cache.cc revision 11127:f39c2cc0d44e
1/*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 *          Dave Greene
43 *          Nathan Binkert
44 *          Steve Reinhardt
45 *          Ron Dreslinski
46 *          Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/misc.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "mem/cache/blk.hh"
62#include "mem/cache/mshr.hh"
63#include "mem/cache/prefetch/base.hh"
64#include "sim/sim_exit.hh"
65
66Cache::Cache(const CacheParams *p)
67    : BaseCache(p, p->system->cacheLineSize()),
68      tags(p->tags),
69      prefetcher(p->prefetcher),
70      doFastWrites(true),
71      prefetchOnAccess(p->prefetch_on_access)
72{
73    tempBlock = new CacheBlk();
74    tempBlock->data = new uint8_t[blkSize];
75
76    cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
77                                  "CpuSidePort");
78    memSidePort = new MemSidePort(p->name + ".mem_side", this,
79                                  "MemSidePort");
80
81    tags->setCache(this);
82    if (prefetcher)
83        prefetcher->setCache(this);
84}
85
86Cache::~Cache()
87{
88    delete [] tempBlock->data;
89    delete tempBlock;
90
91    delete cpuSidePort;
92    delete memSidePort;
93}
94
95void
96Cache::regStats()
97{
98    BaseCache::regStats();
99}
100
101void
102Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
103{
104    assert(pkt->isRequest());
105
106    uint64_t overwrite_val;
107    bool overwrite_mem;
108    uint64_t condition_val64;
109    uint32_t condition_val32;
110
111    int offset = tags->extractBlkOffset(pkt->getAddr());
112    uint8_t *blk_data = blk->data + offset;
113
114    assert(sizeof(uint64_t) >= pkt->getSize());
115
116    overwrite_mem = true;
117    // keep a copy of our possible write value, and copy what is at the
118    // memory address into the packet
119    pkt->writeData((uint8_t *)&overwrite_val);
120    pkt->setData(blk_data);
121
122    if (pkt->req->isCondSwap()) {
123        if (pkt->getSize() == sizeof(uint64_t)) {
124            condition_val64 = pkt->req->getExtraData();
125            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
126                                         sizeof(uint64_t));
127        } else if (pkt->getSize() == sizeof(uint32_t)) {
128            condition_val32 = (uint32_t)pkt->req->getExtraData();
129            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
130                                         sizeof(uint32_t));
131        } else
132            panic("Invalid size for conditional read/write\n");
133    }
134
135    if (overwrite_mem) {
136        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
137        blk->status |= BlkDirty;
138    }
139}
140
141
142void
143Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
144                             bool deferred_response, bool pending_downgrade)
145{
146    assert(pkt->isRequest());
147
148    assert(blk && blk->isValid());
149    // Occasionally this is not true... if we are a lower-level cache
150    // satisfying a string of Read and ReadEx requests from
151    // upper-level caches, a Read will mark the block as shared but we
152    // can satisfy a following ReadEx anyway since we can rely on the
153    // Read requester(s) to have buffered the ReadEx snoop and to
154    // invalidate their blocks after receiving them.
155    // assert(!pkt->needsExclusive() || blk->isWritable());
156    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
157
158    // Check RMW operations first since both isRead() and
159    // isWrite() will be true for them
160    if (pkt->cmd == MemCmd::SwapReq) {
161        cmpAndSwap(blk, pkt);
162    } else if (pkt->isWrite()) {
163        assert(blk->isWritable());
164        // Write or WriteLine at the first cache with block in Exclusive
165        if (blk->checkWrite(pkt)) {
166            pkt->writeDataToBlock(blk->data, blkSize);
167        }
168        // Always mark the line as dirty even if we are a failed
169        // StoreCond so we supply data to any snoops that have
170        // appended themselves to this cache before knowing the store
171        // will fail.
172        blk->status |= BlkDirty;
173        DPRINTF(Cache, "%s for %s addr %#llx size %d (write)\n", __func__,
174                pkt->cmdString(), pkt->getAddr(), pkt->getSize());
175    } else if (pkt->isRead()) {
176        if (pkt->isLLSC()) {
177            blk->trackLoadLocked(pkt);
178        }
179        pkt->setDataFromBlock(blk->data, blkSize);
180        // determine if this read is from a (coherent) cache, or not
181        // by looking at the command type; we could potentially add a
182        // packet attribute such as 'FromCache' to make this check a
183        // bit cleaner
184        if (pkt->cmd == MemCmd::ReadExReq ||
185            pkt->cmd == MemCmd::ReadSharedReq ||
186            pkt->cmd == MemCmd::ReadCleanReq ||
187            pkt->cmd == MemCmd::SCUpgradeFailReq) {
188            assert(pkt->getSize() == blkSize);
189            // special handling for coherent block requests from
190            // upper-level caches
191            if (pkt->needsExclusive()) {
192                // sanity check
193                assert(pkt->cmd == MemCmd::ReadExReq ||
194                       pkt->cmd == MemCmd::SCUpgradeFailReq);
195
196                // if we have a dirty copy, make sure the recipient
197                // keeps it marked dirty
198                if (blk->isDirty()) {
199                    pkt->assertMemInhibit();
200                }
201                // on ReadExReq we give up our copy unconditionally
202                if (blk != tempBlock)
203                    tags->invalidate(blk);
204                blk->invalidate();
205            } else if (blk->isWritable() && !pending_downgrade &&
206                       !pkt->sharedAsserted() &&
207                       pkt->cmd != MemCmd::ReadCleanReq) {
208                // we can give the requester an exclusive copy (by not
209                // asserting shared line) on a read request if:
210                // - we have an exclusive copy at this level (& below)
211                // - we don't have a pending snoop from below
212                //   signaling another read request
213                // - no other cache above has a copy (otherwise it
214                //   would have asseretd shared line on request)
215                // - we are not satisfying an instruction fetch (this
216                //   prevents dirty data in the i-cache)
217
218                if (blk->isDirty()) {
219                    // special considerations if we're owner:
220                    if (!deferred_response) {
221                        // if we are responding immediately and can
222                        // signal that we're transferring ownership
223                        // along with exclusivity, do so
224                        pkt->assertMemInhibit();
225                        blk->status &= ~BlkDirty;
226                    } else {
227                        // if we're responding after our own miss,
228                        // there's a window where the recipient didn't
229                        // know it was getting ownership and may not
230                        // have responded to snoops correctly, so we
231                        // can't pass off ownership *or* exclusivity
232                        pkt->assertShared();
233                    }
234                }
235            } else {
236                // otherwise only respond with a shared copy
237                pkt->assertShared();
238            }
239        }
240    } else {
241        // Upgrade or Invalidate, since we have it Exclusively (E or
242        // M), we ack then invalidate.
243        assert(pkt->isUpgrade() || pkt->isInvalidate());
244        assert(blk != tempBlock);
245        tags->invalidate(blk);
246        blk->invalidate();
247        DPRINTF(Cache, "%s for %s addr %#llx size %d (invalidation)\n",
248                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
249    }
250}
251
252
253/////////////////////////////////////////////////////
254//
255// MSHR helper functions
256//
257/////////////////////////////////////////////////////
258
259
260void
261Cache::markInService(MSHR *mshr, bool pending_dirty_resp)
262{
263    markInServiceInternal(mshr, pending_dirty_resp);
264}
265
266/////////////////////////////////////////////////////
267//
268// Access path: requests coming in from the CPU side
269//
270/////////////////////////////////////////////////////
271
272bool
273Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
274              PacketList &writebacks)
275{
276    // sanity check
277    assert(pkt->isRequest());
278
279    chatty_assert(!(isReadOnly && pkt->isWrite()),
280                  "Should never see a write in a read-only cache %s\n",
281                  name());
282
283    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
284            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
285
286    if (pkt->req->isUncacheable()) {
287        DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
288                pkt->req->isInstFetch() ? " (ifetch)" : "",
289                pkt->getAddr());
290
291        // flush and invalidate any existing block
292        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
293        if (old_blk && old_blk->isValid()) {
294            if (old_blk->isDirty())
295                writebacks.push_back(writebackBlk(old_blk));
296            else
297                writebacks.push_back(cleanEvictBlk(old_blk));
298            tags->invalidate(old_blk);
299            old_blk->invalidate();
300        }
301
302        blk = NULL;
303        // lookupLatency is the latency in case the request is uncacheable.
304        lat = lookupLatency;
305        return false;
306    }
307
308    ContextID id = pkt->req->hasContextId() ?
309        pkt->req->contextId() : InvalidContextID;
310    // Here lat is the value passed as parameter to accessBlock() function
311    // that can modify its value.
312    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
313
314    DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
315            pkt->req->isInstFetch() ? " (ifetch)" : "",
316            pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
317            blk ? "hit " + blk->print() : "miss");
318
319
320    if (pkt->evictingBlock()) {
321        // We check for presence of block in above caches before issuing
322        // Writeback or CleanEvict to write buffer. Therefore the only
323        // possible cases can be of a CleanEvict packet coming from above
324        // encountering a Writeback generated in this cache peer cache and
325        // waiting in the write buffer. Cases of upper level peer caches
326        // generating CleanEvict and Writeback or simply CleanEvict and
327        // CleanEvict almost simultaneously will be caught by snoops sent out
328        // by crossbar.
329        std::vector<MSHR *> outgoing;
330        if (writeBuffer.findMatches(pkt->getAddr(), pkt->isSecure(),
331                                   outgoing)) {
332            assert(outgoing.size() == 1);
333            PacketPtr wbPkt = outgoing[0]->getTarget()->pkt;
334            assert(pkt->cmd == MemCmd::CleanEvict &&
335                   wbPkt->cmd == MemCmd::Writeback);
336            // As the CleanEvict is coming from above, it would have snooped
337            // into other peer caches of the same level while traversing the
338            // crossbar. If a copy of the block had been found, the CleanEvict
339            // would have been deleted in the crossbar. Now that the
340            // CleanEvict is here we can be sure none of the other upper level
341            // caches connected to this cache have the block, so we can clear
342            // the BLOCK_CACHED flag in the Writeback if set and discard the
343            // CleanEvict by returning true.
344            wbPkt->clearBlockCached();
345            return true;
346        }
347    }
348
349    // Writeback handling is special case.  We can write the block into
350    // the cache without having a writeable copy (or any copy at all).
351    if (pkt->cmd == MemCmd::Writeback) {
352        assert(blkSize == pkt->getSize());
353        if (blk == NULL) {
354            // need to do a replacement
355            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
356            if (blk == NULL) {
357                // no replaceable block available: give up, fwd to next level.
358                incMissCount(pkt);
359                return false;
360            }
361            tags->insertBlock(pkt, blk);
362
363            blk->status = (BlkValid | BlkReadable);
364            if (pkt->isSecure()) {
365                blk->status |= BlkSecure;
366            }
367        }
368        blk->status |= BlkDirty;
369        // if shared is not asserted we got the writeback in modified
370        // state, if it is asserted we are in the owned state
371        if (!pkt->sharedAsserted()) {
372            blk->status |= BlkWritable;
373        }
374        // nothing else to do; writeback doesn't expect response
375        assert(!pkt->needsResponse());
376        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
377        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
378        incHitCount(pkt);
379        return true;
380    } else if (pkt->cmd == MemCmd::CleanEvict) {
381        if (blk != NULL) {
382            // Found the block in the tags, need to stop CleanEvict from
383            // propagating further down the hierarchy. Returning true will
384            // treat the CleanEvict like a satisfied write request and delete
385            // it.
386            return true;
387        }
388        // We didn't find the block here, propagate the CleanEvict further
389        // down the memory hierarchy. Returning false will treat the CleanEvict
390        // like a Writeback which could not find a replaceable block so has to
391        // go to next level.
392        return false;
393    } else if ((blk != NULL) &&
394               (pkt->needsExclusive() ? blk->isWritable()
395                                      : blk->isReadable())) {
396        // OK to satisfy access
397        incHitCount(pkt);
398        satisfyCpuSideRequest(pkt, blk);
399        return true;
400    }
401
402    // Can't satisfy access normally... either no block (blk == NULL)
403    // or have block but need exclusive & only have shared.
404
405    incMissCount(pkt);
406
407    if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) {
408        // complete miss on store conditional... just give up now
409        pkt->req->setExtraData(0);
410        return true;
411    }
412
413    return false;
414}
415
416
417class ForwardResponseRecord : public Packet::SenderState
418{
419  public:
420
421    ForwardResponseRecord() {}
422};
423
424void
425Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
426{
427    while (!writebacks.empty()) {
428        PacketPtr wbPkt = writebacks.front();
429        // We use forwardLatency here because we are copying writebacks to
430        // write buffer.  Call isCachedAbove for both Writebacks and
431        // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
432        // in Writebacks and discard CleanEvicts.
433        if (isCachedAbove(wbPkt)) {
434            if (wbPkt->cmd == MemCmd::CleanEvict) {
435                // Delete CleanEvict because cached copies exist above. The
436                // packet destructor will delete the request object because
437                // this is a non-snoop request packet which does not require a
438                // response.
439                delete wbPkt;
440            } else {
441                // Set BLOCK_CACHED flag in Writeback and send below, so that
442                // the Writeback does not reset the bit corresponding to this
443                // address in the snoop filter below.
444                wbPkt->setBlockCached();
445                allocateWriteBuffer(wbPkt, forward_time);
446            }
447        } else {
448            // If the block is not cached above, send packet below. Both
449            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
450            // reset the bit corresponding to this address in the snoop filter
451            // below.
452            allocateWriteBuffer(wbPkt, forward_time);
453        }
454        writebacks.pop_front();
455    }
456}
457
458
459void
460Cache::recvTimingSnoopResp(PacketPtr pkt)
461{
462    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
463            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
464
465    assert(pkt->isResponse());
466
467    // must be cache-to-cache response from upper to lower level
468    ForwardResponseRecord *rec =
469        dynamic_cast<ForwardResponseRecord *>(pkt->senderState);
470    assert(!system->bypassCaches());
471
472    if (rec == NULL) {
473        // @todo What guarantee do we have that this HardPFResp is
474        // actually for this cache, and not a cache closer to the
475        // memory?
476        assert(pkt->cmd == MemCmd::HardPFResp);
477        // Check if it's a prefetch response and handle it. We shouldn't
478        // get any other kinds of responses without FRRs.
479        DPRINTF(Cache, "Got prefetch response from above for addr %#llx (%s)\n",
480                pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
481        recvTimingResp(pkt);
482        return;
483    }
484
485    pkt->popSenderState();
486    delete rec;
487    // forwardLatency is set here because there is a response from an
488    // upper level cache.
489    // To pay the delay that occurs if the packet comes from the bus,
490    // we charge also headerDelay.
491    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
492    // Reset the timing of the packet.
493    pkt->headerDelay = pkt->payloadDelay = 0;
494    memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
495}
496
497void
498Cache::promoteWholeLineWrites(PacketPtr pkt)
499{
500    // Cache line clearing instructions
501    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
502        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
503        pkt->cmd = MemCmd::WriteLineReq;
504        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
505    }
506}
507
508bool
509Cache::recvTimingReq(PacketPtr pkt)
510{
511    DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
512//@todo Add back in MemDebug Calls
513//    MemDebug::cacheAccess(pkt);
514
515
516    /// @todo temporary hack to deal with memory corruption issue until
517    /// 4-phase transactions are complete
518    for (int x = 0; x < pendingDelete.size(); x++)
519        delete pendingDelete[x];
520    pendingDelete.clear();
521
522    assert(pkt->isRequest());
523
524    // Just forward the packet if caches are disabled.
525    if (system->bypassCaches()) {
526        // @todo This should really enqueue the packet rather
527        bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
528        assert(success);
529        return true;
530    }
531
532    promoteWholeLineWrites(pkt);
533
534    if (pkt->memInhibitAsserted()) {
535        // a cache above us (but not where the packet came from) is
536        // responding to the request
537        DPRINTF(Cache, "mem inhibited on addr %#llx (%s): not responding\n",
538                pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
539
540        // if the packet needs exclusive, and the cache that has
541        // promised to respond (setting the inhibit flag) is not
542        // providing exclusive (it is in O vs M state), we know that
543        // there may be other shared copies in the system; go out and
544        // invalidate them all
545        if (pkt->needsExclusive() && !pkt->isSupplyExclusive()) {
546            // create a downstream express snoop with cleared packet
547            // flags, there is no need to allocate any data as the
548            // packet is merely used to co-ordinate state transitions
549            Packet *snoop_pkt = new Packet(pkt, true, false);
550
551            // also reset the bus time that the original packet has
552            // not yet paid for
553            snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
554
555            // make this an instantaneous express snoop, and let the
556            // other caches in the system know that the packet is
557            // inhibited, because we have found the authorative copy
558            // (O) that will supply the right data
559            snoop_pkt->setExpressSnoop();
560            snoop_pkt->assertMemInhibit();
561
562            // this express snoop travels towards the memory, and at
563            // every crossbar it is snooped upwards thus reaching
564            // every cache in the system
565            bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
566            // express snoops always succeed
567            assert(success);
568
569            // main memory will delete the packet
570        }
571
572        /// @todo nominally we should just delete the packet here,
573        /// however, until 4-phase stuff we can't because sending
574        /// cache is still relying on it.
575        pendingDelete.push_back(pkt);
576
577        // no need to take any action in this particular cache as the
578        // caches along the path to memory are allowed to keep lines
579        // in a shared state, and a cache above us already committed
580        // to responding
581        return true;
582    }
583
584    // anything that is merely forwarded pays for the forward latency and
585    // the delay provided by the crossbar
586    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
587
588    // We use lookupLatency here because it is used to specify the latency
589    // to access.
590    Cycles lat = lookupLatency;
591    CacheBlk *blk = NULL;
592    bool satisfied = false;
593    {
594        PacketList writebacks;
595        // Note that lat is passed by reference here. The function
596        // access() calls accessBlock() which can modify lat value.
597        satisfied = access(pkt, blk, lat, writebacks);
598
599        // copy writebacks to write buffer here to ensure they logically
600        // proceed anything happening below
601        doWritebacks(writebacks, forward_time);
602    }
603
604    // Here we charge the headerDelay that takes into account the latencies
605    // of the bus, if the packet comes from it.
606    // The latency charged it is just lat that is the value of lookupLatency
607    // modified by access() function, or if not just lookupLatency.
608    // In case of a hit we are neglecting response latency.
609    // In case of a miss we are neglecting forward latency.
610    Tick request_time = clockEdge(lat) + pkt->headerDelay;
611    // Here we reset the timing of the packet.
612    pkt->headerDelay = pkt->payloadDelay = 0;
613
614    // track time of availability of next prefetch, if any
615    Tick next_pf_time = MaxTick;
616
617    bool needsResponse = pkt->needsResponse();
618
619    if (satisfied) {
620        // should never be satisfying an uncacheable access as we
621        // flush and invalidate any existing block as part of the
622        // lookup
623        assert(!pkt->req->isUncacheable());
624
625        // hit (for all other request types)
626
627        if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
628            if (blk)
629                blk->status &= ~BlkHWPrefetched;
630
631            // Don't notify on SWPrefetch
632            if (!pkt->cmd.isSWPrefetch())
633                next_pf_time = prefetcher->notify(pkt);
634        }
635
636        if (needsResponse) {
637            pkt->makeTimingResponse();
638            // @todo: Make someone pay for this
639            pkt->headerDelay = pkt->payloadDelay = 0;
640
641            // In this case we are considering request_time that takes
642            // into account the delay of the xbar, if any, and just
643            // lat, neglecting responseLatency, modelling hit latency
644            // just as lookupLatency or or the value of lat overriden
645            // by access(), that calls accessBlock() function.
646            cpuSidePort->schedTimingResp(pkt, request_time);
647        } else {
648            /// @todo nominally we should just delete the packet here,
649            /// however, until 4-phase stuff we can't because sending cache is
650            /// still relying on it. If the block is found in access(),
651            /// CleanEvict and Writeback messages will be deleted here as
652            /// well.
653            pendingDelete.push_back(pkt);
654        }
655    } else {
656        // miss
657
658        Addr blk_addr = blockAlign(pkt->getAddr());
659
660        // ignore any existing MSHR if we are dealing with an
661        // uncacheable request
662        MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
663            mshrQueue.findMatch(blk_addr, pkt->isSecure());
664
665        // Software prefetch handling:
666        // To keep the core from waiting on data it won't look at
667        // anyway, send back a response with dummy data. Miss handling
668        // will continue asynchronously. Unfortunately, the core will
669        // insist upon freeing original Packet/Request, so we have to
670        // create a new pair with a different lifecycle. Note that this
671        // processing happens before any MSHR munging on the behalf of
672        // this request because this new Request will be the one stored
673        // into the MSHRs, not the original.
674        if (pkt->cmd.isSWPrefetch()) {
675            assert(needsResponse);
676            assert(pkt->req->hasPaddr());
677            assert(!pkt->req->isUncacheable());
678
679            // There's no reason to add a prefetch as an additional target
680            // to an existing MSHR. If an outstanding request is already
681            // in progress, there is nothing for the prefetch to do.
682            // If this is the case, we don't even create a request at all.
683            PacketPtr pf = nullptr;
684
685            if (!mshr) {
686                // copy the request and create a new SoftPFReq packet
687                RequestPtr req = new Request(pkt->req->getPaddr(),
688                                             pkt->req->getSize(),
689                                             pkt->req->getFlags(),
690                                             pkt->req->masterId());
691                pf = new Packet(req, pkt->cmd);
692                pf->allocate();
693                assert(pf->getAddr() == pkt->getAddr());
694                assert(pf->getSize() == pkt->getSize());
695            }
696
697            pkt->makeTimingResponse();
698            // for debugging, set all the bits in the response data
699            // (also keeps valgrind from complaining when debugging settings
700            //  print out instruction results)
701            std::memset(pkt->getPtr<uint8_t>(), 0xFF, pkt->getSize());
702            // request_time is used here, taking into account lat and the delay
703            // charged if the packet comes from the xbar.
704            cpuSidePort->schedTimingResp(pkt, request_time);
705
706            // If an outstanding request is in progress (we found an
707            // MSHR) this is set to null
708            pkt = pf;
709        }
710
711        if (mshr) {
712            /// MSHR hit
713            /// @note writebacks will be checked in getNextMSHR()
714            /// for any conflicting requests to the same block
715
716            //@todo remove hw_pf here
717
718            // Coalesce unless it was a software prefetch (see above).
719            if (pkt) {
720                assert(pkt->cmd != MemCmd::Writeback);
721                // CleanEvicts corresponding to blocks which have outstanding
722                // requests in MSHRs can be deleted here.
723                if (pkt->cmd == MemCmd::CleanEvict) {
724                    pendingDelete.push_back(pkt);
725                } else {
726                    DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n",
727                            __func__, pkt->cmdString(), pkt->getAddr(),
728                            pkt->getSize());
729
730                    assert(pkt->req->masterId() < system->maxMasters());
731                    mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
732                    if (mshr->threadNum != 0/*pkt->req->threadId()*/) {
733                        mshr->threadNum = -1;
734                    }
735                    // We use forward_time here because it is the same
736                    // considering new targets. We have multiple
737                    // requests for the same address here. It
738                    // specifies the latency to allocate an internal
739                    // buffer and to schedule an event to the queued
740                    // port and also takes into account the additional
741                    // delay of the xbar.
742                    mshr->allocateTarget(pkt, forward_time, order++);
743                    if (mshr->getNumTargets() == numTarget) {
744                        noTargetMSHR = mshr;
745                        setBlocked(Blocked_NoTargets);
746                        // need to be careful with this... if this mshr isn't
747                        // ready yet (i.e. time > curTick()), we don't want to
748                        // move it ahead of mshrs that are ready
749                        // mshrQueue.moveToFront(mshr);
750                    }
751                }
752                // We should call the prefetcher reguardless if the request is
753                // satisfied or not, reguardless if the request is in the MSHR or
754                // not.  The request could be a ReadReq hit, but still not
755                // satisfied (potentially because of a prior write to the same
756                // cache line.  So, even when not satisfied, tehre is an MSHR
757                // already allocated for this, we need to let the prefetcher know
758                // about the request
759                if (prefetcher) {
760                    // Don't notify on SWPrefetch
761                    if (!pkt->cmd.isSWPrefetch())
762                        next_pf_time = prefetcher->notify(pkt);
763                }
764            }
765        } else {
766            // no MSHR
767            assert(pkt->req->masterId() < system->maxMasters());
768            if (pkt->req->isUncacheable()) {
769                mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
770            } else {
771                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
772            }
773
774            if (pkt->evictingBlock() ||
775                (pkt->req->isUncacheable() && pkt->isWrite())) {
776                // We use forward_time here because there is an
777                // uncached memory write, forwarded to WriteBuffer.
778                allocateWriteBuffer(pkt, forward_time);
779            } else {
780                if (blk && blk->isValid()) {
781                    // should have flushed and have no valid block
782                    assert(!pkt->req->isUncacheable());
783
784                    // If we have a write miss to a valid block, we
785                    // need to mark the block non-readable.  Otherwise
786                    // if we allow reads while there's an outstanding
787                    // write miss, the read could return stale data
788                    // out of the cache block... a more aggressive
789                    // system could detect the overlap (if any) and
790                    // forward data out of the MSHRs, but we don't do
791                    // that yet.  Note that we do need to leave the
792                    // block valid so that it stays in the cache, in
793                    // case we get an upgrade response (and hence no
794                    // new data) when the write miss completes.
795                    // As long as CPUs do proper store/load forwarding
796                    // internally, and have a sufficiently weak memory
797                    // model, this is probably unnecessary, but at some
798                    // point it must have seemed like we needed it...
799                    assert(pkt->needsExclusive());
800                    assert(!blk->isWritable());
801                    blk->status &= ~BlkReadable;
802                }
803                // Here we are using forward_time, modelling the latency of
804                // a miss (outbound) just as forwardLatency, neglecting the
805                // lookupLatency component.
806                allocateMissBuffer(pkt, forward_time);
807            }
808
809            if (prefetcher) {
810                // Don't notify on SWPrefetch
811                if (!pkt->cmd.isSWPrefetch())
812                    next_pf_time = prefetcher->notify(pkt);
813            }
814        }
815    }
816
817    if (next_pf_time != MaxTick)
818        schedMemSideSendEvent(next_pf_time);
819
820    return true;
821}
822
823
824// See comment in cache.hh.
825PacketPtr
826Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk,
827                    bool needsExclusive) const
828{
829    bool blkValid = blk && blk->isValid();
830
831    if (cpu_pkt->req->isUncacheable()) {
832        // note that at the point we see the uncacheable request we
833        // flush any block, but there could be an outstanding MSHR,
834        // and the cache could have filled again before we actually
835        // send out the forwarded uncacheable request (blk could thus
836        // be non-null)
837        return NULL;
838    }
839
840    if (!blkValid &&
841        (cpu_pkt->isUpgrade() ||
842         cpu_pkt->evictingBlock())) {
843        // Writebacks that weren't allocated in access() and upgrades
844        // from upper-level caches that missed completely just go
845        // through.
846        return NULL;
847    }
848
849    assert(cpu_pkt->needsResponse());
850
851    MemCmd cmd;
852    // @TODO make useUpgrades a parameter.
853    // Note that ownership protocols require upgrade, otherwise a
854    // write miss on a shared owned block will generate a ReadExcl,
855    // which will clobber the owned copy.
856    const bool useUpgrades = true;
857    if (blkValid && useUpgrades) {
858        // only reason to be here is that blk is shared
859        // (read-only) and we need exclusive
860        assert(needsExclusive);
861        assert(!blk->isWritable());
862        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
863    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
864               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
865        // Even though this SC will fail, we still need to send out the
866        // request and get the data to supply it to other snoopers in the case
867        // where the determination the StoreCond fails is delayed due to
868        // all caches not being on the same local bus.
869        cmd = MemCmd::SCUpgradeFailReq;
870    } else if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
871        // forward as invalidate to all other caches, this gives us
872        // the line in exclusive state, and invalidates all other
873        // copies
874        cmd = MemCmd::InvalidateReq;
875    } else {
876        // block is invalid
877        cmd = needsExclusive ? MemCmd::ReadExReq :
878            (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
879    }
880    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
881
882    // if there are sharers in the upper levels, pass that info downstream
883    if (cpu_pkt->sharedAsserted()) {
884        // note that cpu_pkt may have spent a considerable time in the
885        // MSHR queue and that the information could possibly be out
886        // of date, however, there is no harm in conservatively
887        // assuming the block is shared
888        pkt->assertShared();
889        DPRINTF(Cache, "%s passing shared from %s to %s addr %#llx size %d\n",
890                __func__, cpu_pkt->cmdString(), pkt->cmdString(),
891                pkt->getAddr(), pkt->getSize());
892    }
893
894    // the packet should be block aligned
895    assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
896
897    pkt->allocate();
898    DPRINTF(Cache, "%s created %s from %s for  addr %#llx size %d\n",
899            __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
900            pkt->getSize());
901    return pkt;
902}
903
904
905Tick
906Cache::recvAtomic(PacketPtr pkt)
907{
908    // We are in atomic mode so we pay just for lookupLatency here.
909    Cycles lat = lookupLatency;
910    // @TODO: make this a parameter
911    bool last_level_cache = false;
912
913    // Forward the request if the system is in cache bypass mode.
914    if (system->bypassCaches())
915        return ticksToCycles(memSidePort->sendAtomic(pkt));
916
917    promoteWholeLineWrites(pkt);
918
919    if (pkt->memInhibitAsserted()) {
920        // have to invalidate ourselves and any lower caches even if
921        // upper cache will be responding
922        if (pkt->isInvalidate()) {
923            CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
924            if (blk && blk->isValid()) {
925                tags->invalidate(blk);
926                blk->invalidate();
927                DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx (%s):"
928                        " invalidating\n",
929                        pkt->cmdString(), pkt->getAddr(),
930                        pkt->isSecure() ? "s" : "ns");
931            }
932            if (!last_level_cache) {
933                DPRINTF(Cache, "forwarding mem-inhibited %s on %#llx (%s)\n",
934                        pkt->cmdString(), pkt->getAddr(),
935                        pkt->isSecure() ? "s" : "ns");
936                lat += ticksToCycles(memSidePort->sendAtomic(pkt));
937            }
938        } else {
939            DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx: not responding\n",
940                    pkt->cmdString(), pkt->getAddr());
941        }
942
943        return lat * clockPeriod();
944    }
945
946    // should assert here that there are no outstanding MSHRs or
947    // writebacks... that would mean that someone used an atomic
948    // access in timing mode
949
950    CacheBlk *blk = NULL;
951    PacketList writebacks;
952    bool satisfied = access(pkt, blk, lat, writebacks);
953
954    // handle writebacks resulting from the access here to ensure they
955    // logically proceed anything happening below
956    while (!writebacks.empty()){
957        PacketPtr wbPkt = writebacks.front();
958        memSidePort->sendAtomic(wbPkt);
959        writebacks.pop_front();
960        delete wbPkt;
961    }
962
963    if (!satisfied) {
964        // MISS
965
966        PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsExclusive());
967
968        bool is_forward = (bus_pkt == NULL);
969
970        if (is_forward) {
971            // just forwarding the same request to the next level
972            // no local cache operation involved
973            bus_pkt = pkt;
974        }
975
976        DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
977                bus_pkt->cmdString(), bus_pkt->getAddr(),
978                bus_pkt->isSecure() ? "s" : "ns");
979
980#if TRACING_ON
981        CacheBlk::State old_state = blk ? blk->status : 0;
982#endif
983
984        lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
985
986        // We are now dealing with the response handling
987        DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n",
988                bus_pkt->cmdString(), bus_pkt->getAddr(),
989                bus_pkt->isSecure() ? "s" : "ns",
990                old_state);
991
992        // If packet was a forward, the response (if any) is already
993        // in place in the bus_pkt == pkt structure, so we don't need
994        // to do anything.  Otherwise, use the separate bus_pkt to
995        // generate response to pkt and then delete it.
996        if (!is_forward) {
997            if (pkt->needsResponse()) {
998                assert(bus_pkt->isResponse());
999                if (bus_pkt->isError()) {
1000                    pkt->makeAtomicResponse();
1001                    pkt->copyError(bus_pkt);
1002                } else if (pkt->cmd == MemCmd::InvalidateReq) {
1003                    if (blk) {
1004                        // invalidate response to a cache that received
1005                        // an invalidate request
1006                        satisfyCpuSideRequest(pkt, blk);
1007                    }
1008                } else if (pkt->cmd == MemCmd::WriteLineReq) {
1009                    // note the use of pkt, not bus_pkt here.
1010
1011                    // write-line request to the cache that promoted
1012                    // the write to a whole line
1013                    blk = handleFill(pkt, blk, writebacks);
1014                    satisfyCpuSideRequest(pkt, blk);
1015                } else if (bus_pkt->isRead() ||
1016                           bus_pkt->cmd == MemCmd::UpgradeResp) {
1017                    // we're updating cache state to allow us to
1018                    // satisfy the upstream request from the cache
1019                    blk = handleFill(bus_pkt, blk, writebacks);
1020                    satisfyCpuSideRequest(pkt, blk);
1021                } else {
1022                    // we're satisfying the upstream request without
1023                    // modifying cache state, e.g., a write-through
1024                    pkt->makeAtomicResponse();
1025                }
1026            }
1027            delete bus_pkt;
1028        }
1029    }
1030
1031    // Note that we don't invoke the prefetcher at all in atomic mode.
1032    // It's not clear how to do it properly, particularly for
1033    // prefetchers that aggressively generate prefetch candidates and
1034    // rely on bandwidth contention to throttle them; these will tend
1035    // to pollute the cache in atomic mode since there is no bandwidth
1036    // contention.  If we ever do want to enable prefetching in atomic
1037    // mode, though, this is the place to do it... see timingAccess()
1038    // for an example (though we'd want to issue the prefetch(es)
1039    // immediately rather than calling requestMemSideBus() as we do
1040    // there).
1041
1042    // Handle writebacks (from the response handling) if needed
1043    while (!writebacks.empty()){
1044        PacketPtr wbPkt = writebacks.front();
1045        memSidePort->sendAtomic(wbPkt);
1046        writebacks.pop_front();
1047        delete wbPkt;
1048    }
1049
1050    if (pkt->needsResponse()) {
1051        pkt->makeAtomicResponse();
1052    }
1053
1054    return lat * clockPeriod();
1055}
1056
1057
1058void
1059Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1060{
1061    if (system->bypassCaches()) {
1062        // Packets from the memory side are snoop request and
1063        // shouldn't happen in bypass mode.
1064        assert(fromCpuSide);
1065
1066        // The cache should be flushed if we are in cache bypass mode,
1067        // so we don't need to check if we need to update anything.
1068        memSidePort->sendFunctional(pkt);
1069        return;
1070    }
1071
1072    Addr blk_addr = blockAlign(pkt->getAddr());
1073    bool is_secure = pkt->isSecure();
1074    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1075    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1076
1077    pkt->pushLabel(name());
1078
1079    CacheBlkPrintWrapper cbpw(blk);
1080
1081    // Note that just because an L2/L3 has valid data doesn't mean an
1082    // L1 doesn't have a more up-to-date modified copy that still
1083    // needs to be found.  As a result we always update the request if
1084    // we have it, but only declare it satisfied if we are the owner.
1085
1086    // see if we have data at all (owned or otherwise)
1087    bool have_data = blk && blk->isValid()
1088        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1089                                blk->data);
1090
1091    // data we have is dirty if marked as such or if valid & ownership
1092    // pending due to outstanding UpgradeReq
1093    bool have_dirty =
1094        have_data && (blk->isDirty() ||
1095                      (mshr && mshr->inService && mshr->isPendingDirty()));
1096
1097    bool done = have_dirty
1098        || cpuSidePort->checkFunctional(pkt)
1099        || mshrQueue.checkFunctional(pkt, blk_addr)
1100        || writeBuffer.checkFunctional(pkt, blk_addr)
1101        || memSidePort->checkFunctional(pkt);
1102
1103    DPRINTF(Cache, "functional %s %#llx (%s) %s%s%s\n",
1104            pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1105            (blk && blk->isValid()) ? "valid " : "",
1106            have_data ? "data " : "", done ? "done " : "");
1107
1108    // We're leaving the cache, so pop cache->name() label
1109    pkt->popLabel();
1110
1111    if (done) {
1112        pkt->makeResponse();
1113    } else {
1114        // if it came as a request from the CPU side then make sure it
1115        // continues towards the memory side
1116        if (fromCpuSide) {
1117            memSidePort->sendFunctional(pkt);
1118        } else if (forwardSnoops && cpuSidePort->isSnooping()) {
1119            // if it came from the memory side, it must be a snoop request
1120            // and we should only forward it if we are forwarding snoops
1121            cpuSidePort->sendFunctionalSnoop(pkt);
1122        }
1123    }
1124}
1125
1126
1127/////////////////////////////////////////////////////
1128//
1129// Response handling: responses from the memory side
1130//
1131/////////////////////////////////////////////////////
1132
1133
1134void
1135Cache::recvTimingResp(PacketPtr pkt)
1136{
1137    assert(pkt->isResponse());
1138
1139    // all header delay should be paid for by the crossbar, unless
1140    // this is a prefetch response from above
1141    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1142             "%s saw a non-zero packet delay\n", name());
1143
1144    MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
1145    bool is_error = pkt->isError();
1146
1147    assert(mshr);
1148
1149    if (is_error) {
1150        DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1151                "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1152                pkt->cmdString());
1153    }
1154
1155    DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1156            pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1157            pkt->isSecure() ? "s" : "ns");
1158
1159    MSHRQueue *mq = mshr->queue;
1160    bool wasFull = mq->isFull();
1161
1162    if (mshr == noTargetMSHR) {
1163        // we always clear at least one target
1164        clearBlocked(Blocked_NoTargets);
1165        noTargetMSHR = NULL;
1166    }
1167
1168    // Initial target is used just for stats
1169    MSHR::Target *initial_tgt = mshr->getTarget();
1170    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1171    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1172    Tick miss_latency = curTick() - initial_tgt->recvTime;
1173    PacketList writebacks;
1174    // We need forward_time here because we have a call of
1175    // allocateWriteBuffer() that need this parameter to specify the
1176    // time to request the bus.  In this case we use forward latency
1177    // because there is a writeback.  We pay also here for headerDelay
1178    // that is charged of bus latencies if the packet comes from the
1179    // bus.
1180    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1181
1182    if (pkt->req->isUncacheable()) {
1183        assert(pkt->req->masterId() < system->maxMasters());
1184        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1185            miss_latency;
1186    } else {
1187        assert(pkt->req->masterId() < system->maxMasters());
1188        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1189            miss_latency;
1190    }
1191
1192    bool is_fill = !mshr->isForward &&
1193        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1194
1195    if (is_fill && !is_error) {
1196        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1197                pkt->getAddr());
1198
1199        // give mshr a chance to do some dirty work
1200        mshr->handleFill(pkt, blk);
1201
1202        blk = handleFill(pkt, blk, writebacks);
1203        assert(blk != NULL);
1204    }
1205
1206    // allow invalidation responses originating from write-line
1207    // requests to be discarded
1208    bool discard_invalidate = false;
1209
1210    // First offset for critical word first calculations
1211    int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1212
1213    while (mshr->hasTargets()) {
1214        MSHR::Target *target = mshr->getTarget();
1215        Packet *tgt_pkt = target->pkt;
1216
1217        switch (target->source) {
1218          case MSHR::Target::FromCPU:
1219            Tick completion_time;
1220            // Here we charge on completion_time the delay of the xbar if the
1221            // packet comes from it, charged on headerDelay.
1222            completion_time = pkt->headerDelay;
1223
1224            // Software prefetch handling for cache closest to core
1225            if (tgt_pkt->cmd.isSWPrefetch()) {
1226                // a software prefetch would have already been ack'd immediately
1227                // with dummy data so the core would be able to retire it.
1228                // this request completes right here, so we deallocate it.
1229                delete tgt_pkt->req;
1230                delete tgt_pkt;
1231                break; // skip response
1232            }
1233
1234            // unlike the other packet flows, where data is found in other
1235            // caches or memory and brought back, write-line requests always
1236            // have the data right away, so the above check for "is fill?"
1237            // cannot actually be determined until examining the stored MSHR
1238            // state. We "catch up" with that logic here, which is duplicated
1239            // from above.
1240            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1241                assert(!is_error);
1242
1243                // NB: we use the original packet here and not the response!
1244                mshr->handleFill(tgt_pkt, blk);
1245                blk = handleFill(tgt_pkt, blk, writebacks);
1246                assert(blk != NULL);
1247
1248                // treat as a fill, and discard the invalidation
1249                // response
1250                is_fill = true;
1251                discard_invalidate = true;
1252            }
1253
1254            if (is_fill) {
1255                satisfyCpuSideRequest(tgt_pkt, blk,
1256                                      true, mshr->hasPostDowngrade());
1257
1258                // How many bytes past the first request is this one
1259                int transfer_offset =
1260                    tgt_pkt->getOffset(blkSize) - initial_offset;
1261                if (transfer_offset < 0) {
1262                    transfer_offset += blkSize;
1263                }
1264
1265                // If not critical word (offset) return payloadDelay.
1266                // responseLatency is the latency of the return path
1267                // from lower level caches/memory to an upper level cache or
1268                // the core.
1269                completion_time += clockEdge(responseLatency) +
1270                    (transfer_offset ? pkt->payloadDelay : 0);
1271
1272                assert(!tgt_pkt->req->isUncacheable());
1273
1274                assert(tgt_pkt->req->masterId() < system->maxMasters());
1275                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1276                    completion_time - target->recvTime;
1277            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1278                // failed StoreCond upgrade
1279                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1280                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1281                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1282                // responseLatency is the latency of the return path
1283                // from lower level caches/memory to an upper level cache or
1284                // the core.
1285                completion_time += clockEdge(responseLatency) +
1286                    pkt->payloadDelay;
1287                tgt_pkt->req->setExtraData(0);
1288            } else {
1289                // not a cache fill, just forwarding response
1290                // responseLatency is the latency of the return path
1291                // from lower level cahces/memory to the core.
1292                completion_time += clockEdge(responseLatency) +
1293                    pkt->payloadDelay;
1294                if (pkt->isRead() && !is_error) {
1295                    // sanity check
1296                    assert(pkt->getAddr() == tgt_pkt->getAddr());
1297                    assert(pkt->getSize() >= tgt_pkt->getSize());
1298
1299                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1300                }
1301            }
1302            tgt_pkt->makeTimingResponse();
1303            // if this packet is an error copy that to the new packet
1304            if (is_error)
1305                tgt_pkt->copyError(pkt);
1306            if (tgt_pkt->cmd == MemCmd::ReadResp &&
1307                (pkt->isInvalidate() || mshr->hasPostInvalidate())) {
1308                // If intermediate cache got ReadRespWithInvalidate,
1309                // propagate that.  Response should not have
1310                // isInvalidate() set otherwise.
1311                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1312                DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1313                        __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1314            }
1315            // Reset the bus additional time as it is now accounted for
1316            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1317            cpuSidePort->schedTimingResp(tgt_pkt, completion_time);
1318            break;
1319
1320          case MSHR::Target::FromPrefetcher:
1321            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1322            if (blk)
1323                blk->status |= BlkHWPrefetched;
1324            delete tgt_pkt->req;
1325            delete tgt_pkt;
1326            break;
1327
1328          case MSHR::Target::FromSnoop:
1329            // I don't believe that a snoop can be in an error state
1330            assert(!is_error);
1331            // response to snoop request
1332            DPRINTF(Cache, "processing deferred snoop...\n");
1333            assert(!(pkt->isInvalidate() && !mshr->hasPostInvalidate()));
1334            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1335            break;
1336
1337          default:
1338            panic("Illegal target->source enum %d\n", target->source);
1339        }
1340
1341        mshr->popTarget();
1342    }
1343
1344    if (blk && blk->isValid()) {
1345        // an invalidate response stemming from a write line request
1346        // should not invalidate the block, so check if the
1347        // invalidation should be discarded
1348        if ((pkt->isInvalidate() || mshr->hasPostInvalidate()) &&
1349            !discard_invalidate) {
1350            assert(blk != tempBlock);
1351            tags->invalidate(blk);
1352            blk->invalidate();
1353        } else if (mshr->hasPostDowngrade()) {
1354            blk->status &= ~BlkWritable;
1355        }
1356    }
1357
1358    if (mshr->promoteDeferredTargets()) {
1359        // avoid later read getting stale data while write miss is
1360        // outstanding.. see comment in timingAccess()
1361        if (blk) {
1362            blk->status &= ~BlkReadable;
1363        }
1364        mq = mshr->queue;
1365        mq->markPending(mshr);
1366        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1367    } else {
1368        mq->deallocate(mshr);
1369        if (wasFull && !mq->isFull()) {
1370            clearBlocked((BlockedCause)mq->index);
1371        }
1372
1373        // Request the bus for a prefetch if this deallocation freed enough
1374        // MSHRs for a prefetch to take place
1375        if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) {
1376            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1377                                         clockEdge());
1378            if (next_pf_time != MaxTick)
1379                schedMemSideSendEvent(next_pf_time);
1380        }
1381    }
1382    // reset the xbar additional timinig  as it is now accounted for
1383    pkt->headerDelay = pkt->payloadDelay = 0;
1384
1385    // copy writebacks to write buffer
1386    doWritebacks(writebacks, forward_time);
1387
1388    // if we used temp block, check to see if its valid and then clear it out
1389    if (blk == tempBlock && tempBlock->isValid()) {
1390        // We use forwardLatency here because we are copying
1391        // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1392        // allocate an internal buffer and to schedule an event to the
1393        // queued port.
1394        if (blk->isDirty()) {
1395            PacketPtr wbPkt = writebackBlk(blk);
1396            allocateWriteBuffer(wbPkt, forward_time);
1397            // Set BLOCK_CACHED flag if cached above.
1398            if (isCachedAbove(wbPkt))
1399                wbPkt->setBlockCached();
1400        } else {
1401            PacketPtr wcPkt = cleanEvictBlk(blk);
1402            // Check to see if block is cached above. If not allocate
1403            // write buffer
1404            if (isCachedAbove(wcPkt))
1405                delete wcPkt;
1406            else
1407                allocateWriteBuffer(wcPkt, forward_time);
1408        }
1409        blk->invalidate();
1410    }
1411
1412    DPRINTF(Cache, "Leaving %s with %s for addr %#llx\n", __func__,
1413            pkt->cmdString(), pkt->getAddr());
1414    delete pkt;
1415}
1416
1417PacketPtr
1418Cache::writebackBlk(CacheBlk *blk)
1419{
1420    chatty_assert(!isReadOnly, "Writeback from read-only cache");
1421    assert(blk && blk->isValid() && blk->isDirty());
1422
1423    writebacks[Request::wbMasterId]++;
1424
1425    Request *writebackReq =
1426        new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1427                Request::wbMasterId);
1428    if (blk->isSecure())
1429        writebackReq->setFlags(Request::SECURE);
1430
1431    writebackReq->taskId(blk->task_id);
1432    blk->task_id= ContextSwitchTaskId::Unknown;
1433    blk->tickInserted = curTick();
1434
1435    PacketPtr writeback = new Packet(writebackReq, MemCmd::Writeback);
1436    if (blk->isWritable()) {
1437        // not asserting shared means we pass the block in modified
1438        // state, mark our own block non-writeable
1439        blk->status &= ~BlkWritable;
1440    } else {
1441        // we are in the owned state, tell the receiver
1442        writeback->assertShared();
1443    }
1444
1445    writeback->allocate();
1446    std::memcpy(writeback->getPtr<uint8_t>(), blk->data, blkSize);
1447
1448    blk->status &= ~BlkDirty;
1449    return writeback;
1450}
1451
1452PacketPtr
1453Cache::cleanEvictBlk(CacheBlk *blk)
1454{
1455    assert(blk && blk->isValid() && !blk->isDirty());
1456    // Creating a zero sized write, a message to the snoop filter
1457    Request *req =
1458        new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1459                    Request::wbMasterId);
1460    if (blk->isSecure())
1461        req->setFlags(Request::SECURE);
1462
1463    req->taskId(blk->task_id);
1464    blk->task_id = ContextSwitchTaskId::Unknown;
1465    blk->tickInserted = curTick();
1466
1467    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1468    pkt->allocate();
1469    DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1470            pkt->req->isInstFetch() ? " (ifetch)" : "",
1471            pkt->getAddr());
1472
1473    return pkt;
1474}
1475
1476void
1477Cache::memWriteback()
1478{
1479    CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1480    tags->forEachBlk(visitor);
1481}
1482
1483void
1484Cache::memInvalidate()
1485{
1486    CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1487    tags->forEachBlk(visitor);
1488}
1489
1490bool
1491Cache::isDirty() const
1492{
1493    CacheBlkIsDirtyVisitor visitor;
1494    tags->forEachBlk(visitor);
1495
1496    return visitor.isDirty();
1497}
1498
1499bool
1500Cache::writebackVisitor(CacheBlk &blk)
1501{
1502    if (blk.isDirty()) {
1503        assert(blk.isValid());
1504
1505        Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1506                        blkSize, 0, Request::funcMasterId);
1507        request.taskId(blk.task_id);
1508
1509        Packet packet(&request, MemCmd::WriteReq);
1510        packet.dataStatic(blk.data);
1511
1512        memSidePort->sendFunctional(&packet);
1513
1514        blk.status &= ~BlkDirty;
1515    }
1516
1517    return true;
1518}
1519
1520bool
1521Cache::invalidateVisitor(CacheBlk &blk)
1522{
1523
1524    if (blk.isDirty())
1525        warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1526
1527    if (blk.isValid()) {
1528        assert(!blk.isDirty());
1529        tags->invalidate(&blk);
1530        blk.invalidate();
1531    }
1532
1533    return true;
1534}
1535
1536CacheBlk*
1537Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1538{
1539    CacheBlk *blk = tags->findVictim(addr);
1540
1541    // It is valid to return NULL if there is no victim
1542    if (!blk)
1543        return nullptr;
1544
1545    if (blk->isValid()) {
1546        Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1547        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1548        if (repl_mshr) {
1549            // must be an outstanding upgrade request
1550            // on a block we're about to replace...
1551            assert(!blk->isWritable() || blk->isDirty());
1552            assert(repl_mshr->needsExclusive());
1553            // too hard to replace block with transient state
1554            // allocation failed, block not inserted
1555            return NULL;
1556        } else {
1557            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n",
1558                    repl_addr, blk->isSecure() ? "s" : "ns",
1559                    addr, is_secure ? "s" : "ns",
1560                    blk->isDirty() ? "writeback" : "clean");
1561
1562            // Will send up Writeback/CleanEvict snoops via isCachedAbove
1563            // when pushing this writeback list into the write buffer.
1564            if (blk->isDirty()) {
1565                // Save writeback packet for handling by caller
1566                writebacks.push_back(writebackBlk(blk));
1567            } else {
1568                writebacks.push_back(cleanEvictBlk(blk));
1569            }
1570        }
1571    }
1572
1573    return blk;
1574}
1575
1576
1577// Note that the reason we return a list of writebacks rather than
1578// inserting them directly in the write buffer is that this function
1579// is called by both atomic and timing-mode accesses, and in atomic
1580// mode we don't mess with the write buffer (we just perform the
1581// writebacks atomically once the original request is complete).
1582CacheBlk*
1583Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks)
1584{
1585    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1586    Addr addr = pkt->getAddr();
1587    bool is_secure = pkt->isSecure();
1588#if TRACING_ON
1589    CacheBlk::State old_state = blk ? blk->status : 0;
1590#endif
1591
1592    // When handling a fill, discard any CleanEvicts for the
1593    // same address in write buffer.
1594    Addr M5_VAR_USED blk_addr = blockAlign(pkt->getAddr());
1595    std::vector<MSHR *> M5_VAR_USED wbs;
1596    assert (!writeBuffer.findMatches(blk_addr, is_secure, wbs));
1597
1598    if (blk == NULL) {
1599        // better have read new data...
1600        assert(pkt->hasData());
1601
1602        // only read responses and write-line requests have data;
1603        // note that we don't write the data here for write-line - that
1604        // happens in the subsequent satisfyCpuSideRequest.
1605        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1606
1607        // need to do a replacement
1608        blk = allocateBlock(addr, is_secure, writebacks);
1609        if (blk == NULL) {
1610            // No replaceable block... just use temporary storage to
1611            // complete the current request and then get rid of it
1612            assert(!tempBlock->isValid());
1613            blk = tempBlock;
1614            tempBlock->set = tags->extractSet(addr);
1615            tempBlock->tag = tags->extractTag(addr);
1616            // @todo: set security state as well...
1617            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1618                    is_secure ? "s" : "ns");
1619        } else {
1620            tags->insertBlock(pkt, blk);
1621        }
1622
1623        // we should never be overwriting a valid block
1624        assert(!blk->isValid());
1625    } else {
1626        // existing block... probably an upgrade
1627        assert(blk->tag == tags->extractTag(addr));
1628        // either we're getting new data or the block should already be valid
1629        assert(pkt->hasData() || blk->isValid());
1630        // don't clear block status... if block is already dirty we
1631        // don't want to lose that
1632    }
1633
1634    if (is_secure)
1635        blk->status |= BlkSecure;
1636    blk->status |= BlkValid | BlkReadable;
1637
1638    if (!pkt->sharedAsserted()) {
1639        // we could get non-shared responses from memory (rather than
1640        // a cache) even in a read-only cache, note that we set this
1641        // bit even for a read-only cache as we use it to represent
1642        // the exclusive state
1643        blk->status |= BlkWritable;
1644
1645        // If we got this via cache-to-cache transfer (i.e., from a
1646        // cache that was an owner) and took away that owner's copy,
1647        // then we need to write it back.  Normally this happens
1648        // anyway as a side effect of getting a copy to write it, but
1649        // there are cases (such as failed store conditionals or
1650        // compare-and-swaps) where we'll demand an exclusive copy but
1651        // end up not writing it.
1652        if (pkt->memInhibitAsserted()) {
1653            blk->status |= BlkDirty;
1654
1655            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1656                          "in read-only cache %s\n", name());
1657        }
1658    }
1659
1660    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1661            addr, is_secure ? "s" : "ns", old_state, blk->print());
1662
1663    // if we got new data, copy it in (checking for a read response
1664    // and a response that has data is the same in the end)
1665    if (pkt->isRead()) {
1666        // sanity checks
1667        assert(pkt->hasData());
1668        assert(pkt->getSize() == blkSize);
1669
1670        std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1671    }
1672    // We pay for fillLatency here.
1673    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1674        pkt->payloadDelay;
1675
1676    return blk;
1677}
1678
1679
1680/////////////////////////////////////////////////////
1681//
1682// Snoop path: requests coming in from the memory side
1683//
1684/////////////////////////////////////////////////////
1685
1686void
1687Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1688                              bool already_copied, bool pending_inval)
1689{
1690    // sanity check
1691    assert(req_pkt->isRequest());
1692    assert(req_pkt->needsResponse());
1693
1694    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1695            req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1696    // timing-mode snoop responses require a new packet, unless we
1697    // already made a copy...
1698    PacketPtr pkt = req_pkt;
1699    if (!already_copied)
1700        // do not clear flags, and allocate space for data if the
1701        // packet needs it (the only packets that carry data are read
1702        // responses)
1703        pkt = new Packet(req_pkt, false, req_pkt->isRead());
1704
1705    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1706           pkt->sharedAsserted());
1707    pkt->makeTimingResponse();
1708    if (pkt->isRead()) {
1709        pkt->setDataFromBlock(blk_data, blkSize);
1710    }
1711    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1712        // Assume we defer a response to a read from a far-away cache
1713        // A, then later defer a ReadExcl from a cache B on the same
1714        // bus as us.  We'll assert MemInhibit in both cases, but in
1715        // the latter case MemInhibit will keep the invalidation from
1716        // reaching cache A.  This special response tells cache A that
1717        // it gets the block to satisfy its read, but must immediately
1718        // invalidate it.
1719        pkt->cmd = MemCmd::ReadRespWithInvalidate;
1720    }
1721    // Here we consider forward_time, paying for just forward latency and
1722    // also charging the delay provided by the xbar.
1723    // forward_time is used as send_time in next allocateWriteBuffer().
1724    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1725    // Here we reset the timing of the packet.
1726    pkt->headerDelay = pkt->payloadDelay = 0;
1727    DPRINTF(Cache, "%s created response: %s addr %#llx size %d tick: %lu\n",
1728            __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1729            forward_time);
1730    memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1731}
1732
1733uint32_t
1734Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1735                   bool is_deferred, bool pending_inval)
1736{
1737    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1738            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1739    // deferred snoops can only happen in timing mode
1740    assert(!(is_deferred && !is_timing));
1741    // pending_inval only makes sense on deferred snoops
1742    assert(!(pending_inval && !is_deferred));
1743    assert(pkt->isRequest());
1744
1745    // the packet may get modified if we or a forwarded snooper
1746    // responds in atomic mode, so remember a few things about the
1747    // original packet up front
1748    bool invalidate = pkt->isInvalidate();
1749    bool M5_VAR_USED needs_exclusive = pkt->needsExclusive();
1750
1751    uint32_t snoop_delay = 0;
1752
1753    if (forwardSnoops) {
1754        // first propagate snoop upward to see if anyone above us wants to
1755        // handle it.  save & restore packet src since it will get
1756        // rewritten to be relative to cpu-side bus (if any)
1757        bool alreadyResponded = pkt->memInhibitAsserted();
1758        if (is_timing) {
1759            // copy the packet so that we can clear any flags before
1760            // forwarding it upwards, we also allocate data (passing
1761            // the pointer along in case of static data), in case
1762            // there is a snoop hit in upper levels
1763            Packet snoopPkt(pkt, true, true);
1764            snoopPkt.setExpressSnoop();
1765            snoopPkt.pushSenderState(new ForwardResponseRecord());
1766            // the snoop packet does not need to wait any additional
1767            // time
1768            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1769            cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1770
1771            // add the header delay (including crossbar and snoop
1772            // delays) of the upward snoop to the snoop delay for this
1773            // cache
1774            snoop_delay += snoopPkt.headerDelay;
1775
1776            if (snoopPkt.memInhibitAsserted()) {
1777                // cache-to-cache response from some upper cache
1778                assert(!alreadyResponded);
1779                pkt->assertMemInhibit();
1780            } else {
1781                // no cache (or anyone else for that matter) will
1782                // respond, so delete the ForwardResponseRecord here
1783                delete snoopPkt.popSenderState();
1784            }
1785            if (snoopPkt.sharedAsserted()) {
1786                pkt->assertShared();
1787            }
1788            // If this request is a prefetch or clean evict and an upper level
1789            // signals block present, make sure to propagate the block
1790            // presence to the requester.
1791            if (snoopPkt.isBlockCached()) {
1792                pkt->setBlockCached();
1793            }
1794        } else {
1795            cpuSidePort->sendAtomicSnoop(pkt);
1796            if (!alreadyResponded && pkt->memInhibitAsserted()) {
1797                // cache-to-cache response from some upper cache:
1798                // forward response to original requester
1799                assert(pkt->isResponse());
1800            }
1801        }
1802    }
1803
1804    if (!blk || !blk->isValid()) {
1805        DPRINTF(Cache, "%s snoop miss for %s addr %#llx size %d\n",
1806                __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1807        return snoop_delay;
1808    } else {
1809       DPRINTF(Cache, "%s snoop hit for %s for addr %#llx size %d, "
1810               "old state is %s\n", __func__, pkt->cmdString(),
1811               pkt->getAddr(), pkt->getSize(), blk->print());
1812    }
1813
1814    chatty_assert(!(isReadOnly && blk->isDirty()),
1815                  "Should never have a dirty block in a read-only cache %s\n",
1816                  name());
1817
1818    // We may end up modifying both the block state and the packet (if
1819    // we respond in atomic mode), so just figure out what to do now
1820    // and then do it later. If we find dirty data while snooping for
1821    // an invalidate, we don't need to send a response. The
1822    // invalidation itself is taken care of below.
1823    bool respond = blk->isDirty() && pkt->needsResponse() &&
1824        pkt->cmd != MemCmd::InvalidateReq;
1825    bool have_exclusive = blk->isWritable();
1826
1827    // Invalidate any prefetch's from below that would strip write permissions
1828    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
1829    // above and in it's own cache, a new MemCmd::ReadReq is created that
1830    // downstream caches observe.
1831    if (pkt->mustCheckAbove()) {
1832        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from"
1833                " lower cache\n", pkt->getAddr(), pkt->cmdString());
1834        pkt->setBlockCached();
1835        return snoop_delay;
1836    }
1837
1838    if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
1839        // reading non-exclusive shared data, note that we retain
1840        // the block in owned state if it is dirty, with the response
1841        // taken care of below, and otherwhise simply downgrade to
1842        // shared
1843        assert(!needs_exclusive);
1844        pkt->assertShared();
1845        blk->status &= ~BlkWritable;
1846    }
1847
1848    if (respond) {
1849        // prevent anyone else from responding, cache as well as
1850        // memory, and also prevent any memory from even seeing the
1851        // request (with current inhibited semantics), note that this
1852        // applies both to reads and writes and that for writes it
1853        // works thanks to the fact that we still have dirty data and
1854        // will write it back at a later point
1855        pkt->assertMemInhibit();
1856        if (have_exclusive) {
1857            // in the case of an uncacheable request there is no point
1858            // in setting the exclusive flag, but since the recipient
1859            // does not care there is no harm in doing so, in any case
1860            // it is just a hint
1861            pkt->setSupplyExclusive();
1862        }
1863        if (is_timing) {
1864            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
1865        } else {
1866            pkt->makeAtomicResponse();
1867            pkt->setDataFromBlock(blk->data, blkSize);
1868        }
1869    }
1870
1871    if (!respond && is_timing && is_deferred) {
1872        // if it's a deferred timing snoop then we've made a copy of
1873        // both the request and the packet, and so if we're not using
1874        // those copies to respond and delete them here
1875        DPRINTF(Cache, "Deleting pkt %p and request %p for cmd %s addr: %p\n",
1876                pkt, pkt->req, pkt->cmdString(), pkt->getAddr());
1877
1878        // the packets needs a response (just not from us), so we also
1879        // need to delete the request and not rely on the packet
1880        // destructor
1881        assert(pkt->needsResponse());
1882        delete pkt->req;
1883        delete pkt;
1884    }
1885
1886    // Do this last in case it deallocates block data or something
1887    // like that
1888    if (invalidate) {
1889        if (blk != tempBlock)
1890            tags->invalidate(blk);
1891        blk->invalidate();
1892    }
1893
1894    DPRINTF(Cache, "new state is %s\n", blk->print());
1895
1896    return snoop_delay;
1897}
1898
1899
1900void
1901Cache::recvTimingSnoopReq(PacketPtr pkt)
1902{
1903    DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1904            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1905
1906    // Snoops shouldn't happen when bypassing caches
1907    assert(!system->bypassCaches());
1908
1909    // no need to snoop writebacks or requests that are not in range
1910    if (!inRange(pkt->getAddr())) {
1911        return;
1912    }
1913
1914    bool is_secure = pkt->isSecure();
1915    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1916
1917    Addr blk_addr = blockAlign(pkt->getAddr());
1918    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1919
1920    // Update the latency cost of the snoop so that the crossbar can
1921    // account for it. Do not overwrite what other neighbouring caches
1922    // have already done, rather take the maximum. The update is
1923    // tentative, for cases where we return before an upward snoop
1924    // happens below.
1925    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
1926                                         lookupLatency * clockPeriod());
1927
1928    // Inform request(Prefetch, CleanEvict or Writeback) from below of
1929    // MSHR hit, set setBlockCached.
1930    if (mshr && pkt->mustCheckAbove()) {
1931        DPRINTF(Cache, "Setting block cached for %s from"
1932                "lower cache on mshr hit %#x\n",
1933                pkt->cmdString(), pkt->getAddr());
1934        pkt->setBlockCached();
1935        return;
1936    }
1937
1938    // Let the MSHR itself track the snoop and decide whether we want
1939    // to go ahead and do the regular cache snoop
1940    if (mshr && mshr->handleSnoop(pkt, order++)) {
1941        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
1942                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
1943                mshr->print());
1944
1945        if (mshr->getNumTargets() > numTarget)
1946            warn("allocating bonus target for snoop"); //handle later
1947        return;
1948    }
1949
1950    //We also need to check the writeback buffers and handle those
1951    std::vector<MSHR *> writebacks;
1952    if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) {
1953        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
1954                pkt->getAddr(), is_secure ? "s" : "ns");
1955
1956        // Look through writebacks for any cachable writes.
1957        // We should only ever find a single match
1958        assert(writebacks.size() == 1);
1959        MSHR *wb_entry = writebacks[0];
1960        // Expect to see only Writebacks and/or CleanEvicts here, both of
1961        // which should not be generated for uncacheable data.
1962        assert(!wb_entry->isUncacheable());
1963        // There should only be a single request responsible for generating
1964        // Writebacks/CleanEvicts.
1965        assert(wb_entry->getNumTargets() == 1);
1966        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
1967        assert(wb_pkt->evictingBlock());
1968
1969        if (pkt->evictingBlock()) {
1970            // if the block is found in the write queue, set the BLOCK_CACHED
1971            // flag for Writeback/CleanEvict snoop. On return the snoop will
1972            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
1973            // any CleanEvicts from travelling down the memory hierarchy.
1974            pkt->setBlockCached();
1975            DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
1976                    " %#x\n", pkt->cmdString(), pkt->getAddr());
1977            return;
1978        }
1979
1980        if (wb_pkt->cmd == MemCmd::Writeback) {
1981            assert(!pkt->memInhibitAsserted());
1982            pkt->assertMemInhibit();
1983            if (!pkt->needsExclusive()) {
1984                pkt->assertShared();
1985                // the writeback is no longer passing exclusivity (the
1986                // receiving cache should consider the block owned
1987                // rather than modified)
1988                wb_pkt->assertShared();
1989            } else {
1990                // if we're not asserting the shared line, we need to
1991                // invalidate our copy.  we'll do that below as long as
1992                // the packet's invalidate flag is set...
1993                assert(pkt->isInvalidate());
1994            }
1995            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
1996                                   false, false);
1997        } else {
1998            assert(wb_pkt->cmd == MemCmd::CleanEvict);
1999            // The cache technically holds the block until the
2000            // corresponding CleanEvict message reaches the crossbar
2001            // below. Therefore when a snoop encounters a CleanEvict
2002            // message we must set assertShared (just like when it
2003            // encounters a Writeback) to avoid the snoop filter
2004            // prematurely clearing the holder bit in the crossbar
2005            // below
2006            if (!pkt->needsExclusive())
2007                pkt->assertShared();
2008            else
2009                assert(pkt->isInvalidate());
2010        }
2011
2012        if (pkt->isInvalidate()) {
2013            // Invalidation trumps our writeback... discard here
2014            // Note: markInService will remove entry from writeback buffer.
2015            markInService(wb_entry, false);
2016            delete wb_pkt;
2017        }
2018    }
2019
2020    // If this was a shared writeback, there may still be
2021    // other shared copies above that require invalidation.
2022    // We could be more selective and return here if the
2023    // request is non-exclusive or if the writeback is
2024    // exclusive.
2025    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2026
2027    // Override what we did when we first saw the snoop, as we now
2028    // also have the cost of the upwards snoops to account for
2029    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2030                                         lookupLatency * clockPeriod());
2031}
2032
2033bool
2034Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2035{
2036    // Express snoop responses from master to slave, e.g., from L1 to L2
2037    cache->recvTimingSnoopResp(pkt);
2038    return true;
2039}
2040
2041Tick
2042Cache::recvAtomicSnoop(PacketPtr pkt)
2043{
2044    // Snoops shouldn't happen when bypassing caches
2045    assert(!system->bypassCaches());
2046
2047    // no need to snoop writebacks or requests that are not in range. In
2048    // atomic we have no Writebacks/CleanEvicts queued and no prefetches,
2049    // hence there is no need to snoop upwards and determine if they are
2050    // present above.
2051    if (pkt->evictingBlock() || !inRange(pkt->getAddr())) {
2052        return 0;
2053    }
2054
2055    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2056    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2057    return snoop_delay + lookupLatency * clockPeriod();
2058}
2059
2060
2061MSHR *
2062Cache::getNextMSHR()
2063{
2064    // Check both MSHR queue and write buffer for potential requests,
2065    // note that null does not mean there is no request, it could
2066    // simply be that it is not ready
2067    MSHR *miss_mshr  = mshrQueue.getNextMSHR();
2068    MSHR *write_mshr = writeBuffer.getNextMSHR();
2069
2070    // If we got a write buffer request ready, first priority is a
2071    // full write buffer, otherwhise we favour the miss requests
2072    if (write_mshr &&
2073        ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) ||
2074         !miss_mshr)) {
2075        // need to search MSHR queue for conflicting earlier miss.
2076        MSHR *conflict_mshr =
2077            mshrQueue.findPending(write_mshr->blkAddr,
2078                                  write_mshr->isSecure);
2079
2080        if (conflict_mshr && conflict_mshr->order < write_mshr->order) {
2081            // Service misses in order until conflict is cleared.
2082            return conflict_mshr;
2083
2084            // @todo Note that we ignore the ready time of the conflict here
2085        }
2086
2087        // No conflicts; issue write
2088        return write_mshr;
2089    } else if (miss_mshr) {
2090        // need to check for conflicting earlier writeback
2091        MSHR *conflict_mshr =
2092            writeBuffer.findPending(miss_mshr->blkAddr,
2093                                    miss_mshr->isSecure);
2094        if (conflict_mshr) {
2095            // not sure why we don't check order here... it was in the
2096            // original code but commented out.
2097
2098            // The only way this happens is if we are
2099            // doing a write and we didn't have permissions
2100            // then subsequently saw a writeback (owned got evicted)
2101            // We need to make sure to perform the writeback first
2102            // To preserve the dirty data, then we can issue the write
2103
2104            // should we return write_mshr here instead?  I.e. do we
2105            // have to flush writes in order?  I don't think so... not
2106            // for Alpha anyway.  Maybe for x86?
2107            return conflict_mshr;
2108
2109            // @todo Note that we ignore the ready time of the conflict here
2110        }
2111
2112        // No conflicts; issue read
2113        return miss_mshr;
2114    }
2115
2116    // fall through... no pending requests.  Try a prefetch.
2117    assert(!miss_mshr && !write_mshr);
2118    if (prefetcher && mshrQueue.canPrefetch()) {
2119        // If we have a miss queue slot, we can try a prefetch
2120        PacketPtr pkt = prefetcher->getPacket();
2121        if (pkt) {
2122            Addr pf_addr = blockAlign(pkt->getAddr());
2123            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2124                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2125                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2126                // Update statistic on number of prefetches issued
2127                // (hwpf_mshr_misses)
2128                assert(pkt->req->masterId() < system->maxMasters());
2129                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2130
2131                // allocate an MSHR and return it, note
2132                // that we send the packet straight away, so do not
2133                // schedule the send
2134                return allocateMissBuffer(pkt, curTick(), false);
2135            } else {
2136                // free the request and packet
2137                delete pkt->req;
2138                delete pkt;
2139            }
2140        }
2141    }
2142
2143    return NULL;
2144}
2145
2146bool
2147Cache::isCachedAbove(const PacketPtr pkt) const
2148{
2149    if (!forwardSnoops)
2150        return false;
2151    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2152    // Writeback snoops into upper level caches to check for copies of the
2153    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2154    // packet, the cache can inform the crossbar below of presence or absence
2155    // of the block.
2156
2157    Packet snoop_pkt(pkt, true, false);
2158    snoop_pkt.setExpressSnoop();
2159    // Assert that packet is either Writeback or CleanEvict and not a prefetch
2160    // request because prefetch requests need an MSHR and may generate a snoop
2161    // response.
2162    assert(pkt->evictingBlock());
2163    snoop_pkt.senderState = NULL;
2164    cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2165    // Writeback/CleanEvict snoops do not generate a separate snoop response.
2166    assert(!(snoop_pkt.memInhibitAsserted()));
2167    return snoop_pkt.isBlockCached();
2168}
2169
2170PacketPtr
2171Cache::getTimingPacket()
2172{
2173    MSHR *mshr = getNextMSHR();
2174
2175    if (mshr == NULL) {
2176        return NULL;
2177    }
2178
2179    // use request from 1st target
2180    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2181    PacketPtr pkt = NULL;
2182
2183    DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__,
2184            tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize());
2185
2186    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2187
2188    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2189        // We need to check the caches above us to verify that
2190        // they don't have a copy of this block in the dirty state
2191        // at the moment. Without this check we could get a stale
2192        // copy from memory that might get used in place of the
2193        // dirty one.
2194        Packet snoop_pkt(tgt_pkt, true, false);
2195        snoop_pkt.setExpressSnoop();
2196        snoop_pkt.senderState = mshr;
2197        cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2198
2199        // Check to see if the prefetch was squashed by an upper cache (to
2200        // prevent us from grabbing the line) or if a Check to see if a
2201        // writeback arrived between the time the prefetch was placed in
2202        // the MSHRs and when it was selected to be sent or if the
2203        // prefetch was squashed by an upper cache.
2204
2205        // It is important to check memInhibitAsserted before
2206        // prefetchSquashed. If another cache has asserted MEM_INGIBIT, it
2207        // will be sending a response which will arrive at the MSHR
2208        // allocated ofr this request. Checking the prefetchSquash first
2209        // may result in the MSHR being prematurely deallocated.
2210
2211        if (snoop_pkt.memInhibitAsserted()) {
2212            // If we are getting a non-shared response it is dirty
2213            bool pending_dirty_resp = !snoop_pkt.sharedAsserted();
2214            markInService(mshr, pending_dirty_resp);
2215            DPRINTF(Cache, "Upward snoop of prefetch for addr"
2216                    " %#x (%s) hit\n",
2217                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2218            return NULL;
2219        }
2220
2221        if (snoop_pkt.isBlockCached() || blk != NULL) {
2222            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
2223                    "Deallocating mshr target %#x.\n",
2224                    mshr->blkAddr);
2225
2226            // Deallocate the mshr target
2227            if (tgt_pkt->cmd != MemCmd::Writeback) {
2228                if (mshr->queue->forceDeallocateTarget(mshr)) {
2229                    // Clear block if this deallocation resulted freed an
2230                    // mshr when all had previously been utilized
2231                    clearBlocked((BlockedCause)(mshr->queue->index));
2232                }
2233                return NULL;
2234            } else {
2235                // If this is a Writeback, and the snoops indicate that the blk
2236                // is cached above, set the BLOCK_CACHED flag in the Writeback
2237                // packet, so that it does not reset the bits corresponding to
2238                // this block in the snoop filter below.
2239                tgt_pkt->setBlockCached();
2240            }
2241        }
2242    }
2243
2244    if (mshr->isForwardNoResponse()) {
2245        // no response expected, just forward packet as it is
2246        assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL);
2247        pkt = tgt_pkt;
2248    } else {
2249        pkt = getBusPacket(tgt_pkt, blk, mshr->needsExclusive());
2250
2251        mshr->isForward = (pkt == NULL);
2252
2253        if (mshr->isForward) {
2254            // not a cache block request, but a response is expected
2255            // make copy of current packet to forward, keep current
2256            // copy for response handling
2257            pkt = new Packet(tgt_pkt, false, true);
2258            if (pkt->isWrite()) {
2259                pkt->setData(tgt_pkt->getConstPtr<uint8_t>());
2260            }
2261        }
2262    }
2263
2264    assert(pkt != NULL);
2265    pkt->senderState = mshr;
2266    return pkt;
2267}
2268
2269
2270Tick
2271Cache::nextMSHRReadyTime() const
2272{
2273    Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(),
2274                              writeBuffer.nextMSHRReadyTime());
2275
2276    // Don't signal prefetch ready time if no MSHRs available
2277    // Will signal once enoguh MSHRs are deallocated
2278    if (prefetcher && mshrQueue.canPrefetch()) {
2279        nextReady = std::min(nextReady,
2280                             prefetcher->nextPrefetchReadyTime());
2281    }
2282
2283    return nextReady;
2284}
2285
2286void
2287Cache::serialize(CheckpointOut &cp) const
2288{
2289    bool dirty(isDirty());
2290
2291    if (dirty) {
2292        warn("*** The cache still contains dirty data. ***\n");
2293        warn("    Make sure to drain the system using the correct flags.\n");
2294        warn("    This checkpoint will not restore correctly and dirty data in "
2295             "the cache will be lost!\n");
2296    }
2297
2298    // Since we don't checkpoint the data in the cache, any dirty data
2299    // will be lost when restoring from a checkpoint of a system that
2300    // wasn't drained properly. Flag the checkpoint as invalid if the
2301    // cache contains dirty data.
2302    bool bad_checkpoint(dirty);
2303    SERIALIZE_SCALAR(bad_checkpoint);
2304}
2305
2306void
2307Cache::unserialize(CheckpointIn &cp)
2308{
2309    bool bad_checkpoint;
2310    UNSERIALIZE_SCALAR(bad_checkpoint);
2311    if (bad_checkpoint) {
2312        fatal("Restoring from checkpoints with dirty caches is not supported "
2313              "in the classic memory system. Please remove any caches or "
2314              " drain them properly before taking checkpoints.\n");
2315    }
2316}
2317
2318///////////////
2319//
2320// CpuSidePort
2321//
2322///////////////
2323
2324AddrRangeList
2325Cache::CpuSidePort::getAddrRanges() const
2326{
2327    return cache->getAddrRanges();
2328}
2329
2330bool
2331Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2332{
2333    assert(!cache->system->bypassCaches());
2334
2335    bool success = false;
2336
2337    // always let inhibited requests through, even if blocked,
2338    // ultimately we should check if this is an express snoop, but at
2339    // the moment that flag is only set in the cache itself
2340    if (pkt->memInhibitAsserted()) {
2341        // do not change the current retry state
2342        bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2343        assert(bypass_success);
2344        return true;
2345    } else if (blocked || mustSendRetry) {
2346        // either already committed to send a retry, or blocked
2347        success = false;
2348    } else {
2349        // pass it on to the cache, and let the cache decide if we
2350        // have to retry or not
2351        success = cache->recvTimingReq(pkt);
2352    }
2353
2354    // remember if we have to retry
2355    mustSendRetry = !success;
2356    return success;
2357}
2358
2359Tick
2360Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2361{
2362    return cache->recvAtomic(pkt);
2363}
2364
2365void
2366Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2367{
2368    // functional request
2369    cache->functionalAccess(pkt, true);
2370}
2371
2372Cache::
2373CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2374                         const std::string &_label)
2375    : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2376{
2377}
2378
2379Cache*
2380CacheParams::create()
2381{
2382    assert(tags);
2383
2384    return new Cache(this);
2385}
2386///////////////
2387//
2388// MemSidePort
2389//
2390///////////////
2391
2392bool
2393Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2394{
2395    cache->recvTimingResp(pkt);
2396    return true;
2397}
2398
2399// Express snooping requests to memside port
2400void
2401Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2402{
2403    // handle snooping requests
2404    cache->recvTimingSnoopReq(pkt);
2405}
2406
2407Tick
2408Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2409{
2410    return cache->recvAtomicSnoop(pkt);
2411}
2412
2413void
2414Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2415{
2416    // functional snoop (note that in contrast to atomic we don't have
2417    // a specific functionalSnoop method, as they have the same
2418    // behaviour regardless)
2419    cache->functionalAccess(pkt, false);
2420}
2421
2422void
2423Cache::CacheReqPacketQueue::sendDeferredPacket()
2424{
2425    // sanity check
2426    assert(!waitingOnRetry);
2427
2428    // there should never be any deferred request packets in the
2429    // queue, instead we resly on the cache to provide the packets
2430    // from the MSHR queue or write queue
2431    assert(deferredPacketReadyTime() == MaxTick);
2432
2433    // check for request packets (requests & writebacks)
2434    PacketPtr pkt = cache.getTimingPacket();
2435    if (pkt == NULL) {
2436        // can happen if e.g. we attempt a writeback and fail, but
2437        // before the retry, the writeback is eliminated because
2438        // we snoop another cache's ReadEx.
2439    } else {
2440        MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
2441        // in most cases getTimingPacket allocates a new packet, and
2442        // we must delete it unless it is successfully sent
2443        bool delete_pkt = !mshr->isForwardNoResponse();
2444
2445        // let our snoop responses go first if there are responses to
2446        // the same addresses we are about to writeback, note that
2447        // this creates a dependency between requests and snoop
2448        // responses, but that should not be a problem since there is
2449        // a chain already and the key is that the snoop responses can
2450        // sink unconditionally
2451        if (snoopRespQueue.hasAddr(pkt->getAddr())) {
2452            DPRINTF(CachePort, "Waiting for snoop response to be sent\n");
2453            Tick when = snoopRespQueue.deferredPacketReadyTime();
2454            schedSendEvent(when);
2455
2456            if (delete_pkt)
2457                delete pkt;
2458
2459            return;
2460        }
2461
2462
2463        waitingOnRetry = !masterPort.sendTimingReq(pkt);
2464
2465        if (waitingOnRetry) {
2466            DPRINTF(CachePort, "now waiting on a retry\n");
2467            if (delete_pkt) {
2468                // we are awaiting a retry, but we
2469                // delete the packet and will be creating a new packet
2470                // when we get the opportunity
2471                delete pkt;
2472            }
2473            // note that we have now masked any requestBus and
2474            // schedSendEvent (we will wait for a retry before
2475            // doing anything), and this is so even if we do not
2476            // care about this packet and might override it before
2477            // it gets retried
2478        } else {
2479            // As part of the call to sendTimingReq the packet is
2480            // forwarded to all neighbouring caches (and any
2481            // caches above them) as a snoop. The packet is also
2482            // sent to any potential cache below as the
2483            // interconnect is not allowed to buffer the
2484            // packet. Thus at this point we know if any of the
2485            // neighbouring, or the downstream cache is
2486            // responding, and if so, if it is with a dirty line
2487            // or not.
2488            bool pending_dirty_resp = !pkt->sharedAsserted() &&
2489                pkt->memInhibitAsserted();
2490
2491            cache.markInService(mshr, pending_dirty_resp);
2492        }
2493    }
2494
2495    // if we succeeded and are not waiting for a retry, schedule the
2496    // next send considering when the next MSHR is ready, note that
2497    // snoop responses have their own packet queue and thus schedule
2498    // their own events
2499    if (!waitingOnRetry) {
2500        schedSendEvent(cache.nextMSHRReadyTime());
2501    }
2502}
2503
2504Cache::
2505MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2506                         const std::string &_label)
2507    : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2508      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2509      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2510{
2511}
2512