base.hh revision 14193:7dd8a6df30e2
1/* 2 * Copyright (c) 2012-2013, 2015-2016, 2018 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2003-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Erik Hallnor 41 * Steve Reinhardt 42 * Ron Dreslinski 43 * Andreas Hansson 44 * Nikos Nikoleris 45 */ 46 47/** 48 * @file 49 * Declares a basic cache interface BaseCache. 50 */ 51 52#ifndef __MEM_CACHE_BASE_HH__ 53#define __MEM_CACHE_BASE_HH__ 54 55#include <cassert> 56#include <cstdint> 57#include <string> 58 59#include "base/addr_range.hh" 60#include "base/statistics.hh" 61#include "base/trace.hh" 62#include "base/types.hh" 63#include "debug/Cache.hh" 64#include "debug/CachePort.hh" 65#include "enums/Clusivity.hh" 66#include "mem/cache/cache_blk.hh" 67#include "mem/cache/compressors/base.hh" 68#include "mem/cache/mshr_queue.hh" 69#include "mem/cache/tags/base.hh" 70#include "mem/cache/write_queue.hh" 71#include "mem/cache/write_queue_entry.hh" 72#include "mem/packet.hh" 73#include "mem/packet_queue.hh" 74#include "mem/qport.hh" 75#include "mem/request.hh" 76#include "params/WriteAllocator.hh" 77#include "sim/clocked_object.hh" 78#include "sim/eventq.hh" 79#include "sim/probe/probe.hh" 80#include "sim/serialize.hh" 81#include "sim/sim_exit.hh" 82#include "sim/system.hh" 83 84class BasePrefetcher; 85class MSHR; 86class MasterPort; 87class QueueEntry; 88struct BaseCacheParams; 89 90/** 91 * A basic cache interface. Implements some common functions for speed. 92 */ 93class BaseCache : public ClockedObject 94{ 95 protected: 96 /** 97 * Indexes to enumerate the MSHR queues. 98 */ 99 enum MSHRQueueIndex { 100 MSHRQueue_MSHRs, 101 MSHRQueue_WriteBuffer 102 }; 103 104 public: 105 /** 106 * Reasons for caches to be blocked. 107 */ 108 enum BlockedCause { 109 Blocked_NoMSHRs = MSHRQueue_MSHRs, 110 Blocked_NoWBBuffers = MSHRQueue_WriteBuffer, 111 Blocked_NoTargets, 112 NUM_BLOCKED_CAUSES 113 }; 114 115 protected: 116 117 /** 118 * A cache master port is used for the memory-side port of the 119 * cache, and in addition to the basic timing port that only sends 120 * response packets through a transmit list, it also offers the 121 * ability to schedule and send request packets (requests & 122 * writebacks). The send event is scheduled through schedSendEvent, 123 * and the sendDeferredPacket of the timing port is modified to 124 * consider both the transmit list and the requests from the MSHR. 125 */ 126 class CacheMasterPort : public QueuedMasterPort 127 { 128 129 public: 130 131 /** 132 * Schedule a send of a request packet (from the MSHR). Note 133 * that we could already have a retry outstanding. 134 */ 135 void schedSendEvent(Tick time) 136 { 137 DPRINTF(CachePort, "Scheduling send event at %llu\n", time); 138 reqQueue.schedSendEvent(time); 139 } 140 141 protected: 142 143 CacheMasterPort(const std::string &_name, BaseCache *_cache, 144 ReqPacketQueue &_reqQueue, 145 SnoopRespPacketQueue &_snoopRespQueue) : 146 QueuedMasterPort(_name, _cache, _reqQueue, _snoopRespQueue) 147 { } 148 149 /** 150 * Memory-side port always snoops. 151 * 152 * @return always true 153 */ 154 virtual bool isSnooping() const { return true; } 155 }; 156 157 /** 158 * Override the default behaviour of sendDeferredPacket to enable 159 * the memory-side cache port to also send requests based on the 160 * current MSHR status. This queue has a pointer to our specific 161 * cache implementation and is used by the MemSidePort. 162 */ 163 class CacheReqPacketQueue : public ReqPacketQueue 164 { 165 166 protected: 167 168 BaseCache &cache; 169 SnoopRespPacketQueue &snoopRespQueue; 170 171 public: 172 173 CacheReqPacketQueue(BaseCache &cache, MasterPort &port, 174 SnoopRespPacketQueue &snoop_resp_queue, 175 const std::string &label) : 176 ReqPacketQueue(cache, port, label), cache(cache), 177 snoopRespQueue(snoop_resp_queue) { } 178 179 /** 180 * Override the normal sendDeferredPacket and do not only 181 * consider the transmit list (used for responses), but also 182 * requests. 183 */ 184 virtual void sendDeferredPacket(); 185 186 /** 187 * Check if there is a conflicting snoop response about to be 188 * send out, and if so simply stall any requests, and schedule 189 * a send event at the same time as the next snoop response is 190 * being sent out. 191 * 192 * @param pkt The packet to check for conflicts against. 193 */ 194 bool checkConflictingSnoop(const PacketPtr pkt) 195 { 196 if (snoopRespQueue.checkConflict(pkt, cache.blkSize)) { 197 DPRINTF(CachePort, "Waiting for snoop response to be " 198 "sent\n"); 199 Tick when = snoopRespQueue.deferredPacketReadyTime(); 200 schedSendEvent(when); 201 return true; 202 } 203 return false; 204 } 205 }; 206 207 208 /** 209 * The memory-side port extends the base cache master port with 210 * access functions for functional, atomic and timing snoops. 211 */ 212 class MemSidePort : public CacheMasterPort 213 { 214 private: 215 216 /** The cache-specific queue. */ 217 CacheReqPacketQueue _reqQueue; 218 219 SnoopRespPacketQueue _snoopRespQueue; 220 221 // a pointer to our specific cache implementation 222 BaseCache *cache; 223 224 protected: 225 226 virtual void recvTimingSnoopReq(PacketPtr pkt); 227 228 virtual bool recvTimingResp(PacketPtr pkt); 229 230 virtual Tick recvAtomicSnoop(PacketPtr pkt); 231 232 virtual void recvFunctionalSnoop(PacketPtr pkt); 233 234 public: 235 236 MemSidePort(const std::string &_name, BaseCache *_cache, 237 const std::string &_label); 238 }; 239 240 /** 241 * A cache slave port is used for the CPU-side port of the cache, 242 * and it is basically a simple timing port that uses a transmit 243 * list for responses to the CPU (or connected master). In 244 * addition, it has the functionality to block the port for 245 * incoming requests. If blocked, the port will issue a retry once 246 * unblocked. 247 */ 248 class CacheSlavePort : public QueuedSlavePort 249 { 250 251 public: 252 253 /** Do not accept any new requests. */ 254 void setBlocked(); 255 256 /** Return to normal operation and accept new requests. */ 257 void clearBlocked(); 258 259 bool isBlocked() const { return blocked; } 260 261 protected: 262 263 CacheSlavePort(const std::string &_name, BaseCache *_cache, 264 const std::string &_label); 265 266 /** A normal packet queue used to store responses. */ 267 RespPacketQueue queue; 268 269 bool blocked; 270 271 bool mustSendRetry; 272 273 private: 274 275 void processSendRetry(); 276 277 EventFunctionWrapper sendRetryEvent; 278 279 }; 280 281 /** 282 * The CPU-side port extends the base cache slave port with access 283 * functions for functional, atomic and timing requests. 284 */ 285 class CpuSidePort : public CacheSlavePort 286 { 287 private: 288 289 // a pointer to our specific cache implementation 290 BaseCache *cache; 291 292 protected: 293 virtual bool recvTimingSnoopResp(PacketPtr pkt) override; 294 295 virtual bool tryTiming(PacketPtr pkt) override; 296 297 virtual bool recvTimingReq(PacketPtr pkt) override; 298 299 virtual Tick recvAtomic(PacketPtr pkt) override; 300 301 virtual void recvFunctional(PacketPtr pkt) override; 302 303 virtual AddrRangeList getAddrRanges() const override; 304 305 public: 306 307 CpuSidePort(const std::string &_name, BaseCache *_cache, 308 const std::string &_label); 309 310 }; 311 312 CpuSidePort cpuSidePort; 313 MemSidePort memSidePort; 314 315 protected: 316 317 /** Miss status registers */ 318 MSHRQueue mshrQueue; 319 320 /** Write/writeback buffer */ 321 WriteQueue writeBuffer; 322 323 /** Tag and data Storage */ 324 BaseTags *tags; 325 326 /** Compression method being used. */ 327 BaseCacheCompressor* compressor; 328 329 /** Prefetcher */ 330 BasePrefetcher *prefetcher; 331 332 /** To probe when a cache hit occurs */ 333 ProbePointArg<PacketPtr> *ppHit; 334 335 /** To probe when a cache miss occurs */ 336 ProbePointArg<PacketPtr> *ppMiss; 337 338 /** To probe when a cache fill occurs */ 339 ProbePointArg<PacketPtr> *ppFill; 340 341 /** 342 * The writeAllocator drive optimizations for streaming writes. 343 * It first determines whether a WriteReq MSHR should be delayed, 344 * thus ensuring that we wait longer in cases when we are write 345 * coalescing and allowing all the bytes of the line to be written 346 * before the MSHR packet is sent downstream. This works in unison 347 * with the tracking in the MSHR to check if the entire line is 348 * written. The write mode also affects the behaviour on filling 349 * any whole-line writes. Normally the cache allocates the line 350 * when receiving the InvalidateResp, but after seeing enough 351 * consecutive lines we switch to using the tempBlock, and thus 352 * end up not allocating the line, and instead turning the 353 * whole-line write into a writeback straight away. 354 */ 355 WriteAllocator * const writeAllocator; 356 357 /** 358 * Temporary cache block for occasional transitory use. We use 359 * the tempBlock to fill when allocation fails (e.g., when there 360 * is an outstanding request that accesses the victim block) or 361 * when we want to avoid allocation (e.g., exclusive caches) 362 */ 363 TempCacheBlk *tempBlock; 364 365 /** 366 * Upstream caches need this packet until true is returned, so 367 * hold it for deletion until a subsequent call 368 */ 369 std::unique_ptr<Packet> pendingDelete; 370 371 /** 372 * Mark a request as in service (sent downstream in the memory 373 * system), effectively making this MSHR the ordering point. 374 */ 375 void markInService(MSHR *mshr, bool pending_modified_resp) 376 { 377 bool wasFull = mshrQueue.isFull(); 378 mshrQueue.markInService(mshr, pending_modified_resp); 379 380 if (wasFull && !mshrQueue.isFull()) { 381 clearBlocked(Blocked_NoMSHRs); 382 } 383 } 384 385 void markInService(WriteQueueEntry *entry) 386 { 387 bool wasFull = writeBuffer.isFull(); 388 writeBuffer.markInService(entry); 389 390 if (wasFull && !writeBuffer.isFull()) { 391 clearBlocked(Blocked_NoWBBuffers); 392 } 393 } 394 395 /** 396 * Determine whether we should allocate on a fill or not. If this 397 * cache is mostly inclusive with regards to the upstream cache(s) 398 * we always allocate (for any non-forwarded and cacheable 399 * requests). In the case of a mostly exclusive cache, we allocate 400 * on fill if the packet did not come from a cache, thus if we: 401 * are dealing with a whole-line write (the latter behaves much 402 * like a writeback), the original target packet came from a 403 * non-caching source, or if we are performing a prefetch or LLSC. 404 * 405 * @param cmd Command of the incoming requesting packet 406 * @return Whether we should allocate on the fill 407 */ 408 inline bool allocOnFill(MemCmd cmd) const 409 { 410 return clusivity == Enums::mostly_incl || 411 cmd == MemCmd::WriteLineReq || 412 cmd == MemCmd::ReadReq || 413 cmd == MemCmd::WriteReq || 414 cmd.isPrefetch() || 415 cmd.isLLSC(); 416 } 417 418 /** 419 * Regenerate block address using tags. 420 * Block address regeneration depends on whether we're using a temporary 421 * block or not. 422 * 423 * @param blk The block to regenerate address. 424 * @return The block's address. 425 */ 426 Addr regenerateBlkAddr(CacheBlk* blk); 427 428 /** 429 * Calculate latency of accesses that only touch the tag array. 430 * @sa calculateAccessLatency 431 * 432 * @param delay The delay until the packet's metadata is present. 433 * @param lookup_lat Latency of the respective tag lookup. 434 * @return The number of ticks that pass due to a tag-only access. 435 */ 436 Cycles calculateTagOnlyLatency(const uint32_t delay, 437 const Cycles lookup_lat) const; 438 /** 439 * Calculate access latency in ticks given a tag lookup latency, and 440 * whether access was a hit or miss. 441 * 442 * @param blk The cache block that was accessed. 443 * @param delay The delay until the packet's metadata is present. 444 * @param lookup_lat Latency of the respective tag lookup. 445 * @return The number of ticks that pass due to a block access. 446 */ 447 Cycles calculateAccessLatency(const CacheBlk* blk, const uint32_t delay, 448 const Cycles lookup_lat) const; 449 450 /** 451 * Does all the processing necessary to perform the provided request. 452 * @param pkt The memory request to perform. 453 * @param blk The cache block to be updated. 454 * @param lat The latency of the access. 455 * @param writebacks List for any writebacks that need to be performed. 456 * @return Boolean indicating whether the request was satisfied. 457 */ 458 virtual bool access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 459 PacketList &writebacks); 460 461 /* 462 * Handle a timing request that hit in the cache 463 * 464 * @param ptk The request packet 465 * @param blk The referenced block 466 * @param request_time The tick at which the block lookup is compete 467 */ 468 virtual void handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, 469 Tick request_time); 470 471 /* 472 * Handle a timing request that missed in the cache 473 * 474 * Implementation specific handling for different cache 475 * implementations 476 * 477 * @param ptk The request packet 478 * @param blk The referenced block 479 * @param forward_time The tick at which we can process dependent requests 480 * @param request_time The tick at which the block lookup is compete 481 */ 482 virtual void handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk, 483 Tick forward_time, 484 Tick request_time) = 0; 485 486 /* 487 * Handle a timing request that missed in the cache 488 * 489 * Common functionality across different cache implementations 490 * 491 * @param ptk The request packet 492 * @param blk The referenced block 493 * @param mshr Any existing mshr for the referenced cache block 494 * @param forward_time The tick at which we can process dependent requests 495 * @param request_time The tick at which the block lookup is compete 496 */ 497 void handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk, 498 Tick forward_time, Tick request_time); 499 500 /** 501 * Performs the access specified by the request. 502 * @param pkt The request to perform. 503 */ 504 virtual void recvTimingReq(PacketPtr pkt); 505 506 /** 507 * Handling the special case of uncacheable write responses to 508 * make recvTimingResp less cluttered. 509 */ 510 void handleUncacheableWriteResp(PacketPtr pkt); 511 512 /** 513 * Service non-deferred MSHR targets using the received response 514 * 515 * Iterates through the list of targets that can be serviced with 516 * the current response. 517 * 518 * @param mshr The MSHR that corresponds to the reponse 519 * @param pkt The response packet 520 * @param blk The reference block 521 */ 522 virtual void serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt, 523 CacheBlk *blk) = 0; 524 525 /** 526 * Handles a response (cache line fill/write ack) from the bus. 527 * @param pkt The response packet 528 */ 529 virtual void recvTimingResp(PacketPtr pkt); 530 531 /** 532 * Snoops bus transactions to maintain coherence. 533 * @param pkt The current bus transaction. 534 */ 535 virtual void recvTimingSnoopReq(PacketPtr pkt) = 0; 536 537 /** 538 * Handle a snoop response. 539 * @param pkt Snoop response packet 540 */ 541 virtual void recvTimingSnoopResp(PacketPtr pkt) = 0; 542 543 /** 544 * Handle a request in atomic mode that missed in this cache 545 * 546 * Creates a downstream request, sends it to the memory below and 547 * handles the response. As we are in atomic mode all operations 548 * are performed immediately. 549 * 550 * @param pkt The packet with the requests 551 * @param blk The referenced block 552 * @param writebacks A list with packets for any performed writebacks 553 * @return Cycles for handling the request 554 */ 555 virtual Cycles handleAtomicReqMiss(PacketPtr pkt, CacheBlk *&blk, 556 PacketList &writebacks) = 0; 557 558 /** 559 * Performs the access specified by the request. 560 * @param pkt The request to perform. 561 * @return The number of ticks required for the access. 562 */ 563 virtual Tick recvAtomic(PacketPtr pkt); 564 565 /** 566 * Snoop for the provided request in the cache and return the estimated 567 * time taken. 568 * @param pkt The memory request to snoop 569 * @return The number of ticks required for the snoop. 570 */ 571 virtual Tick recvAtomicSnoop(PacketPtr pkt) = 0; 572 573 /** 574 * Performs the access specified by the request. 575 * 576 * @param pkt The request to perform. 577 * @param fromCpuSide from the CPU side port or the memory side port 578 */ 579 virtual void functionalAccess(PacketPtr pkt, bool from_cpu_side); 580 581 /** 582 * Handle doing the Compare and Swap function for SPARC. 583 */ 584 void cmpAndSwap(CacheBlk *blk, PacketPtr pkt); 585 586 /** 587 * Return the next queue entry to service, either a pending miss 588 * from the MSHR queue, a buffered write from the write buffer, or 589 * something from the prefetcher. This function is responsible 590 * for prioritizing among those sources on the fly. 591 */ 592 QueueEntry* getNextQueueEntry(); 593 594 /** 595 * Insert writebacks into the write buffer 596 */ 597 virtual void doWritebacks(PacketList& writebacks, Tick forward_time) = 0; 598 599 /** 600 * Send writebacks down the memory hierarchy in atomic mode 601 */ 602 virtual void doWritebacksAtomic(PacketList& writebacks) = 0; 603 604 /** 605 * Create an appropriate downstream bus request packet. 606 * 607 * Creates a new packet with the request to be send to the memory 608 * below, or nullptr if the current request in cpu_pkt should just 609 * be forwarded on. 610 * 611 * @param cpu_pkt The miss packet that needs to be satisfied. 612 * @param blk The referenced block, can be nullptr. 613 * @param needs_writable Indicates that the block must be writable 614 * even if the request in cpu_pkt doesn't indicate that. 615 * @param is_whole_line_write True if there are writes for the 616 * whole line 617 * @return A packet send to the memory below 618 */ 619 virtual PacketPtr createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk, 620 bool needs_writable, 621 bool is_whole_line_write) const = 0; 622 623 /** 624 * Determine if clean lines should be written back or not. In 625 * cases where a downstream cache is mostly inclusive we likely 626 * want it to act as a victim cache also for lines that have not 627 * been modified. Hence, we cannot simply drop the line (or send a 628 * clean evict), but rather need to send the actual data. 629 */ 630 const bool writebackClean; 631 632 /** 633 * Writebacks from the tempBlock, resulting on the response path 634 * in atomic mode, must happen after the call to recvAtomic has 635 * finished (for the right ordering of the packets). We therefore 636 * need to hold on to the packets, and have a method and an event 637 * to send them. 638 */ 639 PacketPtr tempBlockWriteback; 640 641 /** 642 * Send the outstanding tempBlock writeback. To be called after 643 * recvAtomic finishes in cases where the block we filled is in 644 * fact the tempBlock, and now needs to be written back. 645 */ 646 void writebackTempBlockAtomic() { 647 assert(tempBlockWriteback != nullptr); 648 PacketList writebacks{tempBlockWriteback}; 649 doWritebacksAtomic(writebacks); 650 tempBlockWriteback = nullptr; 651 } 652 653 /** 654 * An event to writeback the tempBlock after recvAtomic 655 * finishes. To avoid other calls to recvAtomic getting in 656 * between, we create this event with a higher priority. 657 */ 658 EventFunctionWrapper writebackTempBlockAtomicEvent; 659 660 /** 661 * When a block is overwriten, its compression information must be updated, 662 * and it may need to be recompressed. If the compression size changes, the 663 * block may either become smaller, in which case there is no side effect, 664 * or bigger (data expansion; fat write), in which case the block might not 665 * fit in its current location anymore. If that happens, there are usually 666 * two options to be taken: 667 * 668 * - The co-allocated blocks must be evicted to make room for this block. 669 * Simpler, but ignores replacement data. 670 * - The block itself is moved elsewhere (used in policies where the CF 671 * determines the location of the block). 672 * 673 * This implementation uses the first approach. 674 * 675 * Notice that this is only called for writebacks, which means that L1 676 * caches (which see regular Writes), do not support compression. 677 * @sa CompressedTags 678 * 679 * @param blk The block to be overwriten. 680 * @param data A pointer to the data to be compressed (blk's new data). 681 * @param writebacks List for any writebacks that need to be performed. 682 * @return Whether operation is successful or not. 683 */ 684 bool updateCompressionData(CacheBlk *blk, const uint64_t* data, 685 PacketList &writebacks); 686 687 /** 688 * Perform any necessary updates to the block and perform any data 689 * exchange between the packet and the block. The flags of the 690 * packet are also set accordingly. 691 * 692 * @param pkt Request packet from upstream that hit a block 693 * @param blk Cache block that the packet hit 694 * @param deferred_response Whether this request originally missed 695 * @param pending_downgrade Whether the writable flag is to be removed 696 */ 697 virtual void satisfyRequest(PacketPtr pkt, CacheBlk *blk, 698 bool deferred_response = false, 699 bool pending_downgrade = false); 700 701 /** 702 * Maintain the clusivity of this cache by potentially 703 * invalidating a block. This method works in conjunction with 704 * satisfyRequest, but is separate to allow us to handle all MSHR 705 * targets before potentially dropping a block. 706 * 707 * @param from_cache Whether we have dealt with a packet from a cache 708 * @param blk The block that should potentially be dropped 709 */ 710 void maintainClusivity(bool from_cache, CacheBlk *blk); 711 712 /** 713 * Handle a fill operation caused by a received packet. 714 * 715 * Populates a cache block and handles all outstanding requests for the 716 * satisfied fill request. This version takes two memory requests. One 717 * contains the fill data, the other is an optional target to satisfy. 718 * Note that the reason we return a list of writebacks rather than 719 * inserting them directly in the write buffer is that this function 720 * is called by both atomic and timing-mode accesses, and in atomic 721 * mode we don't mess with the write buffer (we just perform the 722 * writebacks atomically once the original request is complete). 723 * 724 * @param pkt The memory request with the fill data. 725 * @param blk The cache block if it already exists. 726 * @param writebacks List for any writebacks that need to be performed. 727 * @param allocate Whether to allocate a block or use the temp block 728 * @return Pointer to the new cache block. 729 */ 730 CacheBlk *handleFill(PacketPtr pkt, CacheBlk *blk, 731 PacketList &writebacks, bool allocate); 732 733 /** 734 * Allocate a new block and perform any necessary writebacks 735 * 736 * Find a victim block and if necessary prepare writebacks for any 737 * existing data. May return nullptr if there are no replaceable 738 * blocks. If a replaceable block is found, it inserts the new block in 739 * its place. The new block, however, is not set as valid yet. 740 * 741 * @param pkt Packet holding the address to update 742 * @param writebacks A list of writeback packets for the evicted blocks 743 * @return the allocated block 744 */ 745 CacheBlk *allocateBlock(const PacketPtr pkt, PacketList &writebacks); 746 /** 747 * Evict a cache block. 748 * 749 * Performs a writeback if necesssary and invalidates the block 750 * 751 * @param blk Block to invalidate 752 * @return A packet with the writeback, can be nullptr 753 */ 754 M5_NODISCARD virtual PacketPtr evictBlock(CacheBlk *blk) = 0; 755 756 /** 757 * Evict a cache block. 758 * 759 * Performs a writeback if necesssary and invalidates the block 760 * 761 * @param blk Block to invalidate 762 * @param writebacks Return a list of packets with writebacks 763 */ 764 void evictBlock(CacheBlk *blk, PacketList &writebacks); 765 766 /** 767 * Invalidate a cache block. 768 * 769 * @param blk Block to invalidate 770 */ 771 void invalidateBlock(CacheBlk *blk); 772 773 /** 774 * Create a writeback request for the given block. 775 * 776 * @param blk The block to writeback. 777 * @return The writeback request for the block. 778 */ 779 PacketPtr writebackBlk(CacheBlk *blk); 780 781 /** 782 * Create a writeclean request for the given block. 783 * 784 * Creates a request that writes the block to the cache below 785 * without evicting the block from the current cache. 786 * 787 * @param blk The block to write clean. 788 * @param dest The destination of the write clean operation. 789 * @param id Use the given packet id for the write clean operation. 790 * @return The generated write clean packet. 791 */ 792 PacketPtr writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id); 793 794 /** 795 * Write back dirty blocks in the cache using functional accesses. 796 */ 797 virtual void memWriteback() override; 798 799 /** 800 * Invalidates all blocks in the cache. 801 * 802 * @warn Dirty cache lines will not be written back to 803 * memory. Make sure to call functionalWriteback() first if you 804 * want the to write them to memory. 805 */ 806 virtual void memInvalidate() override; 807 808 /** 809 * Determine if there are any dirty blocks in the cache. 810 * 811 * @return true if at least one block is dirty, false otherwise. 812 */ 813 bool isDirty() const; 814 815 /** 816 * Determine if an address is in the ranges covered by this 817 * cache. This is useful to filter snoops. 818 * 819 * @param addr Address to check against 820 * 821 * @return If the address in question is in range 822 */ 823 bool inRange(Addr addr) const; 824 825 /** 826 * Find next request ready time from among possible sources. 827 */ 828 Tick nextQueueReadyTime() const; 829 830 /** Block size of this cache */ 831 const unsigned blkSize; 832 833 /** 834 * The latency of tag lookup of a cache. It occurs when there is 835 * an access to the cache. 836 */ 837 const Cycles lookupLatency; 838 839 /** 840 * The latency of data access of a cache. It occurs when there is 841 * an access to the cache. 842 */ 843 const Cycles dataLatency; 844 845 /** 846 * This is the forward latency of the cache. It occurs when there 847 * is a cache miss and a request is forwarded downstream, in 848 * particular an outbound miss. 849 */ 850 const Cycles forwardLatency; 851 852 /** The latency to fill a cache block */ 853 const Cycles fillLatency; 854 855 /** 856 * The latency of sending reponse to its upper level cache/core on 857 * a linefill. The responseLatency parameter captures this 858 * latency. 859 */ 860 const Cycles responseLatency; 861 862 /** 863 * Whether tags and data are accessed sequentially. 864 */ 865 const bool sequentialAccess; 866 867 /** The number of targets for each MSHR. */ 868 const int numTarget; 869 870 /** Do we forward snoops from mem side port through to cpu side port? */ 871 bool forwardSnoops; 872 873 /** 874 * Clusivity with respect to the upstream cache, determining if we 875 * fill into both this cache and the cache above on a miss. Note 876 * that we currently do not support strict clusivity policies. 877 */ 878 const Enums::Clusivity clusivity; 879 880 /** 881 * Is this cache read only, for example the instruction cache, or 882 * table-walker cache. A cache that is read only should never see 883 * any writes, and should never get any dirty data (and hence 884 * never have to do any writebacks). 885 */ 886 const bool isReadOnly; 887 888 /** 889 * Bit vector of the blocking reasons for the access path. 890 * @sa #BlockedCause 891 */ 892 uint8_t blocked; 893 894 /** Increasing order number assigned to each incoming request. */ 895 uint64_t order; 896 897 /** Stores time the cache blocked for statistics. */ 898 Cycles blockedCycle; 899 900 /** Pointer to the MSHR that has no targets. */ 901 MSHR *noTargetMSHR; 902 903 /** The number of misses to trigger an exit event. */ 904 Counter missCount; 905 906 /** 907 * The address range to which the cache responds on the CPU side. 908 * Normally this is all possible memory addresses. */ 909 const AddrRangeList addrRanges; 910 911 public: 912 /** System we are currently operating in. */ 913 System *system; 914 915 // Statistics 916 /** 917 * @addtogroup CacheStatistics 918 * @{ 919 */ 920 921 /** Number of hits per thread for each type of command. 922 @sa Packet::Command */ 923 Stats::Vector hits[MemCmd::NUM_MEM_CMDS]; 924 /** Number of hits for demand accesses. */ 925 Stats::Formula demandHits; 926 /** Number of hit for all accesses. */ 927 Stats::Formula overallHits; 928 929 /** Number of misses per thread for each type of command. 930 @sa Packet::Command */ 931 Stats::Vector misses[MemCmd::NUM_MEM_CMDS]; 932 /** Number of misses for demand accesses. */ 933 Stats::Formula demandMisses; 934 /** Number of misses for all accesses. */ 935 Stats::Formula overallMisses; 936 937 /** 938 * Total number of cycles per thread/command spent waiting for a miss. 939 * Used to calculate the average miss latency. 940 */ 941 Stats::Vector missLatency[MemCmd::NUM_MEM_CMDS]; 942 /** Total number of cycles spent waiting for demand misses. */ 943 Stats::Formula demandMissLatency; 944 /** Total number of cycles spent waiting for all misses. */ 945 Stats::Formula overallMissLatency; 946 947 /** The number of accesses per command and thread. */ 948 Stats::Formula accesses[MemCmd::NUM_MEM_CMDS]; 949 /** The number of demand accesses. */ 950 Stats::Formula demandAccesses; 951 /** The number of overall accesses. */ 952 Stats::Formula overallAccesses; 953 954 /** The miss rate per command and thread. */ 955 Stats::Formula missRate[MemCmd::NUM_MEM_CMDS]; 956 /** The miss rate of all demand accesses. */ 957 Stats::Formula demandMissRate; 958 /** The miss rate for all accesses. */ 959 Stats::Formula overallMissRate; 960 961 /** The average miss latency per command and thread. */ 962 Stats::Formula avgMissLatency[MemCmd::NUM_MEM_CMDS]; 963 /** The average miss latency for demand misses. */ 964 Stats::Formula demandAvgMissLatency; 965 /** The average miss latency for all misses. */ 966 Stats::Formula overallAvgMissLatency; 967 968 /** The total number of cycles blocked for each blocked cause. */ 969 Stats::Vector blocked_cycles; 970 /** The number of times this cache blocked for each blocked cause. */ 971 Stats::Vector blocked_causes; 972 973 /** The average number of cycles blocked for each blocked cause. */ 974 Stats::Formula avg_blocked; 975 976 /** The number of times a HW-prefetched block is evicted w/o reference. */ 977 Stats::Scalar unusedPrefetches; 978 979 /** Number of blocks written back per thread. */ 980 Stats::Vector writebacks; 981 982 /** Number of misses that hit in the MSHRs per command and thread. */ 983 Stats::Vector mshr_hits[MemCmd::NUM_MEM_CMDS]; 984 /** Demand misses that hit in the MSHRs. */ 985 Stats::Formula demandMshrHits; 986 /** Total number of misses that hit in the MSHRs. */ 987 Stats::Formula overallMshrHits; 988 989 /** Number of misses that miss in the MSHRs, per command and thread. */ 990 Stats::Vector mshr_misses[MemCmd::NUM_MEM_CMDS]; 991 /** Demand misses that miss in the MSHRs. */ 992 Stats::Formula demandMshrMisses; 993 /** Total number of misses that miss in the MSHRs. */ 994 Stats::Formula overallMshrMisses; 995 996 /** Number of misses that miss in the MSHRs, per command and thread. */ 997 Stats::Vector mshr_uncacheable[MemCmd::NUM_MEM_CMDS]; 998 /** Total number of misses that miss in the MSHRs. */ 999 Stats::Formula overallMshrUncacheable; 1000 1001 /** Total cycle latency of each MSHR miss, per command and thread. */ 1002 Stats::Vector mshr_miss_latency[MemCmd::NUM_MEM_CMDS]; 1003 /** Total cycle latency of demand MSHR misses. */ 1004 Stats::Formula demandMshrMissLatency; 1005 /** Total cycle latency of overall MSHR misses. */ 1006 Stats::Formula overallMshrMissLatency; 1007 1008 /** Total cycle latency of each MSHR miss, per command and thread. */ 1009 Stats::Vector mshr_uncacheable_lat[MemCmd::NUM_MEM_CMDS]; 1010 /** Total cycle latency of overall MSHR misses. */ 1011 Stats::Formula overallMshrUncacheableLatency; 1012 1013 /** The miss rate in the MSHRs pre command and thread. */ 1014 Stats::Formula mshrMissRate[MemCmd::NUM_MEM_CMDS]; 1015 /** The demand miss rate in the MSHRs. */ 1016 Stats::Formula demandMshrMissRate; 1017 /** The overall miss rate in the MSHRs. */ 1018 Stats::Formula overallMshrMissRate; 1019 1020 /** The average latency of an MSHR miss, per command and thread. */ 1021 Stats::Formula avgMshrMissLatency[MemCmd::NUM_MEM_CMDS]; 1022 /** The average latency of a demand MSHR miss. */ 1023 Stats::Formula demandAvgMshrMissLatency; 1024 /** The average overall latency of an MSHR miss. */ 1025 Stats::Formula overallAvgMshrMissLatency; 1026 1027 /** The average latency of an MSHR miss, per command and thread. */ 1028 Stats::Formula avgMshrUncacheableLatency[MemCmd::NUM_MEM_CMDS]; 1029 /** The average overall latency of an MSHR miss. */ 1030 Stats::Formula overallAvgMshrUncacheableLatency; 1031 1032 /** Number of replacements of valid blocks. */ 1033 Stats::Scalar replacements; 1034 1035 /** Number of data expansions. */ 1036 Stats::Scalar dataExpansions; 1037 1038 /** 1039 * @} 1040 */ 1041 1042 /** 1043 * Register stats for this object. 1044 */ 1045 void regStats() override; 1046 1047 /** Registers probes. */ 1048 void regProbePoints() override; 1049 1050 public: 1051 BaseCache(const BaseCacheParams *p, unsigned blk_size); 1052 ~BaseCache(); 1053 1054 void init() override; 1055 1056 Port &getPort(const std::string &if_name, 1057 PortID idx=InvalidPortID) override; 1058 1059 /** 1060 * Query block size of a cache. 1061 * @return The block size 1062 */ 1063 unsigned 1064 getBlockSize() const 1065 { 1066 return blkSize; 1067 } 1068 1069 const AddrRangeList &getAddrRanges() const { return addrRanges; } 1070 1071 MSHR *allocateMissBuffer(PacketPtr pkt, Tick time, bool sched_send = true) 1072 { 1073 MSHR *mshr = mshrQueue.allocate(pkt->getBlockAddr(blkSize), blkSize, 1074 pkt, time, order++, 1075 allocOnFill(pkt->cmd)); 1076 1077 if (mshrQueue.isFull()) { 1078 setBlocked((BlockedCause)MSHRQueue_MSHRs); 1079 } 1080 1081 if (sched_send) { 1082 // schedule the send 1083 schedMemSideSendEvent(time); 1084 } 1085 1086 return mshr; 1087 } 1088 1089 void allocateWriteBuffer(PacketPtr pkt, Tick time) 1090 { 1091 // should only see writes or clean evicts here 1092 assert(pkt->isWrite() || pkt->cmd == MemCmd::CleanEvict); 1093 1094 Addr blk_addr = pkt->getBlockAddr(blkSize); 1095 1096 // If using compression, on evictions the block is decompressed and 1097 // the operation's latency is added to the payload delay. Consume 1098 // that payload delay here, meaning that the data is always stored 1099 // uncompressed in the writebuffer 1100 if (compressor) { 1101 time += pkt->payloadDelay; 1102 pkt->payloadDelay = 0; 1103 } 1104 1105 WriteQueueEntry *wq_entry = 1106 writeBuffer.findMatch(blk_addr, pkt->isSecure()); 1107 if (wq_entry && !wq_entry->inService) { 1108 DPRINTF(Cache, "Potential to merge writeback %s", pkt->print()); 1109 } 1110 1111 writeBuffer.allocate(blk_addr, blkSize, pkt, time, order++); 1112 1113 if (writeBuffer.isFull()) { 1114 setBlocked((BlockedCause)MSHRQueue_WriteBuffer); 1115 } 1116 1117 // schedule the send 1118 schedMemSideSendEvent(time); 1119 } 1120 1121 /** 1122 * Returns true if the cache is blocked for accesses. 1123 */ 1124 bool isBlocked() const 1125 { 1126 return blocked != 0; 1127 } 1128 1129 /** 1130 * Marks the access path of the cache as blocked for the given cause. This 1131 * also sets the blocked flag in the slave interface. 1132 * @param cause The reason for the cache blocking. 1133 */ 1134 void setBlocked(BlockedCause cause) 1135 { 1136 uint8_t flag = 1 << cause; 1137 if (blocked == 0) { 1138 blocked_causes[cause]++; 1139 blockedCycle = curCycle(); 1140 cpuSidePort.setBlocked(); 1141 } 1142 blocked |= flag; 1143 DPRINTF(Cache,"Blocking for cause %d, mask=%d\n", cause, blocked); 1144 } 1145 1146 /** 1147 * Marks the cache as unblocked for the given cause. This also clears the 1148 * blocked flags in the appropriate interfaces. 1149 * @param cause The newly unblocked cause. 1150 * @warning Calling this function can cause a blocked request on the bus to 1151 * access the cache. The cache must be in a state to handle that request. 1152 */ 1153 void clearBlocked(BlockedCause cause) 1154 { 1155 uint8_t flag = 1 << cause; 1156 blocked &= ~flag; 1157 DPRINTF(Cache,"Unblocking for cause %d, mask=%d\n", cause, blocked); 1158 if (blocked == 0) { 1159 blocked_cycles[cause] += curCycle() - blockedCycle; 1160 cpuSidePort.clearBlocked(); 1161 } 1162 } 1163 1164 /** 1165 * Schedule a send event for the memory-side port. If already 1166 * scheduled, this may reschedule the event at an earlier 1167 * time. When the specified time is reached, the port is free to 1168 * send either a response, a request, or a prefetch request. 1169 * 1170 * @param time The time when to attempt sending a packet. 1171 */ 1172 void schedMemSideSendEvent(Tick time) 1173 { 1174 memSidePort.schedSendEvent(time); 1175 } 1176 1177 bool inCache(Addr addr, bool is_secure) const { 1178 return tags->findBlock(addr, is_secure); 1179 } 1180 1181 bool hasBeenPrefetched(Addr addr, bool is_secure) const { 1182 CacheBlk *block = tags->findBlock(addr, is_secure); 1183 if (block) { 1184 return block->wasPrefetched(); 1185 } else { 1186 return false; 1187 } 1188 } 1189 1190 bool inMissQueue(Addr addr, bool is_secure) const { 1191 return mshrQueue.findMatch(addr, is_secure); 1192 } 1193 1194 void incMissCount(PacketPtr pkt) 1195 { 1196 assert(pkt->req->masterId() < system->maxMasters()); 1197 misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 1198 pkt->req->incAccessDepth(); 1199 if (missCount) { 1200 --missCount; 1201 if (missCount == 0) 1202 exitSimLoop("A cache reached the maximum miss count"); 1203 } 1204 } 1205 void incHitCount(PacketPtr pkt) 1206 { 1207 assert(pkt->req->masterId() < system->maxMasters()); 1208 hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 1209 1210 } 1211 1212 /** 1213 * Checks if the cache is coalescing writes 1214 * 1215 * @return True if the cache is coalescing writes 1216 */ 1217 bool coalesce() const; 1218 1219 1220 /** 1221 * Cache block visitor that writes back dirty cache blocks using 1222 * functional writes. 1223 */ 1224 void writebackVisitor(CacheBlk &blk); 1225 1226 /** 1227 * Cache block visitor that invalidates all blocks in the cache. 1228 * 1229 * @warn Dirty cache lines will not be written back to memory. 1230 */ 1231 void invalidateVisitor(CacheBlk &blk); 1232 1233 /** 1234 * Take an MSHR, turn it into a suitable downstream packet, and 1235 * send it out. This construct allows a queue entry to choose a suitable 1236 * approach based on its type. 1237 * 1238 * @param mshr The MSHR to turn into a packet and send 1239 * @return True if the port is waiting for a retry 1240 */ 1241 virtual bool sendMSHRQueuePacket(MSHR* mshr); 1242 1243 /** 1244 * Similar to sendMSHR, but for a write-queue entry 1245 * instead. Create the packet, and send it, and if successful also 1246 * mark the entry in service. 1247 * 1248 * @param wq_entry The write-queue entry to turn into a packet and send 1249 * @return True if the port is waiting for a retry 1250 */ 1251 bool sendWriteQueuePacket(WriteQueueEntry* wq_entry); 1252 1253 /** 1254 * Serialize the state of the caches 1255 * 1256 * We currently don't support checkpointing cache state, so this panics. 1257 */ 1258 void serialize(CheckpointOut &cp) const override; 1259 void unserialize(CheckpointIn &cp) override; 1260}; 1261 1262/** 1263 * The write allocator inspects write packets and detects streaming 1264 * patterns. The write allocator supports a single stream where writes 1265 * are expected to access consecutive locations and keeps track of 1266 * size of the area covered by the concecutive writes in byteCount. 1267 * 1268 * 1) When byteCount has surpassed the coallesceLimit the mode 1269 * switches from ALLOCATE to COALESCE where writes should be delayed 1270 * until the whole block is written at which point a single packet 1271 * (whole line write) can service them. 1272 * 1273 * 2) When byteCount has also exceeded the noAllocateLimit (whole 1274 * line) we switch to NO_ALLOCATE when writes should not allocate in 1275 * the cache but rather send a whole line write to the memory below. 1276 */ 1277class WriteAllocator : public SimObject { 1278 public: 1279 WriteAllocator(const WriteAllocatorParams *p) : 1280 SimObject(p), 1281 coalesceLimit(p->coalesce_limit * p->block_size), 1282 noAllocateLimit(p->no_allocate_limit * p->block_size), 1283 delayThreshold(p->delay_threshold) 1284 { 1285 reset(); 1286 } 1287 1288 /** 1289 * Should writes be coalesced? This is true if the mode is set to 1290 * NO_ALLOCATE. 1291 * 1292 * @return return true if the cache should coalesce writes. 1293 */ 1294 bool coalesce() const { 1295 return mode != WriteMode::ALLOCATE; 1296 } 1297 1298 /** 1299 * Should writes allocate? 1300 * 1301 * @return return true if the cache should not allocate for writes. 1302 */ 1303 bool allocate() const { 1304 return mode != WriteMode::NO_ALLOCATE; 1305 } 1306 1307 /** 1308 * Reset the write allocator state, meaning that it allocates for 1309 * writes and has not recorded any information about qualifying 1310 * writes that might trigger a switch to coalescing and later no 1311 * allocation. 1312 */ 1313 void reset() { 1314 mode = WriteMode::ALLOCATE; 1315 byteCount = 0; 1316 nextAddr = 0; 1317 } 1318 1319 /** 1320 * Access whether we need to delay the current write. 1321 * 1322 * @param blk_addr The block address the packet writes to 1323 * @return true if the current packet should be delayed 1324 */ 1325 bool delay(Addr blk_addr) { 1326 if (delayCtr[blk_addr] > 0) { 1327 --delayCtr[blk_addr]; 1328 return true; 1329 } else { 1330 return false; 1331 } 1332 } 1333 1334 /** 1335 * Clear delay counter for the input block 1336 * 1337 * @param blk_addr The accessed cache block 1338 */ 1339 void resetDelay(Addr blk_addr) { 1340 delayCtr.erase(blk_addr); 1341 } 1342 1343 /** 1344 * Update the write mode based on the current write 1345 * packet. This method compares the packet's address with any 1346 * current stream, and updates the tracking and the mode 1347 * accordingly. 1348 * 1349 * @param write_addr Start address of the write request 1350 * @param write_size Size of the write request 1351 * @param blk_addr The block address that this packet writes to 1352 */ 1353 void updateMode(Addr write_addr, unsigned write_size, Addr blk_addr); 1354 1355 private: 1356 /** 1357 * The current mode for write coalescing and allocation, either 1358 * normal operation (ALLOCATE), write coalescing (COALESCE), or 1359 * write coalescing without allocation (NO_ALLOCATE). 1360 */ 1361 enum class WriteMode : char { 1362 ALLOCATE, 1363 COALESCE, 1364 NO_ALLOCATE, 1365 }; 1366 WriteMode mode; 1367 1368 /** Address to match writes against to detect streams. */ 1369 Addr nextAddr; 1370 1371 /** 1372 * Bytes written contiguously. Saturating once we no longer 1373 * allocate. 1374 */ 1375 uint32_t byteCount; 1376 1377 /** 1378 * Limits for when to switch between the different write modes. 1379 */ 1380 const uint32_t coalesceLimit; 1381 const uint32_t noAllocateLimit; 1382 /** 1383 * The number of times the allocator will delay an WriteReq MSHR. 1384 */ 1385 const uint32_t delayThreshold; 1386 1387 /** 1388 * Keep track of the number of times the allocator has delayed an 1389 * WriteReq MSHR. 1390 */ 1391 std::unordered_map<Addr, Counter> delayCtr; 1392}; 1393 1394#endif //__MEM_CACHE_BASE_HH__ 1395