cache.cc revision 11053
1/* 2 * Copyright (c) 2010-2015 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2002-2005 The Regents of The University of Michigan 15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc. 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Erik Hallnor 42 * Dave Greene 43 * Nathan Binkert 44 * Steve Reinhardt 45 * Ron Dreslinski 46 * Andreas Sandberg 47 */ 48 49/** 50 * @file 51 * Cache definitions. 52 */ 53 54#include "mem/cache/cache.hh" 55 56#include "base/misc.hh" 57#include "base/types.hh" 58#include "debug/Cache.hh" 59#include "debug/CachePort.hh" 60#include "debug/CacheTags.hh" 61#include "mem/cache/blk.hh" 62#include "mem/cache/mshr.hh" 63#include "mem/cache/prefetch/base.hh" 64#include "sim/sim_exit.hh" 65 66Cache::Cache(const CacheParams *p) 67 : BaseCache(p, p->system->cacheLineSize()), 68 tags(p->tags), 69 prefetcher(p->prefetcher), 70 doFastWrites(true), 71 prefetchOnAccess(p->prefetch_on_access) 72{ 73 tempBlock = new CacheBlk(); 74 tempBlock->data = new uint8_t[blkSize]; 75 76 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this, 77 "CpuSidePort"); 78 memSidePort = new MemSidePort(p->name + ".mem_side", this, 79 "MemSidePort"); 80 81 tags->setCache(this); 82 if (prefetcher) 83 prefetcher->setCache(this); 84} 85 86Cache::~Cache() 87{ 88 delete [] tempBlock->data; 89 delete tempBlock; 90 91 delete cpuSidePort; 92 delete memSidePort; 93} 94 95void 96Cache::regStats() 97{ 98 BaseCache::regStats(); 99} 100 101void 102Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) 103{ 104 assert(pkt->isRequest()); 105 106 uint64_t overwrite_val; 107 bool overwrite_mem; 108 uint64_t condition_val64; 109 uint32_t condition_val32; 110 111 int offset = tags->extractBlkOffset(pkt->getAddr()); 112 uint8_t *blk_data = blk->data + offset; 113 114 assert(sizeof(uint64_t) >= pkt->getSize()); 115 116 overwrite_mem = true; 117 // keep a copy of our possible write value, and copy what is at the 118 // memory address into the packet 119 pkt->writeData((uint8_t *)&overwrite_val); 120 pkt->setData(blk_data); 121 122 if (pkt->req->isCondSwap()) { 123 if (pkt->getSize() == sizeof(uint64_t)) { 124 condition_val64 = pkt->req->getExtraData(); 125 overwrite_mem = !std::memcmp(&condition_val64, blk_data, 126 sizeof(uint64_t)); 127 } else if (pkt->getSize() == sizeof(uint32_t)) { 128 condition_val32 = (uint32_t)pkt->req->getExtraData(); 129 overwrite_mem = !std::memcmp(&condition_val32, blk_data, 130 sizeof(uint32_t)); 131 } else 132 panic("Invalid size for conditional read/write\n"); 133 } 134 135 if (overwrite_mem) { 136 std::memcpy(blk_data, &overwrite_val, pkt->getSize()); 137 blk->status |= BlkDirty; 138 } 139} 140 141 142void 143Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk, 144 bool deferred_response, bool pending_downgrade) 145{ 146 assert(pkt->isRequest()); 147 148 assert(blk && blk->isValid()); 149 // Occasionally this is not true... if we are a lower-level cache 150 // satisfying a string of Read and ReadEx requests from 151 // upper-level caches, a Read will mark the block as shared but we 152 // can satisfy a following ReadEx anyway since we can rely on the 153 // Read requester(s) to have buffered the ReadEx snoop and to 154 // invalidate their blocks after receiving them. 155 // assert(!pkt->needsExclusive() || blk->isWritable()); 156 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); 157 158 // Check RMW operations first since both isRead() and 159 // isWrite() will be true for them 160 if (pkt->cmd == MemCmd::SwapReq) { 161 cmpAndSwap(blk, pkt); 162 } else if (pkt->isWrite()) { 163 assert(blk->isWritable()); 164 // Write or WriteLine at the first cache with block in Exclusive 165 if (blk->checkWrite(pkt)) { 166 pkt->writeDataToBlock(blk->data, blkSize); 167 } 168 // Always mark the line as dirty even if we are a failed 169 // StoreCond so we supply data to any snoops that have 170 // appended themselves to this cache before knowing the store 171 // will fail. 172 blk->status |= BlkDirty; 173 DPRINTF(Cache, "%s for %s addr %#llx size %d (write)\n", __func__, 174 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 175 } else if (pkt->isRead()) { 176 if (pkt->isLLSC()) { 177 blk->trackLoadLocked(pkt); 178 } 179 pkt->setDataFromBlock(blk->data, blkSize); 180 // determine if this read is from a (coherent) cache, or not 181 // by looking at the command type; we could potentially add a 182 // packet attribute such as 'FromCache' to make this check a 183 // bit cleaner 184 if (pkt->cmd == MemCmd::ReadExReq || 185 pkt->cmd == MemCmd::ReadSharedReq || 186 pkt->cmd == MemCmd::ReadCleanReq || 187 pkt->cmd == MemCmd::SCUpgradeFailReq) { 188 assert(pkt->getSize() == blkSize); 189 // special handling for coherent block requests from 190 // upper-level caches 191 if (pkt->needsExclusive()) { 192 // sanity check 193 assert(pkt->cmd == MemCmd::ReadExReq || 194 pkt->cmd == MemCmd::SCUpgradeFailReq); 195 196 // if we have a dirty copy, make sure the recipient 197 // keeps it marked dirty 198 if (blk->isDirty()) { 199 pkt->assertMemInhibit(); 200 } 201 // on ReadExReq we give up our copy unconditionally 202 if (blk != tempBlock) 203 tags->invalidate(blk); 204 blk->invalidate(); 205 } else if (blk->isWritable() && !pending_downgrade && 206 !pkt->sharedAsserted() && 207 pkt->cmd != MemCmd::ReadCleanReq) { 208 // we can give the requester an exclusive copy (by not 209 // asserting shared line) on a read request if: 210 // - we have an exclusive copy at this level (& below) 211 // - we don't have a pending snoop from below 212 // signaling another read request 213 // - no other cache above has a copy (otherwise it 214 // would have asseretd shared line on request) 215 // - we are not satisfying an instruction fetch (this 216 // prevents dirty data in the i-cache) 217 218 if (blk->isDirty()) { 219 // special considerations if we're owner: 220 if (!deferred_response) { 221 // if we are responding immediately and can 222 // signal that we're transferring ownership 223 // along with exclusivity, do so 224 pkt->assertMemInhibit(); 225 blk->status &= ~BlkDirty; 226 } else { 227 // if we're responding after our own miss, 228 // there's a window where the recipient didn't 229 // know it was getting ownership and may not 230 // have responded to snoops correctly, so we 231 // can't pass off ownership *or* exclusivity 232 pkt->assertShared(); 233 } 234 } 235 } else { 236 // otherwise only respond with a shared copy 237 pkt->assertShared(); 238 } 239 } 240 } else { 241 // Upgrade or Invalidate, since we have it Exclusively (E or 242 // M), we ack then invalidate. 243 assert(pkt->isUpgrade() || pkt->isInvalidate()); 244 assert(blk != tempBlock); 245 tags->invalidate(blk); 246 blk->invalidate(); 247 DPRINTF(Cache, "%s for %s addr %#llx size %d (invalidation)\n", 248 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 249 } 250} 251 252 253///////////////////////////////////////////////////// 254// 255// MSHR helper functions 256// 257///////////////////////////////////////////////////// 258 259 260void 261Cache::markInService(MSHR *mshr, bool pending_dirty_resp) 262{ 263 markInServiceInternal(mshr, pending_dirty_resp); 264} 265 266 267void 268Cache::squash(int threadNum) 269{ 270 bool unblock = false; 271 BlockedCause cause = NUM_BLOCKED_CAUSES; 272 273 if (noTargetMSHR && noTargetMSHR->threadNum == threadNum) { 274 noTargetMSHR = NULL; 275 unblock = true; 276 cause = Blocked_NoTargets; 277 } 278 if (mshrQueue.isFull()) { 279 unblock = true; 280 cause = Blocked_NoMSHRs; 281 } 282 mshrQueue.squash(threadNum); 283 if (unblock && !mshrQueue.isFull()) { 284 clearBlocked(cause); 285 } 286} 287 288///////////////////////////////////////////////////// 289// 290// Access path: requests coming in from the CPU side 291// 292///////////////////////////////////////////////////// 293 294bool 295Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 296 PacketList &writebacks) 297{ 298 // sanity check 299 assert(pkt->isRequest()); 300 301 chatty_assert(!(isReadOnly && pkt->isWrite()), 302 "Should never see a write in a read-only cache %s\n", 303 name()); 304 305 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, 306 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 307 308 if (pkt->req->isUncacheable()) { 309 DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(), 310 pkt->req->isInstFetch() ? " (ifetch)" : "", 311 pkt->getAddr()); 312 313 if (pkt->req->isClearLL()) 314 tags->clearLocks(); 315 316 // flush and invalidate any existing block 317 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure())); 318 if (old_blk && old_blk->isValid()) { 319 if (old_blk->isDirty()) 320 writebacks.push_back(writebackBlk(old_blk)); 321 else 322 writebacks.push_back(cleanEvictBlk(old_blk)); 323 tags->invalidate(old_blk); 324 old_blk->invalidate(); 325 } 326 327 blk = NULL; 328 // lookupLatency is the latency in case the request is uncacheable. 329 lat = lookupLatency; 330 return false; 331 } 332 333 ContextID id = pkt->req->hasContextId() ? 334 pkt->req->contextId() : InvalidContextID; 335 // Here lat is the value passed as parameter to accessBlock() function 336 // that can modify its value. 337 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id); 338 339 DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(), 340 pkt->req->isInstFetch() ? " (ifetch)" : "", 341 pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns", 342 blk ? "hit " + blk->print() : "miss"); 343 344 345 if (pkt->evictingBlock()) { 346 // We check for presence of block in above caches before issuing 347 // Writeback or CleanEvict to write buffer. Therefore the only 348 // possible cases can be of a CleanEvict packet coming from above 349 // encountering a Writeback generated in this cache peer cache and 350 // waiting in the write buffer. Cases of upper level peer caches 351 // generating CleanEvict and Writeback or simply CleanEvict and 352 // CleanEvict almost simultaneously will be caught by snoops sent out 353 // by crossbar. 354 std::vector<MSHR *> outgoing; 355 if (writeBuffer.findMatches(pkt->getAddr(), pkt->isSecure(), 356 outgoing)) { 357 assert(outgoing.size() == 1); 358 PacketPtr wbPkt = outgoing[0]->getTarget()->pkt; 359 assert(pkt->cmd == MemCmd::CleanEvict && 360 wbPkt->cmd == MemCmd::Writeback); 361 // As the CleanEvict is coming from above, it would have snooped 362 // into other peer caches of the same level while traversing the 363 // crossbar. If a copy of the block had been found, the CleanEvict 364 // would have been deleted in the crossbar. Now that the 365 // CleanEvict is here we can be sure none of the other upper level 366 // caches connected to this cache have the block, so we can clear 367 // the BLOCK_CACHED flag in the Writeback if set and discard the 368 // CleanEvict by returning true. 369 wbPkt->clearBlockCached(); 370 return true; 371 } 372 } 373 374 // Writeback handling is special case. We can write the block into 375 // the cache without having a writeable copy (or any copy at all). 376 if (pkt->cmd == MemCmd::Writeback) { 377 assert(blkSize == pkt->getSize()); 378 if (blk == NULL) { 379 // need to do a replacement 380 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks); 381 if (blk == NULL) { 382 // no replaceable block available: give up, fwd to next level. 383 incMissCount(pkt); 384 return false; 385 } 386 tags->insertBlock(pkt, blk); 387 388 blk->status = (BlkValid | BlkReadable); 389 if (pkt->isSecure()) { 390 blk->status |= BlkSecure; 391 } 392 } 393 blk->status |= BlkDirty; 394 // if shared is not asserted we got the writeback in modified 395 // state, if it is asserted we are in the owned state 396 if (!pkt->sharedAsserted()) { 397 blk->status |= BlkWritable; 398 } 399 // nothing else to do; writeback doesn't expect response 400 assert(!pkt->needsResponse()); 401 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize); 402 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 403 incHitCount(pkt); 404 return true; 405 } else if (pkt->cmd == MemCmd::CleanEvict) { 406 if (blk != NULL) { 407 // Found the block in the tags, need to stop CleanEvict from 408 // propagating further down the hierarchy. Returning true will 409 // treat the CleanEvict like a satisfied write request and delete 410 // it. 411 return true; 412 } 413 // We didn't find the block here, propagate the CleanEvict further 414 // down the memory hierarchy. Returning false will treat the CleanEvict 415 // like a Writeback which could not find a replaceable block so has to 416 // go to next level. 417 return false; 418 } else if ((blk != NULL) && 419 (pkt->needsExclusive() ? blk->isWritable() 420 : blk->isReadable())) { 421 // OK to satisfy access 422 incHitCount(pkt); 423 satisfyCpuSideRequest(pkt, blk); 424 return true; 425 } 426 427 // Can't satisfy access normally... either no block (blk == NULL) 428 // or have block but need exclusive & only have shared. 429 430 incMissCount(pkt); 431 432 if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) { 433 // complete miss on store conditional... just give up now 434 pkt->req->setExtraData(0); 435 return true; 436 } 437 438 return false; 439} 440 441 442class ForwardResponseRecord : public Packet::SenderState 443{ 444 public: 445 446 ForwardResponseRecord() {} 447}; 448 449void 450Cache::doWritebacks(PacketList& writebacks, Tick forward_time) 451{ 452 while (!writebacks.empty()) { 453 PacketPtr wbPkt = writebacks.front(); 454 // We use forwardLatency here because we are copying writebacks to 455 // write buffer. Call isCachedAbove for both Writebacks and 456 // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag 457 // in Writebacks and discard CleanEvicts. 458 if (isCachedAbove(wbPkt)) { 459 if (wbPkt->cmd == MemCmd::CleanEvict) { 460 // Delete CleanEvict because cached copies exist above. The 461 // packet destructor will delete the request object because 462 // this is a non-snoop request packet which does not require a 463 // response. 464 delete wbPkt; 465 } else { 466 // Set BLOCK_CACHED flag in Writeback and send below, so that 467 // the Writeback does not reset the bit corresponding to this 468 // address in the snoop filter below. 469 wbPkt->setBlockCached(); 470 allocateWriteBuffer(wbPkt, forward_time); 471 } 472 } else { 473 // If the block is not cached above, send packet below. Both 474 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will 475 // reset the bit corresponding to this address in the snoop filter 476 // below. 477 allocateWriteBuffer(wbPkt, forward_time); 478 } 479 writebacks.pop_front(); 480 } 481} 482 483 484void 485Cache::recvTimingSnoopResp(PacketPtr pkt) 486{ 487 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, 488 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 489 490 assert(pkt->isResponse()); 491 492 // must be cache-to-cache response from upper to lower level 493 ForwardResponseRecord *rec = 494 dynamic_cast<ForwardResponseRecord *>(pkt->senderState); 495 assert(!system->bypassCaches()); 496 497 if (rec == NULL) { 498 // @todo What guarantee do we have that this HardPFResp is 499 // actually for this cache, and not a cache closer to the 500 // memory? 501 assert(pkt->cmd == MemCmd::HardPFResp); 502 // Check if it's a prefetch response and handle it. We shouldn't 503 // get any other kinds of responses without FRRs. 504 DPRINTF(Cache, "Got prefetch response from above for addr %#llx (%s)\n", 505 pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 506 recvTimingResp(pkt); 507 return; 508 } 509 510 pkt->popSenderState(); 511 delete rec; 512 // forwardLatency is set here because there is a response from an 513 // upper level cache. 514 // To pay the delay that occurs if the packet comes from the bus, 515 // we charge also headerDelay. 516 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay; 517 // Reset the timing of the packet. 518 pkt->headerDelay = pkt->payloadDelay = 0; 519 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time); 520} 521 522void 523Cache::promoteWholeLineWrites(PacketPtr pkt) 524{ 525 // Cache line clearing instructions 526 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) && 527 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) { 528 pkt->cmd = MemCmd::WriteLineReq; 529 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n"); 530 } 531} 532 533bool 534Cache::recvTimingReq(PacketPtr pkt) 535{ 536 DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print()); 537//@todo Add back in MemDebug Calls 538// MemDebug::cacheAccess(pkt); 539 540 541 /// @todo temporary hack to deal with memory corruption issue until 542 /// 4-phase transactions are complete 543 for (int x = 0; x < pendingDelete.size(); x++) 544 delete pendingDelete[x]; 545 pendingDelete.clear(); 546 547 assert(pkt->isRequest()); 548 549 // Just forward the packet if caches are disabled. 550 if (system->bypassCaches()) { 551 // @todo This should really enqueue the packet rather 552 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt); 553 assert(success); 554 return true; 555 } 556 557 promoteWholeLineWrites(pkt); 558 559 if (pkt->memInhibitAsserted()) { 560 // a cache above us (but not where the packet came from) is 561 // responding to the request 562 DPRINTF(Cache, "mem inhibited on addr %#llx (%s): not responding\n", 563 pkt->getAddr(), pkt->isSecure() ? "s" : "ns"); 564 565 // if the packet needs exclusive, and the cache that has 566 // promised to respond (setting the inhibit flag) is not 567 // providing exclusive (it is in O vs M state), we know that 568 // there may be other shared copies in the system; go out and 569 // invalidate them all 570 if (pkt->needsExclusive() && !pkt->isSupplyExclusive()) { 571 // create a downstream express snoop with cleared packet 572 // flags, there is no need to allocate any data as the 573 // packet is merely used to co-ordinate state transitions 574 Packet *snoop_pkt = new Packet(pkt, true, false); 575 576 // also reset the bus time that the original packet has 577 // not yet paid for 578 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0; 579 580 // make this an instantaneous express snoop, and let the 581 // other caches in the system know that the packet is 582 // inhibited, because we have found the authorative copy 583 // (O) that will supply the right data 584 snoop_pkt->setExpressSnoop(); 585 snoop_pkt->assertMemInhibit(); 586 587 // this express snoop travels towards the memory, and at 588 // every crossbar it is snooped upwards thus reaching 589 // every cache in the system 590 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt); 591 // express snoops always succeed 592 assert(success); 593 594 // main memory will delete the packet 595 } 596 597 /// @todo nominally we should just delete the packet here, 598 /// however, until 4-phase stuff we can't because sending 599 /// cache is still relying on it. 600 pendingDelete.push_back(pkt); 601 602 // no need to take any action in this particular cache as the 603 // caches along the path to memory are allowed to keep lines 604 // in a shared state, and a cache above us already committed 605 // to responding 606 return true; 607 } 608 609 // anything that is merely forwarded pays for the forward latency and 610 // the delay provided by the crossbar 611 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 612 613 // We use lookupLatency here because it is used to specify the latency 614 // to access. 615 Cycles lat = lookupLatency; 616 CacheBlk *blk = NULL; 617 bool satisfied = false; 618 { 619 PacketList writebacks; 620 // Note that lat is passed by reference here. The function 621 // access() calls accessBlock() which can modify lat value. 622 satisfied = access(pkt, blk, lat, writebacks); 623 624 // copy writebacks to write buffer here to ensure they logically 625 // proceed anything happening below 626 doWritebacks(writebacks, forward_time); 627 } 628 629 // Here we charge the headerDelay that takes into account the latencies 630 // of the bus, if the packet comes from it. 631 // The latency charged it is just lat that is the value of lookupLatency 632 // modified by access() function, or if not just lookupLatency. 633 // In case of a hit we are neglecting response latency. 634 // In case of a miss we are neglecting forward latency. 635 Tick request_time = clockEdge(lat) + pkt->headerDelay; 636 // Here we reset the timing of the packet. 637 pkt->headerDelay = pkt->payloadDelay = 0; 638 639 // track time of availability of next prefetch, if any 640 Tick next_pf_time = MaxTick; 641 642 bool needsResponse = pkt->needsResponse(); 643 644 if (satisfied) { 645 // should never be satisfying an uncacheable access as we 646 // flush and invalidate any existing block as part of the 647 // lookup 648 assert(!pkt->req->isUncacheable()); 649 650 // hit (for all other request types) 651 652 if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) { 653 if (blk) 654 blk->status &= ~BlkHWPrefetched; 655 656 // Don't notify on SWPrefetch 657 if (!pkt->cmd.isSWPrefetch()) 658 next_pf_time = prefetcher->notify(pkt); 659 } 660 661 if (needsResponse) { 662 pkt->makeTimingResponse(); 663 // @todo: Make someone pay for this 664 pkt->headerDelay = pkt->payloadDelay = 0; 665 666 // In this case we are considering request_time that takes 667 // into account the delay of the xbar, if any, and just 668 // lat, neglecting responseLatency, modelling hit latency 669 // just as lookupLatency or or the value of lat overriden 670 // by access(), that calls accessBlock() function. 671 cpuSidePort->schedTimingResp(pkt, request_time); 672 } else { 673 /// @todo nominally we should just delete the packet here, 674 /// however, until 4-phase stuff we can't because sending cache is 675 /// still relying on it. If the block is found in access(), 676 /// CleanEvict and Writeback messages will be deleted here as 677 /// well. 678 pendingDelete.push_back(pkt); 679 } 680 } else { 681 // miss 682 683 Addr blk_addr = blockAlign(pkt->getAddr()); 684 685 // ignore any existing MSHR if we are dealing with an 686 // uncacheable request 687 MSHR *mshr = pkt->req->isUncacheable() ? nullptr : 688 mshrQueue.findMatch(blk_addr, pkt->isSecure()); 689 690 // Software prefetch handling: 691 // To keep the core from waiting on data it won't look at 692 // anyway, send back a response with dummy data. Miss handling 693 // will continue asynchronously. Unfortunately, the core will 694 // insist upon freeing original Packet/Request, so we have to 695 // create a new pair with a different lifecycle. Note that this 696 // processing happens before any MSHR munging on the behalf of 697 // this request because this new Request will be the one stored 698 // into the MSHRs, not the original. 699 if (pkt->cmd.isSWPrefetch()) { 700 assert(needsResponse); 701 assert(pkt->req->hasPaddr()); 702 assert(!pkt->req->isUncacheable()); 703 704 // There's no reason to add a prefetch as an additional target 705 // to an existing MSHR. If an outstanding request is already 706 // in progress, there is nothing for the prefetch to do. 707 // If this is the case, we don't even create a request at all. 708 PacketPtr pf = nullptr; 709 710 if (!mshr) { 711 // copy the request and create a new SoftPFReq packet 712 RequestPtr req = new Request(pkt->req->getPaddr(), 713 pkt->req->getSize(), 714 pkt->req->getFlags(), 715 pkt->req->masterId()); 716 pf = new Packet(req, pkt->cmd); 717 pf->allocate(); 718 assert(pf->getAddr() == pkt->getAddr()); 719 assert(pf->getSize() == pkt->getSize()); 720 } 721 722 pkt->makeTimingResponse(); 723 // for debugging, set all the bits in the response data 724 // (also keeps valgrind from complaining when debugging settings 725 // print out instruction results) 726 std::memset(pkt->getPtr<uint8_t>(), 0xFF, pkt->getSize()); 727 // request_time is used here, taking into account lat and the delay 728 // charged if the packet comes from the xbar. 729 cpuSidePort->schedTimingResp(pkt, request_time); 730 731 // If an outstanding request is in progress (we found an 732 // MSHR) this is set to null 733 pkt = pf; 734 } 735 736 if (mshr) { 737 /// MSHR hit 738 /// @note writebacks will be checked in getNextMSHR() 739 /// for any conflicting requests to the same block 740 741 //@todo remove hw_pf here 742 743 // Coalesce unless it was a software prefetch (see above). 744 if (pkt) { 745 assert(pkt->cmd != MemCmd::Writeback); 746 // CleanEvicts corresponding to blocks which have outstanding 747 // requests in MSHRs can be deleted here. 748 if (pkt->cmd == MemCmd::CleanEvict) { 749 pendingDelete.push_back(pkt); 750 } else { 751 DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n", 752 __func__, pkt->cmdString(), pkt->getAddr(), 753 pkt->getSize()); 754 755 assert(pkt->req->masterId() < system->maxMasters()); 756 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 757 if (mshr->threadNum != 0/*pkt->req->threadId()*/) { 758 mshr->threadNum = -1; 759 } 760 // We use forward_time here because it is the same 761 // considering new targets. We have multiple 762 // requests for the same address here. It 763 // specifies the latency to allocate an internal 764 // buffer and to schedule an event to the queued 765 // port and also takes into account the additional 766 // delay of the xbar. 767 mshr->allocateTarget(pkt, forward_time, order++); 768 if (mshr->getNumTargets() == numTarget) { 769 noTargetMSHR = mshr; 770 setBlocked(Blocked_NoTargets); 771 // need to be careful with this... if this mshr isn't 772 // ready yet (i.e. time > curTick()), we don't want to 773 // move it ahead of mshrs that are ready 774 // mshrQueue.moveToFront(mshr); 775 } 776 } 777 // We should call the prefetcher reguardless if the request is 778 // satisfied or not, reguardless if the request is in the MSHR or 779 // not. The request could be a ReadReq hit, but still not 780 // satisfied (potentially because of a prior write to the same 781 // cache line. So, even when not satisfied, tehre is an MSHR 782 // already allocated for this, we need to let the prefetcher know 783 // about the request 784 if (prefetcher) { 785 // Don't notify on SWPrefetch 786 if (!pkt->cmd.isSWPrefetch()) 787 next_pf_time = prefetcher->notify(pkt); 788 } 789 } 790 } else { 791 // no MSHR 792 assert(pkt->req->masterId() < system->maxMasters()); 793 if (pkt->req->isUncacheable()) { 794 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++; 795 } else { 796 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 797 } 798 799 if (pkt->evictingBlock() || 800 (pkt->req->isUncacheable() && pkt->isWrite())) { 801 // We use forward_time here because there is an 802 // uncached memory write, forwarded to WriteBuffer. 803 allocateWriteBuffer(pkt, forward_time); 804 } else { 805 if (blk && blk->isValid()) { 806 // should have flushed and have no valid block 807 assert(!pkt->req->isUncacheable()); 808 809 // If we have a write miss to a valid block, we 810 // need to mark the block non-readable. Otherwise 811 // if we allow reads while there's an outstanding 812 // write miss, the read could return stale data 813 // out of the cache block... a more aggressive 814 // system could detect the overlap (if any) and 815 // forward data out of the MSHRs, but we don't do 816 // that yet. Note that we do need to leave the 817 // block valid so that it stays in the cache, in 818 // case we get an upgrade response (and hence no 819 // new data) when the write miss completes. 820 // As long as CPUs do proper store/load forwarding 821 // internally, and have a sufficiently weak memory 822 // model, this is probably unnecessary, but at some 823 // point it must have seemed like we needed it... 824 assert(pkt->needsExclusive()); 825 assert(!blk->isWritable()); 826 blk->status &= ~BlkReadable; 827 } 828 // Here we are using forward_time, modelling the latency of 829 // a miss (outbound) just as forwardLatency, neglecting the 830 // lookupLatency component. 831 allocateMissBuffer(pkt, forward_time); 832 } 833 834 if (prefetcher) { 835 // Don't notify on SWPrefetch 836 if (!pkt->cmd.isSWPrefetch()) 837 next_pf_time = prefetcher->notify(pkt); 838 } 839 } 840 } 841 842 if (next_pf_time != MaxTick) 843 schedMemSideSendEvent(next_pf_time); 844 845 return true; 846} 847 848 849// See comment in cache.hh. 850PacketPtr 851Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk, 852 bool needsExclusive) const 853{ 854 bool blkValid = blk && blk->isValid(); 855 856 if (cpu_pkt->req->isUncacheable()) { 857 // note that at the point we see the uncacheable request we 858 // flush any block, but there could be an outstanding MSHR, 859 // and the cache could have filled again before we actually 860 // send out the forwarded uncacheable request (blk could thus 861 // be non-null) 862 return NULL; 863 } 864 865 if (!blkValid && 866 (cpu_pkt->isUpgrade() || 867 cpu_pkt->evictingBlock())) { 868 // Writebacks that weren't allocated in access() and upgrades 869 // from upper-level caches that missed completely just go 870 // through. 871 return NULL; 872 } 873 874 assert(cpu_pkt->needsResponse()); 875 876 MemCmd cmd; 877 // @TODO make useUpgrades a parameter. 878 // Note that ownership protocols require upgrade, otherwise a 879 // write miss on a shared owned block will generate a ReadExcl, 880 // which will clobber the owned copy. 881 const bool useUpgrades = true; 882 if (blkValid && useUpgrades) { 883 // only reason to be here is that blk is shared 884 // (read-only) and we need exclusive 885 assert(needsExclusive); 886 assert(!blk->isWritable()); 887 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq; 888 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq || 889 cpu_pkt->cmd == MemCmd::StoreCondFailReq) { 890 // Even though this SC will fail, we still need to send out the 891 // request and get the data to supply it to other snoopers in the case 892 // where the determination the StoreCond fails is delayed due to 893 // all caches not being on the same local bus. 894 cmd = MemCmd::SCUpgradeFailReq; 895 } else if (cpu_pkt->cmd == MemCmd::WriteLineReq) { 896 // forward as invalidate to all other caches, this gives us 897 // the line in exclusive state, and invalidates all other 898 // copies 899 cmd = MemCmd::InvalidateReq; 900 } else { 901 // block is invalid 902 cmd = needsExclusive ? MemCmd::ReadExReq : 903 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq); 904 } 905 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize); 906 907 // if there are sharers in the upper levels, pass that info downstream 908 if (cpu_pkt->sharedAsserted()) { 909 // note that cpu_pkt may have spent a considerable time in the 910 // MSHR queue and that the information could possibly be out 911 // of date, however, there is no harm in conservatively 912 // assuming the block is shared 913 pkt->assertShared(); 914 DPRINTF(Cache, "%s passing shared from %s to %s addr %#llx size %d\n", 915 __func__, cpu_pkt->cmdString(), pkt->cmdString(), 916 pkt->getAddr(), pkt->getSize()); 917 } 918 919 // the packet should be block aligned 920 assert(pkt->getAddr() == blockAlign(pkt->getAddr())); 921 922 pkt->allocate(); 923 DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n", 924 __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(), 925 pkt->getSize()); 926 return pkt; 927} 928 929 930Tick 931Cache::recvAtomic(PacketPtr pkt) 932{ 933 // We are in atomic mode so we pay just for lookupLatency here. 934 Cycles lat = lookupLatency; 935 // @TODO: make this a parameter 936 bool last_level_cache = false; 937 938 // Forward the request if the system is in cache bypass mode. 939 if (system->bypassCaches()) 940 return ticksToCycles(memSidePort->sendAtomic(pkt)); 941 942 promoteWholeLineWrites(pkt); 943 944 if (pkt->memInhibitAsserted()) { 945 // have to invalidate ourselves and any lower caches even if 946 // upper cache will be responding 947 if (pkt->isInvalidate()) { 948 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 949 if (blk && blk->isValid()) { 950 tags->invalidate(blk); 951 blk->invalidate(); 952 DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx (%s):" 953 " invalidating\n", 954 pkt->cmdString(), pkt->getAddr(), 955 pkt->isSecure() ? "s" : "ns"); 956 } 957 if (!last_level_cache) { 958 DPRINTF(Cache, "forwarding mem-inhibited %s on %#llx (%s)\n", 959 pkt->cmdString(), pkt->getAddr(), 960 pkt->isSecure() ? "s" : "ns"); 961 lat += ticksToCycles(memSidePort->sendAtomic(pkt)); 962 } 963 } else { 964 DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx: not responding\n", 965 pkt->cmdString(), pkt->getAddr()); 966 } 967 968 return lat * clockPeriod(); 969 } 970 971 // should assert here that there are no outstanding MSHRs or 972 // writebacks... that would mean that someone used an atomic 973 // access in timing mode 974 975 CacheBlk *blk = NULL; 976 PacketList writebacks; 977 bool satisfied = access(pkt, blk, lat, writebacks); 978 979 // handle writebacks resulting from the access here to ensure they 980 // logically proceed anything happening below 981 while (!writebacks.empty()){ 982 PacketPtr wbPkt = writebacks.front(); 983 memSidePort->sendAtomic(wbPkt); 984 writebacks.pop_front(); 985 delete wbPkt; 986 } 987 988 if (!satisfied) { 989 // MISS 990 991 PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsExclusive()); 992 993 bool is_forward = (bus_pkt == NULL); 994 995 if (is_forward) { 996 // just forwarding the same request to the next level 997 // no local cache operation involved 998 bus_pkt = pkt; 999 } 1000 1001 DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n", 1002 bus_pkt->cmdString(), bus_pkt->getAddr(), 1003 bus_pkt->isSecure() ? "s" : "ns"); 1004 1005#if TRACING_ON 1006 CacheBlk::State old_state = blk ? blk->status : 0; 1007#endif 1008 1009 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt)); 1010 1011 // We are now dealing with the response handling 1012 DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n", 1013 bus_pkt->cmdString(), bus_pkt->getAddr(), 1014 bus_pkt->isSecure() ? "s" : "ns", 1015 old_state); 1016 1017 // If packet was a forward, the response (if any) is already 1018 // in place in the bus_pkt == pkt structure, so we don't need 1019 // to do anything. Otherwise, use the separate bus_pkt to 1020 // generate response to pkt and then delete it. 1021 if (!is_forward) { 1022 if (pkt->needsResponse()) { 1023 assert(bus_pkt->isResponse()); 1024 if (bus_pkt->isError()) { 1025 pkt->makeAtomicResponse(); 1026 pkt->copyError(bus_pkt); 1027 } else if (pkt->cmd == MemCmd::InvalidateReq) { 1028 if (blk) { 1029 // invalidate response to a cache that received 1030 // an invalidate request 1031 satisfyCpuSideRequest(pkt, blk); 1032 } 1033 } else if (pkt->cmd == MemCmd::WriteLineReq) { 1034 // note the use of pkt, not bus_pkt here. 1035 1036 // write-line request to the cache that promoted 1037 // the write to a whole line 1038 blk = handleFill(pkt, blk, writebacks); 1039 satisfyCpuSideRequest(pkt, blk); 1040 } else if (bus_pkt->isRead() || 1041 bus_pkt->cmd == MemCmd::UpgradeResp) { 1042 // we're updating cache state to allow us to 1043 // satisfy the upstream request from the cache 1044 blk = handleFill(bus_pkt, blk, writebacks); 1045 satisfyCpuSideRequest(pkt, blk); 1046 } else { 1047 // we're satisfying the upstream request without 1048 // modifying cache state, e.g., a write-through 1049 pkt->makeAtomicResponse(); 1050 } 1051 } 1052 delete bus_pkt; 1053 } 1054 } 1055 1056 // Note that we don't invoke the prefetcher at all in atomic mode. 1057 // It's not clear how to do it properly, particularly for 1058 // prefetchers that aggressively generate prefetch candidates and 1059 // rely on bandwidth contention to throttle them; these will tend 1060 // to pollute the cache in atomic mode since there is no bandwidth 1061 // contention. If we ever do want to enable prefetching in atomic 1062 // mode, though, this is the place to do it... see timingAccess() 1063 // for an example (though we'd want to issue the prefetch(es) 1064 // immediately rather than calling requestMemSideBus() as we do 1065 // there). 1066 1067 // Handle writebacks (from the response handling) if needed 1068 while (!writebacks.empty()){ 1069 PacketPtr wbPkt = writebacks.front(); 1070 memSidePort->sendAtomic(wbPkt); 1071 writebacks.pop_front(); 1072 delete wbPkt; 1073 } 1074 1075 if (pkt->needsResponse()) { 1076 pkt->makeAtomicResponse(); 1077 } 1078 1079 return lat * clockPeriod(); 1080} 1081 1082 1083void 1084Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide) 1085{ 1086 if (system->bypassCaches()) { 1087 // Packets from the memory side are snoop request and 1088 // shouldn't happen in bypass mode. 1089 assert(fromCpuSide); 1090 1091 // The cache should be flushed if we are in cache bypass mode, 1092 // so we don't need to check if we need to update anything. 1093 memSidePort->sendFunctional(pkt); 1094 return; 1095 } 1096 1097 Addr blk_addr = blockAlign(pkt->getAddr()); 1098 bool is_secure = pkt->isSecure(); 1099 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 1100 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 1101 1102 pkt->pushLabel(name()); 1103 1104 CacheBlkPrintWrapper cbpw(blk); 1105 1106 // Note that just because an L2/L3 has valid data doesn't mean an 1107 // L1 doesn't have a more up-to-date modified copy that still 1108 // needs to be found. As a result we always update the request if 1109 // we have it, but only declare it satisfied if we are the owner. 1110 1111 // see if we have data at all (owned or otherwise) 1112 bool have_data = blk && blk->isValid() 1113 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize, 1114 blk->data); 1115 1116 // data we have is dirty if marked as such or if valid & ownership 1117 // pending due to outstanding UpgradeReq 1118 bool have_dirty = 1119 have_data && (blk->isDirty() || 1120 (mshr && mshr->inService && mshr->isPendingDirty())); 1121 1122 bool done = have_dirty 1123 || cpuSidePort->checkFunctional(pkt) 1124 || mshrQueue.checkFunctional(pkt, blk_addr) 1125 || writeBuffer.checkFunctional(pkt, blk_addr) 1126 || memSidePort->checkFunctional(pkt); 1127 1128 DPRINTF(Cache, "functional %s %#llx (%s) %s%s%s\n", 1129 pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns", 1130 (blk && blk->isValid()) ? "valid " : "", 1131 have_data ? "data " : "", done ? "done " : ""); 1132 1133 // We're leaving the cache, so pop cache->name() label 1134 pkt->popLabel(); 1135 1136 if (done) { 1137 pkt->makeResponse(); 1138 } else { 1139 // if it came as a request from the CPU side then make sure it 1140 // continues towards the memory side 1141 if (fromCpuSide) { 1142 memSidePort->sendFunctional(pkt); 1143 } else if (forwardSnoops && cpuSidePort->isSnooping()) { 1144 // if it came from the memory side, it must be a snoop request 1145 // and we should only forward it if we are forwarding snoops 1146 cpuSidePort->sendFunctionalSnoop(pkt); 1147 } 1148 } 1149} 1150 1151 1152///////////////////////////////////////////////////// 1153// 1154// Response handling: responses from the memory side 1155// 1156///////////////////////////////////////////////////// 1157 1158 1159void 1160Cache::recvTimingResp(PacketPtr pkt) 1161{ 1162 assert(pkt->isResponse()); 1163 1164 // all header delay should be paid for by the crossbar, unless 1165 // this is a prefetch response from above 1166 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp, 1167 "%s saw a non-zero packet delay\n", name()); 1168 1169 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState); 1170 bool is_error = pkt->isError(); 1171 1172 assert(mshr); 1173 1174 if (is_error) { 1175 DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), " 1176 "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns", 1177 pkt->cmdString()); 1178 } 1179 1180 DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n", 1181 pkt->cmdString(), pkt->getAddr(), pkt->getSize(), 1182 pkt->isSecure() ? "s" : "ns"); 1183 1184 MSHRQueue *mq = mshr->queue; 1185 bool wasFull = mq->isFull(); 1186 1187 if (mshr == noTargetMSHR) { 1188 // we always clear at least one target 1189 clearBlocked(Blocked_NoTargets); 1190 noTargetMSHR = NULL; 1191 } 1192 1193 // Initial target is used just for stats 1194 MSHR::Target *initial_tgt = mshr->getTarget(); 1195 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 1196 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); 1197 Tick miss_latency = curTick() - initial_tgt->recvTime; 1198 PacketList writebacks; 1199 // We need forward_time here because we have a call of 1200 // allocateWriteBuffer() that need this parameter to specify the 1201 // time to request the bus. In this case we use forward latency 1202 // because there is a writeback. We pay also here for headerDelay 1203 // that is charged of bus latencies if the packet comes from the 1204 // bus. 1205 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 1206 1207 if (pkt->req->isUncacheable()) { 1208 assert(pkt->req->masterId() < system->maxMasters()); 1209 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += 1210 miss_latency; 1211 } else { 1212 assert(pkt->req->masterId() < system->maxMasters()); 1213 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += 1214 miss_latency; 1215 } 1216 1217 bool is_fill = !mshr->isForward && 1218 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp); 1219 1220 if (is_fill && !is_error) { 1221 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", 1222 pkt->getAddr()); 1223 1224 // give mshr a chance to do some dirty work 1225 mshr->handleFill(pkt, blk); 1226 1227 blk = handleFill(pkt, blk, writebacks); 1228 assert(blk != NULL); 1229 } 1230 1231 // allow invalidation responses originating from write-line 1232 // requests to be discarded 1233 bool discard_invalidate = false; 1234 1235 // First offset for critical word first calculations 1236 int initial_offset = initial_tgt->pkt->getOffset(blkSize); 1237 1238 while (mshr->hasTargets()) { 1239 MSHR::Target *target = mshr->getTarget(); 1240 Packet *tgt_pkt = target->pkt; 1241 1242 switch (target->source) { 1243 case MSHR::Target::FromCPU: 1244 Tick completion_time; 1245 // Here we charge on completion_time the delay of the xbar if the 1246 // packet comes from it, charged on headerDelay. 1247 completion_time = pkt->headerDelay; 1248 1249 // Software prefetch handling for cache closest to core 1250 if (tgt_pkt->cmd.isSWPrefetch()) { 1251 // a software prefetch would have already been ack'd immediately 1252 // with dummy data so the core would be able to retire it. 1253 // this request completes right here, so we deallocate it. 1254 delete tgt_pkt->req; 1255 delete tgt_pkt; 1256 break; // skip response 1257 } 1258 1259 // unlike the other packet flows, where data is found in other 1260 // caches or memory and brought back, write-line requests always 1261 // have the data right away, so the above check for "is fill?" 1262 // cannot actually be determined until examining the stored MSHR 1263 // state. We "catch up" with that logic here, which is duplicated 1264 // from above. 1265 if (tgt_pkt->cmd == MemCmd::WriteLineReq) { 1266 assert(!is_error); 1267 1268 // NB: we use the original packet here and not the response! 1269 mshr->handleFill(tgt_pkt, blk); 1270 blk = handleFill(tgt_pkt, blk, writebacks); 1271 assert(blk != NULL); 1272 1273 // treat as a fill, and discard the invalidation 1274 // response 1275 is_fill = true; 1276 discard_invalidate = true; 1277 } 1278 1279 if (is_fill) { 1280 satisfyCpuSideRequest(tgt_pkt, blk, 1281 true, mshr->hasPostDowngrade()); 1282 1283 // How many bytes past the first request is this one 1284 int transfer_offset = 1285 tgt_pkt->getOffset(blkSize) - initial_offset; 1286 if (transfer_offset < 0) { 1287 transfer_offset += blkSize; 1288 } 1289 1290 // If not critical word (offset) return payloadDelay. 1291 // responseLatency is the latency of the return path 1292 // from lower level caches/memory to an upper level cache or 1293 // the core. 1294 completion_time += clockEdge(responseLatency) + 1295 (transfer_offset ? pkt->payloadDelay : 0); 1296 1297 assert(!tgt_pkt->req->isUncacheable()); 1298 1299 assert(tgt_pkt->req->masterId() < system->maxMasters()); 1300 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] += 1301 completion_time - target->recvTime; 1302 } else if (pkt->cmd == MemCmd::UpgradeFailResp) { 1303 // failed StoreCond upgrade 1304 assert(tgt_pkt->cmd == MemCmd::StoreCondReq || 1305 tgt_pkt->cmd == MemCmd::StoreCondFailReq || 1306 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq); 1307 // responseLatency is the latency of the return path 1308 // from lower level caches/memory to an upper level cache or 1309 // the core. 1310 completion_time += clockEdge(responseLatency) + 1311 pkt->payloadDelay; 1312 tgt_pkt->req->setExtraData(0); 1313 } else { 1314 // not a cache fill, just forwarding response 1315 // responseLatency is the latency of the return path 1316 // from lower level cahces/memory to the core. 1317 completion_time += clockEdge(responseLatency) + 1318 pkt->payloadDelay; 1319 if (pkt->isRead() && !is_error) { 1320 // sanity check 1321 assert(pkt->getAddr() == tgt_pkt->getAddr()); 1322 assert(pkt->getSize() >= tgt_pkt->getSize()); 1323 1324 tgt_pkt->setData(pkt->getConstPtr<uint8_t>()); 1325 } 1326 } 1327 tgt_pkt->makeTimingResponse(); 1328 // if this packet is an error copy that to the new packet 1329 if (is_error) 1330 tgt_pkt->copyError(pkt); 1331 if (tgt_pkt->cmd == MemCmd::ReadResp && 1332 (pkt->isInvalidate() || mshr->hasPostInvalidate())) { 1333 // If intermediate cache got ReadRespWithInvalidate, 1334 // propagate that. Response should not have 1335 // isInvalidate() set otherwise. 1336 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate; 1337 DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n", 1338 __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr()); 1339 } 1340 // Reset the bus additional time as it is now accounted for 1341 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0; 1342 cpuSidePort->schedTimingResp(tgt_pkt, completion_time); 1343 break; 1344 1345 case MSHR::Target::FromPrefetcher: 1346 assert(tgt_pkt->cmd == MemCmd::HardPFReq); 1347 if (blk) 1348 blk->status |= BlkHWPrefetched; 1349 delete tgt_pkt->req; 1350 delete tgt_pkt; 1351 break; 1352 1353 case MSHR::Target::FromSnoop: 1354 // I don't believe that a snoop can be in an error state 1355 assert(!is_error); 1356 // response to snoop request 1357 DPRINTF(Cache, "processing deferred snoop...\n"); 1358 assert(!(pkt->isInvalidate() && !mshr->hasPostInvalidate())); 1359 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate()); 1360 break; 1361 1362 default: 1363 panic("Illegal target->source enum %d\n", target->source); 1364 } 1365 1366 mshr->popTarget(); 1367 } 1368 1369 if (blk && blk->isValid()) { 1370 // an invalidate response stemming from a write line request 1371 // should not invalidate the block, so check if the 1372 // invalidation should be discarded 1373 if ((pkt->isInvalidate() || mshr->hasPostInvalidate()) && 1374 !discard_invalidate) { 1375 assert(blk != tempBlock); 1376 tags->invalidate(blk); 1377 blk->invalidate(); 1378 } else if (mshr->hasPostDowngrade()) { 1379 blk->status &= ~BlkWritable; 1380 } 1381 } 1382 1383 if (mshr->promoteDeferredTargets()) { 1384 // avoid later read getting stale data while write miss is 1385 // outstanding.. see comment in timingAccess() 1386 if (blk) { 1387 blk->status &= ~BlkReadable; 1388 } 1389 mq = mshr->queue; 1390 mq->markPending(mshr); 1391 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay); 1392 } else { 1393 mq->deallocate(mshr); 1394 if (wasFull && !mq->isFull()) { 1395 clearBlocked((BlockedCause)mq->index); 1396 } 1397 1398 // Request the bus for a prefetch if this deallocation freed enough 1399 // MSHRs for a prefetch to take place 1400 if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) { 1401 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), 1402 clockEdge()); 1403 if (next_pf_time != MaxTick) 1404 schedMemSideSendEvent(next_pf_time); 1405 } 1406 } 1407 // reset the xbar additional timinig as it is now accounted for 1408 pkt->headerDelay = pkt->payloadDelay = 0; 1409 1410 // copy writebacks to write buffer 1411 doWritebacks(writebacks, forward_time); 1412 1413 // if we used temp block, check to see if its valid and then clear it out 1414 if (blk == tempBlock && tempBlock->isValid()) { 1415 // We use forwardLatency here because we are copying 1416 // Writebacks/CleanEvicts to write buffer. It specifies the latency to 1417 // allocate an internal buffer and to schedule an event to the 1418 // queued port. 1419 if (blk->isDirty()) { 1420 PacketPtr wbPkt = writebackBlk(blk); 1421 allocateWriteBuffer(wbPkt, forward_time); 1422 // Set BLOCK_CACHED flag if cached above. 1423 if (isCachedAbove(wbPkt)) 1424 wbPkt->setBlockCached(); 1425 } else { 1426 PacketPtr wcPkt = cleanEvictBlk(blk); 1427 // Check to see if block is cached above. If not allocate 1428 // write buffer 1429 if (isCachedAbove(wcPkt)) 1430 delete wcPkt; 1431 else 1432 allocateWriteBuffer(wcPkt, forward_time); 1433 } 1434 blk->invalidate(); 1435 } 1436 1437 DPRINTF(Cache, "Leaving %s with %s for addr %#llx\n", __func__, 1438 pkt->cmdString(), pkt->getAddr()); 1439 delete pkt; 1440} 1441 1442PacketPtr 1443Cache::writebackBlk(CacheBlk *blk) 1444{ 1445 chatty_assert(!isReadOnly, "Writeback from read-only cache"); 1446 assert(blk && blk->isValid() && blk->isDirty()); 1447 1448 writebacks[Request::wbMasterId]++; 1449 1450 Request *writebackReq = 1451 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0, 1452 Request::wbMasterId); 1453 if (blk->isSecure()) 1454 writebackReq->setFlags(Request::SECURE); 1455 1456 writebackReq->taskId(blk->task_id); 1457 blk->task_id= ContextSwitchTaskId::Unknown; 1458 blk->tickInserted = curTick(); 1459 1460 PacketPtr writeback = new Packet(writebackReq, MemCmd::Writeback); 1461 if (blk->isWritable()) { 1462 // not asserting shared means we pass the block in modified 1463 // state, mark our own block non-writeable 1464 blk->status &= ~BlkWritable; 1465 } else { 1466 // we are in the owned state, tell the receiver 1467 writeback->assertShared(); 1468 } 1469 1470 writeback->allocate(); 1471 std::memcpy(writeback->getPtr<uint8_t>(), blk->data, blkSize); 1472 1473 blk->status &= ~BlkDirty; 1474 return writeback; 1475} 1476 1477PacketPtr 1478Cache::cleanEvictBlk(CacheBlk *blk) 1479{ 1480 assert(blk && blk->isValid() && !blk->isDirty()); 1481 // Creating a zero sized write, a message to the snoop filter 1482 Request *req = 1483 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0, 1484 Request::wbMasterId); 1485 if (blk->isSecure()) 1486 req->setFlags(Request::SECURE); 1487 1488 req->taskId(blk->task_id); 1489 blk->task_id = ContextSwitchTaskId::Unknown; 1490 blk->tickInserted = curTick(); 1491 1492 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict); 1493 pkt->allocate(); 1494 DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(), 1495 pkt->req->isInstFetch() ? " (ifetch)" : "", 1496 pkt->getAddr()); 1497 1498 return pkt; 1499} 1500 1501void 1502Cache::memWriteback() 1503{ 1504 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor); 1505 tags->forEachBlk(visitor); 1506} 1507 1508void 1509Cache::memInvalidate() 1510{ 1511 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor); 1512 tags->forEachBlk(visitor); 1513} 1514 1515bool 1516Cache::isDirty() const 1517{ 1518 CacheBlkIsDirtyVisitor visitor; 1519 tags->forEachBlk(visitor); 1520 1521 return visitor.isDirty(); 1522} 1523 1524bool 1525Cache::writebackVisitor(CacheBlk &blk) 1526{ 1527 if (blk.isDirty()) { 1528 assert(blk.isValid()); 1529 1530 Request request(tags->regenerateBlkAddr(blk.tag, blk.set), 1531 blkSize, 0, Request::funcMasterId); 1532 request.taskId(blk.task_id); 1533 1534 Packet packet(&request, MemCmd::WriteReq); 1535 packet.dataStatic(blk.data); 1536 1537 memSidePort->sendFunctional(&packet); 1538 1539 blk.status &= ~BlkDirty; 1540 } 1541 1542 return true; 1543} 1544 1545bool 1546Cache::invalidateVisitor(CacheBlk &blk) 1547{ 1548 1549 if (blk.isDirty()) 1550 warn_once("Invalidating dirty cache lines. Expect things to break.\n"); 1551 1552 if (blk.isValid()) { 1553 assert(!blk.isDirty()); 1554 tags->invalidate(&blk); 1555 blk.invalidate(); 1556 } 1557 1558 return true; 1559} 1560 1561CacheBlk* 1562Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks) 1563{ 1564 CacheBlk *blk = tags->findVictim(addr); 1565 1566 // It is valid to return NULL if there is no victim 1567 if (!blk) 1568 return nullptr; 1569 1570 if (blk->isValid()) { 1571 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set); 1572 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); 1573 if (repl_mshr) { 1574 // must be an outstanding upgrade request 1575 // on a block we're about to replace... 1576 assert(!blk->isWritable() || blk->isDirty()); 1577 assert(repl_mshr->needsExclusive()); 1578 // too hard to replace block with transient state 1579 // allocation failed, block not inserted 1580 return NULL; 1581 } else { 1582 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n", 1583 repl_addr, blk->isSecure() ? "s" : "ns", 1584 addr, is_secure ? "s" : "ns", 1585 blk->isDirty() ? "writeback" : "clean"); 1586 1587 // Will send up Writeback/CleanEvict snoops via isCachedAbove 1588 // when pushing this writeback list into the write buffer. 1589 if (blk->isDirty()) { 1590 // Save writeback packet for handling by caller 1591 writebacks.push_back(writebackBlk(blk)); 1592 } else { 1593 writebacks.push_back(cleanEvictBlk(blk)); 1594 } 1595 } 1596 } 1597 1598 return blk; 1599} 1600 1601 1602// Note that the reason we return a list of writebacks rather than 1603// inserting them directly in the write buffer is that this function 1604// is called by both atomic and timing-mode accesses, and in atomic 1605// mode we don't mess with the write buffer (we just perform the 1606// writebacks atomically once the original request is complete). 1607CacheBlk* 1608Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks) 1609{ 1610 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq); 1611 Addr addr = pkt->getAddr(); 1612 bool is_secure = pkt->isSecure(); 1613#if TRACING_ON 1614 CacheBlk::State old_state = blk ? blk->status : 0; 1615#endif 1616 1617 // When handling a fill, discard any CleanEvicts for the 1618 // same address in write buffer. 1619 Addr M5_VAR_USED blk_addr = blockAlign(pkt->getAddr()); 1620 std::vector<MSHR *> M5_VAR_USED wbs; 1621 assert (!writeBuffer.findMatches(blk_addr, is_secure, wbs)); 1622 1623 if (blk == NULL) { 1624 // better have read new data... 1625 assert(pkt->hasData()); 1626 1627 // only read responses and write-line requests have data; 1628 // note that we don't write the data here for write-line - that 1629 // happens in the subsequent satisfyCpuSideRequest. 1630 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq); 1631 1632 // need to do a replacement 1633 blk = allocateBlock(addr, is_secure, writebacks); 1634 if (blk == NULL) { 1635 // No replaceable block... just use temporary storage to 1636 // complete the current request and then get rid of it 1637 assert(!tempBlock->isValid()); 1638 blk = tempBlock; 1639 tempBlock->set = tags->extractSet(addr); 1640 tempBlock->tag = tags->extractTag(addr); 1641 // @todo: set security state as well... 1642 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, 1643 is_secure ? "s" : "ns"); 1644 } else { 1645 tags->insertBlock(pkt, blk); 1646 } 1647 1648 // we should never be overwriting a valid block 1649 assert(!blk->isValid()); 1650 } else { 1651 // existing block... probably an upgrade 1652 assert(blk->tag == tags->extractTag(addr)); 1653 // either we're getting new data or the block should already be valid 1654 assert(pkt->hasData() || blk->isValid()); 1655 // don't clear block status... if block is already dirty we 1656 // don't want to lose that 1657 } 1658 1659 if (is_secure) 1660 blk->status |= BlkSecure; 1661 blk->status |= BlkValid | BlkReadable; 1662 1663 if (!pkt->sharedAsserted()) { 1664 // we could get non-shared responses from memory (rather than 1665 // a cache) even in a read-only cache, note that we set this 1666 // bit even for a read-only cache as we use it to represent 1667 // the exclusive state 1668 blk->status |= BlkWritable; 1669 1670 // If we got this via cache-to-cache transfer (i.e., from a 1671 // cache that was an owner) and took away that owner's copy, 1672 // then we need to write it back. Normally this happens 1673 // anyway as a side effect of getting a copy to write it, but 1674 // there are cases (such as failed store conditionals or 1675 // compare-and-swaps) where we'll demand an exclusive copy but 1676 // end up not writing it. 1677 if (pkt->memInhibitAsserted()) { 1678 blk->status |= BlkDirty; 1679 1680 chatty_assert(!isReadOnly, "Should never see dirty snoop response " 1681 "in read-only cache %s\n", name()); 1682 } 1683 } 1684 1685 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", 1686 addr, is_secure ? "s" : "ns", old_state, blk->print()); 1687 1688 // if we got new data, copy it in (checking for a read response 1689 // and a response that has data is the same in the end) 1690 if (pkt->isRead()) { 1691 // sanity checks 1692 assert(pkt->hasData()); 1693 assert(pkt->getSize() == blkSize); 1694 1695 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize); 1696 } 1697 // We pay for fillLatency here. 1698 blk->whenReady = clockEdge() + fillLatency * clockPeriod() + 1699 pkt->payloadDelay; 1700 1701 return blk; 1702} 1703 1704 1705///////////////////////////////////////////////////// 1706// 1707// Snoop path: requests coming in from the memory side 1708// 1709///////////////////////////////////////////////////// 1710 1711void 1712Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data, 1713 bool already_copied, bool pending_inval) 1714{ 1715 // sanity check 1716 assert(req_pkt->isRequest()); 1717 assert(req_pkt->needsResponse()); 1718 1719 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, 1720 req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize()); 1721 // timing-mode snoop responses require a new packet, unless we 1722 // already made a copy... 1723 PacketPtr pkt = req_pkt; 1724 if (!already_copied) 1725 // do not clear flags, and allocate space for data if the 1726 // packet needs it (the only packets that carry data are read 1727 // responses) 1728 pkt = new Packet(req_pkt, false, req_pkt->isRead()); 1729 1730 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() || 1731 pkt->sharedAsserted()); 1732 pkt->makeTimingResponse(); 1733 if (pkt->isRead()) { 1734 pkt->setDataFromBlock(blk_data, blkSize); 1735 } 1736 if (pkt->cmd == MemCmd::ReadResp && pending_inval) { 1737 // Assume we defer a response to a read from a far-away cache 1738 // A, then later defer a ReadExcl from a cache B on the same 1739 // bus as us. We'll assert MemInhibit in both cases, but in 1740 // the latter case MemInhibit will keep the invalidation from 1741 // reaching cache A. This special response tells cache A that 1742 // it gets the block to satisfy its read, but must immediately 1743 // invalidate it. 1744 pkt->cmd = MemCmd::ReadRespWithInvalidate; 1745 } 1746 // Here we consider forward_time, paying for just forward latency and 1747 // also charging the delay provided by the xbar. 1748 // forward_time is used as send_time in next allocateWriteBuffer(). 1749 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 1750 // Here we reset the timing of the packet. 1751 pkt->headerDelay = pkt->payloadDelay = 0; 1752 DPRINTF(Cache, "%s created response: %s addr %#llx size %d tick: %lu\n", 1753 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(), 1754 forward_time); 1755 memSidePort->schedTimingSnoopResp(pkt, forward_time, true); 1756} 1757 1758void 1759Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing, 1760 bool is_deferred, bool pending_inval) 1761{ 1762 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, 1763 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 1764 // deferred snoops can only happen in timing mode 1765 assert(!(is_deferred && !is_timing)); 1766 // pending_inval only makes sense on deferred snoops 1767 assert(!(pending_inval && !is_deferred)); 1768 assert(pkt->isRequest()); 1769 1770 // the packet may get modified if we or a forwarded snooper 1771 // responds in atomic mode, so remember a few things about the 1772 // original packet up front 1773 bool invalidate = pkt->isInvalidate(); 1774 bool M5_VAR_USED needs_exclusive = pkt->needsExclusive(); 1775 1776 if (forwardSnoops) { 1777 // first propagate snoop upward to see if anyone above us wants to 1778 // handle it. save & restore packet src since it will get 1779 // rewritten to be relative to cpu-side bus (if any) 1780 bool alreadyResponded = pkt->memInhibitAsserted(); 1781 if (is_timing) { 1782 // copy the packet so that we can clear any flags before 1783 // forwarding it upwards, we also allocate data (passing 1784 // the pointer along in case of static data), in case 1785 // there is a snoop hit in upper levels 1786 Packet snoopPkt(pkt, true, true); 1787 snoopPkt.setExpressSnoop(); 1788 snoopPkt.pushSenderState(new ForwardResponseRecord()); 1789 // the snoop packet does not need to wait any additional 1790 // time 1791 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0; 1792 cpuSidePort->sendTimingSnoopReq(&snoopPkt); 1793 if (snoopPkt.memInhibitAsserted()) { 1794 // cache-to-cache response from some upper cache 1795 assert(!alreadyResponded); 1796 pkt->assertMemInhibit(); 1797 } else { 1798 // no cache (or anyone else for that matter) will 1799 // respond, so delete the ForwardResponseRecord here 1800 delete snoopPkt.popSenderState(); 1801 } 1802 if (snoopPkt.sharedAsserted()) { 1803 pkt->assertShared(); 1804 } 1805 // If this request is a prefetch or clean evict and an upper level 1806 // signals block present, make sure to propagate the block 1807 // presence to the requester. 1808 if (snoopPkt.isBlockCached()) { 1809 pkt->setBlockCached(); 1810 } 1811 } else { 1812 cpuSidePort->sendAtomicSnoop(pkt); 1813 if (!alreadyResponded && pkt->memInhibitAsserted()) { 1814 // cache-to-cache response from some upper cache: 1815 // forward response to original requester 1816 assert(pkt->isResponse()); 1817 } 1818 } 1819 } 1820 1821 if (!blk || !blk->isValid()) { 1822 DPRINTF(Cache, "%s snoop miss for %s addr %#llx size %d\n", 1823 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 1824 return; 1825 } else { 1826 DPRINTF(Cache, "%s snoop hit for %s for addr %#llx size %d, " 1827 "old state is %s\n", __func__, pkt->cmdString(), 1828 pkt->getAddr(), pkt->getSize(), blk->print()); 1829 } 1830 1831 chatty_assert(!(isReadOnly && blk->isDirty()), 1832 "Should never have a dirty block in a read-only cache %s\n", 1833 name()); 1834 1835 // We may end up modifying both the block state and the packet (if 1836 // we respond in atomic mode), so just figure out what to do now 1837 // and then do it later. If we find dirty data while snooping for 1838 // an invalidate, we don't need to send a response. The 1839 // invalidation itself is taken care of below. 1840 bool respond = blk->isDirty() && pkt->needsResponse() && 1841 pkt->cmd != MemCmd::InvalidateReq; 1842 bool have_exclusive = blk->isWritable(); 1843 1844 // Invalidate any prefetch's from below that would strip write permissions 1845 // MemCmd::HardPFReq is only observed by upstream caches. After missing 1846 // above and in it's own cache, a new MemCmd::ReadReq is created that 1847 // downstream caches observe. 1848 if (pkt->mustCheckAbove()) { 1849 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from" 1850 " lower cache\n", pkt->getAddr(), pkt->cmdString()); 1851 pkt->setBlockCached(); 1852 return; 1853 } 1854 1855 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) { 1856 assert(!needs_exclusive); 1857 pkt->assertShared(); 1858 int bits_to_clear = BlkWritable; 1859 const bool haveOwnershipState = true; // for now 1860 if (!haveOwnershipState) { 1861 // if we don't support pure ownership (dirty && !writable), 1862 // have to clear dirty bit here, assume memory snarfs data 1863 // on cache-to-cache xfer 1864 bits_to_clear |= BlkDirty; 1865 } 1866 blk->status &= ~bits_to_clear; 1867 } 1868 1869 if (respond) { 1870 // prevent anyone else from responding, cache as well as 1871 // memory, and also prevent any memory from even seeing the 1872 // request (with current inhibited semantics), note that this 1873 // applies both to reads and writes and that for writes it 1874 // works thanks to the fact that we still have dirty data and 1875 // will write it back at a later point 1876 pkt->assertMemInhibit(); 1877 if (have_exclusive) { 1878 // in the case of an uncacheable request there is no need 1879 // to set the exclusive flag, but since the recipient does 1880 // not care there is no harm in doing so 1881 pkt->setSupplyExclusive(); 1882 } 1883 if (is_timing) { 1884 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval); 1885 } else { 1886 pkt->makeAtomicResponse(); 1887 pkt->setDataFromBlock(blk->data, blkSize); 1888 } 1889 } 1890 1891 if (!respond && is_timing && is_deferred) { 1892 // if it's a deferred timing snoop then we've made a copy of 1893 // both the request and the packet, and so if we're not using 1894 // those copies to respond and delete them here 1895 DPRINTF(Cache, "Deleting pkt %p and request %p for cmd %s addr: %p\n", 1896 pkt, pkt->req, pkt->cmdString(), pkt->getAddr()); 1897 1898 // the packets needs a response (just not from us), so we also 1899 // need to delete the request and not rely on the packet 1900 // destructor 1901 assert(pkt->needsResponse()); 1902 delete pkt->req; 1903 delete pkt; 1904 } 1905 1906 // Do this last in case it deallocates block data or something 1907 // like that 1908 if (invalidate) { 1909 if (blk != tempBlock) 1910 tags->invalidate(blk); 1911 blk->invalidate(); 1912 } 1913 1914 DPRINTF(Cache, "new state is %s\n", blk->print()); 1915} 1916 1917 1918void 1919Cache::recvTimingSnoopReq(PacketPtr pkt) 1920{ 1921 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__, 1922 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 1923 1924 // Snoops shouldn't happen when bypassing caches 1925 assert(!system->bypassCaches()); 1926 1927 // no need to snoop writebacks or requests that are not in range 1928 if (!inRange(pkt->getAddr())) { 1929 return; 1930 } 1931 1932 bool is_secure = pkt->isSecure(); 1933 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 1934 1935 Addr blk_addr = blockAlign(pkt->getAddr()); 1936 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 1937 1938 // Inform request(Prefetch, CleanEvict or Writeback) from below of 1939 // MSHR hit, set setBlockCached. 1940 if (mshr && pkt->mustCheckAbove()) { 1941 DPRINTF(Cache, "Setting block cached for %s from" 1942 "lower cache on mshr hit %#x\n", 1943 pkt->cmdString(), pkt->getAddr()); 1944 pkt->setBlockCached(); 1945 return; 1946 } 1947 1948 // Let the MSHR itself track the snoop and decide whether we want 1949 // to go ahead and do the regular cache snoop 1950 if (mshr && mshr->handleSnoop(pkt, order++)) { 1951 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)." 1952 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns", 1953 mshr->print()); 1954 1955 if (mshr->getNumTargets() > numTarget) 1956 warn("allocating bonus target for snoop"); //handle later 1957 return; 1958 } 1959 1960 //We also need to check the writeback buffers and handle those 1961 std::vector<MSHR *> writebacks; 1962 if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) { 1963 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n", 1964 pkt->getAddr(), is_secure ? "s" : "ns"); 1965 1966 // Look through writebacks for any cachable writes. 1967 // We should only ever find a single match 1968 assert(writebacks.size() == 1); 1969 MSHR *wb_entry = writebacks[0]; 1970 // Expect to see only Writebacks and/or CleanEvicts here, both of 1971 // which should not be generated for uncacheable data. 1972 assert(!wb_entry->isUncacheable()); 1973 // There should only be a single request responsible for generating 1974 // Writebacks/CleanEvicts. 1975 assert(wb_entry->getNumTargets() == 1); 1976 PacketPtr wb_pkt = wb_entry->getTarget()->pkt; 1977 assert(wb_pkt->evictingBlock()); 1978 1979 if (pkt->evictingBlock()) { 1980 // if the block is found in the write queue, set the BLOCK_CACHED 1981 // flag for Writeback/CleanEvict snoop. On return the snoop will 1982 // propagate the BLOCK_CACHED flag in Writeback packets and prevent 1983 // any CleanEvicts from travelling down the memory hierarchy. 1984 pkt->setBlockCached(); 1985 DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit" 1986 " %#x\n", pkt->cmdString(), pkt->getAddr()); 1987 return; 1988 } 1989 1990 if (wb_pkt->cmd == MemCmd::Writeback) { 1991 assert(!pkt->memInhibitAsserted()); 1992 pkt->assertMemInhibit(); 1993 if (!pkt->needsExclusive()) { 1994 pkt->assertShared(); 1995 // the writeback is no longer passing exclusivity (the 1996 // receiving cache should consider the block owned 1997 // rather than modified) 1998 wb_pkt->assertShared(); 1999 } else { 2000 // if we're not asserting the shared line, we need to 2001 // invalidate our copy. we'll do that below as long as 2002 // the packet's invalidate flag is set... 2003 assert(pkt->isInvalidate()); 2004 } 2005 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(), 2006 false, false); 2007 } else { 2008 assert(wb_pkt->cmd == MemCmd::CleanEvict); 2009 // The cache technically holds the block until the 2010 // corresponding CleanEvict message reaches the crossbar 2011 // below. Therefore when a snoop encounters a CleanEvict 2012 // message we must set assertShared (just like when it 2013 // encounters a Writeback) to avoid the snoop filter 2014 // prematurely clearing the holder bit in the crossbar 2015 // below 2016 if (!pkt->needsExclusive()) 2017 pkt->assertShared(); 2018 else 2019 assert(pkt->isInvalidate()); 2020 } 2021 2022 if (pkt->isInvalidate()) { 2023 // Invalidation trumps our writeback... discard here 2024 // Note: markInService will remove entry from writeback buffer. 2025 markInService(wb_entry, false); 2026 delete wb_pkt; 2027 } 2028 } 2029 2030 // If this was a shared writeback, there may still be 2031 // other shared copies above that require invalidation. 2032 // We could be more selective and return here if the 2033 // request is non-exclusive or if the writeback is 2034 // exclusive. 2035 handleSnoop(pkt, blk, true, false, false); 2036} 2037 2038bool 2039Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) 2040{ 2041 // Express snoop responses from master to slave, e.g., from L1 to L2 2042 cache->recvTimingSnoopResp(pkt); 2043 return true; 2044} 2045 2046Tick 2047Cache::recvAtomicSnoop(PacketPtr pkt) 2048{ 2049 // Snoops shouldn't happen when bypassing caches 2050 assert(!system->bypassCaches()); 2051 2052 // no need to snoop writebacks or requests that are not in range. In 2053 // atomic we have no Writebacks/CleanEvicts queued and no prefetches, 2054 // hence there is no need to snoop upwards and determine if they are 2055 // present above. 2056 if (pkt->evictingBlock() || !inRange(pkt->getAddr())) { 2057 return 0; 2058 } 2059 2060 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 2061 handleSnoop(pkt, blk, false, false, false); 2062 // We consider forwardLatency here because a snoop occurs in atomic mode 2063 return forwardLatency * clockPeriod(); 2064} 2065 2066 2067MSHR * 2068Cache::getNextMSHR() 2069{ 2070 // Check both MSHR queue and write buffer for potential requests, 2071 // note that null does not mean there is no request, it could 2072 // simply be that it is not ready 2073 MSHR *miss_mshr = mshrQueue.getNextMSHR(); 2074 MSHR *write_mshr = writeBuffer.getNextMSHR(); 2075 2076 // If we got a write buffer request ready, first priority is a 2077 // full write buffer, otherwhise we favour the miss requests 2078 if (write_mshr && 2079 ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) || 2080 !miss_mshr)) { 2081 // need to search MSHR queue for conflicting earlier miss. 2082 MSHR *conflict_mshr = 2083 mshrQueue.findPending(write_mshr->blkAddr, 2084 write_mshr->isSecure); 2085 2086 if (conflict_mshr && conflict_mshr->order < write_mshr->order) { 2087 // Service misses in order until conflict is cleared. 2088 return conflict_mshr; 2089 2090 // @todo Note that we ignore the ready time of the conflict here 2091 } 2092 2093 // No conflicts; issue write 2094 return write_mshr; 2095 } else if (miss_mshr) { 2096 // need to check for conflicting earlier writeback 2097 MSHR *conflict_mshr = 2098 writeBuffer.findPending(miss_mshr->blkAddr, 2099 miss_mshr->isSecure); 2100 if (conflict_mshr) { 2101 // not sure why we don't check order here... it was in the 2102 // original code but commented out. 2103 2104 // The only way this happens is if we are 2105 // doing a write and we didn't have permissions 2106 // then subsequently saw a writeback (owned got evicted) 2107 // We need to make sure to perform the writeback first 2108 // To preserve the dirty data, then we can issue the write 2109 2110 // should we return write_mshr here instead? I.e. do we 2111 // have to flush writes in order? I don't think so... not 2112 // for Alpha anyway. Maybe for x86? 2113 return conflict_mshr; 2114 2115 // @todo Note that we ignore the ready time of the conflict here 2116 } 2117 2118 // No conflicts; issue read 2119 return miss_mshr; 2120 } 2121 2122 // fall through... no pending requests. Try a prefetch. 2123 assert(!miss_mshr && !write_mshr); 2124 if (prefetcher && mshrQueue.canPrefetch()) { 2125 // If we have a miss queue slot, we can try a prefetch 2126 PacketPtr pkt = prefetcher->getPacket(); 2127 if (pkt) { 2128 Addr pf_addr = blockAlign(pkt->getAddr()); 2129 if (!tags->findBlock(pf_addr, pkt->isSecure()) && 2130 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && 2131 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { 2132 // Update statistic on number of prefetches issued 2133 // (hwpf_mshr_misses) 2134 assert(pkt->req->masterId() < system->maxMasters()); 2135 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 2136 2137 // allocate an MSHR and return it, note 2138 // that we send the packet straight away, so do not 2139 // schedule the send 2140 return allocateMissBuffer(pkt, curTick(), false); 2141 } else { 2142 // free the request and packet 2143 delete pkt->req; 2144 delete pkt; 2145 } 2146 } 2147 } 2148 2149 return NULL; 2150} 2151 2152bool 2153Cache::isCachedAbove(const PacketPtr pkt) const 2154{ 2155 if (!forwardSnoops) 2156 return false; 2157 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and 2158 // Writeback snoops into upper level caches to check for copies of the 2159 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict 2160 // packet, the cache can inform the crossbar below of presence or absence 2161 // of the block. 2162 2163 Packet snoop_pkt(pkt, true, false); 2164 snoop_pkt.setExpressSnoop(); 2165 // Assert that packet is either Writeback or CleanEvict and not a prefetch 2166 // request because prefetch requests need an MSHR and may generate a snoop 2167 // response. 2168 assert(pkt->evictingBlock()); 2169 snoop_pkt.senderState = NULL; 2170 cpuSidePort->sendTimingSnoopReq(&snoop_pkt); 2171 // Writeback/CleanEvict snoops do not generate a separate snoop response. 2172 assert(!(snoop_pkt.memInhibitAsserted())); 2173 return snoop_pkt.isBlockCached(); 2174} 2175 2176PacketPtr 2177Cache::getTimingPacket() 2178{ 2179 MSHR *mshr = getNextMSHR(); 2180 2181 if (mshr == NULL) { 2182 return NULL; 2183 } 2184 2185 // use request from 1st target 2186 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 2187 PacketPtr pkt = NULL; 2188 2189 DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__, 2190 tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize()); 2191 2192 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); 2193 2194 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) { 2195 // We need to check the caches above us to verify that 2196 // they don't have a copy of this block in the dirty state 2197 // at the moment. Without this check we could get a stale 2198 // copy from memory that might get used in place of the 2199 // dirty one. 2200 Packet snoop_pkt(tgt_pkt, true, false); 2201 snoop_pkt.setExpressSnoop(); 2202 snoop_pkt.senderState = mshr; 2203 cpuSidePort->sendTimingSnoopReq(&snoop_pkt); 2204 2205 // Check to see if the prefetch was squashed by an upper cache (to 2206 // prevent us from grabbing the line) or if a Check to see if a 2207 // writeback arrived between the time the prefetch was placed in 2208 // the MSHRs and when it was selected to be sent or if the 2209 // prefetch was squashed by an upper cache. 2210 2211 // It is important to check memInhibitAsserted before 2212 // prefetchSquashed. If another cache has asserted MEM_INGIBIT, it 2213 // will be sending a response which will arrive at the MSHR 2214 // allocated ofr this request. Checking the prefetchSquash first 2215 // may result in the MSHR being prematurely deallocated. 2216 2217 if (snoop_pkt.memInhibitAsserted()) { 2218 // If we are getting a non-shared response it is dirty 2219 bool pending_dirty_resp = !snoop_pkt.sharedAsserted(); 2220 markInService(mshr, pending_dirty_resp); 2221 DPRINTF(Cache, "Upward snoop of prefetch for addr" 2222 " %#x (%s) hit\n", 2223 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns"); 2224 return NULL; 2225 } 2226 2227 if (snoop_pkt.isBlockCached() || blk != NULL) { 2228 DPRINTF(Cache, "Block present, prefetch squashed by cache. " 2229 "Deallocating mshr target %#x.\n", 2230 mshr->blkAddr); 2231 2232 // Deallocate the mshr target 2233 if (tgt_pkt->cmd != MemCmd::Writeback) { 2234 if (mshr->queue->forceDeallocateTarget(mshr)) { 2235 // Clear block if this deallocation resulted freed an 2236 // mshr when all had previously been utilized 2237 clearBlocked((BlockedCause)(mshr->queue->index)); 2238 } 2239 return NULL; 2240 } else { 2241 // If this is a Writeback, and the snoops indicate that the blk 2242 // is cached above, set the BLOCK_CACHED flag in the Writeback 2243 // packet, so that it does not reset the bits corresponding to 2244 // this block in the snoop filter below. 2245 tgt_pkt->setBlockCached(); 2246 } 2247 } 2248 } 2249 2250 if (mshr->isForwardNoResponse()) { 2251 // no response expected, just forward packet as it is 2252 assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL); 2253 pkt = tgt_pkt; 2254 } else { 2255 pkt = getBusPacket(tgt_pkt, blk, mshr->needsExclusive()); 2256 2257 mshr->isForward = (pkt == NULL); 2258 2259 if (mshr->isForward) { 2260 // not a cache block request, but a response is expected 2261 // make copy of current packet to forward, keep current 2262 // copy for response handling 2263 pkt = new Packet(tgt_pkt, false, true); 2264 if (pkt->isWrite()) { 2265 pkt->setData(tgt_pkt->getConstPtr<uint8_t>()); 2266 } 2267 } 2268 } 2269 2270 assert(pkt != NULL); 2271 pkt->senderState = mshr; 2272 return pkt; 2273} 2274 2275 2276Tick 2277Cache::nextMSHRReadyTime() const 2278{ 2279 Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(), 2280 writeBuffer.nextMSHRReadyTime()); 2281 2282 // Don't signal prefetch ready time if no MSHRs available 2283 // Will signal once enoguh MSHRs are deallocated 2284 if (prefetcher && mshrQueue.canPrefetch()) { 2285 nextReady = std::min(nextReady, 2286 prefetcher->nextPrefetchReadyTime()); 2287 } 2288 2289 return nextReady; 2290} 2291 2292void 2293Cache::serialize(CheckpointOut &cp) const 2294{ 2295 bool dirty(isDirty()); 2296 2297 if (dirty) { 2298 warn("*** The cache still contains dirty data. ***\n"); 2299 warn(" Make sure to drain the system using the correct flags.\n"); 2300 warn(" This checkpoint will not restore correctly and dirty data in " 2301 "the cache will be lost!\n"); 2302 } 2303 2304 // Since we don't checkpoint the data in the cache, any dirty data 2305 // will be lost when restoring from a checkpoint of a system that 2306 // wasn't drained properly. Flag the checkpoint as invalid if the 2307 // cache contains dirty data. 2308 bool bad_checkpoint(dirty); 2309 SERIALIZE_SCALAR(bad_checkpoint); 2310} 2311 2312void 2313Cache::unserialize(CheckpointIn &cp) 2314{ 2315 bool bad_checkpoint; 2316 UNSERIALIZE_SCALAR(bad_checkpoint); 2317 if (bad_checkpoint) { 2318 fatal("Restoring from checkpoints with dirty caches is not supported " 2319 "in the classic memory system. Please remove any caches or " 2320 " drain them properly before taking checkpoints.\n"); 2321 } 2322} 2323 2324/////////////// 2325// 2326// CpuSidePort 2327// 2328/////////////// 2329 2330AddrRangeList 2331Cache::CpuSidePort::getAddrRanges() const 2332{ 2333 return cache->getAddrRanges(); 2334} 2335 2336bool 2337Cache::CpuSidePort::recvTimingReq(PacketPtr pkt) 2338{ 2339 assert(!cache->system->bypassCaches()); 2340 2341 bool success = false; 2342 2343 // always let inhibited requests through, even if blocked, 2344 // ultimately we should check if this is an express snoop, but at 2345 // the moment that flag is only set in the cache itself 2346 if (pkt->memInhibitAsserted()) { 2347 // do not change the current retry state 2348 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt); 2349 assert(bypass_success); 2350 return true; 2351 } else if (blocked || mustSendRetry) { 2352 // either already committed to send a retry, or blocked 2353 success = false; 2354 } else { 2355 // pass it on to the cache, and let the cache decide if we 2356 // have to retry or not 2357 success = cache->recvTimingReq(pkt); 2358 } 2359 2360 // remember if we have to retry 2361 mustSendRetry = !success; 2362 return success; 2363} 2364 2365Tick 2366Cache::CpuSidePort::recvAtomic(PacketPtr pkt) 2367{ 2368 return cache->recvAtomic(pkt); 2369} 2370 2371void 2372Cache::CpuSidePort::recvFunctional(PacketPtr pkt) 2373{ 2374 // functional request 2375 cache->functionalAccess(pkt, true); 2376} 2377 2378Cache:: 2379CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache, 2380 const std::string &_label) 2381 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache) 2382{ 2383} 2384 2385Cache* 2386CacheParams::create() 2387{ 2388 assert(tags); 2389 2390 return new Cache(this); 2391} 2392/////////////// 2393// 2394// MemSidePort 2395// 2396/////////////// 2397 2398bool 2399Cache::MemSidePort::recvTimingResp(PacketPtr pkt) 2400{ 2401 cache->recvTimingResp(pkt); 2402 return true; 2403} 2404 2405// Express snooping requests to memside port 2406void 2407Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) 2408{ 2409 // handle snooping requests 2410 cache->recvTimingSnoopReq(pkt); 2411} 2412 2413Tick 2414Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) 2415{ 2416 return cache->recvAtomicSnoop(pkt); 2417} 2418 2419void 2420Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) 2421{ 2422 // functional snoop (note that in contrast to atomic we don't have 2423 // a specific functionalSnoop method, as they have the same 2424 // behaviour regardless) 2425 cache->functionalAccess(pkt, false); 2426} 2427 2428void 2429Cache::CacheReqPacketQueue::sendDeferredPacket() 2430{ 2431 // sanity check 2432 assert(!waitingOnRetry); 2433 2434 // there should never be any deferred request packets in the 2435 // queue, instead we resly on the cache to provide the packets 2436 // from the MSHR queue or write queue 2437 assert(deferredPacketReadyTime() == MaxTick); 2438 2439 // check for request packets (requests & writebacks) 2440 PacketPtr pkt = cache.getTimingPacket(); 2441 if (pkt == NULL) { 2442 // can happen if e.g. we attempt a writeback and fail, but 2443 // before the retry, the writeback is eliminated because 2444 // we snoop another cache's ReadEx. 2445 } else { 2446 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState); 2447 // in most cases getTimingPacket allocates a new packet, and 2448 // we must delete it unless it is successfully sent 2449 bool delete_pkt = !mshr->isForwardNoResponse(); 2450 2451 // let our snoop responses go first if there are responses to 2452 // the same addresses we are about to writeback, note that 2453 // this creates a dependency between requests and snoop 2454 // responses, but that should not be a problem since there is 2455 // a chain already and the key is that the snoop responses can 2456 // sink unconditionally 2457 if (snoopRespQueue.hasAddr(pkt->getAddr())) { 2458 DPRINTF(CachePort, "Waiting for snoop response to be sent\n"); 2459 Tick when = snoopRespQueue.deferredPacketReadyTime(); 2460 schedSendEvent(when); 2461 2462 if (delete_pkt) 2463 delete pkt; 2464 2465 return; 2466 } 2467 2468 2469 waitingOnRetry = !masterPort.sendTimingReq(pkt); 2470 2471 if (waitingOnRetry) { 2472 DPRINTF(CachePort, "now waiting on a retry\n"); 2473 if (delete_pkt) { 2474 // we are awaiting a retry, but we 2475 // delete the packet and will be creating a new packet 2476 // when we get the opportunity 2477 delete pkt; 2478 } 2479 // note that we have now masked any requestBus and 2480 // schedSendEvent (we will wait for a retry before 2481 // doing anything), and this is so even if we do not 2482 // care about this packet and might override it before 2483 // it gets retried 2484 } else { 2485 // As part of the call to sendTimingReq the packet is 2486 // forwarded to all neighbouring caches (and any 2487 // caches above them) as a snoop. The packet is also 2488 // sent to any potential cache below as the 2489 // interconnect is not allowed to buffer the 2490 // packet. Thus at this point we know if any of the 2491 // neighbouring, or the downstream cache is 2492 // responding, and if so, if it is with a dirty line 2493 // or not. 2494 bool pending_dirty_resp = !pkt->sharedAsserted() && 2495 pkt->memInhibitAsserted(); 2496 2497 cache.markInService(mshr, pending_dirty_resp); 2498 } 2499 } 2500 2501 // if we succeeded and are not waiting for a retry, schedule the 2502 // next send considering when the next MSHR is ready, note that 2503 // snoop responses have their own packet queue and thus schedule 2504 // their own events 2505 if (!waitingOnRetry) { 2506 schedSendEvent(cache.nextMSHRReadyTime()); 2507 } 2508} 2509 2510Cache:: 2511MemSidePort::MemSidePort(const std::string &_name, Cache *_cache, 2512 const std::string &_label) 2513 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), 2514 _reqQueue(*_cache, *this, _snoopRespQueue, _label), 2515 _snoopRespQueue(*_cache, *this, _label), cache(_cache) 2516{ 2517} 2518