base.hh revision 13948:f8666d4d5855
1/* 2 * Copyright (c) 2012-2013, 2015-2016, 2018 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2003-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Erik Hallnor 41 * Steve Reinhardt 42 * Ron Dreslinski 43 * Andreas Hansson 44 * Nikos Nikoleris 45 */ 46 47/** 48 * @file 49 * Declares a basic cache interface BaseCache. 50 */ 51 52#ifndef __MEM_CACHE_BASE_HH__ 53#define __MEM_CACHE_BASE_HH__ 54 55#include <cassert> 56#include <cstdint> 57#include <string> 58 59#include "base/addr_range.hh" 60#include "base/statistics.hh" 61#include "base/trace.hh" 62#include "base/types.hh" 63#include "debug/Cache.hh" 64#include "debug/CachePort.hh" 65#include "enums/Clusivity.hh" 66#include "mem/cache/cache_blk.hh" 67#include "mem/cache/compressors/base.hh" 68#include "mem/cache/mshr_queue.hh" 69#include "mem/cache/tags/base.hh" 70#include "mem/cache/write_queue.hh" 71#include "mem/cache/write_queue_entry.hh" 72#include "mem/packet.hh" 73#include "mem/packet_queue.hh" 74#include "mem/qport.hh" 75#include "mem/request.hh" 76#include "params/WriteAllocator.hh" 77#include "sim/clocked_object.hh" 78#include "sim/eventq.hh" 79#include "sim/probe/probe.hh" 80#include "sim/serialize.hh" 81#include "sim/sim_exit.hh" 82#include "sim/system.hh" 83 84class BaseMasterPort; 85class BasePrefetcher; 86class BaseSlavePort; 87class MSHR; 88class MasterPort; 89class QueueEntry; 90struct BaseCacheParams; 91 92/** 93 * A basic cache interface. Implements some common functions for speed. 94 */ 95class BaseCache : public ClockedObject 96{ 97 protected: 98 /** 99 * Indexes to enumerate the MSHR queues. 100 */ 101 enum MSHRQueueIndex { 102 MSHRQueue_MSHRs, 103 MSHRQueue_WriteBuffer 104 }; 105 106 public: 107 /** 108 * Reasons for caches to be blocked. 109 */ 110 enum BlockedCause { 111 Blocked_NoMSHRs = MSHRQueue_MSHRs, 112 Blocked_NoWBBuffers = MSHRQueue_WriteBuffer, 113 Blocked_NoTargets, 114 NUM_BLOCKED_CAUSES 115 }; 116 117 protected: 118 119 /** 120 * A cache master port is used for the memory-side port of the 121 * cache, and in addition to the basic timing port that only sends 122 * response packets through a transmit list, it also offers the 123 * ability to schedule and send request packets (requests & 124 * writebacks). The send event is scheduled through schedSendEvent, 125 * and the sendDeferredPacket of the timing port is modified to 126 * consider both the transmit list and the requests from the MSHR. 127 */ 128 class CacheMasterPort : public QueuedMasterPort 129 { 130 131 public: 132 133 /** 134 * Schedule a send of a request packet (from the MSHR). Note 135 * that we could already have a retry outstanding. 136 */ 137 void schedSendEvent(Tick time) 138 { 139 DPRINTF(CachePort, "Scheduling send event at %llu\n", time); 140 reqQueue.schedSendEvent(time); 141 } 142 143 protected: 144 145 CacheMasterPort(const std::string &_name, BaseCache *_cache, 146 ReqPacketQueue &_reqQueue, 147 SnoopRespPacketQueue &_snoopRespQueue) : 148 QueuedMasterPort(_name, _cache, _reqQueue, _snoopRespQueue) 149 { } 150 151 /** 152 * Memory-side port always snoops. 153 * 154 * @return always true 155 */ 156 virtual bool isSnooping() const { return true; } 157 }; 158 159 /** 160 * Override the default behaviour of sendDeferredPacket to enable 161 * the memory-side cache port to also send requests based on the 162 * current MSHR status. This queue has a pointer to our specific 163 * cache implementation and is used by the MemSidePort. 164 */ 165 class CacheReqPacketQueue : public ReqPacketQueue 166 { 167 168 protected: 169 170 BaseCache &cache; 171 SnoopRespPacketQueue &snoopRespQueue; 172 173 public: 174 175 CacheReqPacketQueue(BaseCache &cache, MasterPort &port, 176 SnoopRespPacketQueue &snoop_resp_queue, 177 const std::string &label) : 178 ReqPacketQueue(cache, port, label), cache(cache), 179 snoopRespQueue(snoop_resp_queue) { } 180 181 /** 182 * Override the normal sendDeferredPacket and do not only 183 * consider the transmit list (used for responses), but also 184 * requests. 185 */ 186 virtual void sendDeferredPacket(); 187 188 /** 189 * Check if there is a conflicting snoop response about to be 190 * send out, and if so simply stall any requests, and schedule 191 * a send event at the same time as the next snoop response is 192 * being sent out. 193 * 194 * @param pkt The packet to check for conflicts against. 195 */ 196 bool checkConflictingSnoop(const PacketPtr pkt) 197 { 198 if (snoopRespQueue.checkConflict(pkt, cache.blkSize)) { 199 DPRINTF(CachePort, "Waiting for snoop response to be " 200 "sent\n"); 201 Tick when = snoopRespQueue.deferredPacketReadyTime(); 202 schedSendEvent(when); 203 return true; 204 } 205 return false; 206 } 207 }; 208 209 210 /** 211 * The memory-side port extends the base cache master port with 212 * access functions for functional, atomic and timing snoops. 213 */ 214 class MemSidePort : public CacheMasterPort 215 { 216 private: 217 218 /** The cache-specific queue. */ 219 CacheReqPacketQueue _reqQueue; 220 221 SnoopRespPacketQueue _snoopRespQueue; 222 223 // a pointer to our specific cache implementation 224 BaseCache *cache; 225 226 protected: 227 228 virtual void recvTimingSnoopReq(PacketPtr pkt); 229 230 virtual bool recvTimingResp(PacketPtr pkt); 231 232 virtual Tick recvAtomicSnoop(PacketPtr pkt); 233 234 virtual void recvFunctionalSnoop(PacketPtr pkt); 235 236 public: 237 238 MemSidePort(const std::string &_name, BaseCache *_cache, 239 const std::string &_label); 240 }; 241 242 /** 243 * A cache slave port is used for the CPU-side port of the cache, 244 * and it is basically a simple timing port that uses a transmit 245 * list for responses to the CPU (or connected master). In 246 * addition, it has the functionality to block the port for 247 * incoming requests. If blocked, the port will issue a retry once 248 * unblocked. 249 */ 250 class CacheSlavePort : public QueuedSlavePort 251 { 252 253 public: 254 255 /** Do not accept any new requests. */ 256 void setBlocked(); 257 258 /** Return to normal operation and accept new requests. */ 259 void clearBlocked(); 260 261 bool isBlocked() const { return blocked; } 262 263 protected: 264 265 CacheSlavePort(const std::string &_name, BaseCache *_cache, 266 const std::string &_label); 267 268 /** A normal packet queue used to store responses. */ 269 RespPacketQueue queue; 270 271 bool blocked; 272 273 bool mustSendRetry; 274 275 private: 276 277 void processSendRetry(); 278 279 EventFunctionWrapper sendRetryEvent; 280 281 }; 282 283 /** 284 * The CPU-side port extends the base cache slave port with access 285 * functions for functional, atomic and timing requests. 286 */ 287 class CpuSidePort : public CacheSlavePort 288 { 289 private: 290 291 // a pointer to our specific cache implementation 292 BaseCache *cache; 293 294 protected: 295 virtual bool recvTimingSnoopResp(PacketPtr pkt) override; 296 297 virtual bool tryTiming(PacketPtr pkt) override; 298 299 virtual bool recvTimingReq(PacketPtr pkt) override; 300 301 virtual Tick recvAtomic(PacketPtr pkt) override; 302 303 virtual void recvFunctional(PacketPtr pkt) override; 304 305 virtual AddrRangeList getAddrRanges() const override; 306 307 public: 308 309 CpuSidePort(const std::string &_name, BaseCache *_cache, 310 const std::string &_label); 311 312 }; 313 314 CpuSidePort cpuSidePort; 315 MemSidePort memSidePort; 316 317 protected: 318 319 /** Miss status registers */ 320 MSHRQueue mshrQueue; 321 322 /** Write/writeback buffer */ 323 WriteQueue writeBuffer; 324 325 /** Tag and data Storage */ 326 BaseTags *tags; 327 328 /** Compression method being used. */ 329 BaseCacheCompressor* compressor; 330 331 /** Prefetcher */ 332 BasePrefetcher *prefetcher; 333 334 /** To probe when a cache hit occurs */ 335 ProbePointArg<PacketPtr> *ppHit; 336 337 /** To probe when a cache miss occurs */ 338 ProbePointArg<PacketPtr> *ppMiss; 339 340 /** To probe when a cache fill occurs */ 341 ProbePointArg<PacketPtr> *ppFill; 342 343 /** 344 * The writeAllocator drive optimizations for streaming writes. 345 * It first determines whether a WriteReq MSHR should be delayed, 346 * thus ensuring that we wait longer in cases when we are write 347 * coalescing and allowing all the bytes of the line to be written 348 * before the MSHR packet is sent downstream. This works in unison 349 * with the tracking in the MSHR to check if the entire line is 350 * written. The write mode also affects the behaviour on filling 351 * any whole-line writes. Normally the cache allocates the line 352 * when receiving the InvalidateResp, but after seeing enough 353 * consecutive lines we switch to using the tempBlock, and thus 354 * end up not allocating the line, and instead turning the 355 * whole-line write into a writeback straight away. 356 */ 357 WriteAllocator * const writeAllocator; 358 359 /** 360 * Temporary cache block for occasional transitory use. We use 361 * the tempBlock to fill when allocation fails (e.g., when there 362 * is an outstanding request that accesses the victim block) or 363 * when we want to avoid allocation (e.g., exclusive caches) 364 */ 365 TempCacheBlk *tempBlock; 366 367 /** 368 * Upstream caches need this packet until true is returned, so 369 * hold it for deletion until a subsequent call 370 */ 371 std::unique_ptr<Packet> pendingDelete; 372 373 /** 374 * Mark a request as in service (sent downstream in the memory 375 * system), effectively making this MSHR the ordering point. 376 */ 377 void markInService(MSHR *mshr, bool pending_modified_resp) 378 { 379 bool wasFull = mshrQueue.isFull(); 380 mshrQueue.markInService(mshr, pending_modified_resp); 381 382 if (wasFull && !mshrQueue.isFull()) { 383 clearBlocked(Blocked_NoMSHRs); 384 } 385 } 386 387 void markInService(WriteQueueEntry *entry) 388 { 389 bool wasFull = writeBuffer.isFull(); 390 writeBuffer.markInService(entry); 391 392 if (wasFull && !writeBuffer.isFull()) { 393 clearBlocked(Blocked_NoWBBuffers); 394 } 395 } 396 397 /** 398 * Determine whether we should allocate on a fill or not. If this 399 * cache is mostly inclusive with regards to the upstream cache(s) 400 * we always allocate (for any non-forwarded and cacheable 401 * requests). In the case of a mostly exclusive cache, we allocate 402 * on fill if the packet did not come from a cache, thus if we: 403 * are dealing with a whole-line write (the latter behaves much 404 * like a writeback), the original target packet came from a 405 * non-caching source, or if we are performing a prefetch or LLSC. 406 * 407 * @param cmd Command of the incoming requesting packet 408 * @return Whether we should allocate on the fill 409 */ 410 inline bool allocOnFill(MemCmd cmd) const 411 { 412 return clusivity == Enums::mostly_incl || 413 cmd == MemCmd::WriteLineReq || 414 cmd == MemCmd::ReadReq || 415 cmd == MemCmd::WriteReq || 416 cmd.isPrefetch() || 417 cmd.isLLSC(); 418 } 419 420 /** 421 * Regenerate block address using tags. 422 * Block address regeneration depends on whether we're using a temporary 423 * block or not. 424 * 425 * @param blk The block to regenerate address. 426 * @return The block's address. 427 */ 428 Addr regenerateBlkAddr(CacheBlk* blk); 429 430 /** 431 * Calculate latency of accesses that only touch the tag array. 432 * @sa calculateAccessLatency 433 * 434 * @param delay The delay until the packet's metadata is present. 435 * @param lookup_lat Latency of the respective tag lookup. 436 * @return The number of ticks that pass due to a tag-only access. 437 */ 438 Cycles calculateTagOnlyLatency(const uint32_t delay, 439 const Cycles lookup_lat) const; 440 /** 441 * Calculate access latency in ticks given a tag lookup latency, and 442 * whether access was a hit or miss. 443 * 444 * @param blk The cache block that was accessed. 445 * @param delay The delay until the packet's metadata is present. 446 * @param lookup_lat Latency of the respective tag lookup. 447 * @return The number of ticks that pass due to a block access. 448 */ 449 Cycles calculateAccessLatency(const CacheBlk* blk, const uint32_t delay, 450 const Cycles lookup_lat) const; 451 452 /** 453 * Does all the processing necessary to perform the provided request. 454 * @param pkt The memory request to perform. 455 * @param blk The cache block to be updated. 456 * @param lat The latency of the access. 457 * @return Boolean indicating whether the request was satisfied. 458 */ 459 virtual bool access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat); 460 461 /* 462 * Handle a timing request that hit in the cache 463 * 464 * @param ptk The request packet 465 * @param blk The referenced block 466 * @param request_time The tick at which the block lookup is compete 467 */ 468 virtual void handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, 469 Tick request_time); 470 471 /* 472 * Handle a timing request that missed in the cache 473 * 474 * Implementation specific handling for different cache 475 * implementations 476 * 477 * @param ptk The request packet 478 * @param blk The referenced block 479 * @param forward_time The tick at which we can process dependent requests 480 * @param request_time The tick at which the block lookup is compete 481 */ 482 virtual void handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk, 483 Tick forward_time, 484 Tick request_time) = 0; 485 486 /* 487 * Handle a timing request that missed in the cache 488 * 489 * Common functionality across different cache implementations 490 * 491 * @param ptk The request packet 492 * @param blk The referenced block 493 * @param mshr Any existing mshr for the referenced cache block 494 * @param forward_time The tick at which we can process dependent requests 495 * @param request_time The tick at which the block lookup is compete 496 */ 497 void handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk, 498 Tick forward_time, Tick request_time); 499 500 /** 501 * Performs the access specified by the request. 502 * @param pkt The request to perform. 503 */ 504 virtual void recvTimingReq(PacketPtr pkt); 505 506 /** 507 * Handling the special case of uncacheable write responses to 508 * make recvTimingResp less cluttered. 509 */ 510 void handleUncacheableWriteResp(PacketPtr pkt); 511 512 /** 513 * Service non-deferred MSHR targets using the received response 514 * 515 * Iterates through the list of targets that can be serviced with 516 * the current response. 517 * 518 * @param mshr The MSHR that corresponds to the reponse 519 * @param pkt The response packet 520 * @param blk The reference block 521 */ 522 virtual void serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt, 523 CacheBlk *blk) = 0; 524 525 /** 526 * Handles a response (cache line fill/write ack) from the bus. 527 * @param pkt The response packet 528 */ 529 virtual void recvTimingResp(PacketPtr pkt); 530 531 /** 532 * Snoops bus transactions to maintain coherence. 533 * @param pkt The current bus transaction. 534 */ 535 virtual void recvTimingSnoopReq(PacketPtr pkt) = 0; 536 537 /** 538 * Handle a snoop response. 539 * @param pkt Snoop response packet 540 */ 541 virtual void recvTimingSnoopResp(PacketPtr pkt) = 0; 542 543 /** 544 * Handle a request in atomic mode that missed in this cache 545 * 546 * Creates a downstream request, sends it to the memory below and 547 * handles the response. As we are in atomic mode all operations 548 * are performed immediately. 549 * 550 * @param pkt The packet with the requests 551 * @param blk The referenced block 552 * @return Cycles for handling the request 553 */ 554 virtual Cycles handleAtomicReqMiss(PacketPtr pkt, CacheBlk *&blk) = 0; 555 556 /** 557 * Performs the access specified by the request. 558 * @param pkt The request to perform. 559 * @return The number of ticks required for the access. 560 */ 561 virtual Tick recvAtomic(PacketPtr pkt); 562 563 /** 564 * Snoop for the provided request in the cache and return the estimated 565 * time taken. 566 * @param pkt The memory request to snoop 567 * @return The number of ticks required for the snoop. 568 */ 569 virtual Tick recvAtomicSnoop(PacketPtr pkt) = 0; 570 571 /** 572 * Performs the access specified by the request. 573 * 574 * @param pkt The request to perform. 575 * @param fromCpuSide from the CPU side port or the memory side port 576 */ 577 virtual void functionalAccess(PacketPtr pkt, bool from_cpu_side); 578 579 /** 580 * Handle doing the Compare and Swap function for SPARC. 581 */ 582 void cmpAndSwap(CacheBlk *blk, PacketPtr pkt); 583 584 /** 585 * Return the next queue entry to service, either a pending miss 586 * from the MSHR queue, a buffered write from the write buffer, or 587 * something from the prefetcher. This function is responsible 588 * for prioritizing among those sources on the fly. 589 */ 590 QueueEntry* getNextQueueEntry(); 591 592 /** 593 * Insert writebacks into the write buffer 594 * 595 * @param pkt The writeback packet. 596 * @param forward_time Tick to which the writeback should be scheduled. 597 */ 598 virtual void doWritebacks(PacketPtr pkt, Tick forward_time) = 0; 599 600 /** 601 * Send writebacks down the memory hierarchy in atomic mode. 602 * 603 * @param pkt The writeback packet. 604 */ 605 virtual void doWritebacksAtomic(PacketPtr pkt) = 0; 606 607 /** 608 * Create an appropriate downstream bus request packet. 609 * 610 * Creates a new packet with the request to be send to the memory 611 * below, or nullptr if the current request in cpu_pkt should just 612 * be forwarded on. 613 * 614 * @param cpu_pkt The miss packet that needs to be satisfied. 615 * @param blk The referenced block, can be nullptr. 616 * @param needs_writable Indicates that the block must be writable 617 * even if the request in cpu_pkt doesn't indicate that. 618 * @param is_whole_line_write True if there are writes for the 619 * whole line 620 * @return A packet send to the memory below 621 */ 622 virtual PacketPtr createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk, 623 bool needs_writable, 624 bool is_whole_line_write) const = 0; 625 626 /** 627 * Determine if clean lines should be written back or not. In 628 * cases where a downstream cache is mostly inclusive we likely 629 * want it to act as a victim cache also for lines that have not 630 * been modified. Hence, we cannot simply drop the line (or send a 631 * clean evict), but rather need to send the actual data. 632 */ 633 const bool writebackClean; 634 635 /** 636 * Writebacks from the tempBlock, resulting on the response path 637 * in atomic mode, must happen after the call to recvAtomic has 638 * finished (for the right ordering of the packets). We therefore 639 * need to hold on to the packets, and have a method and an event 640 * to send them. 641 */ 642 PacketPtr tempBlockWriteback; 643 644 /** 645 * Send the outstanding tempBlock writeback. To be called after 646 * recvAtomic finishes in cases where the block we filled is in 647 * fact the tempBlock, and now needs to be written back. 648 */ 649 void writebackTempBlockAtomic() { 650 assert(tempBlockWriteback != nullptr); 651 doWritebacksAtomic(tempBlockWriteback); 652 tempBlockWriteback = nullptr; 653 } 654 655 /** 656 * An event to writeback the tempBlock after recvAtomic 657 * finishes. To avoid other calls to recvAtomic getting in 658 * between, we create this event with a higher priority. 659 */ 660 EventFunctionWrapper writebackTempBlockAtomicEvent; 661 662 /** 663 * When a block is overwriten, its compression information must be updated, 664 * and it may need to be recompressed. If the compression size changes, the 665 * block may either become smaller, in which case there is no side effect, 666 * or bigger (data expansion; fat write), in which case the block might not 667 * fit in its current location anymore. If that happens, there are usually 668 * two options to be taken: 669 * 670 * - The co-allocated blocks must be evicted to make room for this block. 671 * Simpler, but ignores replacement data. 672 * - The block itself is moved elsewhere (used in policies where the CF 673 * determines the location of the block). 674 * 675 * This implementation uses the first approach. 676 * 677 * Notice that this is only called for writebacks, which means that L1 678 * caches (which see regular Writes), do not support compression. 679 * @sa CompressedTags 680 * 681 * @param blk The block to be overwriten. 682 * @param data A pointer to the data to be compressed (blk's new data). 683 * @param delay The delay until the packet's metadata is present. 684 * @param tag_latency Latency to access the tags of the replacement victim. 685 * @return Whether operation is successful or not. 686 */ 687 bool updateCompressionData(CacheBlk *blk, const uint64_t* data, 688 uint32_t delay, Cycles tag_latency); 689 690 /** 691 * Perform any necessary updates to the block and perform any data 692 * exchange between the packet and the block. The flags of the 693 * packet are also set accordingly. 694 * 695 * @param pkt Request packet from upstream that hit a block 696 * @param blk Cache block that the packet hit 697 * @param deferred_response Whether this request originally missed 698 * @param pending_downgrade Whether the writable flag is to be removed 699 */ 700 virtual void satisfyRequest(PacketPtr pkt, CacheBlk *blk, 701 bool deferred_response = false, 702 bool pending_downgrade = false); 703 704 /** 705 * Maintain the clusivity of this cache by potentially 706 * invalidating a block. This method works in conjunction with 707 * satisfyRequest, but is separate to allow us to handle all MSHR 708 * targets before potentially dropping a block. 709 * 710 * @param from_cache Whether we have dealt with a packet from a cache 711 * @param blk The block that should potentially be dropped 712 */ 713 void maintainClusivity(bool from_cache, CacheBlk *blk); 714 715 /** 716 * Handle a fill operation caused by a received packet. 717 * 718 * Populates a cache block and handles all outstanding requests for the 719 * satisfied fill request. This version takes two memory requests. One 720 * contains the fill data, the other is an optional target to satisfy. 721 * 722 * @param pkt The memory request with the fill data. 723 * @param blk The cache block if it already exists. 724 * @param allocate Whether to allocate a block or use the temp block 725 * @return Pointer to the new cache block. 726 */ 727 CacheBlk *handleFill(PacketPtr pkt, CacheBlk *blk, bool allocate); 728 729 /** 730 * Allocate a new block for the packet's data. The victim block might be 731 * valid, and thus the necessary writebacks are done. May return nullptr 732 * if there are no replaceable blocks. If a replaceable block is found, 733 * it inserts the new block in its place. The new block, however, is not 734 * set as valid yet. 735 * 736 * @param pkt Packet holding the address to update 737 * @param tag_latency Latency to access the tags of the replacement victim. 738 * @return the allocated block 739 */ 740 CacheBlk *allocateBlock(const PacketPtr pkt, Cycles tag_latency); 741 742 /** 743 * Evict a cache block. 744 * 745 * Performs a writeback if necesssary and invalidates the block 746 * 747 * @param blk Block to invalidate 748 * @return A packet with the writeback, can be nullptr 749 */ 750 M5_NODISCARD virtual PacketPtr evictBlock(CacheBlk *blk) = 0; 751 752 /** 753 * Evict a cache block. 754 * 755 * Performs a writeback if necesssary and invalidates the block 756 * 757 * @param blk Block to invalidate 758 * @param forward_time Tick to which the writeback should be scheduled if 759 * in timing mode. 760 */ 761 void evictBlock(CacheBlk *blk, Tick forward_time); 762 763 /** 764 * Invalidate a cache block. 765 * 766 * @param blk Block to invalidate 767 */ 768 void invalidateBlock(CacheBlk *blk); 769 770 /** 771 * Create a writeback request for the given block. 772 * 773 * @param blk The block to writeback. 774 * @return The writeback request for the block. 775 */ 776 PacketPtr writebackBlk(CacheBlk *blk); 777 778 /** 779 * Create a writeclean request for the given block. 780 * 781 * Creates a request that writes the block to the cache below 782 * without evicting the block from the current cache. 783 * 784 * @param blk The block to write clean. 785 * @param dest The destination of the write clean operation. 786 * @param id Use the given packet id for the write clean operation. 787 * @return The generated write clean packet. 788 */ 789 PacketPtr writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id); 790 791 /** 792 * Write back dirty blocks in the cache using functional accesses. 793 */ 794 virtual void memWriteback() override; 795 796 /** 797 * Invalidates all blocks in the cache. 798 * 799 * @warn Dirty cache lines will not be written back to 800 * memory. Make sure to call functionalWriteback() first if you 801 * want the to write them to memory. 802 */ 803 virtual void memInvalidate() override; 804 805 /** 806 * Determine if there are any dirty blocks in the cache. 807 * 808 * @return true if at least one block is dirty, false otherwise. 809 */ 810 bool isDirty() const; 811 812 /** 813 * Determine if an address is in the ranges covered by this 814 * cache. This is useful to filter snoops. 815 * 816 * @param addr Address to check against 817 * 818 * @return If the address in question is in range 819 */ 820 bool inRange(Addr addr) const; 821 822 /** 823 * Find next request ready time from among possible sources. 824 */ 825 Tick nextQueueReadyTime() const; 826 827 /** Block size of this cache */ 828 const unsigned blkSize; 829 830 /** 831 * The latency of tag lookup of a cache. It occurs when there is 832 * an access to the cache. 833 */ 834 const Cycles lookupLatency; 835 836 /** 837 * The latency of data access of a cache. It occurs when there is 838 * an access to the cache. 839 */ 840 const Cycles dataLatency; 841 842 /** 843 * This is the forward latency of the cache. It occurs when there 844 * is a cache miss and a request is forwarded downstream, in 845 * particular an outbound miss. 846 */ 847 const Cycles forwardLatency; 848 849 /** The latency to fill a cache block */ 850 const Cycles fillLatency; 851 852 /** 853 * The latency of sending reponse to its upper level cache/core on 854 * a linefill. The responseLatency parameter captures this 855 * latency. 856 */ 857 const Cycles responseLatency; 858 859 /** 860 * Whether tags and data are accessed sequentially. 861 */ 862 const bool sequentialAccess; 863 864 /** The number of targets for each MSHR. */ 865 const int numTarget; 866 867 /** Do we forward snoops from mem side port through to cpu side port? */ 868 bool forwardSnoops; 869 870 /** 871 * Clusivity with respect to the upstream cache, determining if we 872 * fill into both this cache and the cache above on a miss. Note 873 * that we currently do not support strict clusivity policies. 874 */ 875 const Enums::Clusivity clusivity; 876 877 /** 878 * Is this cache read only, for example the instruction cache, or 879 * table-walker cache. A cache that is read only should never see 880 * any writes, and should never get any dirty data (and hence 881 * never have to do any writebacks). 882 */ 883 const bool isReadOnly; 884 885 /** 886 * Bit vector of the blocking reasons for the access path. 887 * @sa #BlockedCause 888 */ 889 uint8_t blocked; 890 891 /** Increasing order number assigned to each incoming request. */ 892 uint64_t order; 893 894 /** Stores time the cache blocked for statistics. */ 895 Cycles blockedCycle; 896 897 /** Pointer to the MSHR that has no targets. */ 898 MSHR *noTargetMSHR; 899 900 /** The number of misses to trigger an exit event. */ 901 Counter missCount; 902 903 /** 904 * The address range to which the cache responds on the CPU side. 905 * Normally this is all possible memory addresses. */ 906 const AddrRangeList addrRanges; 907 908 public: 909 /** System we are currently operating in. */ 910 System *system; 911 912 // Statistics 913 /** 914 * @addtogroup CacheStatistics 915 * @{ 916 */ 917 918 /** Number of hits per thread for each type of command. 919 @sa Packet::Command */ 920 Stats::Vector hits[MemCmd::NUM_MEM_CMDS]; 921 /** Number of hits for demand accesses. */ 922 Stats::Formula demandHits; 923 /** Number of hit for all accesses. */ 924 Stats::Formula overallHits; 925 926 /** Number of misses per thread for each type of command. 927 @sa Packet::Command */ 928 Stats::Vector misses[MemCmd::NUM_MEM_CMDS]; 929 /** Number of misses for demand accesses. */ 930 Stats::Formula demandMisses; 931 /** Number of misses for all accesses. */ 932 Stats::Formula overallMisses; 933 934 /** 935 * Total number of cycles per thread/command spent waiting for a miss. 936 * Used to calculate the average miss latency. 937 */ 938 Stats::Vector missLatency[MemCmd::NUM_MEM_CMDS]; 939 /** Total number of cycles spent waiting for demand misses. */ 940 Stats::Formula demandMissLatency; 941 /** Total number of cycles spent waiting for all misses. */ 942 Stats::Formula overallMissLatency; 943 944 /** The number of accesses per command and thread. */ 945 Stats::Formula accesses[MemCmd::NUM_MEM_CMDS]; 946 /** The number of demand accesses. */ 947 Stats::Formula demandAccesses; 948 /** The number of overall accesses. */ 949 Stats::Formula overallAccesses; 950 951 /** The miss rate per command and thread. */ 952 Stats::Formula missRate[MemCmd::NUM_MEM_CMDS]; 953 /** The miss rate of all demand accesses. */ 954 Stats::Formula demandMissRate; 955 /** The miss rate for all accesses. */ 956 Stats::Formula overallMissRate; 957 958 /** The average miss latency per command and thread. */ 959 Stats::Formula avgMissLatency[MemCmd::NUM_MEM_CMDS]; 960 /** The average miss latency for demand misses. */ 961 Stats::Formula demandAvgMissLatency; 962 /** The average miss latency for all misses. */ 963 Stats::Formula overallAvgMissLatency; 964 965 /** The total number of cycles blocked for each blocked cause. */ 966 Stats::Vector blocked_cycles; 967 /** The number of times this cache blocked for each blocked cause. */ 968 Stats::Vector blocked_causes; 969 970 /** The average number of cycles blocked for each blocked cause. */ 971 Stats::Formula avg_blocked; 972 973 /** The number of times a HW-prefetched block is evicted w/o reference. */ 974 Stats::Scalar unusedPrefetches; 975 976 /** Number of blocks written back per thread. */ 977 Stats::Vector writebacks; 978 979 /** Number of misses that hit in the MSHRs per command and thread. */ 980 Stats::Vector mshr_hits[MemCmd::NUM_MEM_CMDS]; 981 /** Demand misses that hit in the MSHRs. */ 982 Stats::Formula demandMshrHits; 983 /** Total number of misses that hit in the MSHRs. */ 984 Stats::Formula overallMshrHits; 985 986 /** Number of misses that miss in the MSHRs, per command and thread. */ 987 Stats::Vector mshr_misses[MemCmd::NUM_MEM_CMDS]; 988 /** Demand misses that miss in the MSHRs. */ 989 Stats::Formula demandMshrMisses; 990 /** Total number of misses that miss in the MSHRs. */ 991 Stats::Formula overallMshrMisses; 992 993 /** Number of misses that miss in the MSHRs, per command and thread. */ 994 Stats::Vector mshr_uncacheable[MemCmd::NUM_MEM_CMDS]; 995 /** Total number of misses that miss in the MSHRs. */ 996 Stats::Formula overallMshrUncacheable; 997 998 /** Total cycle latency of each MSHR miss, per command and thread. */ 999 Stats::Vector mshr_miss_latency[MemCmd::NUM_MEM_CMDS]; 1000 /** Total cycle latency of demand MSHR misses. */ 1001 Stats::Formula demandMshrMissLatency; 1002 /** Total cycle latency of overall MSHR misses. */ 1003 Stats::Formula overallMshrMissLatency; 1004 1005 /** Total cycle latency of each MSHR miss, per command and thread. */ 1006 Stats::Vector mshr_uncacheable_lat[MemCmd::NUM_MEM_CMDS]; 1007 /** Total cycle latency of overall MSHR misses. */ 1008 Stats::Formula overallMshrUncacheableLatency; 1009 1010#if 0 1011 /** The total number of MSHR accesses per command and thread. */ 1012 Stats::Formula mshrAccesses[MemCmd::NUM_MEM_CMDS]; 1013 /** The total number of demand MSHR accesses. */ 1014 Stats::Formula demandMshrAccesses; 1015 /** The total number of MSHR accesses. */ 1016 Stats::Formula overallMshrAccesses; 1017#endif 1018 1019 /** The miss rate in the MSHRs pre command and thread. */ 1020 Stats::Formula mshrMissRate[MemCmd::NUM_MEM_CMDS]; 1021 /** The demand miss rate in the MSHRs. */ 1022 Stats::Formula demandMshrMissRate; 1023 /** The overall miss rate in the MSHRs. */ 1024 Stats::Formula overallMshrMissRate; 1025 1026 /** The average latency of an MSHR miss, per command and thread. */ 1027 Stats::Formula avgMshrMissLatency[MemCmd::NUM_MEM_CMDS]; 1028 /** The average latency of a demand MSHR miss. */ 1029 Stats::Formula demandAvgMshrMissLatency; 1030 /** The average overall latency of an MSHR miss. */ 1031 Stats::Formula overallAvgMshrMissLatency; 1032 1033 /** The average latency of an MSHR miss, per command and thread. */ 1034 Stats::Formula avgMshrUncacheableLatency[MemCmd::NUM_MEM_CMDS]; 1035 /** The average overall latency of an MSHR miss. */ 1036 Stats::Formula overallAvgMshrUncacheableLatency; 1037 1038 /** Number of replacements of valid blocks. */ 1039 Stats::Scalar replacements; 1040 1041 /** Number of data expansions. */ 1042 Stats::Scalar dataExpansions; 1043 1044 /** 1045 * @} 1046 */ 1047 1048 /** 1049 * Register stats for this object. 1050 */ 1051 void regStats() override; 1052 1053 /** Registers probes. */ 1054 void regProbePoints() override; 1055 1056 public: 1057 BaseCache(const BaseCacheParams *p, unsigned blk_size); 1058 ~BaseCache(); 1059 1060 void init() override; 1061 1062 Port &getPort(const std::string &if_name, 1063 PortID idx=InvalidPortID) override; 1064 1065 /** 1066 * Query block size of a cache. 1067 * @return The block size 1068 */ 1069 unsigned 1070 getBlockSize() const 1071 { 1072 return blkSize; 1073 } 1074 1075 const AddrRangeList &getAddrRanges() const { return addrRanges; } 1076 1077 MSHR *allocateMissBuffer(PacketPtr pkt, Tick time, bool sched_send = true) 1078 { 1079 MSHR *mshr = mshrQueue.allocate(pkt->getBlockAddr(blkSize), blkSize, 1080 pkt, time, order++, 1081 allocOnFill(pkt->cmd)); 1082 1083 if (mshrQueue.isFull()) { 1084 setBlocked((BlockedCause)MSHRQueue_MSHRs); 1085 } 1086 1087 if (sched_send) { 1088 // schedule the send 1089 schedMemSideSendEvent(time); 1090 } 1091 1092 return mshr; 1093 } 1094 1095 void allocateWriteBuffer(PacketPtr pkt, Tick time) 1096 { 1097 // should only see writes or clean evicts here 1098 assert(pkt->isWrite() || pkt->cmd == MemCmd::CleanEvict); 1099 1100 Addr blk_addr = pkt->getBlockAddr(blkSize); 1101 1102 // If using compression, on evictions the block is decompressed and 1103 // the operation's latency is added to the payload delay. Consume 1104 // that payload delay here, meaning that the data is always stored 1105 // uncompressed in the writebuffer 1106 if (compressor) { 1107 time += pkt->payloadDelay; 1108 pkt->payloadDelay = 0; 1109 } 1110 1111 WriteQueueEntry *wq_entry = 1112 writeBuffer.findMatch(blk_addr, pkt->isSecure()); 1113 if (wq_entry && !wq_entry->inService) { 1114 DPRINTF(Cache, "Potential to merge writeback %s", pkt->print()); 1115 } 1116 1117 writeBuffer.allocate(blk_addr, blkSize, pkt, time, order++); 1118 1119 if (writeBuffer.isFull()) { 1120 setBlocked((BlockedCause)MSHRQueue_WriteBuffer); 1121 } 1122 1123 // schedule the send 1124 schedMemSideSendEvent(time); 1125 } 1126 1127 /** 1128 * Returns true if the cache is blocked for accesses. 1129 */ 1130 bool isBlocked() const 1131 { 1132 return blocked != 0; 1133 } 1134 1135 /** 1136 * Marks the access path of the cache as blocked for the given cause. This 1137 * also sets the blocked flag in the slave interface. 1138 * @param cause The reason for the cache blocking. 1139 */ 1140 void setBlocked(BlockedCause cause) 1141 { 1142 uint8_t flag = 1 << cause; 1143 if (blocked == 0) { 1144 blocked_causes[cause]++; 1145 blockedCycle = curCycle(); 1146 cpuSidePort.setBlocked(); 1147 } 1148 blocked |= flag; 1149 DPRINTF(Cache,"Blocking for cause %d, mask=%d\n", cause, blocked); 1150 } 1151 1152 /** 1153 * Marks the cache as unblocked for the given cause. This also clears the 1154 * blocked flags in the appropriate interfaces. 1155 * @param cause The newly unblocked cause. 1156 * @warning Calling this function can cause a blocked request on the bus to 1157 * access the cache. The cache must be in a state to handle that request. 1158 */ 1159 void clearBlocked(BlockedCause cause) 1160 { 1161 uint8_t flag = 1 << cause; 1162 blocked &= ~flag; 1163 DPRINTF(Cache,"Unblocking for cause %d, mask=%d\n", cause, blocked); 1164 if (blocked == 0) { 1165 blocked_cycles[cause] += curCycle() - blockedCycle; 1166 cpuSidePort.clearBlocked(); 1167 } 1168 } 1169 1170 /** 1171 * Schedule a send event for the memory-side port. If already 1172 * scheduled, this may reschedule the event at an earlier 1173 * time. When the specified time is reached, the port is free to 1174 * send either a response, a request, or a prefetch request. 1175 * 1176 * @param time The time when to attempt sending a packet. 1177 */ 1178 void schedMemSideSendEvent(Tick time) 1179 { 1180 memSidePort.schedSendEvent(time); 1181 } 1182 1183 bool inCache(Addr addr, bool is_secure) const { 1184 return tags->findBlock(addr, is_secure); 1185 } 1186 1187 bool hasBeenPrefetched(Addr addr, bool is_secure) const { 1188 CacheBlk *block = tags->findBlock(addr, is_secure); 1189 if (block) { 1190 return block->wasPrefetched(); 1191 } else { 1192 return false; 1193 } 1194 } 1195 1196 bool inMissQueue(Addr addr, bool is_secure) const { 1197 return mshrQueue.findMatch(addr, is_secure); 1198 } 1199 1200 void incMissCount(PacketPtr pkt) 1201 { 1202 assert(pkt->req->masterId() < system->maxMasters()); 1203 misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 1204 pkt->req->incAccessDepth(); 1205 if (missCount) { 1206 --missCount; 1207 if (missCount == 0) 1208 exitSimLoop("A cache reached the maximum miss count"); 1209 } 1210 } 1211 void incHitCount(PacketPtr pkt) 1212 { 1213 assert(pkt->req->masterId() < system->maxMasters()); 1214 hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 1215 1216 } 1217 1218 /** 1219 * Checks if the cache is coalescing writes 1220 * 1221 * @return True if the cache is coalescing writes 1222 */ 1223 bool coalesce() const; 1224 1225 1226 /** 1227 * Cache block visitor that writes back dirty cache blocks using 1228 * functional writes. 1229 */ 1230 void writebackVisitor(CacheBlk &blk); 1231 1232 /** 1233 * Cache block visitor that invalidates all blocks in the cache. 1234 * 1235 * @warn Dirty cache lines will not be written back to memory. 1236 */ 1237 void invalidateVisitor(CacheBlk &blk); 1238 1239 /** 1240 * Take an MSHR, turn it into a suitable downstream packet, and 1241 * send it out. This construct allows a queue entry to choose a suitable 1242 * approach based on its type. 1243 * 1244 * @param mshr The MSHR to turn into a packet and send 1245 * @return True if the port is waiting for a retry 1246 */ 1247 virtual bool sendMSHRQueuePacket(MSHR* mshr); 1248 1249 /** 1250 * Similar to sendMSHR, but for a write-queue entry 1251 * instead. Create the packet, and send it, and if successful also 1252 * mark the entry in service. 1253 * 1254 * @param wq_entry The write-queue entry to turn into a packet and send 1255 * @return True if the port is waiting for a retry 1256 */ 1257 bool sendWriteQueuePacket(WriteQueueEntry* wq_entry); 1258 1259 /** 1260 * Serialize the state of the caches 1261 * 1262 * We currently don't support checkpointing cache state, so this panics. 1263 */ 1264 void serialize(CheckpointOut &cp) const override; 1265 void unserialize(CheckpointIn &cp) override; 1266}; 1267 1268/** 1269 * The write allocator inspects write packets and detects streaming 1270 * patterns. The write allocator supports a single stream where writes 1271 * are expected to access consecutive locations and keeps track of 1272 * size of the area covered by the concecutive writes in byteCount. 1273 * 1274 * 1) When byteCount has surpassed the coallesceLimit the mode 1275 * switches from ALLOCATE to COALESCE where writes should be delayed 1276 * until the whole block is written at which point a single packet 1277 * (whole line write) can service them. 1278 * 1279 * 2) When byteCount has also exceeded the noAllocateLimit (whole 1280 * line) we switch to NO_ALLOCATE when writes should not allocate in 1281 * the cache but rather send a whole line write to the memory below. 1282 */ 1283class WriteAllocator : public SimObject { 1284 public: 1285 WriteAllocator(const WriteAllocatorParams *p) : 1286 SimObject(p), 1287 coalesceLimit(p->coalesce_limit * p->block_size), 1288 noAllocateLimit(p->no_allocate_limit * p->block_size), 1289 delayThreshold(p->delay_threshold) 1290 { 1291 reset(); 1292 } 1293 1294 /** 1295 * Should writes be coalesced? This is true if the mode is set to 1296 * NO_ALLOCATE. 1297 * 1298 * @return return true if the cache should coalesce writes. 1299 */ 1300 bool coalesce() const { 1301 return mode != WriteMode::ALLOCATE; 1302 } 1303 1304 /** 1305 * Should writes allocate? 1306 * 1307 * @return return true if the cache should not allocate for writes. 1308 */ 1309 bool allocate() const { 1310 return mode != WriteMode::NO_ALLOCATE; 1311 } 1312 1313 /** 1314 * Reset the write allocator state, meaning that it allocates for 1315 * writes and has not recorded any information about qualifying 1316 * writes that might trigger a switch to coalescing and later no 1317 * allocation. 1318 */ 1319 void reset() { 1320 mode = WriteMode::ALLOCATE; 1321 byteCount = 0; 1322 nextAddr = 0; 1323 } 1324 1325 /** 1326 * Access whether we need to delay the current write. 1327 * 1328 * @param blk_addr The block address the packet writes to 1329 * @return true if the current packet should be delayed 1330 */ 1331 bool delay(Addr blk_addr) { 1332 if (delayCtr[blk_addr] > 0) { 1333 --delayCtr[blk_addr]; 1334 return true; 1335 } else { 1336 return false; 1337 } 1338 } 1339 1340 /** 1341 * Clear delay counter for the input block 1342 * 1343 * @param blk_addr The accessed cache block 1344 */ 1345 void resetDelay(Addr blk_addr) { 1346 delayCtr.erase(blk_addr); 1347 } 1348 1349 /** 1350 * Update the write mode based on the current write 1351 * packet. This method compares the packet's address with any 1352 * current stream, and updates the tracking and the mode 1353 * accordingly. 1354 * 1355 * @param write_addr Start address of the write request 1356 * @param write_size Size of the write request 1357 * @param blk_addr The block address that this packet writes to 1358 */ 1359 void updateMode(Addr write_addr, unsigned write_size, Addr blk_addr); 1360 1361 private: 1362 /** 1363 * The current mode for write coalescing and allocation, either 1364 * normal operation (ALLOCATE), write coalescing (COALESCE), or 1365 * write coalescing without allocation (NO_ALLOCATE). 1366 */ 1367 enum class WriteMode : char { 1368 ALLOCATE, 1369 COALESCE, 1370 NO_ALLOCATE, 1371 }; 1372 WriteMode mode; 1373 1374 /** Address to match writes against to detect streams. */ 1375 Addr nextAddr; 1376 1377 /** 1378 * Bytes written contiguously. Saturating once we no longer 1379 * allocate. 1380 */ 1381 uint32_t byteCount; 1382 1383 /** 1384 * Limits for when to switch between the different write modes. 1385 */ 1386 const uint32_t coalesceLimit; 1387 const uint32_t noAllocateLimit; 1388 /** 1389 * The number of times the allocator will delay an WriteReq MSHR. 1390 */ 1391 const uint32_t delayThreshold; 1392 1393 /** 1394 * Keep track of the number of times the allocator has delayed an 1395 * WriteReq MSHR. 1396 */ 1397 std::unordered_map<Addr, Counter> delayCtr; 1398}; 1399 1400#endif //__MEM_CACHE_BASE_HH__ 1401