base.hh revision 13981:577196ddd040
12SN/A/*
210292SAndreas.Sandberg@ARM.com * Copyright (c) 2012-2013, 2015-2016, 2018 ARM Limited
310292SAndreas.Sandberg@ARM.com * All rights reserved.
410292SAndreas.Sandberg@ARM.com *
54039Sbinkertn@umich.edu * The license below extends only to copyright in the software and shall
62SN/A * not be construed as granting a license to any other intellectual
72SN/A * property including but not limited to intellectual property relating
82SN/A * to a hardware implementation of the functionality of the software
92SN/A * licensed hereunder.  You may use the software subject to the license
102SN/A * terms below provided that you ensure that this notice is replicated
112SN/A * unmodified and in its entirety in all distributions of the software,
122SN/A * modified or unmodified, in source code or in binary form.
132SN/A *
142SN/A * Copyright (c) 2003-2005 The Regents of The University of Michigan
152SN/A * All rights reserved.
162SN/A *
172SN/A * Redistribution and use in source and binary forms, with or without
182SN/A * modification, are permitted provided that the following conditions are
192SN/A * met: redistributions of source code must retain the above copyright
202SN/A * notice, this list of conditions and the following disclaimer;
212SN/A * redistributions in binary form must reproduce the above copyright
222SN/A * notice, this list of conditions and the following disclaimer in the
232SN/A * documentation and/or other materials provided with the distribution;
242SN/A * neither the name of the copyright holders nor the names of its
252SN/A * contributors may be used to endorse or promote products derived from
262SN/A * this software without specific prior written permission.
272SN/A *
282SN/A * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
292SN/A * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
302665Ssaidi@eecs.umich.edu * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
312665Ssaidi@eecs.umich.edu * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
322665Ssaidi@eecs.umich.edu * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
3310475SAndrew.Bardsley@arm.com * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
342SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
352SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
361354SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
371354SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
382SN/A * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
394046Sbinkertn@umich.edu *
402SN/A * Authors: Erik Hallnor
4156SN/A *          Steve Reinhardt
428232Snate@binkert.org *          Ron Dreslinski
431031SN/A *          Andreas Hansson
446214Snate@binkert.org *          Nikos Nikoleris
454167Sbinkertn@umich.edu */
462SN/A
472SN/A/**
482SN/A * @file
4910475SAndrew.Bardsley@arm.com * Declares a basic cache interface BaseCache.
5010475SAndrew.Bardsley@arm.com */
5110475SAndrew.Bardsley@arm.com
5210475SAndrew.Bardsley@arm.com#ifndef __MEM_CACHE_BASE_HH__
5310475SAndrew.Bardsley@arm.com#define __MEM_CACHE_BASE_HH__
5410475SAndrew.Bardsley@arm.com
5510475SAndrew.Bardsley@arm.com#include <cassert>
568232Snate@binkert.org#include <cstdint>
5710475SAndrew.Bardsley@arm.com#include <string>
5810475SAndrew.Bardsley@arm.com
5910475SAndrew.Bardsley@arm.com#include "base/addr_range.hh"
6010475SAndrew.Bardsley@arm.com#include "base/statistics.hh"
6110475SAndrew.Bardsley@arm.com#include "base/trace.hh"
6210475SAndrew.Bardsley@arm.com#include "base/types.hh"
6310475SAndrew.Bardsley@arm.com#include "debug/Cache.hh"
6410475SAndrew.Bardsley@arm.com#include "debug/CachePort.hh"
6510475SAndrew.Bardsley@arm.com#include "enums/Clusivity.hh"
6610475SAndrew.Bardsley@arm.com#include "mem/cache/cache_blk.hh"
6710475SAndrew.Bardsley@arm.com#include "mem/cache/compressors/base.hh"
6810475SAndrew.Bardsley@arm.com#include "mem/cache/mshr_queue.hh"
6910475SAndrew.Bardsley@arm.com#include "mem/cache/tags/base.hh"
7010475SAndrew.Bardsley@arm.com#include "mem/cache/write_queue.hh"
7110475SAndrew.Bardsley@arm.com#include "mem/cache/write_queue_entry.hh"
7210475SAndrew.Bardsley@arm.com#include "mem/packet.hh"
7310475SAndrew.Bardsley@arm.com#include "mem/packet_queue.hh"
7410475SAndrew.Bardsley@arm.com#include "mem/qport.hh"
7510475SAndrew.Bardsley@arm.com#include "mem/request.hh"
7610475SAndrew.Bardsley@arm.com#include "params/WriteAllocator.hh"
7710475SAndrew.Bardsley@arm.com#include "sim/clocked_object.hh"
7810475SAndrew.Bardsley@arm.com#include "sim/eventq.hh"
7910475SAndrew.Bardsley@arm.com#include "sim/probe/probe.hh"
8010475SAndrew.Bardsley@arm.com#include "sim/serialize.hh"
8110475SAndrew.Bardsley@arm.com#include "sim/sim_exit.hh"
8210475SAndrew.Bardsley@arm.com#include "sim/system.hh"
8310475SAndrew.Bardsley@arm.com
8410475SAndrew.Bardsley@arm.comclass BaseMasterPort;
8510475SAndrew.Bardsley@arm.comclass BasePrefetcher;
8610475SAndrew.Bardsley@arm.comclass BaseSlavePort;
8710475SAndrew.Bardsley@arm.comclass MSHR;
8810475SAndrew.Bardsley@arm.comclass MasterPort;
8910475SAndrew.Bardsley@arm.comclass QueueEntry;
9010475SAndrew.Bardsley@arm.comstruct BaseCacheParams;
9110475SAndrew.Bardsley@arm.com
9210475SAndrew.Bardsley@arm.com/**
9310475SAndrew.Bardsley@arm.com * A basic cache interface. Implements some common functions for speed.
9410475SAndrew.Bardsley@arm.com */
9510475SAndrew.Bardsley@arm.comclass BaseCache : public ClockedObject
9610475SAndrew.Bardsley@arm.com{
9710475SAndrew.Bardsley@arm.com  protected:
9810475SAndrew.Bardsley@arm.com    /**
9910475SAndrew.Bardsley@arm.com     * Indexes to enumerate the MSHR queues.
10010475SAndrew.Bardsley@arm.com     */
10110475SAndrew.Bardsley@arm.com    enum MSHRQueueIndex {
10210475SAndrew.Bardsley@arm.com        MSHRQueue_MSHRs,
10310475SAndrew.Bardsley@arm.com        MSHRQueue_WriteBuffer
10410475SAndrew.Bardsley@arm.com    };
10510475SAndrew.Bardsley@arm.com
10610475SAndrew.Bardsley@arm.com  public:
10710475SAndrew.Bardsley@arm.com    /**
10810475SAndrew.Bardsley@arm.com     * Reasons for caches to be blocked.
10910475SAndrew.Bardsley@arm.com     */
11010475SAndrew.Bardsley@arm.com    enum BlockedCause {
11110475SAndrew.Bardsley@arm.com        Blocked_NoMSHRs = MSHRQueue_MSHRs,
11210475SAndrew.Bardsley@arm.com        Blocked_NoWBBuffers = MSHRQueue_WriteBuffer,
11310475SAndrew.Bardsley@arm.com        Blocked_NoTargets,
1144046Sbinkertn@umich.edu        NUM_BLOCKED_CAUSES
1152SN/A    };
11610475SAndrew.Bardsley@arm.com
11710475SAndrew.Bardsley@arm.com  protected:
11810475SAndrew.Bardsley@arm.com
11910475SAndrew.Bardsley@arm.com    /**
1204046Sbinkertn@umich.edu     * A cache master port is used for the memory-side port of the
1212SN/A     * cache, and in addition to the basic timing port that only sends
1227811Ssteve.reinhardt@amd.com     * response packets through a transmit list, it also offers the
1234039Sbinkertn@umich.edu     * ability to schedule and send request packets (requests &
1241070SN/A     * writebacks). The send event is scheduled through schedSendEvent,
1251070SN/A     * and the sendDeferredPacket of the timing port is modified to
1261070SN/A     * consider both the transmit list and the requests from the MSHR.
1271070SN/A     */
1281070SN/A    class CacheMasterPort : public QueuedMasterPort
1291070SN/A    {
1301070SN/A
1311070SN/A      public:
1321070SN/A
13310475SAndrew.Bardsley@arm.com        /**
13410475SAndrew.Bardsley@arm.com         * Schedule a send of a request packet (from the MSHR). Note
13510475SAndrew.Bardsley@arm.com         * that we could already have a retry outstanding.
1362SN/A         */
13710259SAndrew.Bardsley@arm.com        void schedSendEvent(Tick time)
13810259SAndrew.Bardsley@arm.com        {
13910259SAndrew.Bardsley@arm.com            DPRINTF(CachePort, "Scheduling send event at %llu\n", time);
14010259SAndrew.Bardsley@arm.com            reqQueue.schedSendEvent(time);
14110259SAndrew.Bardsley@arm.com        }
14210259SAndrew.Bardsley@arm.com
14310259SAndrew.Bardsley@arm.com      protected:
14410259SAndrew.Bardsley@arm.com
14510259SAndrew.Bardsley@arm.com        CacheMasterPort(const std::string &_name, BaseCache *_cache,
14610259SAndrew.Bardsley@arm.com                        ReqPacketQueue &_reqQueue,
14710259SAndrew.Bardsley@arm.com                        SnoopRespPacketQueue &_snoopRespQueue) :
14810259SAndrew.Bardsley@arm.com            QueuedMasterPort(_name, _cache, _reqQueue, _snoopRespQueue)
14910259SAndrew.Bardsley@arm.com        { }
15010259SAndrew.Bardsley@arm.com
1512SN/A        /**
1522SN/A         * Memory-side port always snoops.
1532SN/A         *
1542SN/A         * @return always true
1552SN/A         */
1562SN/A        virtual bool isSnooping() const { return true; }
1572SN/A    };
1582SN/A
1592SN/A    /**
1602SN/A     * Override the default behaviour of sendDeferredPacket to enable
1612SN/A     * the memory-side cache port to also send requests based on the
1622SN/A     * current MSHR status. This queue has a pointer to our specific
1638232Snate@binkert.org     * cache implementation and is used by the MemSidePort.
1642SN/A     */
16510475SAndrew.Bardsley@arm.com    class CacheReqPacketQueue : public ReqPacketQueue
16610475SAndrew.Bardsley@arm.com    {
16710475SAndrew.Bardsley@arm.com
16810475SAndrew.Bardsley@arm.com      protected:
1692SN/A
1702SN/A        BaseCache &cache;
17110475SAndrew.Bardsley@arm.com        SnoopRespPacketQueue &snoopRespQueue;
17210475SAndrew.Bardsley@arm.com
17310475SAndrew.Bardsley@arm.com      public:
17410475SAndrew.Bardsley@arm.com
17510475SAndrew.Bardsley@arm.com        CacheReqPacketQueue(BaseCache &cache, MasterPort &port,
17610475SAndrew.Bardsley@arm.com                            SnoopRespPacketQueue &snoop_resp_queue,
1772SN/A                            const std::string &label) :
1782SN/A            ReqPacketQueue(cache, port, label), cache(cache),
17910475SAndrew.Bardsley@arm.com            snoopRespQueue(snoop_resp_queue) { }
18010475SAndrew.Bardsley@arm.com
18110475SAndrew.Bardsley@arm.com        /**
18210475SAndrew.Bardsley@arm.com         * Override the normal sendDeferredPacket and do not only
18310475SAndrew.Bardsley@arm.com         * consider the transmit list (used for responses), but also
18410475SAndrew.Bardsley@arm.com         * requests.
1855806Ssaidi@eecs.umich.edu         */
1865806Ssaidi@eecs.umich.edu        virtual void sendDeferredPacket();
18710475SAndrew.Bardsley@arm.com
18810475SAndrew.Bardsley@arm.com        /**
18910475SAndrew.Bardsley@arm.com         * Check if there is a conflicting snoop response about to be
19010475SAndrew.Bardsley@arm.com         * send out, and if so simply stall any requests, and schedule
19110475SAndrew.Bardsley@arm.com         * a send event at the same time as the next snoop response is
19210475SAndrew.Bardsley@arm.com         * being sent out.
1932SN/A         *
1942SN/A         * @param pkt The packet to check for conflicts against.
19510475SAndrew.Bardsley@arm.com         */
19610475SAndrew.Bardsley@arm.com        bool checkConflictingSnoop(const PacketPtr pkt)
1974046Sbinkertn@umich.edu        {
1984046Sbinkertn@umich.edu            if (snoopRespQueue.checkConflict(pkt, cache.blkSize)) {
19910475SAndrew.Bardsley@arm.com                DPRINTF(CachePort, "Waiting for snoop response to be "
20010475SAndrew.Bardsley@arm.com                        "sent\n");
2012SN/A                Tick when = snoopRespQueue.deferredPacketReadyTime();
2022SN/A                schedSendEvent(when);
20310475SAndrew.Bardsley@arm.com                return true;
20410475SAndrew.Bardsley@arm.com            }
205507SN/A            return false;
206507SN/A        }
2072SN/A    };
2082SN/A
2092SN/A
2104046Sbinkertn@umich.edu    /**
2114041Sbinkertn@umich.edu     * The memory-side port extends the base cache master port with
2125806Ssaidi@eecs.umich.edu     * access functions for functional, atomic and timing snoops.
2134041Sbinkertn@umich.edu     */
2144046Sbinkertn@umich.edu    class MemSidePort : public CacheMasterPort
2154041Sbinkertn@umich.edu    {
2164041Sbinkertn@umich.edu      private:
2172SN/A
2185543Ssaidi@eecs.umich.edu        /** The cache-specific queue. */
2192SN/A        CacheReqPacketQueue _reqQueue;
2201354SN/A
221        SnoopRespPacketQueue _snoopRespQueue;
222
223        // a pointer to our specific cache implementation
224        BaseCache *cache;
225
226      protected:
227
228        virtual void recvTimingSnoopReq(PacketPtr pkt);
229
230        virtual bool recvTimingResp(PacketPtr pkt);
231
232        virtual Tick recvAtomicSnoop(PacketPtr pkt);
233
234        virtual void recvFunctionalSnoop(PacketPtr pkt);
235
236      public:
237
238        MemSidePort(const std::string &_name, BaseCache *_cache,
239                    const std::string &_label);
240    };
241
242    /**
243     * A cache slave port is used for the CPU-side port of the cache,
244     * and it is basically a simple timing port that uses a transmit
245     * list for responses to the CPU (or connected master). In
246     * addition, it has the functionality to block the port for
247     * incoming requests. If blocked, the port will issue a retry once
248     * unblocked.
249     */
250    class CacheSlavePort : public QueuedSlavePort
251    {
252
253      public:
254
255        /** Do not accept any new requests. */
256        void setBlocked();
257
258        /** Return to normal operation and accept new requests. */
259        void clearBlocked();
260
261        bool isBlocked() const { return blocked; }
262
263      protected:
264
265        CacheSlavePort(const std::string &_name, BaseCache *_cache,
266                       const std::string &_label);
267
268        /** A normal packet queue used to store responses. */
269        RespPacketQueue queue;
270
271        bool blocked;
272
273        bool mustSendRetry;
274
275      private:
276
277        void processSendRetry();
278
279        EventFunctionWrapper sendRetryEvent;
280
281    };
282
283    /**
284     * The CPU-side port extends the base cache slave port with access
285     * functions for functional, atomic and timing requests.
286     */
287    class CpuSidePort : public CacheSlavePort
288    {
289      private:
290
291        // a pointer to our specific cache implementation
292        BaseCache *cache;
293
294      protected:
295        virtual bool recvTimingSnoopResp(PacketPtr pkt) override;
296
297        virtual bool tryTiming(PacketPtr pkt) override;
298
299        virtual bool recvTimingReq(PacketPtr pkt) override;
300
301        virtual Tick recvAtomic(PacketPtr pkt) override;
302
303        virtual void recvFunctional(PacketPtr pkt) override;
304
305        virtual AddrRangeList getAddrRanges() const override;
306
307      public:
308
309        CpuSidePort(const std::string &_name, BaseCache *_cache,
310                    const std::string &_label);
311
312    };
313
314    CpuSidePort cpuSidePort;
315    MemSidePort memSidePort;
316
317  protected:
318
319    /** Miss status registers */
320    MSHRQueue mshrQueue;
321
322    /** Write/writeback buffer */
323    WriteQueue writeBuffer;
324
325    /** Tag and data Storage */
326    BaseTags *tags;
327
328    /** Compression method being used. */
329    BaseCacheCompressor* compressor;
330
331    /** Prefetcher */
332    BasePrefetcher *prefetcher;
333
334    /** To probe when a cache hit occurs */
335    ProbePointArg<PacketPtr> *ppHit;
336
337    /** To probe when a cache miss occurs */
338    ProbePointArg<PacketPtr> *ppMiss;
339
340    /** To probe when a cache fill occurs */
341    ProbePointArg<PacketPtr> *ppFill;
342
343    /**
344     * The writeAllocator drive optimizations for streaming writes.
345     * It first determines whether a WriteReq MSHR should be delayed,
346     * thus ensuring that we wait longer in cases when we are write
347     * coalescing and allowing all the bytes of the line to be written
348     * before the MSHR packet is sent downstream. This works in unison
349     * with the tracking in the MSHR to check if the entire line is
350     * written. The write mode also affects the behaviour on filling
351     * any whole-line writes. Normally the cache allocates the line
352     * when receiving the InvalidateResp, but after seeing enough
353     * consecutive lines we switch to using the tempBlock, and thus
354     * end up not allocating the line, and instead turning the
355     * whole-line write into a writeback straight away.
356     */
357    WriteAllocator * const writeAllocator;
358
359    /**
360     * Temporary cache block for occasional transitory use.  We use
361     * the tempBlock to fill when allocation fails (e.g., when there
362     * is an outstanding request that accesses the victim block) or
363     * when we want to avoid allocation (e.g., exclusive caches)
364     */
365    TempCacheBlk *tempBlock;
366
367    /**
368     * Upstream caches need this packet until true is returned, so
369     * hold it for deletion until a subsequent call
370     */
371    std::unique_ptr<Packet> pendingDelete;
372
373    /**
374     * Mark a request as in service (sent downstream in the memory
375     * system), effectively making this MSHR the ordering point.
376     */
377    void markInService(MSHR *mshr, bool pending_modified_resp)
378    {
379        bool wasFull = mshrQueue.isFull();
380        mshrQueue.markInService(mshr, pending_modified_resp);
381
382        if (wasFull && !mshrQueue.isFull()) {
383            clearBlocked(Blocked_NoMSHRs);
384        }
385    }
386
387    void markInService(WriteQueueEntry *entry)
388    {
389        bool wasFull = writeBuffer.isFull();
390        writeBuffer.markInService(entry);
391
392        if (wasFull && !writeBuffer.isFull()) {
393            clearBlocked(Blocked_NoWBBuffers);
394        }
395    }
396
397    /**
398     * Determine whether we should allocate on a fill or not. If this
399     * cache is mostly inclusive with regards to the upstream cache(s)
400     * we always allocate (for any non-forwarded and cacheable
401     * requests). In the case of a mostly exclusive cache, we allocate
402     * on fill if the packet did not come from a cache, thus if we:
403     * are dealing with a whole-line write (the latter behaves much
404     * like a writeback), the original target packet came from a
405     * non-caching source, or if we are performing a prefetch or LLSC.
406     *
407     * @param cmd Command of the incoming requesting packet
408     * @return Whether we should allocate on the fill
409     */
410    inline bool allocOnFill(MemCmd cmd) const
411    {
412        return clusivity == Enums::mostly_incl ||
413            cmd == MemCmd::WriteLineReq ||
414            cmd == MemCmd::ReadReq ||
415            cmd == MemCmd::WriteReq ||
416            cmd.isPrefetch() ||
417            cmd.isLLSC();
418    }
419
420    /**
421     * Regenerate block address using tags.
422     * Block address regeneration depends on whether we're using a temporary
423     * block or not.
424     *
425     * @param blk The block to regenerate address.
426     * @return The block's address.
427     */
428    Addr regenerateBlkAddr(CacheBlk* blk);
429
430    /**
431     * Calculate latency of accesses that only touch the tag array.
432     * @sa calculateAccessLatency
433     *
434     * @param delay The delay until the packet's metadata is present.
435     * @param lookup_lat Latency of the respective tag lookup.
436     * @return The number of ticks that pass due to a tag-only access.
437     */
438    Cycles calculateTagOnlyLatency(const uint32_t delay,
439                                   const Cycles lookup_lat) const;
440    /**
441     * Calculate access latency in ticks given a tag lookup latency, and
442     * whether access was a hit or miss.
443     *
444     * @param blk The cache block that was accessed.
445     * @param delay The delay until the packet's metadata is present.
446     * @param lookup_lat Latency of the respective tag lookup.
447     * @return The number of ticks that pass due to a block access.
448     */
449    Cycles calculateAccessLatency(const CacheBlk* blk, const uint32_t delay,
450                                  const Cycles lookup_lat) const;
451
452    /**
453     * Does all the processing necessary to perform the provided request.
454     * @param pkt The memory request to perform.
455     * @param blk The cache block to be updated.
456     * @param lat The latency of the access.
457     * @return Boolean indicating whether the request was satisfied.
458     */
459    virtual bool access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat);
460
461    /*
462     * Handle a timing request that hit in the cache
463     *
464     * @param ptk The request packet
465     * @param blk The referenced block
466     * @param request_time The tick at which the block lookup is compete
467     */
468    virtual void handleTimingReqHit(PacketPtr pkt, CacheBlk *blk,
469                                    Tick request_time);
470
471    /*
472     * Handle a timing request that missed in the cache
473     *
474     * Implementation specific handling for different cache
475     * implementations
476     *
477     * @param ptk The request packet
478     * @param blk The referenced block
479     * @param forward_time The tick at which we can process dependent requests
480     * @param request_time The tick at which the block lookup is compete
481     */
482    virtual void handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk,
483                                     Tick forward_time,
484                                     Tick request_time) = 0;
485
486    /*
487     * Handle a timing request that missed in the cache
488     *
489     * Common functionality across different cache implementations
490     *
491     * @param ptk The request packet
492     * @param blk The referenced block
493     * @param mshr Any existing mshr for the referenced cache block
494     * @param forward_time The tick at which we can process dependent requests
495     * @param request_time The tick at which the block lookup is compete
496     */
497    void handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
498                             Tick forward_time, Tick request_time);
499
500    /**
501     * Performs the access specified by the request.
502     * @param pkt The request to perform.
503     */
504    virtual void recvTimingReq(PacketPtr pkt);
505
506    /**
507     * Handling the special case of uncacheable write responses to
508     * make recvTimingResp less cluttered.
509     */
510    void handleUncacheableWriteResp(PacketPtr pkt);
511
512    /**
513     * Service non-deferred MSHR targets using the received response
514     *
515     * Iterates through the list of targets that can be serviced with
516     * the current response.
517     *
518     * @param mshr The MSHR that corresponds to the reponse
519     * @param pkt The response packet
520     * @param blk The reference block
521     */
522    virtual void serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt,
523                                    CacheBlk *blk) = 0;
524
525    /**
526     * Handles a response (cache line fill/write ack) from the bus.
527     * @param pkt The response packet
528     */
529    virtual void recvTimingResp(PacketPtr pkt);
530
531    /**
532     * Snoops bus transactions to maintain coherence.
533     * @param pkt The current bus transaction.
534     */
535    virtual void recvTimingSnoopReq(PacketPtr pkt) = 0;
536
537    /**
538     * Handle a snoop response.
539     * @param pkt Snoop response packet
540     */
541    virtual void recvTimingSnoopResp(PacketPtr pkt) = 0;
542
543    /**
544     * Handle a request in atomic mode that missed in this cache
545     *
546     * Creates a downstream request, sends it to the memory below and
547     * handles the response. As we are in atomic mode all operations
548     * are performed immediately.
549     *
550     * @param pkt The packet with the requests
551     * @param blk The referenced block
552     * @return Cycles for handling the request
553     */
554    virtual Cycles handleAtomicReqMiss(PacketPtr pkt, CacheBlk *&blk) = 0;
555
556    /**
557     * Performs the access specified by the request.
558     * @param pkt The request to perform.
559     * @return The number of ticks required for the access.
560     */
561    virtual Tick recvAtomic(PacketPtr pkt);
562
563    /**
564     * Snoop for the provided request in the cache and return the estimated
565     * time taken.
566     * @param pkt The memory request to snoop
567     * @return The number of ticks required for the snoop.
568     */
569    virtual Tick recvAtomicSnoop(PacketPtr pkt) = 0;
570
571    /**
572     * Performs the access specified by the request.
573     *
574     * @param pkt The request to perform.
575     * @param fromCpuSide from the CPU side port or the memory side port
576     */
577    virtual void functionalAccess(PacketPtr pkt, bool from_cpu_side);
578
579    /**
580     * Handle doing the Compare and Swap function for SPARC.
581     */
582    void cmpAndSwap(CacheBlk *blk, PacketPtr pkt);
583
584    /**
585     * Return the next queue entry to service, either a pending miss
586     * from the MSHR queue, a buffered write from the write buffer, or
587     * something from the prefetcher. This function is responsible
588     * for prioritizing among those sources on the fly.
589     */
590    QueueEntry* getNextQueueEntry();
591
592    /**
593     * Insert writebacks into the write buffer
594     *
595     * @param pkt The writeback packet.
596     * @param forward_time Tick to which the writeback should be scheduled.
597     */
598    virtual void doWritebacks(PacketPtr pkt, Tick forward_time) = 0;
599
600    /**
601     * Send writebacks down the memory hierarchy in atomic mode.
602     *
603     * @param pkt The writeback packet.
604     */
605    virtual void doWritebacksAtomic(PacketPtr pkt) = 0;
606
607    /**
608     * Create an appropriate downstream bus request packet.
609     *
610     * Creates a new packet with the request to be send to the memory
611     * below, or nullptr if the current request in cpu_pkt should just
612     * be forwarded on.
613     *
614     * @param cpu_pkt The miss packet that needs to be satisfied.
615     * @param blk The referenced block, can be nullptr.
616     * @param needs_writable Indicates that the block must be writable
617     * even if the request in cpu_pkt doesn't indicate that.
618     * @param is_whole_line_write True if there are writes for the
619     * whole line
620     * @return A packet send to the memory below
621     */
622    virtual PacketPtr createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
623                                       bool needs_writable,
624                                       bool is_whole_line_write) const = 0;
625
626    /**
627     * Determine if clean lines should be written back or not. In
628     * cases where a downstream cache is mostly inclusive we likely
629     * want it to act as a victim cache also for lines that have not
630     * been modified. Hence, we cannot simply drop the line (or send a
631     * clean evict), but rather need to send the actual data.
632     */
633    const bool writebackClean;
634
635    /**
636     * Writebacks from the tempBlock, resulting on the response path
637     * in atomic mode, must happen after the call to recvAtomic has
638     * finished (for the right ordering of the packets). We therefore
639     * need to hold on to the packets, and have a method and an event
640     * to send them.
641     */
642    PacketPtr tempBlockWriteback;
643
644    /**
645     * Send the outstanding tempBlock writeback. To be called after
646     * recvAtomic finishes in cases where the block we filled is in
647     * fact the tempBlock, and now needs to be written back.
648     */
649    void writebackTempBlockAtomic() {
650        assert(tempBlockWriteback != nullptr);
651        doWritebacksAtomic(tempBlockWriteback);
652        tempBlockWriteback = nullptr;
653    }
654
655    /**
656     * An event to writeback the tempBlock after recvAtomic
657     * finishes. To avoid other calls to recvAtomic getting in
658     * between, we create this event with a higher priority.
659     */
660    EventFunctionWrapper writebackTempBlockAtomicEvent;
661
662    /**
663     * When a block is overwriten, its compression information must be updated,
664     * and it may need to be recompressed. If the compression size changes, the
665     * block may either become smaller, in which case there is no side effect,
666     * or bigger (data expansion; fat write), in which case the block might not
667     * fit in its current location anymore. If that happens, there are usually
668     * two options to be taken:
669     *
670     * - The co-allocated blocks must be evicted to make room for this block.
671     *   Simpler, but ignores replacement data.
672     * - The block itself is moved elsewhere (used in policies where the CF
673     *   determines the location of the block).
674     *
675     * This implementation uses the first approach.
676     *
677     * Notice that this is only called for writebacks, which means that L1
678     * caches (which see regular Writes), do not support compression.
679     * @sa CompressedTags
680     *
681     * @param blk The block to be overwriten.
682     * @param data A pointer to the data to be compressed (blk's new data).
683     * @param delay The delay until the packet's metadata is present.
684     * @param tag_latency Latency to access the tags of the replacement victim.
685     * @return Whether operation is successful or not.
686     */
687    bool updateCompressionData(CacheBlk *blk, const uint64_t* data,
688        uint32_t delay, Cycles tag_latency);
689
690    /**
691     * Perform any necessary updates to the block and perform any data
692     * exchange between the packet and the block. The flags of the
693     * packet are also set accordingly.
694     *
695     * @param pkt Request packet from upstream that hit a block
696     * @param blk Cache block that the packet hit
697     * @param deferred_response Whether this request originally missed
698     * @param pending_downgrade Whether the writable flag is to be removed
699     */
700    virtual void satisfyRequest(PacketPtr pkt, CacheBlk *blk,
701                                bool deferred_response = false,
702                                bool pending_downgrade = false);
703
704    /**
705     * Maintain the clusivity of this cache by potentially
706     * invalidating a block. This method works in conjunction with
707     * satisfyRequest, but is separate to allow us to handle all MSHR
708     * targets before potentially dropping a block.
709     *
710     * @param from_cache Whether we have dealt with a packet from a cache
711     * @param blk The block that should potentially be dropped
712     */
713    void maintainClusivity(bool from_cache, CacheBlk *blk);
714
715    /**
716     * Handle a fill operation caused by a received packet.
717     *
718     * Populates a cache block and handles all outstanding requests for the
719     * satisfied fill request. This version takes two memory requests. One
720     * contains the fill data, the other is an optional target to satisfy.
721     *
722     * @param pkt The memory request with the fill data.
723     * @param blk The cache block if it already exists.
724     * @param allocate Whether to allocate a block or use the temp block
725     * @return Pointer to the new cache block.
726     */
727    CacheBlk *handleFill(PacketPtr pkt, CacheBlk *blk, bool allocate);
728
729    /**
730     * Allocate a new block for the packet's data. The victim block might be
731     * valid, and thus the necessary writebacks are done. May return nullptr
732     * if there are no replaceable blocks. If a replaceable block is found,
733     * it inserts the new block in its place. The new block, however, is not
734     * set as valid yet.
735     *
736     * @param pkt Packet holding the address to update
737     * @param tag_latency Latency to access the tags of the replacement victim.
738     * @return the allocated block
739     */
740    CacheBlk *allocateBlock(const PacketPtr pkt, Cycles tag_latency);
741
742    /**
743     * Evict a cache block.
744     *
745     * Performs a writeback if necesssary and invalidates the block
746     *
747     * @param blk Block to invalidate
748     * @return A packet with the writeback, can be nullptr
749     */
750    M5_NODISCARD virtual PacketPtr evictBlock(CacheBlk *blk) = 0;
751
752    /**
753     * Evict a cache block.
754     *
755     * Performs a writeback if necesssary and invalidates the block
756     *
757     * @param blk Block to invalidate
758     * @param forward_time Tick to which the writeback should be scheduled if
759     *                     in timing mode.
760     */
761    void evictBlock(CacheBlk *blk, Tick forward_time);
762
763    /**
764     * Invalidate a cache block.
765     *
766     * @param blk Block to invalidate
767     */
768    void invalidateBlock(CacheBlk *blk);
769
770    /**
771     * Create a writeback request for the given block.
772     *
773     * @param blk The block to writeback.
774     * @return The writeback request for the block.
775     */
776    PacketPtr writebackBlk(CacheBlk *blk);
777
778    /**
779     * Create a writeclean request for the given block.
780     *
781     * Creates a request that writes the block to the cache below
782     * without evicting the block from the current cache.
783     *
784     * @param blk The block to write clean.
785     * @param dest The destination of the write clean operation.
786     * @param id Use the given packet id for the write clean operation.
787     * @return The generated write clean packet.
788     */
789    PacketPtr writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id);
790
791    /**
792     * Write back dirty blocks in the cache using functional accesses.
793     */
794    virtual void memWriteback() override;
795
796    /**
797     * Invalidates all blocks in the cache.
798     *
799     * @warn Dirty cache lines will not be written back to
800     * memory. Make sure to call functionalWriteback() first if you
801     * want the to write them to memory.
802     */
803    virtual void memInvalidate() override;
804
805    /**
806     * Determine if there are any dirty blocks in the cache.
807     *
808     * @return true if at least one block is dirty, false otherwise.
809     */
810    bool isDirty() const;
811
812    /**
813     * Determine if an address is in the ranges covered by this
814     * cache. This is useful to filter snoops.
815     *
816     * @param addr Address to check against
817     *
818     * @return If the address in question is in range
819     */
820    bool inRange(Addr addr) const;
821
822    /**
823     * Find next request ready time from among possible sources.
824     */
825    Tick nextQueueReadyTime() const;
826
827    /** Block size of this cache */
828    const unsigned blkSize;
829
830    /**
831     * The latency of tag lookup of a cache. It occurs when there is
832     * an access to the cache.
833     */
834    const Cycles lookupLatency;
835
836    /**
837     * The latency of data access of a cache. It occurs when there is
838     * an access to the cache.
839     */
840    const Cycles dataLatency;
841
842    /**
843     * This is the forward latency of the cache. It occurs when there
844     * is a cache miss and a request is forwarded downstream, in
845     * particular an outbound miss.
846     */
847    const Cycles forwardLatency;
848
849    /** The latency to fill a cache block */
850    const Cycles fillLatency;
851
852    /**
853     * The latency of sending reponse to its upper level cache/core on
854     * a linefill. The responseLatency parameter captures this
855     * latency.
856     */
857    const Cycles responseLatency;
858
859    /**
860     * Whether tags and data are accessed sequentially.
861     */
862    const bool sequentialAccess;
863
864    /** The number of targets for each MSHR. */
865    const int numTarget;
866
867    /** Do we forward snoops from mem side port through to cpu side port? */
868    bool forwardSnoops;
869
870    /**
871     * Clusivity with respect to the upstream cache, determining if we
872     * fill into both this cache and the cache above on a miss. Note
873     * that we currently do not support strict clusivity policies.
874     */
875    const Enums::Clusivity clusivity;
876
877    /**
878     * Is this cache read only, for example the instruction cache, or
879     * table-walker cache. A cache that is read only should never see
880     * any writes, and should never get any dirty data (and hence
881     * never have to do any writebacks).
882     */
883    const bool isReadOnly;
884
885    /**
886     * Bit vector of the blocking reasons for the access path.
887     * @sa #BlockedCause
888     */
889    uint8_t blocked;
890
891    /** Increasing order number assigned to each incoming request. */
892    uint64_t order;
893
894    /** Stores time the cache blocked for statistics. */
895    Cycles blockedCycle;
896
897    /** Pointer to the MSHR that has no targets. */
898    MSHR *noTargetMSHR;
899
900    /** The number of misses to trigger an exit event. */
901    Counter missCount;
902
903    /**
904     * The address range to which the cache responds on the CPU side.
905     * Normally this is all possible memory addresses. */
906    const AddrRangeList addrRanges;
907
908  public:
909    /** System we are currently operating in. */
910    System *system;
911
912    // Statistics
913    /**
914     * @addtogroup CacheStatistics
915     * @{
916     */
917
918    /** Number of hits per thread for each type of command.
919        @sa Packet::Command */
920    Stats::Vector hits[MemCmd::NUM_MEM_CMDS];
921    /** Number of hits for demand accesses. */
922    Stats::Formula demandHits;
923    /** Number of hit for all accesses. */
924    Stats::Formula overallHits;
925
926    /** Number of misses per thread for each type of command.
927        @sa Packet::Command */
928    Stats::Vector misses[MemCmd::NUM_MEM_CMDS];
929    /** Number of misses for demand accesses. */
930    Stats::Formula demandMisses;
931    /** Number of misses for all accesses. */
932    Stats::Formula overallMisses;
933
934    /**
935     * Total number of cycles per thread/command spent waiting for a miss.
936     * Used to calculate the average miss latency.
937     */
938    Stats::Vector missLatency[MemCmd::NUM_MEM_CMDS];
939    /** Total number of cycles spent waiting for demand misses. */
940    Stats::Formula demandMissLatency;
941    /** Total number of cycles spent waiting for all misses. */
942    Stats::Formula overallMissLatency;
943
944    /** The number of accesses per command and thread. */
945    Stats::Formula accesses[MemCmd::NUM_MEM_CMDS];
946    /** The number of demand accesses. */
947    Stats::Formula demandAccesses;
948    /** The number of overall accesses. */
949    Stats::Formula overallAccesses;
950
951    /** The miss rate per command and thread. */
952    Stats::Formula missRate[MemCmd::NUM_MEM_CMDS];
953    /** The miss rate of all demand accesses. */
954    Stats::Formula demandMissRate;
955    /** The miss rate for all accesses. */
956    Stats::Formula overallMissRate;
957
958    /** The average miss latency per command and thread. */
959    Stats::Formula avgMissLatency[MemCmd::NUM_MEM_CMDS];
960    /** The average miss latency for demand misses. */
961    Stats::Formula demandAvgMissLatency;
962    /** The average miss latency for all misses. */
963    Stats::Formula overallAvgMissLatency;
964
965    /** The total number of cycles blocked for each blocked cause. */
966    Stats::Vector blocked_cycles;
967    /** The number of times this cache blocked for each blocked cause. */
968    Stats::Vector blocked_causes;
969
970    /** The average number of cycles blocked for each blocked cause. */
971    Stats::Formula avg_blocked;
972
973    /** The number of times a HW-prefetched block is evicted w/o reference. */
974    Stats::Scalar unusedPrefetches;
975
976    /** Number of blocks written back per thread. */
977    Stats::Vector writebacks;
978
979    /** Number of misses that hit in the MSHRs per command and thread. */
980    Stats::Vector mshr_hits[MemCmd::NUM_MEM_CMDS];
981    /** Demand misses that hit in the MSHRs. */
982    Stats::Formula demandMshrHits;
983    /** Total number of misses that hit in the MSHRs. */
984    Stats::Formula overallMshrHits;
985
986    /** Number of misses that miss in the MSHRs, per command and thread. */
987    Stats::Vector mshr_misses[MemCmd::NUM_MEM_CMDS];
988    /** Demand misses that miss in the MSHRs. */
989    Stats::Formula demandMshrMisses;
990    /** Total number of misses that miss in the MSHRs. */
991    Stats::Formula overallMshrMisses;
992
993    /** Number of misses that miss in the MSHRs, per command and thread. */
994    Stats::Vector mshr_uncacheable[MemCmd::NUM_MEM_CMDS];
995    /** Total number of misses that miss in the MSHRs. */
996    Stats::Formula overallMshrUncacheable;
997
998    /** Total cycle latency of each MSHR miss, per command and thread. */
999    Stats::Vector mshr_miss_latency[MemCmd::NUM_MEM_CMDS];
1000    /** Total cycle latency of demand MSHR misses. */
1001    Stats::Formula demandMshrMissLatency;
1002    /** Total cycle latency of overall MSHR misses. */
1003    Stats::Formula overallMshrMissLatency;
1004
1005    /** Total cycle latency of each MSHR miss, per command and thread. */
1006    Stats::Vector mshr_uncacheable_lat[MemCmd::NUM_MEM_CMDS];
1007    /** Total cycle latency of overall MSHR misses. */
1008    Stats::Formula overallMshrUncacheableLatency;
1009
1010    /** The miss rate in the MSHRs pre command and thread. */
1011    Stats::Formula mshrMissRate[MemCmd::NUM_MEM_CMDS];
1012    /** The demand miss rate in the MSHRs. */
1013    Stats::Formula demandMshrMissRate;
1014    /** The overall miss rate in the MSHRs. */
1015    Stats::Formula overallMshrMissRate;
1016
1017    /** The average latency of an MSHR miss, per command and thread. */
1018    Stats::Formula avgMshrMissLatency[MemCmd::NUM_MEM_CMDS];
1019    /** The average latency of a demand MSHR miss. */
1020    Stats::Formula demandAvgMshrMissLatency;
1021    /** The average overall latency of an MSHR miss. */
1022    Stats::Formula overallAvgMshrMissLatency;
1023
1024    /** The average latency of an MSHR miss, per command and thread. */
1025    Stats::Formula avgMshrUncacheableLatency[MemCmd::NUM_MEM_CMDS];
1026    /** The average overall latency of an MSHR miss. */
1027    Stats::Formula overallAvgMshrUncacheableLatency;
1028
1029    /** Number of replacements of valid blocks. */
1030    Stats::Scalar replacements;
1031
1032    /** Number of data expansions. */
1033    Stats::Scalar dataExpansions;
1034
1035    /**
1036     * @}
1037     */
1038
1039    /**
1040     * Register stats for this object.
1041     */
1042    void regStats() override;
1043
1044    /** Registers probes. */
1045    void regProbePoints() override;
1046
1047  public:
1048    BaseCache(const BaseCacheParams *p, unsigned blk_size);
1049    ~BaseCache();
1050
1051    void init() override;
1052
1053    Port &getPort(const std::string &if_name,
1054                  PortID idx=InvalidPortID) override;
1055
1056    /**
1057     * Query block size of a cache.
1058     * @return  The block size
1059     */
1060    unsigned
1061    getBlockSize() const
1062    {
1063        return blkSize;
1064    }
1065
1066    const AddrRangeList &getAddrRanges() const { return addrRanges; }
1067
1068    MSHR *allocateMissBuffer(PacketPtr pkt, Tick time, bool sched_send = true)
1069    {
1070        MSHR *mshr = mshrQueue.allocate(pkt->getBlockAddr(blkSize), blkSize,
1071                                        pkt, time, order++,
1072                                        allocOnFill(pkt->cmd));
1073
1074        if (mshrQueue.isFull()) {
1075            setBlocked((BlockedCause)MSHRQueue_MSHRs);
1076        }
1077
1078        if (sched_send) {
1079            // schedule the send
1080            schedMemSideSendEvent(time);
1081        }
1082
1083        return mshr;
1084    }
1085
1086    void allocateWriteBuffer(PacketPtr pkt, Tick time)
1087    {
1088        // should only see writes or clean evicts here
1089        assert(pkt->isWrite() || pkt->cmd == MemCmd::CleanEvict);
1090
1091        Addr blk_addr = pkt->getBlockAddr(blkSize);
1092
1093        // If using compression, on evictions the block is decompressed and
1094        // the operation's latency is added to the payload delay. Consume
1095        // that payload delay here, meaning that the data is always stored
1096        // uncompressed in the writebuffer
1097        if (compressor) {
1098            time += pkt->payloadDelay;
1099            pkt->payloadDelay = 0;
1100        }
1101
1102        WriteQueueEntry *wq_entry =
1103            writeBuffer.findMatch(blk_addr, pkt->isSecure());
1104        if (wq_entry && !wq_entry->inService) {
1105            DPRINTF(Cache, "Potential to merge writeback %s", pkt->print());
1106        }
1107
1108        writeBuffer.allocate(blk_addr, blkSize, pkt, time, order++);
1109
1110        if (writeBuffer.isFull()) {
1111            setBlocked((BlockedCause)MSHRQueue_WriteBuffer);
1112        }
1113
1114        // schedule the send
1115        schedMemSideSendEvent(time);
1116    }
1117
1118    /**
1119     * Returns true if the cache is blocked for accesses.
1120     */
1121    bool isBlocked() const
1122    {
1123        return blocked != 0;
1124    }
1125
1126    /**
1127     * Marks the access path of the cache as blocked for the given cause. This
1128     * also sets the blocked flag in the slave interface.
1129     * @param cause The reason for the cache blocking.
1130     */
1131    void setBlocked(BlockedCause cause)
1132    {
1133        uint8_t flag = 1 << cause;
1134        if (blocked == 0) {
1135            blocked_causes[cause]++;
1136            blockedCycle = curCycle();
1137            cpuSidePort.setBlocked();
1138        }
1139        blocked |= flag;
1140        DPRINTF(Cache,"Blocking for cause %d, mask=%d\n", cause, blocked);
1141    }
1142
1143    /**
1144     * Marks the cache as unblocked for the given cause. This also clears the
1145     * blocked flags in the appropriate interfaces.
1146     * @param cause The newly unblocked cause.
1147     * @warning Calling this function can cause a blocked request on the bus to
1148     * access the cache. The cache must be in a state to handle that request.
1149     */
1150    void clearBlocked(BlockedCause cause)
1151    {
1152        uint8_t flag = 1 << cause;
1153        blocked &= ~flag;
1154        DPRINTF(Cache,"Unblocking for cause %d, mask=%d\n", cause, blocked);
1155        if (blocked == 0) {
1156            blocked_cycles[cause] += curCycle() - blockedCycle;
1157            cpuSidePort.clearBlocked();
1158        }
1159    }
1160
1161    /**
1162     * Schedule a send event for the memory-side port. If already
1163     * scheduled, this may reschedule the event at an earlier
1164     * time. When the specified time is reached, the port is free to
1165     * send either a response, a request, or a prefetch request.
1166     *
1167     * @param time The time when to attempt sending a packet.
1168     */
1169    void schedMemSideSendEvent(Tick time)
1170    {
1171        memSidePort.schedSendEvent(time);
1172    }
1173
1174    bool inCache(Addr addr, bool is_secure) const {
1175        return tags->findBlock(addr, is_secure);
1176    }
1177
1178    bool hasBeenPrefetched(Addr addr, bool is_secure) const {
1179        CacheBlk *block = tags->findBlock(addr, is_secure);
1180        if (block) {
1181            return block->wasPrefetched();
1182        } else {
1183            return false;
1184        }
1185    }
1186
1187    bool inMissQueue(Addr addr, bool is_secure) const {
1188        return mshrQueue.findMatch(addr, is_secure);
1189    }
1190
1191    void incMissCount(PacketPtr pkt)
1192    {
1193        assert(pkt->req->masterId() < system->maxMasters());
1194        misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
1195        pkt->req->incAccessDepth();
1196        if (missCount) {
1197            --missCount;
1198            if (missCount == 0)
1199                exitSimLoop("A cache reached the maximum miss count");
1200        }
1201    }
1202    void incHitCount(PacketPtr pkt)
1203    {
1204        assert(pkt->req->masterId() < system->maxMasters());
1205        hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
1206
1207    }
1208
1209    /**
1210     * Checks if the cache is coalescing writes
1211     *
1212     * @return True if the cache is coalescing writes
1213     */
1214    bool coalesce() const;
1215
1216
1217    /**
1218     * Cache block visitor that writes back dirty cache blocks using
1219     * functional writes.
1220     */
1221    void writebackVisitor(CacheBlk &blk);
1222
1223    /**
1224     * Cache block visitor that invalidates all blocks in the cache.
1225     *
1226     * @warn Dirty cache lines will not be written back to memory.
1227     */
1228    void invalidateVisitor(CacheBlk &blk);
1229
1230    /**
1231     * Take an MSHR, turn it into a suitable downstream packet, and
1232     * send it out. This construct allows a queue entry to choose a suitable
1233     * approach based on its type.
1234     *
1235     * @param mshr The MSHR to turn into a packet and send
1236     * @return True if the port is waiting for a retry
1237     */
1238    virtual bool sendMSHRQueuePacket(MSHR* mshr);
1239
1240    /**
1241     * Similar to sendMSHR, but for a write-queue entry
1242     * instead. Create the packet, and send it, and if successful also
1243     * mark the entry in service.
1244     *
1245     * @param wq_entry The write-queue entry to turn into a packet and send
1246     * @return True if the port is waiting for a retry
1247     */
1248    bool sendWriteQueuePacket(WriteQueueEntry* wq_entry);
1249
1250    /**
1251     * Serialize the state of the caches
1252     *
1253     * We currently don't support checkpointing cache state, so this panics.
1254     */
1255    void serialize(CheckpointOut &cp) const override;
1256    void unserialize(CheckpointIn &cp) override;
1257};
1258
1259/**
1260 * The write allocator inspects write packets and detects streaming
1261 * patterns. The write allocator supports a single stream where writes
1262 * are expected to access consecutive locations and keeps track of
1263 * size of the area covered by the concecutive writes in byteCount.
1264 *
1265 * 1) When byteCount has surpassed the coallesceLimit the mode
1266 * switches from ALLOCATE to COALESCE where writes should be delayed
1267 * until the whole block is written at which point a single packet
1268 * (whole line write) can service them.
1269 *
1270 * 2) When byteCount has also exceeded the noAllocateLimit (whole
1271 * line) we switch to NO_ALLOCATE when writes should not allocate in
1272 * the cache but rather send a whole line write to the memory below.
1273 */
1274class WriteAllocator : public SimObject {
1275  public:
1276    WriteAllocator(const WriteAllocatorParams *p) :
1277        SimObject(p),
1278        coalesceLimit(p->coalesce_limit * p->block_size),
1279        noAllocateLimit(p->no_allocate_limit * p->block_size),
1280        delayThreshold(p->delay_threshold)
1281    {
1282        reset();
1283    }
1284
1285    /**
1286     * Should writes be coalesced? This is true if the mode is set to
1287     * NO_ALLOCATE.
1288     *
1289     * @return return true if the cache should coalesce writes.
1290     */
1291    bool coalesce() const {
1292        return mode != WriteMode::ALLOCATE;
1293    }
1294
1295    /**
1296     * Should writes allocate?
1297     *
1298     * @return return true if the cache should not allocate for writes.
1299     */
1300    bool allocate() const {
1301        return mode != WriteMode::NO_ALLOCATE;
1302    }
1303
1304    /**
1305     * Reset the write allocator state, meaning that it allocates for
1306     * writes and has not recorded any information about qualifying
1307     * writes that might trigger a switch to coalescing and later no
1308     * allocation.
1309     */
1310    void reset() {
1311        mode = WriteMode::ALLOCATE;
1312        byteCount = 0;
1313        nextAddr = 0;
1314    }
1315
1316    /**
1317     * Access whether we need to delay the current write.
1318     *
1319     * @param blk_addr The block address the packet writes to
1320     * @return true if the current packet should be delayed
1321     */
1322    bool delay(Addr blk_addr) {
1323        if (delayCtr[blk_addr] > 0) {
1324            --delayCtr[blk_addr];
1325            return true;
1326        } else {
1327            return false;
1328        }
1329    }
1330
1331    /**
1332     * Clear delay counter for the input block
1333     *
1334     * @param blk_addr The accessed cache block
1335     */
1336    void resetDelay(Addr blk_addr) {
1337        delayCtr.erase(blk_addr);
1338    }
1339
1340    /**
1341     * Update the write mode based on the current write
1342     * packet. This method compares the packet's address with any
1343     * current stream, and updates the tracking and the mode
1344     * accordingly.
1345     *
1346     * @param write_addr Start address of the write request
1347     * @param write_size Size of the write request
1348     * @param blk_addr The block address that this packet writes to
1349     */
1350    void updateMode(Addr write_addr, unsigned write_size, Addr blk_addr);
1351
1352  private:
1353    /**
1354     * The current mode for write coalescing and allocation, either
1355     * normal operation (ALLOCATE), write coalescing (COALESCE), or
1356     * write coalescing without allocation (NO_ALLOCATE).
1357     */
1358    enum class WriteMode : char {
1359        ALLOCATE,
1360        COALESCE,
1361        NO_ALLOCATE,
1362    };
1363    WriteMode mode;
1364
1365    /** Address to match writes against to detect streams. */
1366    Addr nextAddr;
1367
1368    /**
1369     * Bytes written contiguously. Saturating once we no longer
1370     * allocate.
1371     */
1372    uint32_t byteCount;
1373
1374    /**
1375     * Limits for when to switch between the different write modes.
1376     */
1377    const uint32_t coalesceLimit;
1378    const uint32_t noAllocateLimit;
1379    /**
1380     * The number of times the allocator will delay an WriteReq MSHR.
1381     */
1382    const uint32_t delayThreshold;
1383
1384    /**
1385     * Keep track of the number of times the allocator has delayed an
1386     * WriteReq MSHR.
1387     */
1388    std::unordered_map<Addr, Counter> delayCtr;
1389};
1390
1391#endif //__MEM_CACHE_BASE_HH__
1392