL) 457 // or have block but need exclusive & only have shared. 458 459 incMissCount(pkt); 460 461 if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) { 462 // complete miss on store conditional... just give up now 463 pkt->req->setExtraData(0); 464 return true; 465 } 466 467 return false; 468} 469 470 471class ForwardResponseRecord : public Packet::SenderState 472{ 473 public: 474 475 ForwardResponseRecord() {} 476}; 477 478void 479Cache::doWritebacks(PacketList& writebacks, Tick forward_time) 480{ 481 while (!writebacks.empty()) { 482 PacketPtr wbPkt = writebacks.front(); 483 // We use forwardLatency here because we are copying writebacks to 484 // write buffer. Call isCachedAbove for both Writebacks and 485 // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag 486 // in Writebacks and discard CleanEvicts. 487 if (isCachedAbove(wbPkt)) { 488 if (wbPkt->cmd == MemCmd::CleanEvict) { 489 // Delete CleanEvict because cached copies exist above. The 490 // packet destructor will delete the request object because 491 // this is a non-snoop request packet which does not require a 492 // response. 493 delete wbPkt; 494 } else if (wbPkt->cmd == MemCmd::WritebackClean) { 495 // clean writeback, do not send since the block is 496 // still cached above 497 assert(writebackClean); 498 delete wbPkt; 499 } else { 500 assert(wbPkt->cmd == MemCmd::WritebackDirty); 501 // Set BLOCK_CACHED flag in Writeback and send below, so that 502 // the Writeback does not reset the bit corresponding to this 503 // address in the snoop filter below. 504 wbPkt->setBlockCached(); 505 allocateWriteBuffer(wbPkt, forward_time); 506 } 507 } else { 508 // If the block is not cached above, send packet below. Both 509 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 510 // reset the bit corresponding to this address in the snoop filter 511 // below. 512 allocateWriteBuffer(wbPkt, forward_time); 513 } 514 writebacks.pop_front(); 515 } 516} 517 518void 519Cache::doWritebacksAtomic(PacketList& writebacks) 520{ 521 while (!writebacks.empty()) { 522 PacketPtr wbPkt = writebacks.front(); 523 // Call isCachedAbove for both Writebacks and CleanEvicts. If 524 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks 525 // and discard CleanEvicts. 526 if (isCachedAbove(wbPkt, false)) { 527 if (wbPkt->cmd == MemCmd::WritebackDirty) { 528 // Set BLOCK_CACHED flag in Writeback and send below, 529 // so that the Writeback does not reset the bit 530 // corresponding to this address in the snoop filter 531 // below. We can discard CleanEvicts because cached 532 // copies exist above. Atomic mode isCachedAbove 533 // modifies packet to set BLOCK_CACHED flag 534 memSidePort->sendAtomic(wbPkt); 535 } 536 } else { 537 // If the block is not cached above, send packet below. Both 538 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 539 // reset the bit corresponding to this address in the snoop filter 540 // below. 541 memSidePort->sendAtomic(wbPkt); 542 } 543 writebacks.pop_front(); 544 // In case of CleanEvicts, the packet destructor will delete the 545 // request object because this is a non-snoop request packet which 546 // does not require a response. 547 delete wbPkt; 548 } 549} 550 551 552void 553Cache::recvTimingSnoopResp(PacketPtr pkt) 554{ 555 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, 556 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 557 558 assert(pkt->isResponse()); 559 560 // must be cache-to-cache response from upper to lower level 561 ForwardResponseRecord *rec = 562 dynamic_cast<ForwardResponseRecord *>(pkt->senderState); 563 assert(!system->bypassCaches()); 564 565 if (rec == NULL) { 566 // @todo What guarantee do we have that this HardPFResp is 567 // actually for this cache, and not a cache closer to the 568 // memory? 569 assert(pkt->cmd == MemCmd::HardPFResp); 570 // Check if it's a prefetch response and handle it. We shouldn't 571 // get any other kinds of responses without FRRs. 572 DPRINTF(Cache, "Got prefetch response from above for addr %#llx (%s)\n", 573 pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 574 recvTimingResp(pkt); 575 return; 576 } 577 578 pkt->popSenderState(); 579 delete rec; 580 // forwardLatency is set here because there is a response from an 581 // upper level cache. 582 // To pay the delay that occurs if the packet comes from the bus, 583 // we charge also headerDelay. 584 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay; 585 // Reset the timing of the packet. 586 pkt->headerDelay = pkt->payloadDelay = 0; 587 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time); 588} 589 590void 591Cache::promoteWholeLineWrites(PacketPtr pkt) 592{ 593 // Cache line clearing instructions 594 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) && 595 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) { 596 pkt->cmd = MemCmd::WriteLineReq; 597 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n"); 598 } 599} 600 601bool 602Cache::recvTimingReq(PacketPtr pkt) 603{ 604 DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print()); 605 606 assert(pkt->isRequest()); 607 608 // Just forward the packet if caches are disabled. 609 if (system->bypassCaches()) { 610 // @todo This should really enqueue the packet rather 611 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt); 612 assert(success); 613 return true; 614 } 615 616 promoteWholeLineWrites(pkt); 617 618 if (pkt->memInhibitAsserted()) { 619 // a cache above us (but not where the packet came from) is 620 // responding to the request 621 DPRINTF(Cache, "mem inhibited on addr %#llx (%s): not responding\n", 622 pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 623 624 // if the packet needs exclusive, and the cache that has 625 // promised to respond (setting the inhibit flag) is not 626 // providing exclusive (it is in O vs M state), we know that 627 // there may be other shared copies in the system; go out and 628 // invalidate them all 629 if (pkt->needsExclusive() && !pkt->isSupplyExclusive()) { 630 // create a downstream express snoop with cleared packet 631 // flags, there is no need to allocate any data as the 632 // packet is merely used to co-ordinate state transitions 633 Packet *snoop_pkt = new Packet(pkt, true, false); 634 635 // also reset the bus time that the original packet has 636 // not yet paid for 637 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0; 638 639 // make this an instantaneous express snoop, and let the 640 // other caches in the system know that the packet is 641 // inhibited, because we have found the authorative copy 642 // (O) that will supply the right data 643 snoop_pkt->setExpressSnoop(); 644 snoop_pkt->assertMemInhibit(); 645 646 // this express snoop travels towards the memory, and at 647 // every crossbar it is snooped upwards thus reaching 648 // every cache in the system 649 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt); 650 // express snoops always succeed 651 assert(success); 652 653 // main memory will delete the packet 654 } 655 656 // queue for deletion, as the sending cache is still relying 657 // on the packet 658 pendingDelete.reset(pkt); 659 660 // no need to take any action in this particular cache as the 661 // caches along the path to memory are allowed to keep lines 662 // in a shared state, and a cache above us already committed 663 // to responding 664 return true; 665 } 666 667 // anything that is merely forwarded pays for the forward latency and 668 // the delay provided by the crossbar 669 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 670 671 // We use lookupLatency here because it is used to specify the latency 672 // to access. 673 Cycles lat = lookupLatency; 674 CacheBlk *blk = NULL; 675 bool satisfied = false; 676 { 677 PacketList writebacks; 678 // Note that lat is passed by reference here. The function 679 // access() calls accessBlock() which can modify lat value. 680 satisfied = access(pkt, blk, lat, writebacks); 681 682 // copy writebacks to write buffer here to ensure they logically 683 // proceed anything happening below 684 doWritebacks(writebacks, forward_time); 685 } 686 687 // Here we charge the headerDelay that takes into account the latencies 688 // of the bus, if the packet comes from it. 689 // The latency charged it is just lat that is the value of lookupLatency 690 // modified by access() function, or if not just lookupLatency. 691 // In case of a hit we are neglecting response latency. 692 // In case of a miss we are neglecting forward latency. 693 Tick request_time = clockEdge(lat) + pkt->headerDelay; 694 // Here we reset the timing of the packet. 695 pkt->headerDelay = pkt->payloadDelay = 0; 696 697 // track time of availability of next prefetch, if any 698 Tick next_pf_time = MaxTick; 699 700 bool needsResponse = pkt->needsResponse(); 701 702 if (satisfied) { 703 // should never be satisfying an uncacheable access as we 704 // flush and invalidate any existing block as part of the 705 // lookup 706 assert(!pkt->req->isUncacheable()); 707 708 // hit (for all other request types) 709 710 if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) { 711 if (blk) 712 blk->status &= ~BlkHWPrefetched; 713 714 // Don't notify on SWPrefetch 715 if (!pkt->cmd.isSWPrefetch()) 716 next_pf_time = prefetcher->notify(pkt); 717 } 718 719 if (needsResponse) { 720 pkt->makeTimingResponse(); 721 // @todo: Make someone pay for this 722 pkt->headerDelay = pkt->payloadDelay = 0; 723 724 // In this case we are considering request_time that takes 725 // into account the delay of the xbar, if any, and just 726 // lat, neglecting responseLatency, modelling hit latency 727 // just as lookupLatency or or the value of lat overriden 728 // by access(), that calls accessBlock() function. 729 cpuSidePort->schedTimingResp(pkt, request_time, true); 730 } else { 731 DPRINTF(Cache, "%s satisfied %s addr %#llx, no response needed\n", 732 __func__, pkt->cmdString(), pkt->getAddr(), 733 pkt->getSize()); 734 735 // queue the packet for deletion, as the sending cache is 736 // still relying on it; if the block is found in access(), 737 // CleanEvict and Writeback messages will be deleted 738 // here as well 739 pendingDelete.reset(pkt); 740 } 741 } else { 742 // miss 743 744 Addr blk_addr = blockAlign(pkt->getAddr()); 745 746 // ignore any existing MSHR if we are dealing with an 747 // uncacheable request 748 MSHR *mshr = pkt->req->isUncacheable() ? nullptr : 749 mshrQueue.findMatch(blk_addr, pkt->isSecure()); 750 751 // Software prefetch handling: 752 // To keep the core from waiting on data it won't look at 753 // anyway, send back a response with dummy data. Miss handling 754 // will continue asynchronously. Unfortunately, the core will 755 // insist upon freeing original Packet/Request, so we have to 756 // create a new pair with a different lifecycle. Note that this 757 // processing happens before any MSHR munging on the behalf of 758 // this request because this new Request will be the one stored 759 // into the MSHRs, not the original. 760 if (pkt->cmd.isSWPrefetch()) { 761 assert(needsResponse); 762 assert(pkt->req->hasPaddr()); 763 assert(!pkt->req->isUncacheable()); 764 765 // There's no reason to add a prefetch as an additional target 766 // to an existing MSHR. If an outstanding request is already 767 // in progress, there is nothing for the prefetch to do. 768 // If this is the case, we don't even create a request at all. 769 PacketPtr pf = nullptr; 770 771 if (!mshr) { 772 // copy the request and create a new SoftPFReq packet 773 RequestPtr req = new Request(pkt->req->getPaddr(), 774 pkt->req->getSize(), 775 pkt->req->getFlags(), 776 pkt->req->masterId()); 777 pf = new Packet(req, pkt->cmd); 778 pf->allocate(); 779 assert(pf->getAddr() == pkt->getAddr()); 780 assert(pf->getSize() == pkt->getSize()); 781 } 782 783 pkt->makeTimingResponse(); 784 // for debugging, set all the bits in the response data 785 // (also keeps valgrind from complaining when debugging settings 786 // print out instruction results) 787 std::memset(pkt->getPtr<uint8_t>(), 0xFF, pkt->getSize()); 788 // request_time is used here, taking into account lat and the delay 789 // charged if the packet comes from the xbar. 790 cpuSidePort->schedTimingResp(pkt, request_time, true); 791 792 // If an outstanding request is in progress (we found an 793 // MSHR) this is set to null 794 pkt = pf; 795 } 796 797 if (mshr) { 798 /// MSHR hit 799 /// @note writebacks will be checked in getNextMSHR() 800 /// for any conflicting requests to the same block 801 802 //@todo remove hw_pf here 803 804 // Coalesce unless it was a software prefetch (see above). 805 if (pkt) { 806 assert(!pkt->isWriteback()); 807 // CleanEvicts corresponding to blocks which have 808 // outstanding requests in MSHRs are simply sunk here 809 if (pkt->cmd == MemCmd::CleanEvict) { 810 pendingDelete.reset(pkt); 811 } else { 812 DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n", 813 __func__, pkt->cmdString(), pkt->getAddr(), 814 pkt->getSize()); 815 816 assert(pkt->req->masterId() < system->maxMasters()); 817 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 818 if (mshr->threadNum != 0/*pkt->req->threadId()*/) { 819 mshr->threadNum = -1; 820 } 821 // We use forward_time here because it is the same 822 // considering new targets. We have multiple 823 // requests for the same address here. It 824 // specifies the latency to allocate an internal 825 // buffer and to schedule an event to the queued 826 // port and also takes into account the additional 827 // delay of the xbar. 828 mshr->allocateTarget(pkt, forward_time, order++, 829 allocOnFill(pkt->cmd)); 830 if (mshr->getNumTargets() == numTarget) { 831 noTargetMSHR = mshr; 832 setBlocked(Blocked_NoTargets); 833 // need to be careful with this... if this mshr isn't 834 // ready yet (i.e. time > curTick()), we don't want to 835 // move it ahead of mshrs that are ready 836 // mshrQueue.moveToFront(mshr); 837 } 838 } 839 // We should call the prefetcher reguardless if the request is 840 // satisfied or not, reguardless if the request is in the MSHR or 841 // not. The request could be a ReadReq hit, but still not 842 // satisfied (potentially because of a prior write to the same 843 // cache line. So, even when not satisfied, tehre is an MSHR 844 // already allocated for this, we need to let the prefetcher know 845 // about the request 846 if (prefetcher) { 847 // Don't notify on SWPrefetch 848 if (!pkt->cmd.isSWPrefetch()) 849 next_pf_time = prefetcher->notify(pkt); 850 } 851 } 852 } else { 853 // no MSHR 854 assert(pkt->req->masterId() < system->maxMasters()); 855 if (pkt->req->isUncacheable()) { 856 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++; 857 } else { 858 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 859 } 860 861 if (pkt->isEviction() || 862 (pkt->req->isUncacheable() && pkt->isWrite())) { 863 // We use forward_time here because there is an 864 // uncached memory write, forwarded to WriteBuffer. 865 allocateWriteBuffer(pkt, forward_time); 866 } else { 867 if (blk && blk->isValid()) { 868 // should have flushed and have no valid block 869 assert(!pkt->req->isUncacheable()); 870 871 // If we have a write miss to a valid block, we 872 // need to mark the block non-readable. Otherwise 873 // if we allow reads while there's an outstanding 874 // write miss, the read could return stale data 875 // out of the cache block... a more aggressive 876 // system could detect the overlap (if any) and 877 // forward data out of the MSHRs, but we don't do 878 // that yet. Note that we do need to leave the 879 // block valid so that it stays in the cache, in 880 // case we get an upgrade response (and hence no 881 // new data) when the write miss completes. 882 // As long as CPUs do proper store/load forwarding 883 // internally, and have a sufficiently weak memory 884 // model, this is probably unnecessary, but at some 885 // point it must have seemed like we needed it... 886 assert(pkt->needsExclusive()); 887 assert(!blk->isWritable()); 888 blk->status &= ~BlkReadable; 889 } 890 // Here we are using forward_time, modelling the latency of 891 // a miss (outbound) just as forwardLatency, neglecting the 892 // lookupLatency component. 893 allocateMissBuffer(pkt, forward_time); 894 } 895 896 if (prefetcher) { 897 // Don't notify on SWPrefetch 898 if (!pkt->cmd.isSWPrefetch()) 899 next_pf_time = prefetcher->notify(pkt); 900 } 901 } 902 } 903 904 if (next_pf_time != MaxTick) 905 schedMemSideSendEvent(next_pf_time); 906 907 return true; 908} 909 910 911// See comment in cache.hh. 912PacketPtr 913Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk, 914 bool needsExclusive) const 915{ 916 bool blkValid = blk && blk->isValid(); 917 918 if (cpu_pkt->req->isUncacheable()) { 919 // note that at the point we see the uncacheable request we 920 // flush any block, but there could be an outstanding MSHR, 921 // and the cache could have filled again before we actually 922 // send out the forwarded uncacheable request (blk could thus 923 // be non-null) 924 return NULL; 925 } 926 927 if (!blkValid && 928 (cpu_pkt->isUpgrade() || 929 cpu_pkt->isEviction())) { 930 // Writebacks that weren't allocated in access() and upgrades 931 // from upper-level caches that missed completely just go 932 // through. 933 return NULL; 934 } 935 936 assert(cpu_pkt->needsResponse()); 937 938 MemCmd cmd; 939 // @TODO make useUpgrades a parameter. 940 // Note that ownership protocols require upgrade, otherwise a 941 // write miss on a shared owned block will generate a ReadExcl, 942 // which will clobber the owned copy. 943 const bool useUpgrades = true; 944 if (blkValid && useUpgrades) { 945 // only reason to be here is that blk is shared 946 // (read-only) and we need exclusive 947 assert(needsExclusive); 948 assert(!blk->isWritable()); 949 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq; 950 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq || 951 cpu_pkt->cmd == MemCmd::StoreCondFailReq) { 952 // Even though this SC will fail, we still need to send out the 953 // request and get the data to supply it to other snoopers in the case 954 // where the determination the StoreCond fails is delayed due to 955 // all caches not being on the same local bus. 956 cmd = MemCmd::SCUpgradeFailReq; 957 } else if (cpu_pkt->cmd == MemCmd::WriteLineReq) { 958 // forward as invalidate to all other caches, this gives us 959 // the line in exclusive state, and invalidates all other 960 // copies 961 cmd = MemCmd::InvalidateReq; 962 } else { 963 // block is invalid 964 cmd = needsExclusive ? MemCmd::ReadExReq : 965 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq); 966 } 967 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize); 968 969 // if there are sharers in the upper levels, pass that info downstream 970 if (cpu_pkt->sharedAsserted()) { 971 // note that cpu_pkt may have spent a considerable time in the 972 // MSHR queue and that the information could possibly be out 973 // of date, however, there is no harm in conservatively 974 // assuming the block is shared 975 pkt->assertShared(); 976 DPRINTF(Cache, "%s passing shared from %s to %s addr %#llx size %d\n", 977 __func__, cpu_pkt->cmdString(), pkt->cmdString(), 978 pkt->getAddr(), pkt->getSize()); 979 } 980 981 // the packet should be block aligned 982 assert(pkt->getAddr() == blockAlign(pkt->getAddr())); 983 984 pkt->allocate(); 985 DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n", 986 __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(), 987 pkt->getSize()); 988 return pkt; 989} 990 991 992Tick 993Cache::recvAtomic(PacketPtr pkt) 994{ 995 // We are in atomic mode so we pay just for lookupLatency here. 996 Cycles lat = lookupLatency; 997 // @TODO: make this a parameter 998 bool last_level_cache = false; 999 1000 // Forward the request if the system is in cache bypass mode. 1001 if (system->bypassCaches()) 1002 return ticksToCycles(memSidePort->sendAtomic(pkt)); 1003 1004 promoteWholeLineWrites(pkt); 1005 1006 if (pkt->memInhibitAsserted()) { 1007 // have to invalidate ourselves and any lower caches even if 1008 // upper cache will be responding 1009 if (pkt->isInvalidate()) { 1010 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 1011 if (blk && blk->isValid()) { 1012 tags->invalidate(blk); 1013 blk->invalidate(); 1014 DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx (%s):" 1015 " invalidating\n", 1016 pkt->cmdString(), pkt->getAddr(), 1017 pkt->isSecure() ? "s" : "ns"); 1018 } 1019 if (!last_level_cache) { 1020 DPRINTF(Cache, "forwarding mem-inhibited %s on %#llx (%s)\n", 1021 pkt->cmdString(), pkt->getAddr(), 1022 pkt->isSecure() ? "s" : "ns"); 1023 lat += ticksToCycles(memSidePort->sendAtomic(pkt)); 1024 } 1025 } else { 1026 DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx: not responding\n", 1027 pkt->cmdString(), pkt->getAddr()); 1028 } 1029 1030 return lat * clockPeriod(); 1031 } 1032 1033 // should assert here that there are no outstanding MSHRs or 1034 // writebacks... that would mean that someone used an atomic 1035 // access in timing mode 1036 1037 CacheBlk *blk = NULL; 1038 PacketList writebacks; 1039 bool satisfied = access(pkt, blk, lat, writebacks); 1040 1041 // handle writebacks resulting from the access here to ensure they 1042 // logically proceed anything happening below 1043 doWritebacksAtomic(writebacks); 1044 1045 if (!satisfied) { 1046 // MISS 1047 1048 PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsExclusive()); 1049 1050 bool is_forward = (bus_pkt == NULL); 1051 1052 if (is_forward) { 1053 // just forwarding the same request to the next level 1054 // no local cache operation involved 1055 bus_pkt = pkt; 1056 } 1057 1058 DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n", 1059 bus_pkt->cmdString(), bus_pkt->getAddr(), 1060 bus_pkt->isSecure() ? "s" : "ns"); 1061 1062#if TRACING_ON 1063 CacheBlk::State old_state = blk ? blk->status : 0; 1064#endif 1065 1066 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt)); 1067 1068 // We are now dealing with the response handling 1069 DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n", 1070 bus_pkt->cmdString(), bus_pkt->getAddr(), 1071 bus_pkt->isSecure() ? "s" : "ns", 1072 old_state); 1073 1074 // If packet was a forward, the response (if any) is already 1075 // in place in the bus_pkt == pkt structure, so we don't need 1076 // to do anything. Otherwise, use the separate bus_pkt to 1077 // generate response to pkt and then delete it. 1078 if (!is_forward) { 1079 if (pkt->needsResponse()) { 1080 assert(bus_pkt->isResponse()); 1081 if (bus_pkt->isError()) { 1082 pkt->makeAtomicResponse(); 1083 pkt->copyError(bus_pkt); 1084 } else if (pkt->cmd == MemCmd::InvalidateReq) { 1085 if (blk) { 1086 // invalidate response to a cache that received 1087 // an invalidate request 1088 satisfyCpuSideRequest(pkt, blk); 1089 } 1090 } else if (pkt->cmd == MemCmd::WriteLineReq) { 1091 // note the use of pkt, not bus_pkt here. 1092 1093 // write-line request to the cache that promoted 1094 // the write to a whole line 1095 blk = handleFill(pkt, blk, writebacks, 1096 allocOnFill(pkt->cmd)); 1097 satisfyCpuSideRequest(pkt, blk); 1098 } else if (bus_pkt->isRead() || 1099 bus_pkt->cmd == MemCmd::UpgradeResp) { 1100 // we're updating cache state to allow us to 1101 // satisfy the upstream request from the cache 1102 blk = handleFill(bus_pkt, blk, writebacks, 1103 allocOnFill(pkt->cmd)); 1104 satisfyCpuSideRequest(pkt, blk); 1105 } else { 1106 // we're satisfying the upstream request without 1107 // modifying cache state, e.g., a write-through 1108 pkt->makeAtomicResponse(); 1109 } 1110 } 1111 delete bus_pkt; 1112 } 1113 } 1114 1115 // Note that we don't invoke the prefetcher at all in atomic mode. 1116 // It's not clear how to do it properly, particularly for 1117 // prefetchers that aggressively generate prefetch candidates and 1118 // rely on bandwidth contention to throttle them; these will tend 1119 // to pollute the cache in atomic mode since there is no bandwidth 1120 // contention. If we ever do want to enable prefetching in atomic 1121 // mode, though, this is the place to do it... see timingAccess() 1122 // for an example (though we'd want to issue the prefetch(es) 1123 // immediately rather than calling requestMemSideBus() as we do 1124 // there). 1125 1126 // do any writebacks resulting from the response handling 1127 doWritebacksAtomic(writebacks); 1128 1129 // if we used temp block, check to see if its valid and if so 1130 // clear it out, but only do so after the call to recvAtomic is 1131 // finished so that any downstream observers (such as a snoop 1132 // filter), first see the fill, and only then see the eviction 1133 if (blk == tempBlock && tempBlock->isValid()) { 1134 // the atomic CPU calls recvAtomic for fetch and load/store 1135 // sequentuially, and we may already have a tempBlock 1136 // writeback from the fetch that we have not yet sent 1137 if (tempBlockWriteback) { 1138 // if that is the case, write the prevoius one back, and 1139 // do not schedule any new event 1140 writebackTempBlockAtomic(); 1141 } else { 1142 // the writeback/clean eviction happens after the call to 1143 // recvAtomic has finished (but before any successive 1144 // calls), so that the response handling from the fill is 1145 // allowed to happen first 1146 schedule(writebackTempBlockAtomicEvent, curTick()); 1147 } 1148 1149 tempBlockWriteback = (blk->isDirty() || writebackClean) ? 1150 writebackBlk(blk) : cleanEvictBlk(blk); 1151 blk->invalidate(); 1152 } 1153 1154 if (pkt->needsResponse()) { 1155 pkt->makeAtomicResponse(); 1156 } 1157 1158 return lat * clockPeriod(); 1159} 1160 1161 1162void 1163Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide) 1164{ 1165 if (system->bypassCaches()) { 1166 // Packets from the memory side are snoop request and 1167 // shouldn't happen in bypass mode. 1168 assert(fromCpuSide); 1169 1170 // The cache should be flushed if we are in cache bypass mode, 1171 // so we don't need to check if we need to update anything. 1172 memSidePort->sendFunctional(pkt); 1173 return; 1174 } 1175 1176 Addr blk_addr = blockAlign(pkt->getAddr()); 1177 bool is_secure = pkt->isSecure(); 1178 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 1179 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 1180 1181 pkt->pushLabel(name()); 1182 1183 CacheBlkPrintWrapper cbpw(blk); 1184 1185 // Note that just because an L2/L3 has valid data doesn't mean an 1186 // L1 doesn't have a more up-to-date modified copy that still 1187 // needs to be found. As a result we always update the request if 1188 // we have it, but only declare it satisfied if we are the owner. 1189 1190 // see if we have data at all (owned or otherwise) 1191 bool have_data = blk && blk->isValid() 1192 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize, 1193 blk->data); 1194 1195 // data we have is dirty if marked as such or if valid & ownership 1196 // pending due to outstanding UpgradeReq 1197 bool have_dirty = 1198 have_data && (blk->isDirty() || 1199 (mshr && mshr->inService && mshr->isPendingDirty())); 1200 1201 bool done = have_dirty 1202 || cpuSidePort->checkFunctional(pkt) 1203 || mshrQueue.checkFunctional(pkt, blk_addr) 1204 || writeBuffer.checkFunctional(pkt, blk_addr) 1205 || memSidePort->checkFunctional(pkt); 1206 1207 DPRINTF(Cache, "functional %s %#llx (%s) %s%s%s\n", 1208 pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns", 1209 (blk && blk->isValid()) ? "valid " : "", 1210 have_data ? "data " : "", done ? "done " : ""); 1211 1212 // We're leaving the cache, so pop cache->name() label 1213 pkt->popLabel(); 1214 1215 if (done) { 1216 pkt->makeResponse(); 1217 } else { 1218 // if it came as a request from the CPU side then make sure it 1219 // continues towards the memory side 1220 if (fromCpuSide) { 1221 memSidePort->sendFunctional(pkt); 1222 } else if (forwardSnoops && cpuSidePort->isSnooping()) { 1223 // if it came from the memory side, it must be a snoop request 1224 // and we should only forward it if we are forwarding snoops 1225 cpuSidePort->sendFunctionalSnoop(pkt); 1226 } 1227 } 1228} 1229 1230 1231///////////////////////////////////////////////////// 1232// 1233// Response handling: responses from the memory side 1234// 1235///////////////////////////////////////////////////// 1236 1237 1238void 1239Cache::recvTimingResp(PacketPtr pkt) 1240{ 1241 assert(pkt->isResponse()); 1242 1243 // all header delay should be paid for by the crossbar, unless 1244 // this is a prefetch response from above 1245 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp, 1246 "%s saw a non-zero packet delay\n", name()); 1247 1248 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState); 1249 bool is_error = pkt->isError(); 1250 1251 assert(mshr); 1252 1253 if (is_error) { 1254 DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), " 1255 "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns", 1256 pkt->cmdString()); 1257 } 1258 1259 DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n", 1260 pkt->cmdString(), pkt->getAddr(), pkt->getSize(), 1261 pkt->isSecure() ? "s" : "ns"); 1262 1263 MSHRQueue *mq = mshr->queue; 1264 bool wasFull = mq->isFull(); 1265 1266 if (mshr == noTargetMSHR) { 1267 // we always clear at least one target 1268 clearBlocked(Blocked_NoTargets); 1269 noTargetMSHR = NULL; 1270 } 1271 1272 // Initial target is used just for stats 1273 MSHR::Target *initial_tgt = mshr->getTarget(); 1274 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); 1275 Tick miss_latency = curTick() - initial_tgt->recvTime; 1276 PacketList writebacks; 1277 // We need forward_time here because we have a call of 1278 // allocateWriteBuffer() that need this parameter to specify the 1279 // time to request the bus. In this case we use forward latency 1280 // because there is a writeback. We pay also here for headerDelay 1281 // that is charged of bus latencies if the packet comes from the 1282 // bus. 1283 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 1284 1285 if (pkt->req->isUncacheable()) { 1286 assert(pkt->req->masterId() < system->maxMasters()); 1287 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += 1288 miss_latency; 1289 } else { 1290 assert(pkt->req->masterId() < system->maxMasters()); 1291 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += 1292 miss_latency; 1293 } 1294 1295 // upgrade deferred targets if we got exclusive 1296 if (!pkt->sharedAsserted()) { 1297 mshr->promoteExclusive(); 1298 } 1299 1300 bool is_fill = !mshr->isForward && 1301 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp); 1302 1303 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 1304 1305 if (is_fill && !is_error) { 1306 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", 1307 pkt->getAddr()); 1308 1309 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill); 1310 assert(blk != NULL); 1311 } 1312 1313 // allow invalidation responses originating from write-line 1314 // requests to be discarded 1315 bool is_invalidate = pkt->isInvalidate(); 1316 1317 // First offset for critical word first calculations 1318 int initial_offset = initial_tgt->pkt->getOffset(blkSize); 1319 1320 while (mshr->hasTargets()) { 1321 MSHR::Target *target = mshr->getTarget(); 1322 Packet *tgt_pkt = target->pkt; 1323 1324 switch (target->source) { 1325 case MSHR::Target::FromCPU: 1326 Tick completion_time; 1327 // Here we charge on completion_time the delay of the xbar if the 1328 // packet comes from it, charged on headerDelay. 1329 completion_time = pkt->headerDelay; 1330 1331 // Software prefetch handling for cache closest to core 1332 if (tgt_pkt->cmd.isSWPrefetch()) { 1333 // a software prefetch would have already been ack'd immediately 1334 // with dummy data so the core would be able to retire it. 1335 // this request completes right here, so we deallocate it. 1336 delete tgt_pkt->req; 1337 delete tgt_pkt; 1338 break; // skip response 1339 } 1340 1341 // unlike the other packet flows, where data is found in other 1342 // caches or memory and brought back, write-line requests always 1343 // have the data right away, so the above check for "is fill?" 1344 // cannot actually be determined until examining the stored MSHR 1345 // state. We "catch up" with that logic here, which is duplicated 1346 // from above. 1347 if (tgt_pkt->cmd == MemCmd::WriteLineReq) { 1348 assert(!is_error); 1349 // we got the block in exclusive state, so promote any 1350 // deferred targets if possible 1351 mshr->promoteExclusive(); 1352 // NB: we use the original packet here and not the response! 1353 blk = handleFill(tgt_pkt, blk, writebacks, mshr->allocOnFill); 1354 assert(blk != NULL); 1355 1356 // treat as a fill, and discard the invalidation 1357 // response 1358 is_fill = true; 1359 is_invalidate = false; 1360 } 1361 1362 if (is_fill) { 1363 satisfyCpuSideRequest(tgt_pkt, blk, 1364 true, mshr->hasPostDowngrade()); 1365 1366 // How many bytes past the first request is this one 1367 int transfer_offset = 1368 tgt_pkt->getOffset(blkSize) - initial_offset; 1369 if (transfer_offset < 0) { 1370 transfer_offset += blkSize; 1371 } 1372 1373 // If not critical word (offset) return payloadDelay. 1374 // responseLatency is the latency of the return path 1375 // from lower level caches/memory to an upper level cache or 1376 // the core. 1377 completion_time += clockEdge(responseLatency) + 1378 (transfer_offset ? pkt->payloadDelay : 0); 1379 1380 assert(!tgt_pkt->req->isUncacheable()); 1381 1382 assert(tgt_pkt->req->masterId() < system->maxMasters()); 1383 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] += 1384 completion_time - target->recvTime; 1385 } else if (pkt->cmd == MemCmd::UpgradeFailResp) { 1386 // failed StoreCond upgrade 1387 assert(tgt_pkt->cmd == MemCmd::StoreCondReq || 1388 tgt_pkt->cmd == MemCmd::StoreCondFailReq || 1389 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq); 1390 // responseLatency is the latency of the return path 1391 // from lower level caches/memory to an upper level cache or 1392 // the core. 1393 completion_time += clockEdge(responseLatency) + 1394 pkt->payloadDelay; 1395 tgt_pkt->req->setExtraData(0); 1396 } else { 1397 // not a cache fill, just forwarding response 1398 // responseLatency is the latency of the return path 1399 // from lower level cahces/memory to the core. 1400 completion_time += clockEdge(responseLatency) + 1401 pkt->payloadDelay; 1402 if (pkt->isRead() && !is_error) { 1403 // sanity check 1404 assert(pkt->getAddr() == tgt_pkt->getAddr()); 1405 assert(pkt->getSize() >= tgt_pkt->getSize()); 1406 1407 tgt_pkt->setData(pkt->getConstPtr<uint8_t>()); 1408 } 1409 } 1410 tgt_pkt->makeTimingResponse(); 1411 // if this packet is an error copy that to the new packet 1412 if (is_error) 1413 tgt_pkt->copyError(pkt); 1414 if (tgt_pkt->cmd == MemCmd::ReadResp && 1415 (is_invalidate || mshr->hasPostInvalidate())) { 1416 // If intermediate cache got ReadRespWithInvalidate, 1417 // propagate that. Response should not have 1418 // isInvalidate() set otherwise. 1419 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate; 1420 DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n", 1421 __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr()); 1422 } 1423 // Reset the bus additional time as it is now accounted for 1424 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0; 1425 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true); 1426 break; 1427 1428 case MSHR::Target::FromPrefetcher: 1429 assert(tgt_pkt->cmd == MemCmd::HardPFReq); 1430 if (blk) 1431 blk->status |= BlkHWPrefetched; 1432 delete tgt_pkt->req; 1433 delete tgt_pkt; 1434 break; 1435 1436 case MSHR::Target::FromSnoop: 1437 // I don't believe that a snoop can be in an error state 1438 assert(!is_error); 1439 // response to snoop request 1440 DPRINTF(Cache, "processing deferred snoop...\n"); 1441 assert(!(is_invalidate && !mshr->hasPostInvalidate())); 1442 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate()); 1443 break; 1444 1445 default: 1446 panic("Illegal target->source enum %d\n", target->source); 1447 } 1448 1449 mshr->popTarget(); 1450 } 1451 1452 if (blk && blk->isValid()) { 1453 // an invalidate response stemming from a write line request 1454 // should not invalidate the block, so check if the 1455 // invalidation should be discarded 1456 if (is_invalidate || mshr->hasPostInvalidate()) { 1457 invalidateBlock(blk); 1458 } else if (mshr->hasPostDowngrade()) { 1459 blk->status &= ~BlkWritable; 1460 } 1461 } 1462 1463 if (mshr->promoteDeferredTargets()) { 1464 // avoid later read getting stale data while write miss is 1465 // outstanding.. see comment in timingAccess() 1466 if (blk) { 1467 blk->status &= ~BlkReadable; 1468 } 1469 mq = mshr->queue; 1470 mq->markPending(mshr); 1471 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay); 1472 } else { 1473 mq->deallocate(mshr); 1474 if (wasFull && !mq->isFull()) { 1475 clearBlocked((BlockedCause)mq->index); 1476 } 1477 1478 // Request the bus for a prefetch if this deallocation freed enough 1479 // MSHRs for a prefetch to take place 1480 if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) { 1481 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), 1482 clockEdge()); 1483 if (next_pf_time != MaxTick) 1484 schedMemSideSendEvent(next_pf_time); 1485 } 1486 } 1487 // reset the xbar additional timinig as it is now accounted for 1488 pkt->headerDelay = pkt->payloadDelay = 0; 1489 1490 // copy writebacks to write buffer 1491 doWritebacks(writebacks, forward_time); 1492 1493 // if we used temp block, check to see if its valid and then clear it out 1494 if (blk == tempBlock && tempBlock->isValid()) { 1495 // We use forwardLatency here because we are copying 1496 // Writebacks/CleanEvicts to write buffer. It specifies the latency to 1497 // allocate an internal buffer and to schedule an event to the 1498 // queued port. 1499 if (blk->isDirty() || writebackClean) { 1500 PacketPtr wbPkt = writebackBlk(blk); 1501 allocateWriteBuffer(wbPkt, forward_time); 1502 // Set BLOCK_CACHED flag if cached above. 1503 if (isCachedAbove(wbPkt)) 1504 wbPkt->setBlockCached(); 1505 } else { 1506 PacketPtr wcPkt = cleanEvictBlk(blk); 1507 // Check to see if block is cached above. If not allocate 1508 // write buffer 1509 if (isCachedAbove(wcPkt)) 1510 delete wcPkt; 1511 else 1512 allocateWriteBuffer(wcPkt, forward_time); 1513 } 1514 blk->invalidate(); 1515 } 1516 1517 DPRINTF(Cache, "Leaving %s with %s for addr %#llx\n", __func__, 1518 pkt->cmdString(), pkt->getAddr()); 1519 delete pkt; 1520} 1521 1522PacketPtr 1523Cache::writebackBlk(CacheBlk *blk) 1524{ 1525 chatty_assert(!isReadOnly || writebackClean, 1526 "Writeback from read-only cache"); 1527 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean)); 1528 1529 writebacks[Request::wbMasterId]++; 1530 1531 Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set), 1532 blkSize, 0, Request::wbMasterId); 1533 if (blk->isSecure()) 1534 req->setFlags(Request::SECURE); 1535 1536 req->taskId(blk->task_id); 1537 blk->task_id= ContextSwitchTaskId::Unknown; 1538 blk->tickInserted = curTick(); 1539 1540 PacketPtr pkt = 1541 new Packet(req, blk->isDirty() ? 1542 MemCmd::WritebackDirty : MemCmd::WritebackClean); 1543 1544 DPRINTF(Cache, "Create Writeback %#llx writable: %d, dirty: %d\n", 1545 pkt->getAddr(), blk->isWritable(), blk->isDirty()); 1546 1547 if (blk->isWritable()) { 1548 // not asserting shared means we pass the block in modified 1549 // state, mark our own block non-writeable 1550 blk->status &= ~BlkWritable; 1551 } else { 1552 // we are in the owned state, tell the receiver 1553 pkt->assertShared(); 1554 } 1555 1556 // make sure the block is not marked dirty 1557 blk->status &= ~BlkDirty; 1558 1559 pkt->allocate(); 1560 std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize); 1561 1562 return pkt; 1563} 1564 1565PacketPtr 1566Cache::cleanEvictBlk(CacheBlk *blk) 1567{ 1568 assert(!writebackClean); 1569 assert(blk && blk->isValid() && !blk->isDirty()); 1570 // Creating a zero sized write, a message to the snoop filter 1571 Request *req = 1572 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0, 1573 Request::wbMasterId); 1574 if (blk->isSecure()) 1575 req->setFlags(Request::SECURE); 1576 1577 req->taskId(blk->task_id); 1578 blk->task_id = ContextSwitchTaskId::Unknown; 1579 blk->tickInserted = curTick(); 1580 1581 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict); 1582 pkt->allocate(); 1583 DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(), 1584 pkt->req->isInstFetch() ? " (ifetch)" : "", 1585 pkt->getAddr()); 1586 1587 return pkt; 1588} 1589 1590void 1591Cache::memWriteback() 1592{ 1593 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor); 1594 tags->forEachBlk(visitor); 1595} 1596 1597void 1598Cache::memInvalidate() 1599{ 1600 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor); 1601 tags->forEachBlk(visitor); 1602} 1603 1604bool 1605Cache::isDirty() const 1606{ 1607 CacheBlkIsDirtyVisitor visitor; 1608 tags->forEachBlk(visitor); 1609 1610 return visitor.isDirty(); 1611} 1612 1613bool 1614Cache::writebackVisitor(CacheBlk &blk) 1615{ 1616 if (blk.isDirty()) { 1617 assert(blk.isValid()); 1618 1619 Request request(tags->regenerateBlkAddr(blk.tag, blk.set), 1620 blkSize, 0, Request::funcMasterId); 1621 request.taskId(blk.task_id); 1622 1623 Packet packet(&request, MemCmd::WriteReq); 1624 packet.dataStatic(blk.data); 1625 1626 memSidePort->sendFunctional(&packet); 1627 1628 blk.status &= ~BlkDirty; 1629 } 1630 1631 return true; 1632} 1633 1634bool 1635Cache::invalidateVisitor(CacheBlk &blk) 1636{ 1637 1638 if (blk.isDirty()) 1639 warn_once("Invalidating dirty cache lines. Expect things to break.\n"); 1640 1641 if (blk.isValid()) { 1642 assert(!blk.isDirty()); 1643 tags->invalidate(&blk); 1644 blk.invalidate(); 1645 } 1646 1647 return true; 1648} 1649 1650CacheBlk* 1651Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks) 1652{ 1653 CacheBlk *blk = tags->findVictim(addr); 1654 1655 // It is valid to return NULL if there is no victim 1656 if (!blk) 1657 return nullptr; 1658 1659 if (blk->isValid()) { 1660 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set); 1661 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); 1662 if (repl_mshr) { 1663 // must be an outstanding upgrade request 1664 // on a block we're about to replace... 1665 assert(!blk->isWritable() || blk->isDirty()); 1666 assert(repl_mshr->needsExclusive()); 1667 // too hard to replace block with transient state 1668 // allocation failed, block not inserted 1669 return NULL; 1670 } else { 1671 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n", 1672 repl_addr, blk->isSecure() ? "s" : "ns", 1673 addr, is_secure ? "s" : "ns", 1674 blk->isDirty() ? "writeback" : "clean"); 1675 1676 // Will send up Writeback/CleanEvict snoops via isCachedAbove 1677 // when pushing this writeback list into the write buffer. 1678 if (blk->isDirty() || writebackClean) { 1679 // Save writeback packet for handling by caller 1680 writebacks.push_back(writebackBlk(blk)); 1681 } else { 1682 writebacks.push_back(cleanEvictBlk(blk)); 1683 } 1684 } 1685 } 1686 1687 return blk; 1688} 1689 1690void 1691Cache::invalidateBlock(CacheBlk *blk) 1692{ 1693 if (blk != tempBlock) 1694 tags->invalidate(blk); 1695 blk->invalidate(); 1696} 1697 1698// Note that the reason we return a list of writebacks rather than 1699// inserting them directly in the write buffer is that this function 1700// is called by both atomic and timing-mode accesses, and in atomic 1701// mode we don't mess with the write buffer (we just perform the 1702// writebacks atomically once the original request is complete). 1703CacheBlk* 1704Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks, 1705 bool allocate) 1706{ 1707 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq); 1708 Addr addr = pkt->getAddr(); 1709 bool is_secure = pkt->isSecure(); 1710#if TRACING_ON 1711 CacheBlk::State old_state = blk ? blk->status : 0; 1712#endif 1713 1714 // When handling a fill, discard any CleanEvicts for the 1715 // same address in write buffer. 1716 Addr M5_VAR_USED blk_addr = blockAlign(pkt->getAddr()); 1717 std::vector<MSHR *> M5_VAR_USED wbs; 1718 assert (!writeBuffer.findMatches(blk_addr, is_secure, wbs)); 1719 1720 if (blk == NULL) { 1721 // better have read new data... 1722 assert(pkt->hasData()); 1723 1724 // only read responses and write-line requests have data; 1725 // note that we don't write the data here for write-line - that 1726 // happens in the subsequent satisfyCpuSideRequest. 1727 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq); 1728 1729 // need to do a replacement if allocating, otherwise we stick 1730 // with the temporary storage 1731 blk = allocate ? allocateBlock(addr, is_secure, writebacks) : NULL; 1732 1733 if (blk == NULL) { 1734 // No replaceable block or a mostly exclusive 1735 // cache... just use temporary storage to complete the 1736 // current request and then get rid of it 1737 assert(!tempBlock->isValid()); 1738 blk = tempBlock; 1739 tempBlock->set = tags->extractSet(addr); 1740 tempBlock->tag = tags->extractTag(addr); 1741 // @todo: set security state as well... 1742 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, 1743 is_secure ? "s" : "ns"); 1744 } else { 1745 tags->insertBlock(pkt, blk); 1746 } 1747 1748 // we should never be overwriting a valid block 1749 assert(!blk->isValid()); 1750 } else { 1751 // existing block... probably an upgrade 1752 assert(blk->tag == tags->extractTag(addr)); 1753 // either we're getting new data or the block should already be valid 1754 assert(pkt->hasData() || blk->isValid()); 1755 // don't clear block status... if block is already dirty we 1756 // don't want to lose that 1757 } 1758 1759 if (is_secure) 1760 blk->status |= BlkSecure; 1761 blk->status |= BlkValid | BlkReadable; 1762 1763 // sanity check for whole-line writes, which should always be 1764 // marked as writable as part of the fill, and then later marked 1765 // dirty as part of satisfyCpuSideRequest 1766 if (pkt->cmd == MemCmd::WriteLineReq) { 1767 assert(!pkt->sharedAsserted()); 1768 // at the moment other caches do not respond to the 1769 // invalidation requests corresponding to a whole-line write 1770 assert(!pkt->memInhibitAsserted()); 1771 } 1772 1773 if (!pkt->sharedAsserted()) { 1774 // we could get non-shared responses from memory (rather than 1775 // a cache) even in a read-only cache, note that we set this 1776 // bit even for a read-only cache as we use it to represent 1777 // the exclusive state 1778 blk->status |= BlkWritable; 1779 1780 // If we got this via cache-to-cache transfer (i.e., from a 1781 // cache that was an owner) and took away that owner's copy, 1782 // then we need to write it back. Normally this happens 1783 // anyway as a side effect of getting a copy to write it, but 1784 // there are cases (such as failed store conditionals or 1785 // compare-and-swaps) where we'll demand an exclusive copy but 1786 // end up not writing it. 1787 if (pkt->memInhibitAsserted()) { 1788 blk->status |= BlkDirty; 1789 1790 chatty_assert(!isReadOnly, "Should never see dirty snoop response " 1791 "in read-only cache %s\n", name()); 1792 } 1793 } 1794 1795 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", 1796 addr, is_secure ? "s" : "ns", old_state, blk->print()); 1797 1798 // if we got new data, copy it in (checking for a read response 1799 // and a response that has data is the same in the end) 1800 if (pkt->isRead()) { 1801 // sanity checks 1802 assert(pkt->hasData()); 1803 assert(pkt->getSize() == blkSize); 1804 1805 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize); 1806 } 1807 // We pay for fillLatency here. 1808 blk->whenReady = clockEdge() + fillLatency * clockPeriod() + 1809 pkt->payloadDelay; 1810 1811 return blk; 1812} 1813 1814 1815///////////////////////////////////////////////////// 1816// 1817// Snoop path: requests coming in from the memory side 1818// 1819///////////////////////////////////////////////////// 1820 1821void 1822Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data, 1823 bool already_copied, bool pending_inval) 1824{ 1825 // sanity check 1826 assert(req_pkt->isRequest()); 1827 assert(req_pkt->needsResponse()); 1828 1829 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, 1830 req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize()); 1831 // timing-mode snoop responses require a new packet, unless we 1832 // already made a copy... 1833 PacketPtr pkt = req_pkt; 1834 if (!already_copied) 1835 // do not clear flags, and allocate space for data if the 1836 // packet needs it (the only packets that carry data are read 1837 // responses) 1838 pkt = new Packet(req_pkt, false, req_pkt->isRead()); 1839 1840 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() || 1841 pkt->sharedAsserted()); 1842 pkt->makeTimingResponse(); 1843 if (pkt->isRead()) { 1844 pkt->setDataFromBlock(blk_data, blkSize); 1845 } 1846 if (pkt->cmd == MemCmd::ReadResp && pending_inval) { 1847 // Assume we defer a response to a read from a far-away cache 1848 // A, then later defer a ReadExcl from a cache B on the same 1849 // bus as us. We'll assert MemInhibit in both cases, but in 1850 // the latter case MemInhibit will keep the invalidation from 1851 // reaching cache A. This special response tells cache A that 1852 // it gets the block to satisfy its read, but must immediately 1853 // invalidate it. 1854 pkt->cmd = MemCmd::ReadRespWithInvalidate; 1855 } 1856 // Here we consider forward_time, paying for just forward latency and 1857 // also charging the delay provided by the xbar. 1858 // forward_time is used as send_time in next allocateWriteBuffer(). 1859 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 1860 // Here we reset the timing of the packet. 1861 pkt->headerDelay = pkt->payloadDelay = 0; 1862 DPRINTF(Cache, "%s created response: %s addr %#llx size %d tick: %lu\n", 1863 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(), 1864 forward_time); 1865 memSidePort->schedTimingSnoopResp(pkt, forward_time, true); 1866} 1867 1868uint32_t 1869Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing, 1870 bool is_deferred, bool pending_inval) 1871{ 1872 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, 1873 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 1874 // deferred snoops can only happen in timing mode 1875 assert(!(is_deferred && !is_timing)); 1876 // pending_inval only makes sense on deferred snoops 1877 assert(!(pending_inval && !is_deferred)); 1878 assert(pkt->isRequest()); 1879 1880 // the packet may get modified if we or a forwarded snooper 1881 // responds in atomic mode, so remember a few things about the 1882 // original packet up front 1883 bool invalidate = pkt->isInvalidate(); 1884 bool M5_VAR_USED needs_exclusive = pkt->needsExclusive(); 1885 1886 uint32_t snoop_delay = 0; 1887 1888 if (forwardSnoops) { 1889 // first propagate snoop upward to see if anyone above us wants to 1890 // handle it. save & restore packet src since it will get 1891 // rewritten to be relative to cpu-side bus (if any) 1892 bool alreadyResponded = pkt->memInhibitAsserted(); 1893 if (is_timing) { 1894 // copy the packet so that we can clear any flags before 1895 // forwarding it upwards, we also allocate data (passing 1896 // the pointer along in case of static data), in case 1897 // there is a snoop hit in upper levels 1898 Packet snoopPkt(pkt, true, true); 1899 snoopPkt.setExpressSnoop(); 1900 snoopPkt.pushSenderState(new ForwardResponseRecord()); 1901 // the snoop packet does not need to wait any additional 1902 // time 1903 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0; 1904 cpuSidePort->sendTimingSnoopReq(&snoopPkt); 1905 1906 // add the header delay (including crossbar and snoop 1907 // delays) of the upward snoop to the snoop delay for this 1908 // cache 1909 snoop_delay += snoopPkt.headerDelay; 1910 1911 if (snoopPkt.memInhibitAsserted()) { 1912 // cache-to-cache response from some upper cache 1913 assert(!alreadyResponded); 1914 pkt->assertMemInhibit(); 1915 } else { 1916 // no cache (or anyone else for that matter) will 1917 // respond, so delete the ForwardResponseRecord here 1918 delete snoopPkt.popSenderState(); 1919 } 1920 if (snoopPkt.sharedAsserted()) { 1921 pkt->assertShared(); 1922 } 1923 // If this request is a prefetch or clean evict and an upper level 1924 // signals block present, make sure to propagate the block 1925 // presence to the requester. 1926 if (snoopPkt.isBlockCached()) { 1927 pkt->setBlockCached(); 1928 } 1929 } else { 1930 cpuSidePort->sendAtomicSnoop(pkt); 1931 if (!alreadyResponded && pkt->memInhibitAsserted()) { 1932 // cache-to-cache response from some upper cache: 1933 // forward response to original requester 1934 assert(pkt->isResponse()); 1935 } 1936 } 1937 } 1938 1939 if (!blk || !blk->isValid()) { 1940 DPRINTF(Cache, "%s snoop miss for %s addr %#llx size %d\n", 1941 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 1942 return snoop_delay; 1943 } else { 1944 DPRINTF(Cache, "%s snoop hit for %s for addr %#llx size %d, " 1945 "old state is %s\n", __func__, pkt->cmdString(), 1946 pkt->getAddr(), pkt->getSize(), blk->print()); 1947 } 1948 1949 chatty_assert(!(isReadOnly && blk->isDirty()), 1950 "Should never have a dirty block in a read-only cache %s\n", 1951 name()); 1952 1953 // We may end up modifying both the block state and the packet (if 1954 // we respond in atomic mode), so just figure out what to do now 1955 // and then do it later. If we find dirty data while snooping for 1956 // an invalidate, we don't need to send a response. The 1957 // invalidation itself is taken care of below. 1958 bool respond = blk->isDirty() && pkt->needsResponse() && 1959 pkt->cmd != MemCmd::InvalidateReq; 1960 bool have_exclusive = blk->isWritable(); 1961 1962 // Invalidate any prefetch's from below that would strip write permissions 1963 // MemCmd::HardPFReq is only observed by upstream caches. After missing 1964 // above and in it's own cache, a new MemCmd::ReadReq is created that 1965 // downstream caches observe. 1966 if (pkt->mustCheckAbove()) { 1967 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from" 1968 " lower cache\n", pkt->getAddr(), pkt->cmdString()); 1969 pkt->setBlockCached(); 1970 return snoop_delay; 1971 } 1972 1973 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) { 1974 // reading non-exclusive shared data, note that we retain 1975 // the block in owned state if it is dirty, with the response 1976 // taken care of below, and otherwhise simply downgrade to 1977 // shared 1978 assert(!needs_exclusive); 1979 pkt->assertShared(); 1980 blk->status &= ~BlkWritable; 1981 } 1982 1983 if (respond) { 1984 // prevent anyone else from responding, cache as well as 1985 // memory, and also prevent any memory from even seeing the 1986 // request (with current inhibited semantics), note that this 1987 // applies both to reads and writes and that for writes it 1988 // works thanks to the fact that we still have dirty data and 1989 // will write it back at a later point 1990 assert(!pkt->memInhibitAsserted()); 1991 pkt->assertMemInhibit(); 1992 if (have_exclusive) { 1993 // in the case of an uncacheable request there is no point 1994 // in setting the exclusive flag, but since the recipient 1995 // does not care there is no harm in doing so, in any case 1996 // it is just a hint 1997 pkt->setSupplyExclusive(); 1998 } 1999 if (is_timing) { 2000 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval); 2001 } else { 2002 pkt->makeAtomicResponse(); 2003 pkt->setDataFromBlock(blk->data, blkSize); 2004 } 2005 } 2006 2007 if (!respond && is_timing && is_deferred) { 2008 // if it's a deferred timing snoop then we've made a copy of 2009 // both the request and the packet, and so if we're not using 2010 // those copies to respond and delete them here 2011 DPRINTF(Cache, "Deleting pkt %p and request %p for cmd %s addr: %p\n", 2012 pkt, pkt->req, pkt->cmdString(), pkt->getAddr()); 2013 2014 // the packets needs a response (just not from us), so we also 2015 // need to delete the request and not rely on the packet 2016 // destructor 2017 assert(pkt->needsResponse()); 2018 delete pkt->req; 2019 delete pkt; 2020 } 2021 2022 // Do this last in case it deallocates block data or something 2023 // like that 2024 if (invalidate) { 2025 invalidateBlock(blk); 2026 } 2027 2028 DPRINTF(Cache, "new state is %s\n", blk->print()); 2029 2030 return snoop_delay; 2031} 2032 2033 2034void 2035Cache::recvTimingSnoopReq(PacketPtr pkt) 2036{ 2037 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, 2038 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 2039 2040 // Snoops shouldn't happen when bypassing caches 2041 assert(!system->bypassCaches()); 2042 2043 // no need to snoop requests that are not in range 2044 if (!inRange(pkt->getAddr())) { 2045 return; 2046 } 2047 2048 bool is_secure = pkt->isSecure(); 2049 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 2050 2051 Addr blk_addr = blockAlign(pkt->getAddr()); 2052 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 2053 2054 // Update the latency cost of the snoop so that the crossbar can 2055 // account for it. Do not overwrite what other neighbouring caches 2056 // have already done, rather take the maximum. The update is 2057 // tentative, for cases where we return before an upward snoop 2058 // happens below. 2059 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, 2060 lookupLatency * clockPeriod()); 2061 2062 // Inform request(Prefetch, CleanEvict or Writeback) from below of 2063 // MSHR hit, set setBlockCached. 2064 if (mshr && pkt->mustCheckAbove()) { 2065 DPRINTF(Cache, "Setting block cached for %s from" 2066 "lower cache on mshr hit %#x\n", 2067 pkt->cmdString(), pkt->getAddr()); 2068 pkt->setBlockCached(); 2069 return; 2070 } 2071 2072 // Let the MSHR itself track the snoop and decide whether we want 2073 // to go ahead and do the regular cache snoop 2074 if (mshr && mshr->handleSnoop(pkt, order++)) { 2075 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)." 2076 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns", 2077 mshr->print()); 2078 2079 if (mshr->getNumTargets() > numTarget) 2080 warn("allocating bonus target for snoop"); //handle later 2081 return; 2082 } 2083 2084 //We also need to check the writeback buffers and handle those 2085 std::vector<MSHR *> writebacks; 2086 if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) { 2087 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n", 2088 pkt->getAddr(), is_secure ? "s" : "ns"); 2089 2090 // Look through writebacks for any cachable writes. 2091 // We should only ever find a single match 2092 assert(writebacks.size() == 1); 2093 MSHR *wb_entry = writebacks[0]; 2094 // Expect to see only Writebacks and/or CleanEvicts here, both of 2095 // which should not be generated for uncacheable data. 2096 assert(!wb_entry->isUncacheable()); 2097 // There should only be a single request responsible for generating 2098 // Writebacks/CleanEvicts. 2099 assert(wb_entry->getNumTargets() == 1); 2100 PacketPtr wb_pkt = wb_entry->getTarget()->pkt; 2101 assert(wb_pkt->isEviction()); 2102 2103 if (pkt->isEviction()) { 2104 // if the block is found in the write queue, set the BLOCK_CACHED 2105 // flag for Writeback/CleanEvict snoop. On return the snoop will 2106 // propagate the BLOCK_CACHED flag in Writeback packets and prevent 2107 // any CleanEvicts from travelling down the memory hierarchy. 2108 pkt->setBlockCached(); 2109 DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit" 2110 " %#x\n", pkt->cmdString(), pkt->getAddr()); 2111 return; 2112 } 2113 2114 if (wb_pkt->cmd == MemCmd::WritebackDirty) { 2115 assert(!pkt->memInhibitAsserted()); 2116 pkt->assertMemInhibit(); 2117 if (!pkt->needsExclusive()) { 2118 pkt->assertShared(); 2119 // the writeback is no longer passing exclusivity (the 2120 // receiving cache should consider the block owned 2121 // rather than modified) 2122 wb_pkt->assertShared(); 2123 } else { 2124 // if we're not asserting the shared line, we need to 2125 // invalidate our copy. we'll do that below as long as 2126 // the packet's invalidate flag is set... 2127 assert(pkt->isInvalidate()); 2128 } 2129 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(), 2130 false, false); 2131 } else { 2132 // on hitting a clean writeback we play it safe and do not 2133 // provide a response, the block may be dirty somewhere 2134 // else 2135 assert(wb_pkt->isCleanEviction()); 2136 // The cache technically holds the block until the 2137 // corresponding message reaches the crossbar 2138 // below. Therefore when a snoop encounters a CleanEvict 2139 // or WritebackClean message we must set assertShared 2140 // (just like when it encounters a Writeback) to avoid the 2141 // snoop filter prematurely clearing the holder bit in the 2142 // crossbar below 2143 if (!pkt->needsExclusive()) { 2144 pkt->assertShared(); 2145 // the writeback is no longer passing exclusivity (the 2146 // receiving cache should consider the block owned 2147 // rather than modified) 2148 wb_pkt->assertShared(); 2149 } else { 2150 assert(pkt->isInvalidate()); 2151 } 2152 } 2153 2154 if (pkt->isInvalidate()) { 2155 // Invalidation trumps our writeback... discard here 2156 // Note: markInService will remove entry from writeback buffer. 2157 markInService(wb_entry, false); 2158 delete wb_pkt; 2159 } 2160 } 2161 2162 // If this was a shared writeback, there may still be 2163 // other shared copies above that require invalidation. 2164 // We could be more selective and return here if the 2165 // request is non-exclusive or if the writeback is 2166 // exclusive. 2167 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false); 2168 2169 // Override what we did when we first saw the snoop, as we now 2170 // also have the cost of the upwards snoops to account for 2171 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay + 2172 lookupLatency * clockPeriod()); 2173} 2174 2175bool 2176Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) 2177{ 2178 // Express snoop responses from master to slave, e.g., from L1 to L2 2179 cache->recvTimingSnoopResp(pkt); 2180 return true; 2181} 2182 2183Tick 2184Cache::recvAtomicSnoop(PacketPtr pkt) 2185{ 2186 // Snoops shouldn't happen when bypassing caches 2187 assert(!system->bypassCaches()); 2188 2189 // no need to snoop requests that are not in range. 2190 if (!inRange(pkt->getAddr())) { 2191 return 0; 2192 } 2193 2194 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 2195 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false); 2196 return snoop_delay + lookupLatency * clockPeriod(); 2197} 2198 2199 2200MSHR * 2201Cache::getNextMSHR() 2202{ 2203 // Check both MSHR queue and write buffer for potential requests, 2204 // note that null does not mean there is no request, it could 2205 // simply be that it is not ready 2206 MSHR *miss_mshr = mshrQueue.getNextMSHR(); 2207 MSHR *write_mshr = writeBuffer.getNextMSHR(); 2208 2209 // If we got a write buffer request ready, first priority is a 2210 // full write buffer, otherwhise we favour the miss requests 2211 if (write_mshr && 2212 ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) || 2213 !miss_mshr)) { 2214 // need to search MSHR queue for conflicting earlier miss. 2215 MSHR *conflict_mshr = 2216 mshrQueue.findPending(write_mshr->blkAddr, 2217 write_mshr->isSecure); 2218 2219 if (conflict_mshr && conflict_mshr->order < write_mshr->order) { 2220 // Service misses in order until conflict is cleared. 2221 return conflict_mshr; 2222 2223 // @todo Note that we ignore the ready time of the conflict here 2224 } 2225 2226 // No conflicts; issue write 2227 return write_mshr; 2228 } else if (miss_mshr) { 2229 // need to check for conflicting earlier writeback 2230 MSHR *conflict_mshr = 2231 writeBuffer.findPending(miss_mshr->blkAddr, 2232 miss_mshr->isSecure); 2233 if (conflict_mshr) { 2234 // not sure why we don't check order here... it was in the 2235 // original code but commented out. 2236 2237 // The only way this happens is if we are 2238 // doing a write and we didn't have permissions 2239 // then subsequently saw a writeback (owned got evicted) 2240 // We need to make sure to perform the writeback first 2241 // To preserve the dirty data, then we can issue the write 2242 2243 // should we return write_mshr here instead? I.e. do we 2244 // have to flush writes in order? I don't think so... not 2245 // for Alpha anyway. Maybe for x86? 2246 return conflict_mshr; 2247 2248 // @todo Note that we ignore the ready time of the conflict here 2249 } 2250 2251 // No conflicts; issue read 2252 return miss_mshr; 2253 } 2254 2255 // fall through... no pending requests. Try a prefetch. 2256 assert(!miss_mshr && !write_mshr); 2257 if (prefetcher && mshrQueue.canPrefetch()) { 2258 // If we have a miss queue slot, we can try a prefetch 2259 PacketPtr pkt = prefetcher->getPacket(); 2260 if (pkt) { 2261 Addr pf_addr = blockAlign(pkt->getAddr()); 2262 if (!tags->findBlock(pf_addr, pkt->isSecure()) && 2263 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && 2264 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { 2265 // Update statistic on number of prefetches issued 2266 // (hwpf_mshr_misses) 2267 assert(pkt->req->masterId() < system->maxMasters()); 2268 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 2269 2270 // allocate an MSHR and return it, note 2271 // that we send the packet straight away, so do not 2272 // schedule the send 2273 return allocateMissBuffer(pkt, curTick(), false); 2274 } else { 2275 // free the request and packet 2276 delete pkt->req; 2277 delete pkt; 2278 } 2279 } 2280 } 2281 2282 return NULL; 2283} 2284 2285bool 2286Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const 2287{ 2288 if (!forwardSnoops) 2289 return false; 2290 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and 2291 // Writeback snoops into upper level caches to check for copies of the 2292 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict 2293 // packet, the cache can inform the crossbar below of presence or absence 2294 // of the block. 2295 if (is_timing) { 2296 Packet snoop_pkt(pkt, true, false); 2297 snoop_pkt.setExpressSnoop(); 2298 // Assert that packet is either Writeback or CleanEvict and not a 2299 // prefetch request because prefetch requests need an MSHR and may 2300 // generate a snoop response. 2301 assert(pkt->isEviction()); 2302 snoop_pkt.senderState = NULL; 2303 cpuSidePort->sendTimingSnoopReq(&snoop_pkt); 2304 // Writeback/CleanEvict snoops do not generate a snoop response. 2305 assert(!(snoop_pkt.memInhibitAsserted())); 2306 return snoop_pkt.isBlockCached(); 2307 } else { 2308 cpuSidePort->sendAtomicSnoop(pkt); 2309 return pkt->isBlockCached(); 2310 } 2311} 2312 2313PacketPtr 2314Cache::getTimingPacket() 2315{ 2316 MSHR *mshr = getNextMSHR(); 2317 2318 if (mshr == NULL) { 2319 return NULL; 2320 } 2321 2322 // use request from 1st target 2323 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 2324 PacketPtr pkt = NULL; 2325 2326 DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__, 2327 tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize()); 2328 2329 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); 2330 2331 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) { 2332 // We need to check the caches above us to verify that 2333 // they don't have a copy of this block in the dirty state 2334 // at the moment. Without this check we could get a stale 2335 // copy from memory that might get used in place of the 2336 // dirty one. 2337 Packet snoop_pkt(tgt_pkt, true, false); 2338 snoop_pkt.setExpressSnoop(); 2339 snoop_pkt.senderState = mshr; 2340 cpuSidePort->sendTimingSnoopReq(&snoop_pkt); 2341 2342 // Check to see if the prefetch was squashed by an upper cache (to 2343 // prevent us from grabbing the line) or if a Check to see if a 2344 // writeback arrived between the time the prefetch was placed in 2345 // the MSHRs and when it was selected to be sent or if the 2346 // prefetch was squashed by an upper cache. 2347 2348 // It is important to check memInhibitAsserted before 2349 // prefetchSquashed. If another cache has asserted MEM_INGIBIT, it 2350 // will be sending a response which will arrive at the MSHR 2351 // allocated ofr this request. Checking the prefetchSquash first 2352 // may result in the MSHR being prematurely deallocated. 2353 2354 if (snoop_pkt.memInhibitAsserted()) { 2355 // If we are getting a non-shared response it is dirty 2356 bool pending_dirty_resp = !snoop_pkt.sharedAsserted(); 2357 markInService(mshr, pending_dirty_resp); 2358 DPRINTF(Cache, "Upward snoop of prefetch for addr" 2359 " %#x (%s) hit\n", 2360 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns"); 2361 return NULL; 2362 } 2363 2364 if (snoop_pkt.isBlockCached() || blk != NULL) { 2365 DPRINTF(Cache, "Block present, prefetch squashed by cache. " 2366 "Deallocating mshr target %#x.\n", 2367 mshr->blkAddr); 2368 2369 // Deallocate the mshr target 2370 if (!tgt_pkt->isWriteback()) { 2371 if (mshr->queue->forceDeallocateTarget(mshr)) { 2372 // Clear block if this deallocation resulted freed an 2373 // mshr when all had previously been utilized 2374 clearBlocked((BlockedCause)(mshr->queue->index)); 2375 } 2376 return NULL; 2377 } else { 2378 // If this is a Writeback, and the snoops indicate that the blk 2379 // is cached above, set the BLOCK_CACHED flag in the Writeback 2380 // packet, so that it does not reset the bits corresponding to 2381 // this block in the snoop filter below. 2382 tgt_pkt->setBlockCached(); 2383 } 2384 } 2385 } 2386 2387 if (mshr->isForwardNoResponse()) { 2388 // no response expected, just forward packet as it is 2389 assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL); 2390 pkt = tgt_pkt; 2391 } else { 2392 pkt = getBusPacket(tgt_pkt, blk, mshr->needsExclusive()); 2393 2394 mshr->isForward = (pkt == NULL); 2395 2396 if (mshr->isForward) { 2397 // not a cache block request, but a response is expected 2398 // make copy of current packet to forward, keep current 2399 // copy for response handling 2400 pkt = new Packet(tgt_pkt, false, true); 2401 if (pkt->isWrite()) { 2402 pkt->setData(tgt_pkt->getConstPtr<uint8_t>()); 2403 } 2404 } 2405 } 2406 2407 assert(pkt != NULL); 2408 pkt->senderState = mshr; 2409 return pkt; 2410} 2411 2412 2413Tick 2414Cache::nextMSHRReadyTime() const 2415{ 2416 Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(), 2417 writeBuffer.nextMSHRReadyTime()); 2418 2419 // Don't signal prefetch ready time if no MSHRs available 2420 // Will signal once enoguh MSHRs are deallocated 2421 if (prefetcher && mshrQueue.canPrefetch()) { 2422 nextReady = std::min(nextReady, 2423 prefetcher->nextPrefetchReadyTime()); 2424 } 2425 2426 return nextReady; 2427} 2428 2429void 2430Cache::serialize(CheckpointOut &cp) const 2431{ 2432 bool dirty(isDirty()); 2433 2434 if (dirty) { 2435 warn("*** The cache still contains dirty data. ***\n"); 2436 warn(" Make sure to drain the system using the correct flags.\n"); 2437 warn(" This checkpoint will not restore correctly and dirty data in " 2438 "the cache will be lost!\n"); 2439 } 2440 2441 // Since we don't checkpoint the data in the cache, any dirty data 2442 // will be lost when restoring from a checkpoint of a system that 2443 // wasn't drained properly. Flag the checkpoint as invalid if the 2444 // cache contains dirty data. 2445 bool bad_checkpoint(dirty); 2446 SERIALIZE_SCALAR(bad_checkpoint); 2447} 2448 2449void 2450Cache::unserialize(CheckpointIn &cp) 2451{ 2452 bool bad_checkpoint; 2453 UNSERIALIZE_SCALAR(bad_checkpoint); 2454 if (bad_checkpoint) { 2455 fatal("Restoring from checkpoints with dirty caches is not supported " 2456 "in the classic memory system. Please remove any caches or " 2457 " drain them properly before taking checkpoints.\n"); 2458 } 2459} 2460 2461/////////////// 2462// 2463// CpuSidePort 2464// 2465/////////////// 2466 2467AddrRangeList 2468Cache::CpuSidePort::getAddrRanges() const 2469{ 2470 return cache->getAddrRanges(); 2471} 2472 2473bool 2474Cache::CpuSidePort::recvTimingReq(PacketPtr pkt) 2475{ 2476 assert(!cache->system->bypassCaches()); 2477 2478 bool success = false; 2479 2480 // always let inhibited requests through, even if blocked, 2481 // ultimately we should check if this is an express snoop, but at 2482 // the moment that flag is only set in the cache itself 2483 if (pkt->memInhibitAsserted()) { 2484 // do not change the current retry state 2485 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt); 2486 assert(bypass_success); 2487 return true; 2488 } else if (blocked || mustSendRetry) { 2489 // either already committed to send a retry, or blocked 2490 success = false; 2491 } else { 2492 // pass it on to the cache, and let the cache decide if we 2493 // have to retry or not 2494 success = cache->recvTimingReq(pkt); 2495 } 2496 2497 // remember if we have to retry 2498 mustSendRetry = !success; 2499 return success; 2500} 2501 2502Tick 2503Cache::CpuSidePort::recvAtomic(PacketPtr pkt) 2504{ 2505 return cache->recvAtomic(pkt); 2506} 2507 2508void 2509Cache::CpuSidePort::recvFunctional(PacketPtr pkt) 2510{ 2511 // functional request 2512 cache->functionalAccess(pkt, true); 2513} 2514 2515Cache:: 2516CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache, 2517 const std::string &_label) 2518 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache) 2519{ 2520} 2521 2522Cache* 2523CacheParams::create() 2524{ 2525 assert(tags); 2526 2527 return new Cache(this); 2528} 2529/////////////// 2530// 2531// MemSidePort 2532// 2533/////////////// 2534 2535bool 2536Cache::MemSidePort::recvTimingResp(PacketPtr pkt) 2537{ 2538 cache->recvTimingResp(pkt); 2539 return true; 2540} 2541 2542// Express snooping requests to memside port 2543void 2544Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) 2545{ 2546 // handle snooping requests 2547 cache->recvTimingSnoopReq(pkt); 2548} 2549 2550Tick 2551Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) 2552{ 2553 return cache->recvAtomicSnoop(pkt); 2554} 2555 2556void 2557Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) 2558{ 2559 // functional snoop (note that in contrast to atomic we don't have 2560 // a specific functionalSnoop method, as they have the same 2561 // behaviour regardless) 2562 cache->functionalAccess(pkt, false); 2563} 2564 2565void 2566Cache::CacheReqPacketQueue::sendDeferredPacket() 2567{ 2568 // sanity check 2569 assert(!waitingOnRetry); 2570 2571 // there should never be any deferred request packets in the 2572 // queue, instead we resly on the cache to provide the packets 2573 // from the MSHR queue or write queue 2574 assert(deferredPacketReadyTime() == MaxTick); 2575 2576 // check for request packets (requests & writebacks) 2577 PacketPtr pkt = cache.getTimingPacket(); 2578 if (pkt == NULL) { 2579 // can happen if e.g. we attempt a writeback and fail, but 2580 // before the retry, the writeback is eliminated because 2581 // we snoop another cache's ReadEx. 2582 } else { 2583 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState); 2584 // in most cases getTimingPacket allocates a new packet, and 2585 // we must delete it unless it is successfully sent 2586 bool delete_pkt = !mshr->isForwardNoResponse(); 2587 2588 // let our snoop responses go first if there are responses to 2589 // the same addresses we are about to writeback, note that 2590 // this creates a dependency between requests and snoop 2591 // responses, but that should not be a problem since there is 2592 // a chain already and the key is that the snoop responses can 2593 // sink unconditionally 2594 if (snoopRespQueue.hasAddr(pkt->getAddr())) { 2595 DPRINTF(CachePort, "Waiting for snoop response to be sent\n"); 2596 Tick when = snoopRespQueue.deferredPacketReadyTime(); 2597 schedSendEvent(when); 2598 2599 if (delete_pkt) 2600 delete pkt; 2601 2602 return; 2603 } 2604 2605 2606 waitingOnRetry = !masterPort.sendTimingReq(pkt); 2607 2608 if (waitingOnRetry) { 2609 DPRINTF(CachePort, "now waiting on a retry\n"); 2610 if (delete_pkt) { 2611 // we are awaiting a retry, but we 2612 // delete the packet and will be creating a new packet 2613 // when we get the opportunity 2614 delete pkt; 2615 } 2616 // note that we have now masked any requestBus and 2617 // schedSendEvent (we will wait for a retry before 2618 // doing anything), and this is so even if we do not 2619 // care about this packet and might override it before 2620 // it gets retried 2621 } else { 2622 // As part of the call to sendTimingReq the packet is 2623 // forwarded to all neighbouring caches (and any 2624 // caches above them) as a snoop. The packet is also 2625 // sent to any potential cache below as the 2626 // interconnect is not allowed to buffer the 2627 // packet. Thus at this point we know if any of the 2628 // neighbouring, or the downstream cache is 2629 // responding, and if so, if it is with a dirty line 2630 // or not. 2631 bool pending_dirty_resp = !pkt->sharedAsserted() && 2632 pkt->memInhibitAsserted(); 2633 2634 cache.markInService(mshr, pending_dirty_resp); 2635 } 2636 } 2637 2638 // if we succeeded and are not waiting for a retry, schedule the 2639 // next send considering when the next MSHR is ready, note that 2640 // snoop responses have their own packet queue and thus schedule 2641 // their own events 2642 if (!waitingOnRetry) { 2643 schedSendEvent(cache.nextMSHRReadyTime()); 2644 } 2645} 2646 2647Cache:: 2648MemSidePort::MemSidePort(const std::string &_name, Cache *_cache, 2649 const std::string &_label) 2650 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), 2651 _reqQueue(*_cache, *this, _snoopRespQueue, _label), 2652 _snoopRespQueue(*_cache, *this, _label), cache(_cache) 2653{ 2654} 2655