cache.cc revision 11197
1/*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nathan Binkert
44 *          Steve Reinhardt
45 *          Ron Dreslinski
46 *          Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/misc.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "mem/cache/blk.hh"
62#include "mem/cache/mshr.hh"
63#include "mem/cache/prefetch/base.hh"
64#include "sim/sim_exit.hh"
65
66Cache::Cache(const CacheParams *p)
67    : BaseCache(p, p->system->cacheLineSize()),
68      tags(p->tags),
69      prefetcher(p->prefetcher),
70      doFastWrites(true),
71      prefetchOnAccess(p->prefetch_on_access),
72      clusivity(p->clusivity),
73      tempBlockWriteback(nullptr),
74      writebackTempBlockAtomicEvent(this, false,
75                                    EventBase::Delayed_Writeback_Pri)
76{
77    tempBlock = new CacheBlk();
78    tempBlock->data = new uint8_t[blkSize];
79
80    cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
81                                  "CpuSidePort");
82    memSidePort = new MemSidePort(p->name + ".mem_side", this,
83                                  "MemSidePort");
84
85    tags->setCache(this);
86    if (prefetcher)
87        prefetcher->setCache(this);
88}
89
90Cache::~Cache()
91{
92    delete [] tempBlock->data;
93    delete tempBlock;
94
95    delete cpuSidePort;
96    delete memSidePort;
97}
98
99void
100Cache::regStats()
101{
102    BaseCache::regStats();
103}
104
105void
106Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
107{
108    assert(pkt->isRequest());
109
110    uint64_t overwrite_val;
111    bool overwrite_mem;
112    uint64_t condition_val64;
113    uint32_t condition_val32;
114
115    int offset = tags->extractBlkOffset(pkt->getAddr());
116    uint8_t *blk_data = blk->data + offset;
117
118    assert(sizeof(uint64_t) >= pkt->getSize());
119
120    overwrite_mem = true;
121    // keep a copy of our possible write value, and copy what is at the
122    // memory address into the packet
123    pkt->writeData((uint8_t *)&overwrite_val);
124    pkt->setData(blk_data);
125
126    if (pkt->req->isCondSwap()) {
127        if (pkt->getSize() == sizeof(uint64_t)) {
128            condition_val64 = pkt->req->getExtraData();
129            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
130                                         sizeof(uint64_t));
131        } else if (pkt->getSize() == sizeof(uint32_t)) {
132            condition_val32 = (uint32_t)pkt->req->getExtraData();
133            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
134                                         sizeof(uint32_t));
135        } else
136            panic("Invalid size for conditional read/write\n");
137    }
138
139    if (overwrite_mem) {
140        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
141        blk->status |= BlkDirty;
142    }
143}
144
145
146void
147Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
148                             bool deferred_response, bool pending_downgrade)
149{
150    assert(pkt->isRequest());
151
152    assert(blk && blk->isValid());
153    // Occasionally this is not true... if we are a lower-level cache
154    // satisfying a string of Read and ReadEx requests from
155    // upper-level caches, a Read will mark the block as shared but we
156    // can satisfy a following ReadEx anyway since we can rely on the
157    // Read requester(s) to have buffered the ReadEx snoop and to
158    // invalidate their blocks after receiving them.
159    // assert(!pkt->needsExclusive() || blk->isWritable());
160    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
161
162    // Check RMW operations first since both isRead() and
163    // isWrite() will be true for them
164    if (pkt->cmd == MemCmd::SwapReq) {
165        cmpAndSwap(blk, pkt);
166    } else if (pkt->isWrite()) {
167        assert(blk->isWritable());
168        // Write or WriteLine at the first cache with block in Exclusive
169        if (blk->checkWrite(pkt)) {
170            pkt->writeDataToBlock(blk->data, blkSize);
171        }
172        // Always mark the line as dirty even if we are a failed
173        // StoreCond so we supply data to any snoops that have
174        // appended themselves to this cache before knowing the store
175        // will fail.
176        blk->status |= BlkDirty;
177        DPRINTF(Cache, "%s for %s addr %#llx size %d (write)\n", __func__,
178                pkt->cmdString(), pkt->getAddr(), pkt->getSize());
179    } else if (pkt->isRead()) {
180        if (pkt->isLLSC()) {
181            blk->trackLoadLocked(pkt);
182        }
183        pkt->setDataFromBlock(blk->data, blkSize);
184        // determine if this read is from a (coherent) cache, or not
185        // by looking at the command type; we could potentially add a
186        // packet attribute such as 'FromCache' to make this check a
187        // bit cleaner
188        if (pkt->cmd == MemCmd::ReadExReq ||
189            pkt->cmd == MemCmd::ReadSharedReq ||
190            pkt->cmd == MemCmd::ReadCleanReq ||
191            pkt->cmd == MemCmd::SCUpgradeFailReq) {
192            assert(pkt->getSize() == blkSize);
193            // special handling for coherent block requests from
194            // upper-level caches
195            if (pkt->needsExclusive()) {
196                // sanity check
197                assert(pkt->cmd == MemCmd::ReadExReq ||
198                       pkt->cmd == MemCmd::SCUpgradeFailReq);
199
200                // if we have a dirty copy, make sure the recipient
201                // keeps it marked dirty
202                if (blk->isDirty()) {
203                    pkt->assertMemInhibit();
204                }
205                // on ReadExReq we give up our copy unconditionally,
206                // even if this cache is mostly inclusive, we may want
207                // to revisit this
208                invalidateBlock(blk);
209            } else if (blk->isWritable() && !pending_downgrade &&
210                       !pkt->sharedAsserted() &&
211                       pkt->cmd != MemCmd::ReadCleanReq) {
212                // we can give the requester an exclusive copy (by not
213                // asserting shared line) on a read request if:
214                // - we have an exclusive copy at this level (& below)
215                // - we don't have a pending snoop from below
216                //   signaling another read request
217                // - no other cache above has a copy (otherwise it
218                //   would have asseretd shared line on request)
219                // - we are not satisfying an instruction fetch (this
220                //   prevents dirty data in the i-cache)
221
222                if (blk->isDirty()) {
223                    // special considerations if we're owner:
224                    if (!deferred_response) {
225                        // if we are responding immediately and can
226                        // signal that we're transferring ownership
227                        // (inhibit set) along with exclusivity
228                        // (shared not set), do so
229                        pkt->assertMemInhibit();
230
231                        // if this cache is mostly inclusive, we keep
232                        // the block as writable (exclusive), and pass
233                        // it upwards as writable and dirty
234                        // (modified), hence we have multiple caches
235                        // considering the same block writable,
236                        // something that we get away with due to the
237                        // fact that: 1) this cache has been
238                        // considered the ordering points and
239                        // responded to all snoops up till now, and 2)
240                        // we always snoop upwards before consulting
241                        // the local cache, both on a normal request
242                        // (snooping done by the crossbar), and on a
243                        // snoop
244                        blk->status &= ~BlkDirty;
245
246                        // if this cache is mostly exclusive with
247                        // respect to the cache above, drop the block
248                        if (clusivity == Enums::mostly_excl) {
249                            invalidateBlock(blk);
250                        }
251                    } else {
252                        // if we're responding after our own miss,
253                        // there's a window where the recipient didn't
254                        // know it was getting ownership and may not
255                        // have responded to snoops correctly, so we
256                        // can't pass off ownership *or* exclusivity
257                        pkt->assertShared();
258                    }
259                }
260            } else {
261                // otherwise only respond with a shared copy
262                pkt->assertShared();
263            }
264        }
265    } else {
266        // Upgrade or Invalidate, since we have it Exclusively (E or
267        // M), we ack then invalidate.
268        assert(pkt->isUpgrade() || pkt->isInvalidate());
269
270        // for invalidations we could be looking at the temp block
271        // (for upgrades we always allocate)
272        invalidateBlock(blk);
273        DPRINTF(Cache, "%s for %s addr %#llx size %d (invalidation)\n",
274                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
275    }
276}
277
278
279/////////////////////////////////////////////////////
280//
281// MSHR helper functions
282//
283/////////////////////////////////////////////////////
284
285
286void
287Cache::markInService(MSHR *mshr, bool pending_dirty_resp)
288{
289    markInServiceInternal(mshr, pending_dirty_resp);
290}
291
292/////////////////////////////////////////////////////
293//
294// Access path: requests coming in from the CPU side
295//
296/////////////////////////////////////////////////////
297
298bool
299Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
300              PacketList &writebacks)
301{
302    // sanity check
303    assert(pkt->isRequest());
304
305    chatty_assert(!(isReadOnly && pkt->isWrite()),
306                  "Should never see a write in a read-only cache %s\n",
307                  name());
308
309    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
310            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
311
312    if (pkt->req->isUncacheable()) {
313        DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
314                pkt->req->isInstFetch() ? " (ifetch)" : "",
315                pkt->getAddr());
316
317        // flush and invalidate any existing block
318        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
319        if (old_blk && old_blk->isValid()) {
320            if (old_blk->isDirty())
321                writebacks.push_back(writebackBlk(old_blk));
322            else
323                writebacks.push_back(cleanEvictBlk(old_blk));
324            tags->invalidate(old_blk);
325            old_blk->invalidate();
326        }
327
328        blk = NULL;
329        // lookupLatency is the latency in case the request is uncacheable.
330        lat = lookupLatency;
331        return false;
332    }
333
334    ContextID id = pkt->req->hasContextId() ?
335        pkt->req->contextId() : InvalidContextID;
336    // Here lat is the value passed as parameter to accessBlock() function
337    // that can modify its value.
338    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
339
340    DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
341            pkt->req->isInstFetch() ? " (ifetch)" : "",
342            pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
343            blk ? "hit " + blk->print() : "miss");
344
345
346    if (pkt->evictingBlock()) {
347        // We check for presence of block in above caches before issuing
348        // Writeback or CleanEvict to write buffer. Therefore the only
349        // possible cases can be of a CleanEvict packet coming from above
350        // encountering a Writeback generated in this cache peer cache and
351        // waiting in the write buffer. Cases of upper level peer caches
352        // generating CleanEvict and Writeback or simply CleanEvict and
353        // CleanEvict almost simultaneously will be caught by snoops sent out
354        // by crossbar.
355        std::vector<MSHR *> outgoing;
356        if (writeBuffer.findMatches(pkt->getAddr(), pkt->isSecure(),
357                                   outgoing)) {
358            assert(outgoing.size() == 1);
359            PacketPtr wbPkt = outgoing[0]->getTarget()->pkt;
360            assert(pkt->cmd == MemCmd::CleanEvict &&
361                   wbPkt->cmd == MemCmd::Writeback);
362            // As the CleanEvict is coming from above, it would have snooped
363            // into other peer caches of the same level while traversing the
364            // crossbar. If a copy of the block had been found, the CleanEvict
365            // would have been deleted in the crossbar. Now that the
366            // CleanEvict is here we can be sure none of the other upper level
367            // caches connected to this cache have the block, so we can clear
368            // the BLOCK_CACHED flag in the Writeback if set and discard the
369            // CleanEvict by returning true.
370            wbPkt->clearBlockCached();
371            return true;
372        }
373    }
374
375    // Writeback handling is special case.  We can write the block into
376    // the cache without having a writeable copy (or any copy at all).
377    if (pkt->cmd == MemCmd::Writeback) {
378        assert(blkSize == pkt->getSize());
379        if (blk == NULL) {
380            // need to do a replacement
381            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
382            if (blk == NULL) {
383                // no replaceable block available: give up, fwd to next level.
384                incMissCount(pkt);
385                return false;
386            }
387            tags->insertBlock(pkt, blk);
388
389            blk->status = (BlkValid | BlkReadable);
390            if (pkt->isSecure()) {
391                blk->status |= BlkSecure;
392            }
393        }
394        blk->status |= BlkDirty;
395        // if shared is not asserted we got the writeback in modified
396        // state, if it is asserted we are in the owned state
397        if (!pkt->sharedAsserted()) {
398            blk->status |= BlkWritable;
399        }
400        // nothing else to do; writeback doesn't expect response
401        assert(!pkt->needsResponse());
402        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
403        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
404        incHitCount(pkt);
405        return true;
406    } else if (pkt->cmd == MemCmd::CleanEvict) {
407        if (blk != NULL) {
408            // Found the block in the tags, need to stop CleanEvict from
409            // propagating further down the hierarchy. Returning true will
410            // treat the CleanEvict like a satisfied write request and delete
411            // it.
412            return true;
413        }
414        // We didn't find the block here, propagate the CleanEvict further
415        // down the memory hierarchy. Returning false will treat the CleanEvict
416        // like a Writeback which could not find a replaceable block so has to
417        // go to next level.
418        return false;
419    } else if ((blk != NULL) &&
420               (pkt->needsExclusive() ? blk->isWritable()
421                                      : blk->isReadable())) {
422        // OK to satisfy access
423        incHitCount(pkt);
424        satisfyCpuSideRequest(pkt, blk);
425        return true;
426    }
427
428    // Can't satisfy access normally... either no block (blk == NULL)
429    // or have block but need exclusive & only have shared.
430
431    incMissCount(pkt);
432
433    if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) {
434        // complete miss on store conditional... just give up now
435        pkt->req->setExtraData(0);
436        return true;
437    }
438
439    return false;
440}
441
442
443class ForwardResponseRecord : public Packet::SenderState
444{
445  public:
446
447    ForwardResponseRecord() {}
448};
449
450void
451Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
452{
453    while (!writebacks.empty()) {
454        PacketPtr wbPkt = writebacks.front();
455        // We use forwardLatency here because we are copying writebacks to
456        // write buffer.  Call isCachedAbove for both Writebacks and
457        // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
458        // in Writebacks and discard CleanEvicts.
459        if (isCachedAbove(wbPkt)) {
460            if (wbPkt->cmd == MemCmd::CleanEvict) {
461                // Delete CleanEvict because cached copies exist above. The
462                // packet destructor will delete the request object because
463                // this is a non-snoop request packet which does not require a
464                // response.
465                delete wbPkt;
466            } else {
467                // Set BLOCK_CACHED flag in Writeback and send below, so that
468                // the Writeback does not reset the bit corresponding to this
469                // address in the snoop filter below.
470                wbPkt->setBlockCached();
471                allocateWriteBuffer(wbPkt, forward_time);
472            }
473        } else {
474            // If the block is not cached above, send packet below. Both
475            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
476            // reset the bit corresponding to this address in the snoop filter
477            // below.
478            allocateWriteBuffer(wbPkt, forward_time);
479        }
480        writebacks.pop_front();
481    }
482}
483
484void
485Cache::doWritebacksAtomic(PacketList& writebacks)
486{
487    while (!writebacks.empty()) {
488        PacketPtr wbPkt = writebacks.front();
489        // Call isCachedAbove for both Writebacks and CleanEvicts. If
490        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
491        // and discard CleanEvicts.
492        if (isCachedAbove(wbPkt, false)) {
493            if (wbPkt->cmd == MemCmd::Writeback) {
494                // Set BLOCK_CACHED flag in Writeback and send below,
495                // so that the Writeback does not reset the bit
496                // corresponding to this address in the snoop filter
497                // below. We can discard CleanEvicts because cached
498                // copies exist above. Atomic mode isCachedAbove
499                // modifies packet to set BLOCK_CACHED flag
500                memSidePort->sendAtomic(wbPkt);
501            }
502        } else {
503            // If the block is not cached above, send packet below. Both
504            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
505            // reset the bit corresponding to this address in the snoop filter
506            // below.
507            memSidePort->sendAtomic(wbPkt);
508        }
509        writebacks.pop_front();
510        // In case of CleanEvicts, the packet destructor will delete the
511        // request object because this is a non-snoop request packet which
512        // does not require a response.
513        delete wbPkt;
514    }
515}
516
517
518void
519Cache::recvTimingSnoopResp(PacketPtr pkt)
520{
521    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
522            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
523
524    assert(pkt->isResponse());
525
526    // must be cache-to-cache response from upper to lower level
527    ForwardResponseRecord *rec =
528        dynamic_cast<ForwardResponseRecord *>(pkt->senderState);
529    assert(!system->bypassCaches());
530
531    if (rec == NULL) {
532        // @todo What guarantee do we have that this HardPFResp is
533        // actually for this cache, and not a cache closer to the
534        // memory?
535        assert(pkt->cmd == MemCmd::HardPFResp);
536        // Check if it's a prefetch response and handle it. We shouldn't
537        // get any other kinds of responses without FRRs.
538        DPRINTF(Cache, "Got prefetch response from above for addr %#llx (%s)\n",
539                pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
540        recvTimingResp(pkt);
541        return;
542    }
543
544    pkt->popSenderState();
545    delete rec;
546    // forwardLatency is set here because there is a response from an
547    // upper level cache.
548    // To pay the delay that occurs if the packet comes from the bus,
549    // we charge also headerDelay.
550    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
551    // Reset the timing of the packet.
552    pkt->headerDelay = pkt->payloadDelay = 0;
553    memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
554}
555
556void
557Cache::promoteWholeLineWrites(PacketPtr pkt)
558{
559    // Cache line clearing instructions
560    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
561        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
562        pkt->cmd = MemCmd::WriteLineReq;
563        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
564    }
565}
566
567bool
568Cache::recvTimingReq(PacketPtr pkt)
569{
570    DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
571
572    assert(pkt->isRequest());
573
574    // Just forward the packet if caches are disabled.
575    if (system->bypassCaches()) {
576        // @todo This should really enqueue the packet rather
577        bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
578        assert(success);
579        return true;
580    }
581
582    promoteWholeLineWrites(pkt);
583
584    if (pkt->memInhibitAsserted()) {
585        // a cache above us (but not where the packet came from) is
586        // responding to the request
587        DPRINTF(Cache, "mem inhibited on addr %#llx (%s): not responding\n",
588                pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
589
590        // if the packet needs exclusive, and the cache that has
591        // promised to respond (setting the inhibit flag) is not
592        // providing exclusive (it is in O vs M state), we know that
593        // there may be other shared copies in the system; go out and
594        // invalidate them all
595        if (pkt->needsExclusive() && !pkt->isSupplyExclusive()) {
596            // create a downstream express snoop with cleared packet
597            // flags, there is no need to allocate any data as the
598            // packet is merely used to co-ordinate state transitions
599            Packet *snoop_pkt = new Packet(pkt, true, false);
600
601            // also reset the bus time that the original packet has
602            // not yet paid for
603            snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
604
605            // make this an instantaneous express snoop, and let the
606            // other caches in the system know that the packet is
607            // inhibited, because we have found the authorative copy
608            // (O) that will supply the right data
609            snoop_pkt->setExpressSnoop();
610            snoop_pkt->assertMemInhibit();
611
612            // this express snoop travels towards the memory, and at
613            // every crossbar it is snooped upwards thus reaching
614            // every cache in the system
615            bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
616            // express snoops always succeed
617            assert(success);
618
619            // main memory will delete the packet
620        }
621
622        // queue for deletion, as the sending cache is still relying
623        // on the packet
624        pendingDelete.reset(pkt);
625
626        // no need to take any action in this particular cache as the
627        // caches along the path to memory are allowed to keep lines
628        // in a shared state, and a cache above us already committed
629        // to responding
630        return true;
631    }
632
633    // anything that is merely forwarded pays for the forward latency and
634    // the delay provided by the crossbar
635    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
636
637    // We use lookupLatency here because it is used to specify the latency
638    // to access.
639    Cycles lat = lookupLatency;
640    CacheBlk *blk = NULL;
641    bool satisfied = false;
642    {
643        PacketList writebacks;
644        // Note that lat is passed by reference here. The function
645        // access() calls accessBlock() which can modify lat value.
646        satisfied = access(pkt, blk, lat, writebacks);
647
648        // copy writebacks to write buffer here to ensure they logically
649        // proceed anything happening below
650        doWritebacks(writebacks, forward_time);
651    }
652
653    // Here we charge the headerDelay that takes into account the latencies
654    // of the bus, if the packet comes from it.
655    // The latency charged it is just lat that is the value of lookupLatency
656    // modified by access() function, or if not just lookupLatency.
657    // In case of a hit we are neglecting response latency.
658    // In case of a miss we are neglecting forward latency.
659    Tick request_time = clockEdge(lat) + pkt->headerDelay;
660    // Here we reset the timing of the packet.
661    pkt->headerDelay = pkt->payloadDelay = 0;
662
663    // track time of availability of next prefetch, if any
664    Tick next_pf_time = MaxTick;
665
666    bool needsResponse = pkt->needsResponse();
667
668    if (satisfied) {
669        // should never be satisfying an uncacheable access as we
670        // flush and invalidate any existing block as part of the
671        // lookup
672        assert(!pkt->req->isUncacheable());
673
674        // hit (for all other request types)
675
676        if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
677            if (blk)
678                blk->status &= ~BlkHWPrefetched;
679
680            // Don't notify on SWPrefetch
681            if (!pkt->cmd.isSWPrefetch())
682                next_pf_time = prefetcher->notify(pkt);
683        }
684
685        if (needsResponse) {
686            pkt->makeTimingResponse();
687            // @todo: Make someone pay for this
688            pkt->headerDelay = pkt->payloadDelay = 0;
689
690            // In this case we are considering request_time that takes
691            // into account the delay of the xbar, if any, and just
692            // lat, neglecting responseLatency, modelling hit latency
693            // just as lookupLatency or or the value of lat overriden
694            // by access(), that calls accessBlock() function.
695            cpuSidePort->schedTimingResp(pkt, request_time, true);
696        } else {
697            // queue the packet for deletion, as the sending cache is
698            // still relying on it; if the block is found in access(),
699            // CleanEvict and Writeback messages will be deleted
700            // here as well
701            pendingDelete.reset(pkt);
702        }
703    } else {
704        // miss
705
706        Addr blk_addr = blockAlign(pkt->getAddr());
707
708        // ignore any existing MSHR if we are dealing with an
709        // uncacheable request
710        MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
711            mshrQueue.findMatch(blk_addr, pkt->isSecure());
712
713        // Software prefetch handling:
714        // To keep the core from waiting on data it won't look at
715        // anyway, send back a response with dummy data. Miss handling
716        // will continue asynchronously. Unfortunately, the core will
717        // insist upon freeing original Packet/Request, so we have to
718        // create a new pair with a different lifecycle. Note that this
719        // processing happens before any MSHR munging on the behalf of
720        // this request because this new Request will be the one stored
721        // into the MSHRs, not the original.
722        if (pkt->cmd.isSWPrefetch()) {
723            assert(needsResponse);
724            assert(pkt->req->hasPaddr());
725            assert(!pkt->req->isUncacheable());
726
727            // There's no reason to add a prefetch as an additional target
728            // to an existing MSHR. If an outstanding request is already
729            // in progress, there is nothing for the prefetch to do.
730            // If this is the case, we don't even create a request at all.
731            PacketPtr pf = nullptr;
732
733            if (!mshr) {
734                // copy the request and create a new SoftPFReq packet
735                RequestPtr req = new Request(pkt->req->getPaddr(),
736                                             pkt->req->getSize(),
737                                             pkt->req->getFlags(),
738                                             pkt->req->masterId());
739                pf = new Packet(req, pkt->cmd);
740                pf->allocate();
741                assert(pf->getAddr() == pkt->getAddr());
742                assert(pf->getSize() == pkt->getSize());
743            }
744
745            pkt->makeTimingResponse();
746            // for debugging, set all the bits in the response data
747            // (also keeps valgrind from complaining when debugging settings
748            //  print out instruction results)
749            std::memset(pkt->getPtr<uint8_t>(), 0xFF, pkt->getSize());
750            // request_time is used here, taking into account lat and the delay
751            // charged if the packet comes from the xbar.
752            cpuSidePort->schedTimingResp(pkt, request_time, true);
753
754            // If an outstanding request is in progress (we found an
755            // MSHR) this is set to null
756            pkt = pf;
757        }
758
759        if (mshr) {
760            /// MSHR hit
761            /// @note writebacks will be checked in getNextMSHR()
762            /// for any conflicting requests to the same block
763
764            //@todo remove hw_pf here
765
766            // Coalesce unless it was a software prefetch (see above).
767            if (pkt) {
768                assert(pkt->cmd != MemCmd::Writeback);
769                // CleanEvicts corresponding to blocks which have outstanding
770                // requests in MSHRs can be deleted here.
771                if (pkt->cmd == MemCmd::CleanEvict) {
772                    pendingDelete.reset(pkt);
773                } else {
774                    DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n",
775                            __func__, pkt->cmdString(), pkt->getAddr(),
776                            pkt->getSize());
777
778                    assert(pkt->req->masterId() < system->maxMasters());
779                    mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
780                    if (mshr->threadNum != 0/*pkt->req->threadId()*/) {
781                        mshr->threadNum = -1;
782                    }
783                    // We use forward_time here because it is the same
784                    // considering new targets. We have multiple
785                    // requests for the same address here. It
786                    // specifies the latency to allocate an internal
787                    // buffer and to schedule an event to the queued
788                    // port and also takes into account the additional
789                    // delay of the xbar.
790                    mshr->allocateTarget(pkt, forward_time, order++,
791                                         allocOnFill(pkt->cmd));
792                    if (mshr->getNumTargets() == numTarget) {
793                        noTargetMSHR = mshr;
794                        setBlocked(Blocked_NoTargets);
795                        // need to be careful with this... if this mshr isn't
796                        // ready yet (i.e. time > curTick()), we don't want to
797                        // move it ahead of mshrs that are ready
798                        // mshrQueue.moveToFront(mshr);
799                    }
800                }
801                // We should call the prefetcher reguardless if the request is
802                // satisfied or not, reguardless if the request is in the MSHR or
803                // not.  The request could be a ReadReq hit, but still not
804                // satisfied (potentially because of a prior write to the same
805                // cache line.  So, even when not satisfied, tehre is an MSHR
806                // already allocated for this, we need to let the prefetcher know
807                // about the request
808                if (prefetcher) {
809                    // Don't notify on SWPrefetch
810                    if (!pkt->cmd.isSWPrefetch())
811                        next_pf_time = prefetcher->notify(pkt);
812                }
813            }
814        } else {
815            // no MSHR
816            assert(pkt->req->masterId() < system->maxMasters());
817            if (pkt->req->isUncacheable()) {
818                mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
819            } else {
820                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
821            }
822
823            if (pkt->evictingBlock() ||
824                (pkt->req->isUncacheable() && pkt->isWrite())) {
825                // We use forward_time here because there is an
826                // uncached memory write, forwarded to WriteBuffer.
827                allocateWriteBuffer(pkt, forward_time);
828            } else {
829                if (blk && blk->isValid()) {
830                    // should have flushed and have no valid block
831                    assert(!pkt->req->isUncacheable());
832
833                    // If we have a write miss to a valid block, we
834                    // need to mark the block non-readable.  Otherwise
835                    // if we allow reads while there's an outstanding
836                    // write miss, the read could return stale data
837                    // out of the cache block... a more aggressive
838                    // system could detect the overlap (if any) and
839                    // forward data out of the MSHRs, but we don't do
840                    // that yet.  Note that we do need to leave the
841                    // block valid so that it stays in the cache, in
842                    // case we get an upgrade response (and hence no
843                    // new data) when the write miss completes.
844                    // As long as CPUs do proper store/load forwarding
845                    // internally, and have a sufficiently weak memory
846                    // model, this is probably unnecessary, but at some
847                    // point it must have seemed like we needed it...
848                    assert(pkt->needsExclusive());
849                    assert(!blk->isWritable());
850                    blk->status &= ~BlkReadable;
851                }
852                // Here we are using forward_time, modelling the latency of
853                // a miss (outbound) just as forwardLatency, neglecting the
854                // lookupLatency component.
855                allocateMissBuffer(pkt, forward_time);
856            }
857
858            if (prefetcher) {
859                // Don't notify on SWPrefetch
860                if (!pkt->cmd.isSWPrefetch())
861                    next_pf_time = prefetcher->notify(pkt);
862            }
863        }
864    }
865
866    if (next_pf_time != MaxTick)
867        schedMemSideSendEvent(next_pf_time);
868
869    return true;
870}
871
872
873// See comment in cache.hh.
874PacketPtr
875Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk,
876                    bool needsExclusive) const
877{
878    bool blkValid = blk && blk->isValid();
879
880    if (cpu_pkt->req->isUncacheable()) {
881        // note that at the point we see the uncacheable request we
882        // flush any block, but there could be an outstanding MSHR,
883        // and the cache could have filled again before we actually
884        // send out the forwarded uncacheable request (blk could thus
885        // be non-null)
886        return NULL;
887    }
888
889    if (!blkValid &&
890        (cpu_pkt->isUpgrade() ||
891         cpu_pkt->evictingBlock())) {
892        // Writebacks that weren't allocated in access() and upgrades
893        // from upper-level caches that missed completely just go
894        // through.
895        return NULL;
896    }
897
898    assert(cpu_pkt->needsResponse());
899
900    MemCmd cmd;
901    // @TODO make useUpgrades a parameter.
902    // Note that ownership protocols require upgrade, otherwise a
903    // write miss on a shared owned block will generate a ReadExcl,
904    // which will clobber the owned copy.
905    const bool useUpgrades = true;
906    if (blkValid && useUpgrades) {
907        // only reason to be here is that blk is shared
908        // (read-only) and we need exclusive
909        assert(needsExclusive);
910        assert(!blk->isWritable());
911        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
912    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
913               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
914        // Even though this SC will fail, we still need to send out the
915        // request and get the data to supply it to other snoopers in the case
916        // where the determination the StoreCond fails is delayed due to
917        // all caches not being on the same local bus.
918        cmd = MemCmd::SCUpgradeFailReq;
919    } else if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
920        // forward as invalidate to all other caches, this gives us
921        // the line in exclusive state, and invalidates all other
922        // copies
923        cmd = MemCmd::InvalidateReq;
924    } else {
925        // block is invalid
926        cmd = needsExclusive ? MemCmd::ReadExReq :
927            (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
928    }
929    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
930
931    // if there are sharers in the upper levels, pass that info downstream
932    if (cpu_pkt->sharedAsserted()) {
933        // note that cpu_pkt may have spent a considerable time in the
934        // MSHR queue and that the information could possibly be out
935        // of date, however, there is no harm in conservatively
936        // assuming the block is shared
937        pkt->assertShared();
938        DPRINTF(Cache, "%s passing shared from %s to %s addr %#llx size %d\n",
939                __func__, cpu_pkt->cmdString(), pkt->cmdString(),
940                pkt->getAddr(), pkt->getSize());
941    }
942
943    // the packet should be block aligned
944    assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
945
946    pkt->allocate();
947    DPRINTF(Cache, "%s created %s from %s for  addr %#llx size %d\n",
948            __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
949            pkt->getSize());
950    return pkt;
951}
952
953
954Tick
955Cache::recvAtomic(PacketPtr pkt)
956{
957    // We are in atomic mode so we pay just for lookupLatency here.
958    Cycles lat = lookupLatency;
959    // @TODO: make this a parameter
960    bool last_level_cache = false;
961
962    // Forward the request if the system is in cache bypass mode.
963    if (system->bypassCaches())
964        return ticksToCycles(memSidePort->sendAtomic(pkt));
965
966    promoteWholeLineWrites(pkt);
967
968    if (pkt->memInhibitAsserted()) {
969        // have to invalidate ourselves and any lower caches even if
970        // upper cache will be responding
971        if (pkt->isInvalidate()) {
972            CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
973            if (blk && blk->isValid()) {
974                tags->invalidate(blk);
975                blk->invalidate();
976                DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx (%s):"
977                        " invalidating\n",
978                        pkt->cmdString(), pkt->getAddr(),
979                        pkt->isSecure() ? "s" : "ns");
980            }
981            if (!last_level_cache) {
982                DPRINTF(Cache, "forwarding mem-inhibited %s on %#llx (%s)\n",
983                        pkt->cmdString(), pkt->getAddr(),
984                        pkt->isSecure() ? "s" : "ns");
985                lat += ticksToCycles(memSidePort->sendAtomic(pkt));
986            }
987        } else {
988            DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx: not responding\n",
989                    pkt->cmdString(), pkt->getAddr());
990        }
991
992        return lat * clockPeriod();
993    }
994
995    // should assert here that there are no outstanding MSHRs or
996    // writebacks... that would mean that someone used an atomic
997    // access in timing mode
998
999    CacheBlk *blk = NULL;
1000    PacketList writebacks;
1001    bool satisfied = access(pkt, blk, lat, writebacks);
1002
1003    // handle writebacks resulting from the access here to ensure they
1004    // logically proceed anything happening below
1005    doWritebacksAtomic(writebacks);
1006
1007    if (!satisfied) {
1008        // MISS
1009
1010        PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsExclusive());
1011
1012        bool is_forward = (bus_pkt == NULL);
1013
1014        if (is_forward) {
1015            // just forwarding the same request to the next level
1016            // no local cache operation involved
1017            bus_pkt = pkt;
1018        }
1019
1020        DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
1021                bus_pkt->cmdString(), bus_pkt->getAddr(),
1022                bus_pkt->isSecure() ? "s" : "ns");
1023
1024#if TRACING_ON
1025        CacheBlk::State old_state = blk ? blk->status : 0;
1026#endif
1027
1028        lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1029
1030        // We are now dealing with the response handling
1031        DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n",
1032                bus_pkt->cmdString(), bus_pkt->getAddr(),
1033                bus_pkt->isSecure() ? "s" : "ns",
1034                old_state);
1035
1036        // If packet was a forward, the response (if any) is already
1037        // in place in the bus_pkt == pkt structure, so we don't need
1038        // to do anything.  Otherwise, use the separate bus_pkt to
1039        // generate response to pkt and then delete it.
1040        if (!is_forward) {
1041            if (pkt->needsResponse()) {
1042                assert(bus_pkt->isResponse());
1043                if (bus_pkt->isError()) {
1044                    pkt->makeAtomicResponse();
1045                    pkt->copyError(bus_pkt);
1046                } else if (pkt->cmd == MemCmd::InvalidateReq) {
1047                    if (blk) {
1048                        // invalidate response to a cache that received
1049                        // an invalidate request
1050                        satisfyCpuSideRequest(pkt, blk);
1051                    }
1052                } else if (pkt->cmd == MemCmd::WriteLineReq) {
1053                    // note the use of pkt, not bus_pkt here.
1054
1055                    // write-line request to the cache that promoted
1056                    // the write to a whole line
1057                    blk = handleFill(pkt, blk, writebacks,
1058                                     allocOnFill(pkt->cmd));
1059                    satisfyCpuSideRequest(pkt, blk);
1060                } else if (bus_pkt->isRead() ||
1061                           bus_pkt->cmd == MemCmd::UpgradeResp) {
1062                    // we're updating cache state to allow us to
1063                    // satisfy the upstream request from the cache
1064                    blk = handleFill(bus_pkt, blk, writebacks,
1065                                     allocOnFill(pkt->cmd));
1066                    satisfyCpuSideRequest(pkt, blk);
1067                } else {
1068                    // we're satisfying the upstream request without
1069                    // modifying cache state, e.g., a write-through
1070                    pkt->makeAtomicResponse();
1071                }
1072            }
1073            delete bus_pkt;
1074        }
1075    }
1076
1077    // Note that we don't invoke the prefetcher at all in atomic mode.
1078    // It's not clear how to do it properly, particularly for
1079    // prefetchers that aggressively generate prefetch candidates and
1080    // rely on bandwidth contention to throttle them; these will tend
1081    // to pollute the cache in atomic mode since there is no bandwidth
1082    // contention.  If we ever do want to enable prefetching in atomic
1083    // mode, though, this is the place to do it... see timingAccess()
1084    // for an example (though we'd want to issue the prefetch(es)
1085    // immediately rather than calling requestMemSideBus() as we do
1086    // there).
1087
1088    // do any writebacks resulting from the response handling
1089    doWritebacksAtomic(writebacks);
1090
1091    // if we used temp block, check to see if its valid and if so
1092    // clear it out, but only do so after the call to recvAtomic is
1093    // finished so that any downstream observers (such as a snoop
1094    // filter), first see the fill, and only then see the eviction
1095    if (blk == tempBlock && tempBlock->isValid()) {
1096        // the atomic CPU calls recvAtomic for fetch and load/store
1097        // sequentuially, and we may already have a tempBlock
1098        // writeback from the fetch that we have not yet sent
1099        if (tempBlockWriteback) {
1100            // if that is the case, write the prevoius one back, and
1101            // do not schedule any new event
1102            writebackTempBlockAtomic();
1103        } else {
1104            // the writeback/clean eviction happens after the call to
1105            // recvAtomic has finished (but before any successive
1106            // calls), so that the response handling from the fill is
1107            // allowed to happen first
1108            schedule(writebackTempBlockAtomicEvent, curTick());
1109        }
1110
1111        tempBlockWriteback = blk->isDirty() ? writebackBlk(blk) :
1112            cleanEvictBlk(blk);
1113        blk->invalidate();
1114    }
1115
1116    if (pkt->needsResponse()) {
1117        pkt->makeAtomicResponse();
1118    }
1119
1120    return lat * clockPeriod();
1121}
1122
1123
1124void
1125Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1126{
1127    if (system->bypassCaches()) {
1128        // Packets from the memory side are snoop request and
1129        // shouldn't happen in bypass mode.
1130        assert(fromCpuSide);
1131
1132        // The cache should be flushed if we are in cache bypass mode,
1133        // so we don't need to check if we need to update anything.
1134        memSidePort->sendFunctional(pkt);
1135        return;
1136    }
1137
1138    Addr blk_addr = blockAlign(pkt->getAddr());
1139    bool is_secure = pkt->isSecure();
1140    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1141    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1142
1143    pkt->pushLabel(name());
1144
1145    CacheBlkPrintWrapper cbpw(blk);
1146
1147    // Note that just because an L2/L3 has valid data doesn't mean an
1148    // L1 doesn't have a more up-to-date modified copy that still
1149    // needs to be found.  As a result we always update the request if
1150    // we have it, but only declare it satisfied if we are the owner.
1151
1152    // see if we have data at all (owned or otherwise)
1153    bool have_data = blk && blk->isValid()
1154        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1155                                blk->data);
1156
1157    // data we have is dirty if marked as such or if valid & ownership
1158    // pending due to outstanding UpgradeReq
1159    bool have_dirty =
1160        have_data && (blk->isDirty() ||
1161                      (mshr && mshr->inService && mshr->isPendingDirty()));
1162
1163    bool done = have_dirty
1164        || cpuSidePort->checkFunctional(pkt)
1165        || mshrQueue.checkFunctional(pkt, blk_addr)
1166        || writeBuffer.checkFunctional(pkt, blk_addr)
1167        || memSidePort->checkFunctional(pkt);
1168
1169    DPRINTF(Cache, "functional %s %#llx (%s) %s%s%s\n",
1170            pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1171            (blk && blk->isValid()) ? "valid " : "",
1172            have_data ? "data " : "", done ? "done " : "");
1173
1174    // We're leaving the cache, so pop cache->name() label
1175    pkt->popLabel();
1176
1177    if (done) {
1178        pkt->makeResponse();
1179    } else {
1180        // if it came as a request from the CPU side then make sure it
1181        // continues towards the memory side
1182        if (fromCpuSide) {
1183            memSidePort->sendFunctional(pkt);
1184        } else if (forwardSnoops && cpuSidePort->isSnooping()) {
1185            // if it came from the memory side, it must be a snoop request
1186            // and we should only forward it if we are forwarding snoops
1187            cpuSidePort->sendFunctionalSnoop(pkt);
1188        }
1189    }
1190}
1191
1192
1193/////////////////////////////////////////////////////
1194//
1195// Response handling: responses from the memory side
1196//
1197/////////////////////////////////////////////////////
1198
1199
1200void
1201Cache::recvTimingResp(PacketPtr pkt)
1202{
1203    assert(pkt->isResponse());
1204
1205    // all header delay should be paid for by the crossbar, unless
1206    // this is a prefetch response from above
1207    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1208             "%s saw a non-zero packet delay\n", name());
1209
1210    MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
1211    bool is_error = pkt->isError();
1212
1213    assert(mshr);
1214
1215    if (is_error) {
1216        DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1217                "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1218                pkt->cmdString());
1219    }
1220
1221    DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1222            pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1223            pkt->isSecure() ? "s" : "ns");
1224
1225    MSHRQueue *mq = mshr->queue;
1226    bool wasFull = mq->isFull();
1227
1228    if (mshr == noTargetMSHR) {
1229        // we always clear at least one target
1230        clearBlocked(Blocked_NoTargets);
1231        noTargetMSHR = NULL;
1232    }
1233
1234    // Initial target is used just for stats
1235    MSHR::Target *initial_tgt = mshr->getTarget();
1236    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1237    Tick miss_latency = curTick() - initial_tgt->recvTime;
1238    PacketList writebacks;
1239    // We need forward_time here because we have a call of
1240    // allocateWriteBuffer() that need this parameter to specify the
1241    // time to request the bus.  In this case we use forward latency
1242    // because there is a writeback.  We pay also here for headerDelay
1243    // that is charged of bus latencies if the packet comes from the
1244    // bus.
1245    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1246
1247    if (pkt->req->isUncacheable()) {
1248        assert(pkt->req->masterId() < system->maxMasters());
1249        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1250            miss_latency;
1251    } else {
1252        assert(pkt->req->masterId() < system->maxMasters());
1253        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1254            miss_latency;
1255    }
1256
1257    // upgrade deferred targets if we got exclusive
1258    if (!pkt->sharedAsserted()) {
1259        mshr->promoteExclusive();
1260    }
1261
1262    bool is_fill = !mshr->isForward &&
1263        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1264
1265    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1266
1267    if (is_fill && !is_error) {
1268        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1269                pkt->getAddr());
1270
1271        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill);
1272        assert(blk != NULL);
1273    }
1274
1275    // allow invalidation responses originating from write-line
1276    // requests to be discarded
1277    bool is_invalidate = pkt->isInvalidate();
1278
1279    // First offset for critical word first calculations
1280    int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1281
1282    while (mshr->hasTargets()) {
1283        MSHR::Target *target = mshr->getTarget();
1284        Packet *tgt_pkt = target->pkt;
1285
1286        switch (target->source) {
1287          case MSHR::Target::FromCPU:
1288            Tick completion_time;
1289            // Here we charge on completion_time the delay of the xbar if the
1290            // packet comes from it, charged on headerDelay.
1291            completion_time = pkt->headerDelay;
1292
1293            // Software prefetch handling for cache closest to core
1294            if (tgt_pkt->cmd.isSWPrefetch()) {
1295                // a software prefetch would have already been ack'd immediately
1296                // with dummy data so the core would be able to retire it.
1297                // this request completes right here, so we deallocate it.
1298                delete tgt_pkt->req;
1299                delete tgt_pkt;
1300                break; // skip response
1301            }
1302
1303            // unlike the other packet flows, where data is found in other
1304            // caches or memory and brought back, write-line requests always
1305            // have the data right away, so the above check for "is fill?"
1306            // cannot actually be determined until examining the stored MSHR
1307            // state. We "catch up" with that logic here, which is duplicated
1308            // from above.
1309            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1310                assert(!is_error);
1311                // we got the block in exclusive state, so promote any
1312                // deferred targets if possible
1313                mshr->promoteExclusive();
1314                // NB: we use the original packet here and not the response!
1315                blk = handleFill(tgt_pkt, blk, writebacks, mshr->allocOnFill);
1316                assert(blk != NULL);
1317
1318                // treat as a fill, and discard the invalidation
1319                // response
1320                is_fill = true;
1321                is_invalidate = false;
1322            }
1323
1324            if (is_fill) {
1325                satisfyCpuSideRequest(tgt_pkt, blk,
1326                                      true, mshr->hasPostDowngrade());
1327
1328                // How many bytes past the first request is this one
1329                int transfer_offset =
1330                    tgt_pkt->getOffset(blkSize) - initial_offset;
1331                if (transfer_offset < 0) {
1332                    transfer_offset += blkSize;
1333                }
1334
1335                // If not critical word (offset) return payloadDelay.
1336                // responseLatency is the latency of the return path
1337                // from lower level caches/memory to an upper level cache or
1338                // the core.
1339                completion_time += clockEdge(responseLatency) +
1340                    (transfer_offset ? pkt->payloadDelay : 0);
1341
1342                assert(!tgt_pkt->req->isUncacheable());
1343
1344                assert(tgt_pkt->req->masterId() < system->maxMasters());
1345                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1346                    completion_time - target->recvTime;
1347            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1348                // failed StoreCond upgrade
1349                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1350                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1351                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1352                // responseLatency is the latency of the return path
1353                // from lower level caches/memory to an upper level cache or
1354                // the core.
1355                completion_time += clockEdge(responseLatency) +
1356                    pkt->payloadDelay;
1357                tgt_pkt->req->setExtraData(0);
1358            } else {
1359                // not a cache fill, just forwarding response
1360                // responseLatency is the latency of the return path
1361                // from lower level cahces/memory to the core.
1362                completion_time += clockEdge(responseLatency) +
1363                    pkt->payloadDelay;
1364                if (pkt->isRead() && !is_error) {
1365                    // sanity check
1366                    assert(pkt->getAddr() == tgt_pkt->getAddr());
1367                    assert(pkt->getSize() >= tgt_pkt->getSize());
1368
1369                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1370                }
1371            }
1372            tgt_pkt->makeTimingResponse();
1373            // if this packet is an error copy that to the new packet
1374            if (is_error)
1375                tgt_pkt->copyError(pkt);
1376            if (tgt_pkt->cmd == MemCmd::ReadResp &&
1377                (is_invalidate || mshr->hasPostInvalidate())) {
1378                // If intermediate cache got ReadRespWithInvalidate,
1379                // propagate that.  Response should not have
1380                // isInvalidate() set otherwise.
1381                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1382                DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1383                        __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1384            }
1385            // Reset the bus additional time as it is now accounted for
1386            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1387            cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1388            break;
1389
1390          case MSHR::Target::FromPrefetcher:
1391            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1392            if (blk)
1393                blk->status |= BlkHWPrefetched;
1394            delete tgt_pkt->req;
1395            delete tgt_pkt;
1396            break;
1397
1398          case MSHR::Target::FromSnoop:
1399            // I don't believe that a snoop can be in an error state
1400            assert(!is_error);
1401            // response to snoop request
1402            DPRINTF(Cache, "processing deferred snoop...\n");
1403            assert(!(is_invalidate && !mshr->hasPostInvalidate()));
1404            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1405            break;
1406
1407          default:
1408            panic("Illegal target->source enum %d\n", target->source);
1409        }
1410
1411        mshr->popTarget();
1412    }
1413
1414    if (blk && blk->isValid()) {
1415        // an invalidate response stemming from a write line request
1416        // should not invalidate the block, so check if the
1417        // invalidation should be discarded
1418        if (is_invalidate || mshr->hasPostInvalidate()) {
1419            invalidateBlock(blk);
1420        } else if (mshr->hasPostDowngrade()) {
1421            blk->status &= ~BlkWritable;
1422        }
1423    }
1424
1425    if (mshr->promoteDeferredTargets()) {
1426        // avoid later read getting stale data while write miss is
1427        // outstanding.. see comment in timingAccess()
1428        if (blk) {
1429            blk->status &= ~BlkReadable;
1430        }
1431        mq = mshr->queue;
1432        mq->markPending(mshr);
1433        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1434    } else {
1435        mq->deallocate(mshr);
1436        if (wasFull && !mq->isFull()) {
1437            clearBlocked((BlockedCause)mq->index);
1438        }
1439
1440        // Request the bus for a prefetch if this deallocation freed enough
1441        // MSHRs for a prefetch to take place
1442        if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) {
1443            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1444                                         clockEdge());
1445            if (next_pf_time != MaxTick)
1446                schedMemSideSendEvent(next_pf_time);
1447        }
1448    }
1449    // reset the xbar additional timinig  as it is now accounted for
1450    pkt->headerDelay = pkt->payloadDelay = 0;
1451
1452    // copy writebacks to write buffer
1453    doWritebacks(writebacks, forward_time);
1454
1455    // if we used temp block, check to see if its valid and then clear it out
1456    if (blk == tempBlock && tempBlock->isValid()) {
1457        // We use forwardLatency here because we are copying
1458        // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1459        // allocate an internal buffer and to schedule an event to the
1460        // queued port.
1461        if (blk->isDirty()) {
1462            PacketPtr wbPkt = writebackBlk(blk);
1463            allocateWriteBuffer(wbPkt, forward_time);
1464            // Set BLOCK_CACHED flag if cached above.
1465            if (isCachedAbove(wbPkt))
1466                wbPkt->setBlockCached();
1467        } else {
1468            PacketPtr wcPkt = cleanEvictBlk(blk);
1469            // Check to see if block is cached above. If not allocate
1470            // write buffer
1471            if (isCachedAbove(wcPkt))
1472                delete wcPkt;
1473            else
1474                allocateWriteBuffer(wcPkt, forward_time);
1475        }
1476        blk->invalidate();
1477    }
1478
1479    DPRINTF(Cache, "Leaving %s with %s for addr %#llx\n", __func__,
1480            pkt->cmdString(), pkt->getAddr());
1481    delete pkt;
1482}
1483
1484PacketPtr
1485Cache::writebackBlk(CacheBlk *blk)
1486{
1487    chatty_assert(!isReadOnly, "Writeback from read-only cache");
1488    assert(blk && blk->isValid() && blk->isDirty());
1489
1490    writebacks[Request::wbMasterId]++;
1491
1492    Request *writebackReq =
1493        new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1494                Request::wbMasterId);
1495    if (blk->isSecure())
1496        writebackReq->setFlags(Request::SECURE);
1497
1498    writebackReq->taskId(blk->task_id);
1499    blk->task_id= ContextSwitchTaskId::Unknown;
1500    blk->tickInserted = curTick();
1501
1502    PacketPtr writeback = new Packet(writebackReq, MemCmd::Writeback);
1503    if (blk->isWritable()) {
1504        // not asserting shared means we pass the block in modified
1505        // state, mark our own block non-writeable
1506        blk->status &= ~BlkWritable;
1507    } else {
1508        // we are in the owned state, tell the receiver
1509        writeback->assertShared();
1510    }
1511
1512    writeback->allocate();
1513    std::memcpy(writeback->getPtr<uint8_t>(), blk->data, blkSize);
1514
1515    blk->status &= ~BlkDirty;
1516    return writeback;
1517}
1518
1519PacketPtr
1520Cache::cleanEvictBlk(CacheBlk *blk)
1521{
1522    assert(blk && blk->isValid() && !blk->isDirty());
1523    // Creating a zero sized write, a message to the snoop filter
1524    Request *req =
1525        new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1526                    Request::wbMasterId);
1527    if (blk->isSecure())
1528        req->setFlags(Request::SECURE);
1529
1530    req->taskId(blk->task_id);
1531    blk->task_id = ContextSwitchTaskId::Unknown;
1532    blk->tickInserted = curTick();
1533
1534    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1535    pkt->allocate();
1536    DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1537            pkt->req->isInstFetch() ? " (ifetch)" : "",
1538            pkt->getAddr());
1539
1540    return pkt;
1541}
1542
1543void
1544Cache::memWriteback()
1545{
1546    CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1547    tags->forEachBlk(visitor);
1548}
1549
1550void
1551Cache::memInvalidate()
1552{
1553    CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1554    tags->forEachBlk(visitor);
1555}
1556
1557bool
1558Cache::isDirty() const
1559{
1560    CacheBlkIsDirtyVisitor visitor;
1561    tags->forEachBlk(visitor);
1562
1563    return visitor.isDirty();
1564}
1565
1566bool
1567Cache::writebackVisitor(CacheBlk &blk)
1568{
1569    if (blk.isDirty()) {
1570        assert(blk.isValid());
1571
1572        Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1573                        blkSize, 0, Request::funcMasterId);
1574        request.taskId(blk.task_id);
1575
1576        Packet packet(&request, MemCmd::WriteReq);
1577        packet.dataStatic(blk.data);
1578
1579        memSidePort->sendFunctional(&packet);
1580
1581        blk.status &= ~BlkDirty;
1582    }
1583
1584    return true;
1585}
1586
1587bool
1588Cache::invalidateVisitor(CacheBlk &blk)
1589{
1590
1591    if (blk.isDirty())
1592        warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1593
1594    if (blk.isValid()) {
1595        assert(!blk.isDirty());
1596        tags->invalidate(&blk);
1597        blk.invalidate();
1598    }
1599
1600    return true;
1601}
1602
1603CacheBlk*
1604Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1605{
1606    CacheBlk *blk = tags->findVictim(addr);
1607
1608    // It is valid to return NULL if there is no victim
1609    if (!blk)
1610        return nullptr;
1611
1612    if (blk->isValid()) {
1613        Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1614        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1615        if (repl_mshr) {
1616            // must be an outstanding upgrade request
1617            // on a block we're about to replace...
1618            assert(!blk->isWritable() || blk->isDirty());
1619            assert(repl_mshr->needsExclusive());
1620            // too hard to replace block with transient state
1621            // allocation failed, block not inserted
1622            return NULL;
1623        } else {
1624            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n",
1625                    repl_addr, blk->isSecure() ? "s" : "ns",
1626                    addr, is_secure ? "s" : "ns",
1627                    blk->isDirty() ? "writeback" : "clean");
1628
1629            // Will send up Writeback/CleanEvict snoops via isCachedAbove
1630            // when pushing this writeback list into the write buffer.
1631            if (blk->isDirty()) {
1632                // Save writeback packet for handling by caller
1633                writebacks.push_back(writebackBlk(blk));
1634            } else {
1635                writebacks.push_back(cleanEvictBlk(blk));
1636            }
1637        }
1638    }
1639
1640    return blk;
1641}
1642
1643void
1644Cache::invalidateBlock(CacheBlk *blk)
1645{
1646    if (blk != tempBlock)
1647        tags->invalidate(blk);
1648    blk->invalidate();
1649}
1650
1651// Note that the reason we return a list of writebacks rather than
1652// inserting them directly in the write buffer is that this function
1653// is called by both atomic and timing-mode accesses, and in atomic
1654// mode we don't mess with the write buffer (we just perform the
1655// writebacks atomically once the original request is complete).
1656CacheBlk*
1657Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1658                  bool allocate)
1659{
1660    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1661    Addr addr = pkt->getAddr();
1662    bool is_secure = pkt->isSecure();
1663#if TRACING_ON
1664    CacheBlk::State old_state = blk ? blk->status : 0;
1665#endif
1666
1667    // When handling a fill, discard any CleanEvicts for the
1668    // same address in write buffer.
1669    Addr M5_VAR_USED blk_addr = blockAlign(pkt->getAddr());
1670    std::vector<MSHR *> M5_VAR_USED wbs;
1671    assert (!writeBuffer.findMatches(blk_addr, is_secure, wbs));
1672
1673    if (blk == NULL) {
1674        // better have read new data...
1675        assert(pkt->hasData());
1676
1677        // only read responses and write-line requests have data;
1678        // note that we don't write the data here for write-line - that
1679        // happens in the subsequent satisfyCpuSideRequest.
1680        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1681
1682        // need to do a replacement if allocating, otherwise we stick
1683        // with the temporary storage
1684        blk = allocate ? allocateBlock(addr, is_secure, writebacks) : NULL;
1685
1686        if (blk == NULL) {
1687            // No replaceable block or a mostly exclusive
1688            // cache... just use temporary storage to complete the
1689            // current request and then get rid of it
1690            assert(!tempBlock->isValid());
1691            blk = tempBlock;
1692            tempBlock->set = tags->extractSet(addr);
1693            tempBlock->tag = tags->extractTag(addr);
1694            // @todo: set security state as well...
1695            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1696                    is_secure ? "s" : "ns");
1697        } else {
1698            tags->insertBlock(pkt, blk);
1699        }
1700
1701        // we should never be overwriting a valid block
1702        assert(!blk->isValid());
1703    } else {
1704        // existing block... probably an upgrade
1705        assert(blk->tag == tags->extractTag(addr));
1706        // either we're getting new data or the block should already be valid
1707        assert(pkt->hasData() || blk->isValid());
1708        // don't clear block status... if block is already dirty we
1709        // don't want to lose that
1710    }
1711
1712    if (is_secure)
1713        blk->status |= BlkSecure;
1714    blk->status |= BlkValid | BlkReadable;
1715
1716    // sanity check for whole-line writes, which should always be
1717    // marked as writable as part of the fill, and then later marked
1718    // dirty as part of satisfyCpuSideRequest
1719    if (pkt->cmd == MemCmd::WriteLineReq) {
1720        assert(!pkt->sharedAsserted());
1721        // at the moment other caches do not respond to the
1722        // invalidation requests corresponding to a whole-line write
1723        assert(!pkt->memInhibitAsserted());
1724    }
1725
1726    if (!pkt->sharedAsserted()) {
1727        // we could get non-shared responses from memory (rather than
1728        // a cache) even in a read-only cache, note that we set this
1729        // bit even for a read-only cache as we use it to represent
1730        // the exclusive state
1731        blk->status |= BlkWritable;
1732
1733        // If we got this via cache-to-cache transfer (i.e., from a
1734        // cache that was an owner) and took away that owner's copy,
1735        // then we need to write it back.  Normally this happens
1736        // anyway as a side effect of getting a copy to write it, but
1737        // there are cases (such as failed store conditionals or
1738        // compare-and-swaps) where we'll demand an exclusive copy but
1739        // end up not writing it.
1740        if (pkt->memInhibitAsserted()) {
1741            blk->status |= BlkDirty;
1742
1743            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1744                          "in read-only cache %s\n", name());
1745        }
1746    }
1747
1748    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1749            addr, is_secure ? "s" : "ns", old_state, blk->print());
1750
1751    // if we got new data, copy it in (checking for a read response
1752    // and a response that has data is the same in the end)
1753    if (pkt->isRead()) {
1754        // sanity checks
1755        assert(pkt->hasData());
1756        assert(pkt->getSize() == blkSize);
1757
1758        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1759    }
1760    // We pay for fillLatency here.
1761    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1762        pkt->payloadDelay;
1763
1764    return blk;
1765}
1766
1767
1768/////////////////////////////////////////////////////
1769//
1770// Snoop path: requests coming in from the memory side
1771//
1772/////////////////////////////////////////////////////
1773
1774void
1775Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1776                              bool already_copied, bool pending_inval)
1777{
1778    // sanity check
1779    assert(req_pkt->isRequest());
1780    assert(req_pkt->needsResponse());
1781
1782    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1783            req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1784    // timing-mode snoop responses require a new packet, unless we
1785    // already made a copy...
1786    PacketPtr pkt = req_pkt;
1787    if (!already_copied)
1788        // do not clear flags, and allocate space for data if the
1789        // packet needs it (the only packets that carry data are read
1790        // responses)
1791        pkt = new Packet(req_pkt, false, req_pkt->isRead());
1792
1793    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1794           pkt->sharedAsserted());
1795    pkt->makeTimingResponse();
1796    if (pkt->isRead()) {
1797        pkt->setDataFromBlock(blk_data, blkSize);
1798    }
1799    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1800        // Assume we defer a response to a read from a far-away cache
1801        // A, then later defer a ReadExcl from a cache B on the same
1802        // bus as us.  We'll assert MemInhibit in both cases, but in
1803        // the latter case MemInhibit will keep the invalidation from
1804        // reaching cache A.  This special response tells cache A that
1805        // it gets the block to satisfy its read, but must immediately
1806        // invalidate it.
1807        pkt->cmd = MemCmd::ReadRespWithInvalidate;
1808    }
1809    // Here we consider forward_time, paying for just forward latency and
1810    // also charging the delay provided by the xbar.
1811    // forward_time is used as send_time in next allocateWriteBuffer().
1812    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1813    // Here we reset the timing of the packet.
1814    pkt->headerDelay = pkt->payloadDelay = 0;
1815    DPRINTF(Cache, "%s created response: %s addr %#llx size %d tick: %lu\n",
1816            __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1817            forward_time);
1818    memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1819}
1820
1821uint32_t
1822Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1823                   bool is_deferred, bool pending_inval)
1824{
1825    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1826            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1827    // deferred snoops can only happen in timing mode
1828    assert(!(is_deferred && !is_timing));
1829    // pending_inval only makes sense on deferred snoops
1830    assert(!(pending_inval && !is_deferred));
1831    assert(pkt->isRequest());
1832
1833    // the packet may get modified if we or a forwarded snooper
1834    // responds in atomic mode, so remember a few things about the
1835    // original packet up front
1836    bool invalidate = pkt->isInvalidate();
1837    bool M5_VAR_USED needs_exclusive = pkt->needsExclusive();
1838
1839    uint32_t snoop_delay = 0;
1840
1841    if (forwardSnoops) {
1842        // first propagate snoop upward to see if anyone above us wants to
1843        // handle it.  save & restore packet src since it will get
1844        // rewritten to be relative to cpu-side bus (if any)
1845        bool alreadyResponded = pkt->memInhibitAsserted();
1846        if (is_timing) {
1847            // copy the packet so that we can clear any flags before
1848            // forwarding it upwards, we also allocate data (passing
1849            // the pointer along in case of static data), in case
1850            // there is a snoop hit in upper levels
1851            Packet snoopPkt(pkt, true, true);
1852            snoopPkt.setExpressSnoop();
1853            snoopPkt.pushSenderState(new ForwardResponseRecord());
1854            // the snoop packet does not need to wait any additional
1855            // time
1856            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1857            cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1858
1859            // add the header delay (including crossbar and snoop
1860            // delays) of the upward snoop to the snoop delay for this
1861            // cache
1862            snoop_delay += snoopPkt.headerDelay;
1863
1864            if (snoopPkt.memInhibitAsserted()) {
1865                // cache-to-cache response from some upper cache
1866                assert(!alreadyResponded);
1867                pkt->assertMemInhibit();
1868            } else {
1869                // no cache (or anyone else for that matter) will
1870                // respond, so delete the ForwardResponseRecord here
1871                delete snoopPkt.popSenderState();
1872            }
1873            if (snoopPkt.sharedAsserted()) {
1874                pkt->assertShared();
1875            }
1876            // If this request is a prefetch or clean evict and an upper level
1877            // signals block present, make sure to propagate the block
1878            // presence to the requester.
1879            if (snoopPkt.isBlockCached()) {
1880                pkt->setBlockCached();
1881            }
1882        } else {
1883            cpuSidePort->sendAtomicSnoop(pkt);
1884            if (!alreadyResponded && pkt->memInhibitAsserted()) {
1885                // cache-to-cache response from some upper cache:
1886                // forward response to original requester
1887                assert(pkt->isResponse());
1888            }
1889        }
1890    }
1891
1892    if (!blk || !blk->isValid()) {
1893        DPRINTF(Cache, "%s snoop miss for %s addr %#llx size %d\n",
1894                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1895        return snoop_delay;
1896    } else {
1897       DPRINTF(Cache, "%s snoop hit for %s for addr %#llx size %d, "
1898               "old state is %s\n", __func__, pkt->cmdString(),
1899               pkt->getAddr(), pkt->getSize(), blk->print());
1900    }
1901
1902    chatty_assert(!(isReadOnly && blk->isDirty()),
1903                  "Should never have a dirty block in a read-only cache %s\n",
1904                  name());
1905
1906    // We may end up modifying both the block state and the packet (if
1907    // we respond in atomic mode), so just figure out what to do now
1908    // and then do it later. If we find dirty data while snooping for
1909    // an invalidate, we don't need to send a response. The
1910    // invalidation itself is taken care of below.
1911    bool respond = blk->isDirty() && pkt->needsResponse() &&
1912        pkt->cmd != MemCmd::InvalidateReq;
1913    bool have_exclusive = blk->isWritable();
1914
1915    // Invalidate any prefetch's from below that would strip write permissions
1916    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
1917    // above and in it's own cache, a new MemCmd::ReadReq is created that
1918    // downstream caches observe.
1919    if (pkt->mustCheckAbove()) {
1920        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from"
1921                " lower cache\n", pkt->getAddr(), pkt->cmdString());
1922        pkt->setBlockCached();
1923        return snoop_delay;
1924    }
1925
1926    if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
1927        // reading non-exclusive shared data, note that we retain
1928        // the block in owned state if it is dirty, with the response
1929        // taken care of below, and otherwhise simply downgrade to
1930        // shared
1931        assert(!needs_exclusive);
1932        pkt->assertShared();
1933        blk->status &= ~BlkWritable;
1934    }
1935
1936    if (respond) {
1937        // prevent anyone else from responding, cache as well as
1938        // memory, and also prevent any memory from even seeing the
1939        // request (with current inhibited semantics), note that this
1940        // applies both to reads and writes and that for writes it
1941        // works thanks to the fact that we still have dirty data and
1942        // will write it back at a later point
1943        assert(!pkt->memInhibitAsserted());
1944        pkt->assertMemInhibit();
1945        if (have_exclusive) {
1946            // in the case of an uncacheable request there is no point
1947            // in setting the exclusive flag, but since the recipient
1948            // does not care there is no harm in doing so, in any case
1949            // it is just a hint
1950            pkt->setSupplyExclusive();
1951        }
1952        if (is_timing) {
1953            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
1954        } else {
1955            pkt->makeAtomicResponse();
1956            pkt->setDataFromBlock(blk->data, blkSize);
1957        }
1958    }
1959
1960    if (!respond && is_timing && is_deferred) {
1961        // if it's a deferred timing snoop then we've made a copy of
1962        // both the request and the packet, and so if we're not using
1963        // those copies to respond and delete them here
1964        DPRINTF(Cache, "Deleting pkt %p and request %p for cmd %s addr: %p\n",
1965                pkt, pkt->req, pkt->cmdString(), pkt->getAddr());
1966
1967        // the packets needs a response (just not from us), so we also
1968        // need to delete the request and not rely on the packet
1969        // destructor
1970        assert(pkt->needsResponse());
1971        delete pkt->req;
1972        delete pkt;
1973    }
1974
1975    // Do this last in case it deallocates block data or something
1976    // like that
1977    if (invalidate) {
1978        invalidateBlock(blk);
1979    }
1980
1981    DPRINTF(Cache, "new state is %s\n", blk->print());
1982
1983    return snoop_delay;
1984}
1985
1986
1987void
1988Cache::recvTimingSnoopReq(PacketPtr pkt)
1989{
1990    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1991            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1992
1993    // Snoops shouldn't happen when bypassing caches
1994    assert(!system->bypassCaches());
1995
1996    // no need to snoop requests that are not in range
1997    if (!inRange(pkt->getAddr())) {
1998        return;
1999    }
2000
2001    bool is_secure = pkt->isSecure();
2002    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2003
2004    Addr blk_addr = blockAlign(pkt->getAddr());
2005    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2006
2007    // Update the latency cost of the snoop so that the crossbar can
2008    // account for it. Do not overwrite what other neighbouring caches
2009    // have already done, rather take the maximum. The update is
2010    // tentative, for cases where we return before an upward snoop
2011    // happens below.
2012    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2013                                         lookupLatency * clockPeriod());
2014
2015    // Inform request(Prefetch, CleanEvict or Writeback) from below of
2016    // MSHR hit, set setBlockCached.
2017    if (mshr && pkt->mustCheckAbove()) {
2018        DPRINTF(Cache, "Setting block cached for %s from"
2019                "lower cache on mshr hit %#x\n",
2020                pkt->cmdString(), pkt->getAddr());
2021        pkt->setBlockCached();
2022        return;
2023    }
2024
2025    // Let the MSHR itself track the snoop and decide whether we want
2026    // to go ahead and do the regular cache snoop
2027    if (mshr && mshr->handleSnoop(pkt, order++)) {
2028        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2029                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2030                mshr->print());
2031
2032        if (mshr->getNumTargets() > numTarget)
2033            warn("allocating bonus target for snoop"); //handle later
2034        return;
2035    }
2036
2037    //We also need to check the writeback buffers and handle those
2038    std::vector<MSHR *> writebacks;
2039    if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) {
2040        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2041                pkt->getAddr(), is_secure ? "s" : "ns");
2042
2043        // Look through writebacks for any cachable writes.
2044        // We should only ever find a single match
2045        assert(writebacks.size() == 1);
2046        MSHR *wb_entry = writebacks[0];
2047        // Expect to see only Writebacks and/or CleanEvicts here, both of
2048        // which should not be generated for uncacheable data.
2049        assert(!wb_entry->isUncacheable());
2050        // There should only be a single request responsible for generating
2051        // Writebacks/CleanEvicts.
2052        assert(wb_entry->getNumTargets() == 1);
2053        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2054        assert(wb_pkt->evictingBlock());
2055
2056        if (pkt->evictingBlock()) {
2057            // if the block is found in the write queue, set the BLOCK_CACHED
2058            // flag for Writeback/CleanEvict snoop. On return the snoop will
2059            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2060            // any CleanEvicts from travelling down the memory hierarchy.
2061            pkt->setBlockCached();
2062            DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
2063                    " %#x\n", pkt->cmdString(), pkt->getAddr());
2064            return;
2065        }
2066
2067        if (wb_pkt->cmd == MemCmd::Writeback) {
2068            assert(!pkt->memInhibitAsserted());
2069            pkt->assertMemInhibit();
2070            if (!pkt->needsExclusive()) {
2071                pkt->assertShared();
2072                // the writeback is no longer passing exclusivity (the
2073                // receiving cache should consider the block owned
2074                // rather than modified)
2075                wb_pkt->assertShared();
2076            } else {
2077                // if we're not asserting the shared line, we need to
2078                // invalidate our copy.  we'll do that below as long as
2079                // the packet's invalidate flag is set...
2080                assert(pkt->isInvalidate());
2081            }
2082            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2083                                   false, false);
2084        } else {
2085            assert(wb_pkt->cmd == MemCmd::CleanEvict);
2086            // The cache technically holds the block until the
2087            // corresponding CleanEvict message reaches the crossbar
2088            // below. Therefore when a snoop encounters a CleanEvict
2089            // message we must set assertShared (just like when it
2090            // encounters a Writeback) to avoid the snoop filter
2091            // prematurely clearing the holder bit in the crossbar
2092            // below
2093            if (!pkt->needsExclusive())
2094                pkt->assertShared();
2095            else
2096                assert(pkt->isInvalidate());
2097        }
2098
2099        if (pkt->isInvalidate()) {
2100            // Invalidation trumps our writeback... discard here
2101            // Note: markInService will remove entry from writeback buffer.
2102            markInService(wb_entry, false);
2103            delete wb_pkt;
2104        }
2105    }
2106
2107    // If this was a shared writeback, there may still be
2108    // other shared copies above that require invalidation.
2109    // We could be more selective and return here if the
2110    // request is non-exclusive or if the writeback is
2111    // exclusive.
2112    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2113
2114    // Override what we did when we first saw the snoop, as we now
2115    // also have the cost of the upwards snoops to account for
2116    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2117                                         lookupLatency * clockPeriod());
2118}
2119
2120bool
2121Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2122{
2123    // Express snoop responses from master to slave, e.g., from L1 to L2
2124    cache->recvTimingSnoopResp(pkt);
2125    return true;
2126}
2127
2128Tick
2129Cache::recvAtomicSnoop(PacketPtr pkt)
2130{
2131    // Snoops shouldn't happen when bypassing caches
2132    assert(!system->bypassCaches());
2133
2134    // no need to snoop requests that are not in range.
2135    if (!inRange(pkt->getAddr())) {
2136        return 0;
2137    }
2138
2139    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2140    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2141    return snoop_delay + lookupLatency * clockPeriod();
2142}
2143
2144
2145MSHR *
2146Cache::getNextMSHR()
2147{
2148    // Check both MSHR queue and write buffer for potential requests,
2149    // note that null does not mean there is no request, it could
2150    // simply be that it is not ready
2151    MSHR *miss_mshr  = mshrQueue.getNextMSHR();
2152    MSHR *write_mshr = writeBuffer.getNextMSHR();
2153
2154    // If we got a write buffer request ready, first priority is a
2155    // full write buffer, otherwhise we favour the miss requests
2156    if (write_mshr &&
2157        ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) ||
2158         !miss_mshr)) {
2159        // need to search MSHR queue for conflicting earlier miss.
2160        MSHR *conflict_mshr =
2161            mshrQueue.findPending(write_mshr->blkAddr,
2162                                  write_mshr->isSecure);
2163
2164        if (conflict_mshr && conflict_mshr->order < write_mshr->order) {
2165            // Service misses in order until conflict is cleared.
2166            return conflict_mshr;
2167
2168            // @todo Note that we ignore the ready time of the conflict here
2169        }
2170
2171        // No conflicts; issue write
2172        return write_mshr;
2173    } else if (miss_mshr) {
2174        // need to check for conflicting earlier writeback
2175        MSHR *conflict_mshr =
2176            writeBuffer.findPending(miss_mshr->blkAddr,
2177                                    miss_mshr->isSecure);
2178        if (conflict_mshr) {
2179            // not sure why we don't check order here... it was in the
2180            // original code but commented out.
2181
2182            // The only way this happens is if we are
2183            // doing a write and we didn't have permissions
2184            // then subsequently saw a writeback (owned got evicted)
2185            // We need to make sure to perform the writeback first
2186            // To preserve the dirty data, then we can issue the write
2187
2188            // should we return write_mshr here instead?  I.e. do we
2189            // have to flush writes in order?  I don't think so... not
2190            // for Alpha anyway.  Maybe for x86?
2191            return conflict_mshr;
2192
2193            // @todo Note that we ignore the ready time of the conflict here
2194        }
2195
2196        // No conflicts; issue read
2197        return miss_mshr;
2198    }
2199
2200    // fall through... no pending requests.  Try a prefetch.
2201    assert(!miss_mshr && !write_mshr);
2202    if (prefetcher && mshrQueue.canPrefetch()) {
2203        // If we have a miss queue slot, we can try a prefetch
2204        PacketPtr pkt = prefetcher->getPacket();
2205        if (pkt) {
2206            Addr pf_addr = blockAlign(pkt->getAddr());
2207            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2208                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2209                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2210                // Update statistic on number of prefetches issued
2211                // (hwpf_mshr_misses)
2212                assert(pkt->req->masterId() < system->maxMasters());
2213                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2214
2215                // allocate an MSHR and return it, note
2216                // that we send the packet straight away, so do not
2217                // schedule the send
2218                return allocateMissBuffer(pkt, curTick(), false);
2219            } else {
2220                // free the request and packet
2221                delete pkt->req;
2222                delete pkt;
2223            }
2224        }
2225    }
2226
2227    return NULL;
2228}
2229
2230bool
2231Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2232{
2233    if (!forwardSnoops)
2234        return false;
2235    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2236    // Writeback snoops into upper level caches to check for copies of the
2237    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2238    // packet, the cache can inform the crossbar below of presence or absence
2239    // of the block.
2240    if (is_timing) {
2241        Packet snoop_pkt(pkt, true, false);
2242        snoop_pkt.setExpressSnoop();
2243        // Assert that packet is either Writeback or CleanEvict and not a
2244        // prefetch request because prefetch requests need an MSHR and may
2245        // generate a snoop response.
2246        assert(pkt->evictingBlock());
2247        snoop_pkt.senderState = NULL;
2248        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2249        // Writeback/CleanEvict snoops do not generate a snoop response.
2250        assert(!(snoop_pkt.memInhibitAsserted()));
2251        return snoop_pkt.isBlockCached();
2252    } else {
2253        cpuSidePort->sendAtomicSnoop(pkt);
2254        return pkt->isBlockCached();
2255    }
2256}
2257
2258PacketPtr
2259Cache::getTimingPacket()
2260{
2261    MSHR *mshr = getNextMSHR();
2262
2263    if (mshr == NULL) {
2264        return NULL;
2265    }
2266
2267    // use request from 1st target
2268    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2269    PacketPtr pkt = NULL;
2270
2271    DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__,
2272            tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize());
2273
2274    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2275
2276    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2277        // We need to check the caches above us to verify that
2278        // they don't have a copy of this block in the dirty state
2279        // at the moment. Without this check we could get a stale
2280        // copy from memory that might get used in place of the
2281        // dirty one.
2282        Packet snoop_pkt(tgt_pkt, true, false);
2283        snoop_pkt.setExpressSnoop();
2284        snoop_pkt.senderState = mshr;
2285        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2286
2287        // Check to see if the prefetch was squashed by an upper cache (to
2288        // prevent us from grabbing the line) or if a Check to see if a
2289        // writeback arrived between the time the prefetch was placed in
2290        // the MSHRs and when it was selected to be sent or if the
2291        // prefetch was squashed by an upper cache.
2292
2293        // It is important to check memInhibitAsserted before
2294        // prefetchSquashed. If another cache has asserted MEM_INGIBIT, it
2295        // will be sending a response which will arrive at the MSHR
2296        // allocated ofr this request. Checking the prefetchSquash first
2297        // may result in the MSHR being prematurely deallocated.
2298
2299        if (snoop_pkt.memInhibitAsserted()) {
2300            // If we are getting a non-shared response it is dirty
2301            bool pending_dirty_resp = !snoop_pkt.sharedAsserted();
2302            markInService(mshr, pending_dirty_resp);
2303            DPRINTF(Cache, "Upward snoop of prefetch for addr"
2304                    " %#x (%s) hit\n",
2305                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2306            return NULL;
2307        }
2308
2309        if (snoop_pkt.isBlockCached() || blk != NULL) {
2310            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
2311                    "Deallocating mshr target %#x.\n",
2312                    mshr->blkAddr);
2313
2314            // Deallocate the mshr target
2315            if (tgt_pkt->cmd != MemCmd::Writeback) {
2316                if (mshr->queue->forceDeallocateTarget(mshr)) {
2317                    // Clear block if this deallocation resulted freed an
2318                    // mshr when all had previously been utilized
2319                    clearBlocked((BlockedCause)(mshr->queue->index));
2320                }
2321                return NULL;
2322            } else {
2323                // If this is a Writeback, and the snoops indicate that the blk
2324                // is cached above, set the BLOCK_CACHED flag in the Writeback
2325                // packet, so that it does not reset the bits corresponding to
2326                // this block in the snoop filter below.
2327                tgt_pkt->setBlockCached();
2328            }
2329        }
2330    }
2331
2332    if (mshr->isForwardNoResponse()) {
2333        // no response expected, just forward packet as it is
2334        assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL);
2335        pkt = tgt_pkt;
2336    } else {
2337        pkt = getBusPacket(tgt_pkt, blk, mshr->needsExclusive());
2338
2339        mshr->isForward = (pkt == NULL);
2340
2341        if (mshr->isForward) {
2342            // not a cache block request, but a response is expected
2343            // make copy of current packet to forward, keep current
2344            // copy for response handling
2345            pkt = new Packet(tgt_pkt, false, true);
2346            if (pkt->isWrite()) {
2347                pkt->setData(tgt_pkt->getConstPtr<uint8_t>());
2348            }
2349        }
2350    }
2351
2352    assert(pkt != NULL);
2353    pkt->senderState = mshr;
2354    return pkt;
2355}
2356
2357
2358Tick
2359Cache::nextMSHRReadyTime() const
2360{
2361    Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(),
2362                              writeBuffer.nextMSHRReadyTime());
2363
2364    // Don't signal prefetch ready time if no MSHRs available
2365    // Will signal once enoguh MSHRs are deallocated
2366    if (prefetcher && mshrQueue.canPrefetch()) {
2367        nextReady = std::min(nextReady,
2368                             prefetcher->nextPrefetchReadyTime());
2369    }
2370
2371    return nextReady;
2372}
2373
2374void
2375Cache::serialize(CheckpointOut &cp) const
2376{
2377    bool dirty(isDirty());
2378
2379    if (dirty) {
2380        warn("*** The cache still contains dirty data. ***\n");
2381        warn("    Make sure to drain the system using the correct flags.\n");
2382        warn("    This checkpoint will not restore correctly and dirty data in "
2383             "the cache will be lost!\n");
2384    }
2385
2386    // Since we don't checkpoint the data in the cache, any dirty data
2387    // will be lost when restoring from a checkpoint of a system that
2388    // wasn't drained properly. Flag the checkpoint as invalid if the
2389    // cache contains dirty data.
2390    bool bad_checkpoint(dirty);
2391    SERIALIZE_SCALAR(bad_checkpoint);
2392}
2393
2394void
2395Cache::unserialize(CheckpointIn &cp)
2396{
2397    bool bad_checkpoint;
2398    UNSERIALIZE_SCALAR(bad_checkpoint);
2399    if (bad_checkpoint) {
2400        fatal("Restoring from checkpoints with dirty caches is not supported "
2401              "in the classic memory system. Please remove any caches or "
2402              " drain them properly before taking checkpoints.\n");
2403    }
2404}
2405
2406///////////////
2407//
2408// CpuSidePort
2409//
2410///////////////
2411
2412AddrRangeList
2413Cache::CpuSidePort::getAddrRanges() const
2414{
2415    return cache->getAddrRanges();
2416}
2417
2418bool
2419Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2420{
2421    assert(!cache->system->bypassCaches());
2422
2423    bool success = false;
2424
2425    // always let inhibited requests through, even if blocked,
2426    // ultimately we should check if this is an express snoop, but at
2427    // the moment that flag is only set in the cache itself
2428    if (pkt->memInhibitAsserted()) {
2429        // do not change the current retry state
2430        bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2431        assert(bypass_success);
2432        return true;
2433    } else if (blocked || mustSendRetry) {
2434        // either already committed to send a retry, or blocked
2435        success = false;
2436    } else {
2437        // pass it on to the cache, and let the cache decide if we
2438        // have to retry or not
2439        success = cache->recvTimingReq(pkt);
2440    }
2441
2442    // remember if we have to retry
2443    mustSendRetry = !success;
2444    return success;
2445}
2446
2447Tick
2448Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2449{
2450    return cache->recvAtomic(pkt);
2451}
2452
2453void
2454Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2455{
2456    // functional request
2457    cache->functionalAccess(pkt, true);
2458}
2459
2460Cache::
2461CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2462                         const std::string &_label)
2463    : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2464{
2465}
2466
2467Cache*
2468CacheParams::create()
2469{
2470    assert(tags);
2471
2472    return new Cache(this);
2473}
2474///////////////
2475//
2476// MemSidePort
2477//
2478///////////////
2479
2480bool
2481Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2482{
2483    cache->recvTimingResp(pkt);
2484    return true;
2485}
2486
2487// Express snooping requests to memside port
2488void
2489Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2490{
2491    // handle snooping requests
2492    cache->recvTimingSnoopReq(pkt);
2493}
2494
2495Tick
2496Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2497{
2498    return cache->recvAtomicSnoop(pkt);
2499}
2500
2501void
2502Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2503{
2504    // functional snoop (note that in contrast to atomic we don't have
2505    // a specific functionalSnoop method, as they have the same
2506    // behaviour regardless)
2507    cache->functionalAccess(pkt, false);
2508}
2509
2510void
2511Cache::CacheReqPacketQueue::sendDeferredPacket()
2512{
2513    // sanity check
2514    assert(!waitingOnRetry);
2515
2516    // there should never be any deferred request packets in the
2517    // queue, instead we resly on the cache to provide the packets
2518    // from the MSHR queue or write queue
2519    assert(deferredPacketReadyTime() == MaxTick);
2520
2521    // check for request packets (requests & writebacks)
2522    PacketPtr pkt = cache.getTimingPacket();
2523    if (pkt == NULL) {
2524        // can happen if e.g. we attempt a writeback and fail, but
2525        // before the retry, the writeback is eliminated because
2526        // we snoop another cache's ReadEx.
2527    } else {
2528        MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
2529        // in most cases getTimingPacket allocates a new packet, and
2530        // we must delete it unless it is successfully sent
2531        bool delete_pkt = !mshr->isForwardNoResponse();
2532
2533        // let our snoop responses go first if there are responses to
2534        // the same addresses we are about to writeback, note that
2535        // this creates a dependency between requests and snoop
2536        // responses, but that should not be a problem since there is
2537        // a chain already and the key is that the snoop responses can
2538        // sink unconditionally
2539        if (snoopRespQueue.hasAddr(pkt->getAddr())) {
2540            DPRINTF(CachePort, "Waiting for snoop response to be sent\n");
2541            Tick when = snoopRespQueue.deferredPacketReadyTime();
2542            schedSendEvent(when);
2543
2544            if (delete_pkt)
2545                delete pkt;
2546
2547            return;
2548        }
2549
2550
2551        waitingOnRetry = !masterPort.sendTimingReq(pkt);
2552
2553        if (waitingOnRetry) {
2554            DPRINTF(CachePort, "now waiting on a retry\n");
2555            if (delete_pkt) {
2556                // we are awaiting a retry, but we
2557                // delete the packet and will be creating a new packet
2558                // when we get the opportunity
2559                delete pkt;
2560            }
2561            // note that we have now masked any requestBus and
2562            // schedSendEvent (we will wait for a retry before
2563            // doing anything), and this is so even if we do not
2564            // care about this packet and might override it before
2565            // it gets retried
2566        } else {
2567            // As part of the call to sendTimingReq the packet is
2568            // forwarded to all neighbouring caches (and any
2569            // caches above them) as a snoop. The packet is also
2570            // sent to any potential cache below as the
2571            // interconnect is not allowed to buffer the
2572            // packet. Thus at this point we know if any of the
2573            // neighbouring, or the downstream cache is
2574            // responding, and if so, if it is with a dirty line
2575            // or not.
2576            bool pending_dirty_resp = !pkt->sharedAsserted() &&
2577                pkt->memInhibitAsserted();
2578
2579            cache.markInService(mshr, pending_dirty_resp);
2580        }
2581    }
2582
2583    // if we succeeded and are not waiting for a retry, schedule the
2584    // next send considering when the next MSHR is ready, note that
2585    // snoop responses have their own packet queue and thus schedule
2586    // their own events
2587    if (!waitingOnRetry) {
2588        schedSendEvent(cache.nextMSHRReadyTime());
2589    }
2590}
2591
2592Cache::
2593MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2594                         const std::string &_label)
2595    : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2596      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2597      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2598{
2599}
2600