base.hh revision 13749:b2486662285d
1/* 2 * Copyright (c) 2012-2013, 2015-2016, 2018 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2003-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Erik Hallnor 41 * Steve Reinhardt 42 * Ron Dreslinski 43 * Andreas Hansson 44 * Nikos Nikoleris 45 */ 46 47/** 48 * @file 49 * Declares a basic cache interface BaseCache. 50 */ 51 52#ifndef __MEM_CACHE_BASE_HH__ 53#define __MEM_CACHE_BASE_HH__ 54 55#include <cassert> 56#include <cstdint> 57#include <string> 58 59#include "base/addr_range.hh" 60#include "base/statistics.hh" 61#include "base/trace.hh" 62#include "base/types.hh" 63#include "debug/Cache.hh" 64#include "debug/CachePort.hh" 65#include "enums/Clusivity.hh" 66#include "mem/cache/cache_blk.hh" 67#include "mem/cache/mshr_queue.hh" 68#include "mem/cache/tags/base.hh" 69#include "mem/cache/write_queue.hh" 70#include "mem/cache/write_queue_entry.hh" 71#include "mem/mem_object.hh" 72#include "mem/packet.hh" 73#include "mem/packet_queue.hh" 74#include "mem/qport.hh" 75#include "mem/request.hh" 76#include "params/WriteAllocator.hh" 77#include "sim/eventq.hh" 78#include "sim/probe/probe.hh" 79#include "sim/serialize.hh" 80#include "sim/sim_exit.hh" 81#include "sim/system.hh" 82 83class BaseMasterPort; 84class BasePrefetcher; 85class BaseSlavePort; 86class MSHR; 87class MasterPort; 88class QueueEntry; 89struct BaseCacheParams; 90 91/** 92 * A basic cache interface. Implements some common functions for speed. 93 */ 94class BaseCache : public MemObject 95{ 96 protected: 97 /** 98 * Indexes to enumerate the MSHR queues. 99 */ 100 enum MSHRQueueIndex { 101 MSHRQueue_MSHRs, 102 MSHRQueue_WriteBuffer 103 }; 104 105 public: 106 /** 107 * Reasons for caches to be blocked. 108 */ 109 enum BlockedCause { 110 Blocked_NoMSHRs = MSHRQueue_MSHRs, 111 Blocked_NoWBBuffers = MSHRQueue_WriteBuffer, 112 Blocked_NoTargets, 113 NUM_BLOCKED_CAUSES 114 }; 115 116 protected: 117 118 /** 119 * A cache master port is used for the memory-side port of the 120 * cache, and in addition to the basic timing port that only sends 121 * response packets through a transmit list, it also offers the 122 * ability to schedule and send request packets (requests & 123 * writebacks). The send event is scheduled through schedSendEvent, 124 * and the sendDeferredPacket of the timing port is modified to 125 * consider both the transmit list and the requests from the MSHR. 126 */ 127 class CacheMasterPort : public QueuedMasterPort 128 { 129 130 public: 131 132 /** 133 * Schedule a send of a request packet (from the MSHR). Note 134 * that we could already have a retry outstanding. 135 */ 136 void schedSendEvent(Tick time) 137 { 138 DPRINTF(CachePort, "Scheduling send event at %llu\n", time); 139 reqQueue.schedSendEvent(time); 140 } 141 142 protected: 143 144 CacheMasterPort(const std::string &_name, BaseCache *_cache, 145 ReqPacketQueue &_reqQueue, 146 SnoopRespPacketQueue &_snoopRespQueue) : 147 QueuedMasterPort(_name, _cache, _reqQueue, _snoopRespQueue) 148 { } 149 150 /** 151 * Memory-side port always snoops. 152 * 153 * @return always true 154 */ 155 virtual bool isSnooping() const { return true; } 156 }; 157 158 /** 159 * Override the default behaviour of sendDeferredPacket to enable 160 * the memory-side cache port to also send requests based on the 161 * current MSHR status. This queue has a pointer to our specific 162 * cache implementation and is used by the MemSidePort. 163 */ 164 class CacheReqPacketQueue : public ReqPacketQueue 165 { 166 167 protected: 168 169 BaseCache &cache; 170 SnoopRespPacketQueue &snoopRespQueue; 171 172 public: 173 174 CacheReqPacketQueue(BaseCache &cache, MasterPort &port, 175 SnoopRespPacketQueue &snoop_resp_queue, 176 const std::string &label) : 177 ReqPacketQueue(cache, port, label), cache(cache), 178 snoopRespQueue(snoop_resp_queue) { } 179 180 /** 181 * Override the normal sendDeferredPacket and do not only 182 * consider the transmit list (used for responses), but also 183 * requests. 184 */ 185 virtual void sendDeferredPacket(); 186 187 /** 188 * Check if there is a conflicting snoop response about to be 189 * send out, and if so simply stall any requests, and schedule 190 * a send event at the same time as the next snoop response is 191 * being sent out. 192 */ 193 bool checkConflictingSnoop(Addr addr) 194 { 195 if (snoopRespQueue.hasAddr(addr)) { 196 DPRINTF(CachePort, "Waiting for snoop response to be " 197 "sent\n"); 198 Tick when = snoopRespQueue.deferredPacketReadyTime(); 199 schedSendEvent(when); 200 return true; 201 } 202 return false; 203 } 204 }; 205 206 207 /** 208 * The memory-side port extends the base cache master port with 209 * access functions for functional, atomic and timing snoops. 210 */ 211 class MemSidePort : public CacheMasterPort 212 { 213 private: 214 215 /** The cache-specific queue. */ 216 CacheReqPacketQueue _reqQueue; 217 218 SnoopRespPacketQueue _snoopRespQueue; 219 220 // a pointer to our specific cache implementation 221 BaseCache *cache; 222 223 protected: 224 225 virtual void recvTimingSnoopReq(PacketPtr pkt); 226 227 virtual bool recvTimingResp(PacketPtr pkt); 228 229 virtual Tick recvAtomicSnoop(PacketPtr pkt); 230 231 virtual void recvFunctionalSnoop(PacketPtr pkt); 232 233 public: 234 235 MemSidePort(const std::string &_name, BaseCache *_cache, 236 const std::string &_label); 237 }; 238 239 /** 240 * A cache slave port is used for the CPU-side port of the cache, 241 * and it is basically a simple timing port that uses a transmit 242 * list for responses to the CPU (or connected master). In 243 * addition, it has the functionality to block the port for 244 * incoming requests. If blocked, the port will issue a retry once 245 * unblocked. 246 */ 247 class CacheSlavePort : public QueuedSlavePort 248 { 249 250 public: 251 252 /** Do not accept any new requests. */ 253 void setBlocked(); 254 255 /** Return to normal operation and accept new requests. */ 256 void clearBlocked(); 257 258 bool isBlocked() const { return blocked; } 259 260 protected: 261 262 CacheSlavePort(const std::string &_name, BaseCache *_cache, 263 const std::string &_label); 264 265 /** A normal packet queue used to store responses. */ 266 RespPacketQueue queue; 267 268 bool blocked; 269 270 bool mustSendRetry; 271 272 private: 273 274 void processSendRetry(); 275 276 EventFunctionWrapper sendRetryEvent; 277 278 }; 279 280 /** 281 * The CPU-side port extends the base cache slave port with access 282 * functions for functional, atomic and timing requests. 283 */ 284 class CpuSidePort : public CacheSlavePort 285 { 286 private: 287 288 // a pointer to our specific cache implementation 289 BaseCache *cache; 290 291 protected: 292 virtual bool recvTimingSnoopResp(PacketPtr pkt) override; 293 294 virtual bool tryTiming(PacketPtr pkt) override; 295 296 virtual bool recvTimingReq(PacketPtr pkt) override; 297 298 virtual Tick recvAtomic(PacketPtr pkt) override; 299 300 virtual void recvFunctional(PacketPtr pkt) override; 301 302 virtual AddrRangeList getAddrRanges() const override; 303 304 public: 305 306 CpuSidePort(const std::string &_name, BaseCache *_cache, 307 const std::string &_label); 308 309 }; 310 311 CpuSidePort cpuSidePort; 312 MemSidePort memSidePort; 313 314 protected: 315 316 /** Miss status registers */ 317 MSHRQueue mshrQueue; 318 319 /** Write/writeback buffer */ 320 WriteQueue writeBuffer; 321 322 /** Tag and data Storage */ 323 BaseTags *tags; 324 325 /** Prefetcher */ 326 BasePrefetcher *prefetcher; 327 328 /** To probe when a cache hit occurs */ 329 ProbePointArg<PacketPtr> *ppHit; 330 331 /** To probe when a cache miss occurs */ 332 ProbePointArg<PacketPtr> *ppMiss; 333 334 /** To probe when a cache fill occurs */ 335 ProbePointArg<PacketPtr> *ppFill; 336 337 /** 338 * The writeAllocator drive optimizations for streaming writes. 339 * It first determines whether a WriteReq MSHR should be delayed, 340 * thus ensuring that we wait longer in cases when we are write 341 * coalescing and allowing all the bytes of the line to be written 342 * before the MSHR packet is sent downstream. This works in unison 343 * with the tracking in the MSHR to check if the entire line is 344 * written. The write mode also affects the behaviour on filling 345 * any whole-line writes. Normally the cache allocates the line 346 * when receiving the InvalidateResp, but after seeing enough 347 * consecutive lines we switch to using the tempBlock, and thus 348 * end up not allocating the line, and instead turning the 349 * whole-line write into a writeback straight away. 350 */ 351 WriteAllocator * const writeAllocator; 352 353 /** 354 * Temporary cache block for occasional transitory use. We use 355 * the tempBlock to fill when allocation fails (e.g., when there 356 * is an outstanding request that accesses the victim block) or 357 * when we want to avoid allocation (e.g., exclusive caches) 358 */ 359 TempCacheBlk *tempBlock; 360 361 /** 362 * Upstream caches need this packet until true is returned, so 363 * hold it for deletion until a subsequent call 364 */ 365 std::unique_ptr<Packet> pendingDelete; 366 367 /** 368 * Mark a request as in service (sent downstream in the memory 369 * system), effectively making this MSHR the ordering point. 370 */ 371 void markInService(MSHR *mshr, bool pending_modified_resp) 372 { 373 bool wasFull = mshrQueue.isFull(); 374 mshrQueue.markInService(mshr, pending_modified_resp); 375 376 if (wasFull && !mshrQueue.isFull()) { 377 clearBlocked(Blocked_NoMSHRs); 378 } 379 } 380 381 void markInService(WriteQueueEntry *entry) 382 { 383 bool wasFull = writeBuffer.isFull(); 384 writeBuffer.markInService(entry); 385 386 if (wasFull && !writeBuffer.isFull()) { 387 clearBlocked(Blocked_NoWBBuffers); 388 } 389 } 390 391 /** 392 * Determine whether we should allocate on a fill or not. If this 393 * cache is mostly inclusive with regards to the upstream cache(s) 394 * we always allocate (for any non-forwarded and cacheable 395 * requests). In the case of a mostly exclusive cache, we allocate 396 * on fill if the packet did not come from a cache, thus if we: 397 * are dealing with a whole-line write (the latter behaves much 398 * like a writeback), the original target packet came from a 399 * non-caching source, or if we are performing a prefetch or LLSC. 400 * 401 * @param cmd Command of the incoming requesting packet 402 * @return Whether we should allocate on the fill 403 */ 404 inline bool allocOnFill(MemCmd cmd) const 405 { 406 return clusivity == Enums::mostly_incl || 407 cmd == MemCmd::WriteLineReq || 408 cmd == MemCmd::ReadReq || 409 cmd == MemCmd::WriteReq || 410 cmd.isPrefetch() || 411 cmd.isLLSC(); 412 } 413 414 /** 415 * Regenerate block address using tags. 416 * Block address regeneration depends on whether we're using a temporary 417 * block or not. 418 * 419 * @param blk The block to regenerate address. 420 * @return The block's address. 421 */ 422 Addr regenerateBlkAddr(CacheBlk* blk); 423 424 /** 425 * Calculate latency of accesses that only touch the tag array. 426 * @sa calculateAccessLatency 427 * 428 * @param delay The delay until the packet's metadata is present. 429 * @param lookup_lat Latency of the respective tag lookup. 430 * @return The number of ticks that pass due to a tag-only access. 431 */ 432 Cycles calculateTagOnlyLatency(const uint32_t delay, 433 const Cycles lookup_lat) const; 434 /** 435 * Calculate access latency in ticks given a tag lookup latency, and 436 * whether access was a hit or miss. 437 * 438 * @param blk The cache block that was accessed. 439 * @param delay The delay until the packet's metadata is present. 440 * @param lookup_lat Latency of the respective tag lookup. 441 * @return The number of ticks that pass due to a block access. 442 */ 443 Cycles calculateAccessLatency(const CacheBlk* blk, const uint32_t delay, 444 const Cycles lookup_lat) const; 445 446 /** 447 * Does all the processing necessary to perform the provided request. 448 * @param pkt The memory request to perform. 449 * @param blk The cache block to be updated. 450 * @param lat The latency of the access. 451 * @param writebacks List for any writebacks that need to be performed. 452 * @return Boolean indicating whether the request was satisfied. 453 */ 454 virtual bool access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 455 PacketList &writebacks); 456 457 /* 458 * Handle a timing request that hit in the cache 459 * 460 * @param ptk The request packet 461 * @param blk The referenced block 462 * @param request_time The tick at which the block lookup is compete 463 */ 464 virtual void handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, 465 Tick request_time); 466 467 /* 468 * Handle a timing request that missed in the cache 469 * 470 * Implementation specific handling for different cache 471 * implementations 472 * 473 * @param ptk The request packet 474 * @param blk The referenced block 475 * @param forward_time The tick at which we can process dependent requests 476 * @param request_time The tick at which the block lookup is compete 477 */ 478 virtual void handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk, 479 Tick forward_time, 480 Tick request_time) = 0; 481 482 /* 483 * Handle a timing request that missed in the cache 484 * 485 * Common functionality across different cache implementations 486 * 487 * @param ptk The request packet 488 * @param blk The referenced block 489 * @param mshr Any existing mshr for the referenced cache block 490 * @param forward_time The tick at which we can process dependent requests 491 * @param request_time The tick at which the block lookup is compete 492 */ 493 void handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk, 494 Tick forward_time, Tick request_time); 495 496 /** 497 * Performs the access specified by the request. 498 * @param pkt The request to perform. 499 */ 500 virtual void recvTimingReq(PacketPtr pkt); 501 502 /** 503 * Handling the special case of uncacheable write responses to 504 * make recvTimingResp less cluttered. 505 */ 506 void handleUncacheableWriteResp(PacketPtr pkt); 507 508 /** 509 * Service non-deferred MSHR targets using the received response 510 * 511 * Iterates through the list of targets that can be serviced with 512 * the current response. 513 * 514 * @param mshr The MSHR that corresponds to the reponse 515 * @param pkt The response packet 516 * @param blk The reference block 517 */ 518 virtual void serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt, 519 CacheBlk *blk) = 0; 520 521 /** 522 * Handles a response (cache line fill/write ack) from the bus. 523 * @param pkt The response packet 524 */ 525 virtual void recvTimingResp(PacketPtr pkt); 526 527 /** 528 * Snoops bus transactions to maintain coherence. 529 * @param pkt The current bus transaction. 530 */ 531 virtual void recvTimingSnoopReq(PacketPtr pkt) = 0; 532 533 /** 534 * Handle a snoop response. 535 * @param pkt Snoop response packet 536 */ 537 virtual void recvTimingSnoopResp(PacketPtr pkt) = 0; 538 539 /** 540 * Handle a request in atomic mode that missed in this cache 541 * 542 * Creates a downstream request, sends it to the memory below and 543 * handles the response. As we are in atomic mode all operations 544 * are performed immediately. 545 * 546 * @param pkt The packet with the requests 547 * @param blk The referenced block 548 * @param writebacks A list with packets for any performed writebacks 549 * @return Cycles for handling the request 550 */ 551 virtual Cycles handleAtomicReqMiss(PacketPtr pkt, CacheBlk *&blk, 552 PacketList &writebacks) = 0; 553 554 /** 555 * Performs the access specified by the request. 556 * @param pkt The request to perform. 557 * @return The number of ticks required for the access. 558 */ 559 virtual Tick recvAtomic(PacketPtr pkt); 560 561 /** 562 * Snoop for the provided request in the cache and return the estimated 563 * time taken. 564 * @param pkt The memory request to snoop 565 * @return The number of ticks required for the snoop. 566 */ 567 virtual Tick recvAtomicSnoop(PacketPtr pkt) = 0; 568 569 /** 570 * Performs the access specified by the request. 571 * 572 * @param pkt The request to perform. 573 * @param fromCpuSide from the CPU side port or the memory side port 574 */ 575 virtual void functionalAccess(PacketPtr pkt, bool from_cpu_side); 576 577 /** 578 * Handle doing the Compare and Swap function for SPARC. 579 */ 580 void cmpAndSwap(CacheBlk *blk, PacketPtr pkt); 581 582 /** 583 * Return the next queue entry to service, either a pending miss 584 * from the MSHR queue, a buffered write from the write buffer, or 585 * something from the prefetcher. This function is responsible 586 * for prioritizing among those sources on the fly. 587 */ 588 QueueEntry* getNextQueueEntry(); 589 590 /** 591 * Insert writebacks into the write buffer 592 */ 593 virtual void doWritebacks(PacketList& writebacks, Tick forward_time) = 0; 594 595 /** 596 * Send writebacks down the memory hierarchy in atomic mode 597 */ 598 virtual void doWritebacksAtomic(PacketList& writebacks) = 0; 599 600 /** 601 * Create an appropriate downstream bus request packet. 602 * 603 * Creates a new packet with the request to be send to the memory 604 * below, or nullptr if the current request in cpu_pkt should just 605 * be forwarded on. 606 * 607 * @param cpu_pkt The miss packet that needs to be satisfied. 608 * @param blk The referenced block, can be nullptr. 609 * @param needs_writable Indicates that the block must be writable 610 * even if the request in cpu_pkt doesn't indicate that. 611 * @param is_whole_line_write True if there are writes for the 612 * whole line 613 * @return A packet send to the memory below 614 */ 615 virtual PacketPtr createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk, 616 bool needs_writable, 617 bool is_whole_line_write) const = 0; 618 619 /** 620 * Determine if clean lines should be written back or not. In 621 * cases where a downstream cache is mostly inclusive we likely 622 * want it to act as a victim cache also for lines that have not 623 * been modified. Hence, we cannot simply drop the line (or send a 624 * clean evict), but rather need to send the actual data. 625 */ 626 const bool writebackClean; 627 628 /** 629 * Writebacks from the tempBlock, resulting on the response path 630 * in atomic mode, must happen after the call to recvAtomic has 631 * finished (for the right ordering of the packets). We therefore 632 * need to hold on to the packets, and have a method and an event 633 * to send them. 634 */ 635 PacketPtr tempBlockWriteback; 636 637 /** 638 * Send the outstanding tempBlock writeback. To be called after 639 * recvAtomic finishes in cases where the block we filled is in 640 * fact the tempBlock, and now needs to be written back. 641 */ 642 void writebackTempBlockAtomic() { 643 assert(tempBlockWriteback != nullptr); 644 PacketList writebacks{tempBlockWriteback}; 645 doWritebacksAtomic(writebacks); 646 tempBlockWriteback = nullptr; 647 } 648 649 /** 650 * An event to writeback the tempBlock after recvAtomic 651 * finishes. To avoid other calls to recvAtomic getting in 652 * between, we create this event with a higher priority. 653 */ 654 EventFunctionWrapper writebackTempBlockAtomicEvent; 655 656 /** 657 * Perform any necessary updates to the block and perform any data 658 * exchange between the packet and the block. The flags of the 659 * packet are also set accordingly. 660 * 661 * @param pkt Request packet from upstream that hit a block 662 * @param blk Cache block that the packet hit 663 * @param deferred_response Whether this request originally missed 664 * @param pending_downgrade Whether the writable flag is to be removed 665 */ 666 virtual void satisfyRequest(PacketPtr pkt, CacheBlk *blk, 667 bool deferred_response = false, 668 bool pending_downgrade = false); 669 670 /** 671 * Maintain the clusivity of this cache by potentially 672 * invalidating a block. This method works in conjunction with 673 * satisfyRequest, but is separate to allow us to handle all MSHR 674 * targets before potentially dropping a block. 675 * 676 * @param from_cache Whether we have dealt with a packet from a cache 677 * @param blk The block that should potentially be dropped 678 */ 679 void maintainClusivity(bool from_cache, CacheBlk *blk); 680 681 /** 682 * Handle a fill operation caused by a received packet. 683 * 684 * Populates a cache block and handles all outstanding requests for the 685 * satisfied fill request. This version takes two memory requests. One 686 * contains the fill data, the other is an optional target to satisfy. 687 * Note that the reason we return a list of writebacks rather than 688 * inserting them directly in the write buffer is that this function 689 * is called by both atomic and timing-mode accesses, and in atomic 690 * mode we don't mess with the write buffer (we just perform the 691 * writebacks atomically once the original request is complete). 692 * 693 * @param pkt The memory request with the fill data. 694 * @param blk The cache block if it already exists. 695 * @param writebacks List for any writebacks that need to be performed. 696 * @param allocate Whether to allocate a block or use the temp block 697 * @return Pointer to the new cache block. 698 */ 699 CacheBlk *handleFill(PacketPtr pkt, CacheBlk *blk, 700 PacketList &writebacks, bool allocate); 701 702 /** 703 * Allocate a new block and perform any necessary writebacks 704 * 705 * Find a victim block and if necessary prepare writebacks for any 706 * existing data. May return nullptr if there are no replaceable 707 * blocks. If a replaceable block is found, it inserts the new block in 708 * its place. The new block, however, is not set as valid yet. 709 * 710 * @param pkt Packet holding the address to update 711 * @param writebacks A list of writeback packets for the evicted blocks 712 * @return the allocated block 713 */ 714 CacheBlk *allocateBlock(const PacketPtr pkt, PacketList &writebacks); 715 /** 716 * Evict a cache block. 717 * 718 * Performs a writeback if necesssary and invalidates the block 719 * 720 * @param blk Block to invalidate 721 * @return A packet with the writeback, can be nullptr 722 */ 723 M5_NODISCARD virtual PacketPtr evictBlock(CacheBlk *blk) = 0; 724 725 /** 726 * Evict a cache block. 727 * 728 * Performs a writeback if necesssary and invalidates the block 729 * 730 * @param blk Block to invalidate 731 * @param writebacks Return a list of packets with writebacks 732 */ 733 void evictBlock(CacheBlk *blk, PacketList &writebacks); 734 735 /** 736 * Invalidate a cache block. 737 * 738 * @param blk Block to invalidate 739 */ 740 void invalidateBlock(CacheBlk *blk); 741 742 /** 743 * Create a writeback request for the given block. 744 * 745 * @param blk The block to writeback. 746 * @return The writeback request for the block. 747 */ 748 PacketPtr writebackBlk(CacheBlk *blk); 749 750 /** 751 * Create a writeclean request for the given block. 752 * 753 * Creates a request that writes the block to the cache below 754 * without evicting the block from the current cache. 755 * 756 * @param blk The block to write clean. 757 * @param dest The destination of the write clean operation. 758 * @param id Use the given packet id for the write clean operation. 759 * @return The generated write clean packet. 760 */ 761 PacketPtr writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id); 762 763 /** 764 * Write back dirty blocks in the cache using functional accesses. 765 */ 766 virtual void memWriteback() override; 767 768 /** 769 * Invalidates all blocks in the cache. 770 * 771 * @warn Dirty cache lines will not be written back to 772 * memory. Make sure to call functionalWriteback() first if you 773 * want the to write them to memory. 774 */ 775 virtual void memInvalidate() override; 776 777 /** 778 * Determine if there are any dirty blocks in the cache. 779 * 780 * @return true if at least one block is dirty, false otherwise. 781 */ 782 bool isDirty() const; 783 784 /** 785 * Determine if an address is in the ranges covered by this 786 * cache. This is useful to filter snoops. 787 * 788 * @param addr Address to check against 789 * 790 * @return If the address in question is in range 791 */ 792 bool inRange(Addr addr) const; 793 794 /** 795 * Find next request ready time from among possible sources. 796 */ 797 Tick nextQueueReadyTime() const; 798 799 /** Block size of this cache */ 800 const unsigned blkSize; 801 802 /** 803 * The latency of tag lookup of a cache. It occurs when there is 804 * an access to the cache. 805 */ 806 const Cycles lookupLatency; 807 808 /** 809 * The latency of data access of a cache. It occurs when there is 810 * an access to the cache. 811 */ 812 const Cycles dataLatency; 813 814 /** 815 * This is the forward latency of the cache. It occurs when there 816 * is a cache miss and a request is forwarded downstream, in 817 * particular an outbound miss. 818 */ 819 const Cycles forwardLatency; 820 821 /** The latency to fill a cache block */ 822 const Cycles fillLatency; 823 824 /** 825 * The latency of sending reponse to its upper level cache/core on 826 * a linefill. The responseLatency parameter captures this 827 * latency. 828 */ 829 const Cycles responseLatency; 830 831 /** 832 * Whether tags and data are accessed sequentially. 833 */ 834 const bool sequentialAccess; 835 836 /** The number of targets for each MSHR. */ 837 const int numTarget; 838 839 /** Do we forward snoops from mem side port through to cpu side port? */ 840 bool forwardSnoops; 841 842 /** 843 * Clusivity with respect to the upstream cache, determining if we 844 * fill into both this cache and the cache above on a miss. Note 845 * that we currently do not support strict clusivity policies. 846 */ 847 const Enums::Clusivity clusivity; 848 849 /** 850 * Is this cache read only, for example the instruction cache, or 851 * table-walker cache. A cache that is read only should never see 852 * any writes, and should never get any dirty data (and hence 853 * never have to do any writebacks). 854 */ 855 const bool isReadOnly; 856 857 /** 858 * Bit vector of the blocking reasons for the access path. 859 * @sa #BlockedCause 860 */ 861 uint8_t blocked; 862 863 /** Increasing order number assigned to each incoming request. */ 864 uint64_t order; 865 866 /** Stores time the cache blocked for statistics. */ 867 Cycles blockedCycle; 868 869 /** Pointer to the MSHR that has no targets. */ 870 MSHR *noTargetMSHR; 871 872 /** The number of misses to trigger an exit event. */ 873 Counter missCount; 874 875 /** 876 * The address range to which the cache responds on the CPU side. 877 * Normally this is all possible memory addresses. */ 878 const AddrRangeList addrRanges; 879 880 public: 881 /** System we are currently operating in. */ 882 System *system; 883 884 // Statistics 885 /** 886 * @addtogroup CacheStatistics 887 * @{ 888 */ 889 890 /** Number of hits per thread for each type of command. 891 @sa Packet::Command */ 892 Stats::Vector hits[MemCmd::NUM_MEM_CMDS]; 893 /** Number of hits for demand accesses. */ 894 Stats::Formula demandHits; 895 /** Number of hit for all accesses. */ 896 Stats::Formula overallHits; 897 898 /** Number of misses per thread for each type of command. 899 @sa Packet::Command */ 900 Stats::Vector misses[MemCmd::NUM_MEM_CMDS]; 901 /** Number of misses for demand accesses. */ 902 Stats::Formula demandMisses; 903 /** Number of misses for all accesses. */ 904 Stats::Formula overallMisses; 905 906 /** 907 * Total number of cycles per thread/command spent waiting for a miss. 908 * Used to calculate the average miss latency. 909 */ 910 Stats::Vector missLatency[MemCmd::NUM_MEM_CMDS]; 911 /** Total number of cycles spent waiting for demand misses. */ 912 Stats::Formula demandMissLatency; 913 /** Total number of cycles spent waiting for all misses. */ 914 Stats::Formula overallMissLatency; 915 916 /** The number of accesses per command and thread. */ 917 Stats::Formula accesses[MemCmd::NUM_MEM_CMDS]; 918 /** The number of demand accesses. */ 919 Stats::Formula demandAccesses; 920 /** The number of overall accesses. */ 921 Stats::Formula overallAccesses; 922 923 /** The miss rate per command and thread. */ 924 Stats::Formula missRate[MemCmd::NUM_MEM_CMDS]; 925 /** The miss rate of all demand accesses. */ 926 Stats::Formula demandMissRate; 927 /** The miss rate for all accesses. */ 928 Stats::Formula overallMissRate; 929 930 /** The average miss latency per command and thread. */ 931 Stats::Formula avgMissLatency[MemCmd::NUM_MEM_CMDS]; 932 /** The average miss latency for demand misses. */ 933 Stats::Formula demandAvgMissLatency; 934 /** The average miss latency for all misses. */ 935 Stats::Formula overallAvgMissLatency; 936 937 /** The total number of cycles blocked for each blocked cause. */ 938 Stats::Vector blocked_cycles; 939 /** The number of times this cache blocked for each blocked cause. */ 940 Stats::Vector blocked_causes; 941 942 /** The average number of cycles blocked for each blocked cause. */ 943 Stats::Formula avg_blocked; 944 945 /** The number of times a HW-prefetched block is evicted w/o reference. */ 946 Stats::Scalar unusedPrefetches; 947 948 /** Number of blocks written back per thread. */ 949 Stats::Vector writebacks; 950 951 /** Number of misses that hit in the MSHRs per command and thread. */ 952 Stats::Vector mshr_hits[MemCmd::NUM_MEM_CMDS]; 953 /** Demand misses that hit in the MSHRs. */ 954 Stats::Formula demandMshrHits; 955 /** Total number of misses that hit in the MSHRs. */ 956 Stats::Formula overallMshrHits; 957 958 /** Number of misses that miss in the MSHRs, per command and thread. */ 959 Stats::Vector mshr_misses[MemCmd::NUM_MEM_CMDS]; 960 /** Demand misses that miss in the MSHRs. */ 961 Stats::Formula demandMshrMisses; 962 /** Total number of misses that miss in the MSHRs. */ 963 Stats::Formula overallMshrMisses; 964 965 /** Number of misses that miss in the MSHRs, per command and thread. */ 966 Stats::Vector mshr_uncacheable[MemCmd::NUM_MEM_CMDS]; 967 /** Total number of misses that miss in the MSHRs. */ 968 Stats::Formula overallMshrUncacheable; 969 970 /** Total cycle latency of each MSHR miss, per command and thread. */ 971 Stats::Vector mshr_miss_latency[MemCmd::NUM_MEM_CMDS]; 972 /** Total cycle latency of demand MSHR misses. */ 973 Stats::Formula demandMshrMissLatency; 974 /** Total cycle latency of overall MSHR misses. */ 975 Stats::Formula overallMshrMissLatency; 976 977 /** Total cycle latency of each MSHR miss, per command and thread. */ 978 Stats::Vector mshr_uncacheable_lat[MemCmd::NUM_MEM_CMDS]; 979 /** Total cycle latency of overall MSHR misses. */ 980 Stats::Formula overallMshrUncacheableLatency; 981 982#if 0 983 /** The total number of MSHR accesses per command and thread. */ 984 Stats::Formula mshrAccesses[MemCmd::NUM_MEM_CMDS]; 985 /** The total number of demand MSHR accesses. */ 986 Stats::Formula demandMshrAccesses; 987 /** The total number of MSHR accesses. */ 988 Stats::Formula overallMshrAccesses; 989#endif 990 991 /** The miss rate in the MSHRs pre command and thread. */ 992 Stats::Formula mshrMissRate[MemCmd::NUM_MEM_CMDS]; 993 /** The demand miss rate in the MSHRs. */ 994 Stats::Formula demandMshrMissRate; 995 /** The overall miss rate in the MSHRs. */ 996 Stats::Formula overallMshrMissRate; 997 998 /** The average latency of an MSHR miss, per command and thread. */ 999 Stats::Formula avgMshrMissLatency[MemCmd::NUM_MEM_CMDS]; 1000 /** The average latency of a demand MSHR miss. */ 1001 Stats::Formula demandAvgMshrMissLatency; 1002 /** The average overall latency of an MSHR miss. */ 1003 Stats::Formula overallAvgMshrMissLatency; 1004 1005 /** The average latency of an MSHR miss, per command and thread. */ 1006 Stats::Formula avgMshrUncacheableLatency[MemCmd::NUM_MEM_CMDS]; 1007 /** The average overall latency of an MSHR miss. */ 1008 Stats::Formula overallAvgMshrUncacheableLatency; 1009 1010 /** Number of replacements of valid blocks. */ 1011 Stats::Scalar replacements; 1012 1013 /** 1014 * @} 1015 */ 1016 1017 /** 1018 * Register stats for this object. 1019 */ 1020 void regStats() override; 1021 1022 /** Registers probes. */ 1023 void regProbePoints() override; 1024 1025 public: 1026 BaseCache(const BaseCacheParams *p, unsigned blk_size); 1027 ~BaseCache(); 1028 1029 void init() override; 1030 1031 BaseMasterPort &getMasterPort(const std::string &if_name, 1032 PortID idx = InvalidPortID) override; 1033 BaseSlavePort &getSlavePort(const std::string &if_name, 1034 PortID idx = InvalidPortID) override; 1035 1036 /** 1037 * Query block size of a cache. 1038 * @return The block size 1039 */ 1040 unsigned 1041 getBlockSize() const 1042 { 1043 return blkSize; 1044 } 1045 1046 const AddrRangeList &getAddrRanges() const { return addrRanges; } 1047 1048 MSHR *allocateMissBuffer(PacketPtr pkt, Tick time, bool sched_send = true) 1049 { 1050 MSHR *mshr = mshrQueue.allocate(pkt->getBlockAddr(blkSize), blkSize, 1051 pkt, time, order++, 1052 allocOnFill(pkt->cmd)); 1053 1054 if (mshrQueue.isFull()) { 1055 setBlocked((BlockedCause)MSHRQueue_MSHRs); 1056 } 1057 1058 if (sched_send) { 1059 // schedule the send 1060 schedMemSideSendEvent(time); 1061 } 1062 1063 return mshr; 1064 } 1065 1066 void allocateWriteBuffer(PacketPtr pkt, Tick time) 1067 { 1068 // should only see writes or clean evicts here 1069 assert(pkt->isWrite() || pkt->cmd == MemCmd::CleanEvict); 1070 1071 Addr blk_addr = pkt->getBlockAddr(blkSize); 1072 1073 WriteQueueEntry *wq_entry = 1074 writeBuffer.findMatch(blk_addr, pkt->isSecure()); 1075 if (wq_entry && !wq_entry->inService) { 1076 DPRINTF(Cache, "Potential to merge writeback %s", pkt->print()); 1077 } 1078 1079 writeBuffer.allocate(blk_addr, blkSize, pkt, time, order++); 1080 1081 if (writeBuffer.isFull()) { 1082 setBlocked((BlockedCause)MSHRQueue_WriteBuffer); 1083 } 1084 1085 // schedule the send 1086 schedMemSideSendEvent(time); 1087 } 1088 1089 /** 1090 * Returns true if the cache is blocked for accesses. 1091 */ 1092 bool isBlocked() const 1093 { 1094 return blocked != 0; 1095 } 1096 1097 /** 1098 * Marks the access path of the cache as blocked for the given cause. This 1099 * also sets the blocked flag in the slave interface. 1100 * @param cause The reason for the cache blocking. 1101 */ 1102 void setBlocked(BlockedCause cause) 1103 { 1104 uint8_t flag = 1 << cause; 1105 if (blocked == 0) { 1106 blocked_causes[cause]++; 1107 blockedCycle = curCycle(); 1108 cpuSidePort.setBlocked(); 1109 } 1110 blocked |= flag; 1111 DPRINTF(Cache,"Blocking for cause %d, mask=%d\n", cause, blocked); 1112 } 1113 1114 /** 1115 * Marks the cache as unblocked for the given cause. This also clears the 1116 * blocked flags in the appropriate interfaces. 1117 * @param cause The newly unblocked cause. 1118 * @warning Calling this function can cause a blocked request on the bus to 1119 * access the cache. The cache must be in a state to handle that request. 1120 */ 1121 void clearBlocked(BlockedCause cause) 1122 { 1123 uint8_t flag = 1 << cause; 1124 blocked &= ~flag; 1125 DPRINTF(Cache,"Unblocking for cause %d, mask=%d\n", cause, blocked); 1126 if (blocked == 0) { 1127 blocked_cycles[cause] += curCycle() - blockedCycle; 1128 cpuSidePort.clearBlocked(); 1129 } 1130 } 1131 1132 /** 1133 * Schedule a send event for the memory-side port. If already 1134 * scheduled, this may reschedule the event at an earlier 1135 * time. When the specified time is reached, the port is free to 1136 * send either a response, a request, or a prefetch request. 1137 * 1138 * @param time The time when to attempt sending a packet. 1139 */ 1140 void schedMemSideSendEvent(Tick time) 1141 { 1142 memSidePort.schedSendEvent(time); 1143 } 1144 1145 bool inCache(Addr addr, bool is_secure) const { 1146 return tags->findBlock(addr, is_secure); 1147 } 1148 1149 bool hasBeenPrefetched(Addr addr, bool is_secure) const { 1150 CacheBlk *block = tags->findBlock(addr, is_secure); 1151 if (block) { 1152 return block->wasPrefetched(); 1153 } else { 1154 return false; 1155 } 1156 } 1157 1158 bool inMissQueue(Addr addr, bool is_secure) const { 1159 return mshrQueue.findMatch(addr, is_secure); 1160 } 1161 1162 void incMissCount(PacketPtr pkt) 1163 { 1164 assert(pkt->req->masterId() < system->maxMasters()); 1165 misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 1166 pkt->req->incAccessDepth(); 1167 if (missCount) { 1168 --missCount; 1169 if (missCount == 0) 1170 exitSimLoop("A cache reached the maximum miss count"); 1171 } 1172 } 1173 void incHitCount(PacketPtr pkt) 1174 { 1175 assert(pkt->req->masterId() < system->maxMasters()); 1176 hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 1177 1178 } 1179 1180 /** 1181 * Checks if the cache is coalescing writes 1182 * 1183 * @return True if the cache is coalescing writes 1184 */ 1185 bool coalesce() const; 1186 1187 1188 /** 1189 * Cache block visitor that writes back dirty cache blocks using 1190 * functional writes. 1191 */ 1192 void writebackVisitor(CacheBlk &blk); 1193 1194 /** 1195 * Cache block visitor that invalidates all blocks in the cache. 1196 * 1197 * @warn Dirty cache lines will not be written back to memory. 1198 */ 1199 void invalidateVisitor(CacheBlk &blk); 1200 1201 /** 1202 * Take an MSHR, turn it into a suitable downstream packet, and 1203 * send it out. This construct allows a queue entry to choose a suitable 1204 * approach based on its type. 1205 * 1206 * @param mshr The MSHR to turn into a packet and send 1207 * @return True if the port is waiting for a retry 1208 */ 1209 virtual bool sendMSHRQueuePacket(MSHR* mshr); 1210 1211 /** 1212 * Similar to sendMSHR, but for a write-queue entry 1213 * instead. Create the packet, and send it, and if successful also 1214 * mark the entry in service. 1215 * 1216 * @param wq_entry The write-queue entry to turn into a packet and send 1217 * @return True if the port is waiting for a retry 1218 */ 1219 bool sendWriteQueuePacket(WriteQueueEntry* wq_entry); 1220 1221 /** 1222 * Serialize the state of the caches 1223 * 1224 * We currently don't support checkpointing cache state, so this panics. 1225 */ 1226 void serialize(CheckpointOut &cp) const override; 1227 void unserialize(CheckpointIn &cp) override; 1228}; 1229 1230/** 1231 * The write allocator inspects write packets and detects streaming 1232 * patterns. The write allocator supports a single stream where writes 1233 * are expected to access consecutive locations and keeps track of 1234 * size of the area covered by the concecutive writes in byteCount. 1235 * 1236 * 1) When byteCount has surpassed the coallesceLimit the mode 1237 * switches from ALLOCATE to COALESCE where writes should be delayed 1238 * until the whole block is written at which point a single packet 1239 * (whole line write) can service them. 1240 * 1241 * 2) When byteCount has also exceeded the noAllocateLimit (whole 1242 * line) we switch to NO_ALLOCATE when writes should not allocate in 1243 * the cache but rather send a whole line write to the memory below. 1244 */ 1245class WriteAllocator : public SimObject { 1246 public: 1247 WriteAllocator(const WriteAllocatorParams *p) : 1248 SimObject(p), 1249 coalesceLimit(p->coalesce_limit * p->block_size), 1250 noAllocateLimit(p->no_allocate_limit * p->block_size), 1251 delayThreshold(p->delay_threshold) 1252 { 1253 reset(); 1254 } 1255 1256 /** 1257 * Should writes be coalesced? This is true if the mode is set to 1258 * NO_ALLOCATE. 1259 * 1260 * @return return true if the cache should coalesce writes. 1261 */ 1262 bool coalesce() const { 1263 return mode != WriteMode::ALLOCATE; 1264 } 1265 1266 /** 1267 * Should writes allocate? 1268 * 1269 * @return return true if the cache should not allocate for writes. 1270 */ 1271 bool allocate() const { 1272 return mode != WriteMode::NO_ALLOCATE; 1273 } 1274 1275 /** 1276 * Reset the write allocator state, meaning that it allocates for 1277 * writes and has not recorded any information about qualifying 1278 * writes that might trigger a switch to coalescing and later no 1279 * allocation. 1280 */ 1281 void reset() { 1282 mode = WriteMode::ALLOCATE; 1283 byteCount = 0; 1284 nextAddr = 0; 1285 } 1286 1287 /** 1288 * Access whether we need to delay the current write. 1289 * 1290 * @param blk_addr The block address the packet writes to 1291 * @return true if the current packet should be delayed 1292 */ 1293 bool delay(Addr blk_addr) { 1294 if (delayCtr[blk_addr] > 0) { 1295 --delayCtr[blk_addr]; 1296 return true; 1297 } else { 1298 return false; 1299 } 1300 } 1301 1302 /** 1303 * Clear delay counter for the input block 1304 * 1305 * @param blk_addr The accessed cache block 1306 */ 1307 void resetDelay(Addr blk_addr) { 1308 delayCtr.erase(blk_addr); 1309 } 1310 1311 /** 1312 * Update the write mode based on the current write 1313 * packet. This method compares the packet's address with any 1314 * current stream, and updates the tracking and the mode 1315 * accordingly. 1316 * 1317 * @param write_addr Start address of the write request 1318 * @param write_size Size of the write request 1319 * @param blk_addr The block address that this packet writes to 1320 */ 1321 void updateMode(Addr write_addr, unsigned write_size, Addr blk_addr); 1322 1323 private: 1324 /** 1325 * The current mode for write coalescing and allocation, either 1326 * normal operation (ALLOCATE), write coalescing (COALESCE), or 1327 * write coalescing without allocation (NO_ALLOCATE). 1328 */ 1329 enum class WriteMode : char { 1330 ALLOCATE, 1331 COALESCE, 1332 NO_ALLOCATE, 1333 }; 1334 WriteMode mode; 1335 1336 /** Address to match writes against to detect streams. */ 1337 Addr nextAddr; 1338 1339 /** 1340 * Bytes written contiguously. Saturating once we no longer 1341 * allocate. 1342 */ 1343 uint32_t byteCount; 1344 1345 /** 1346 * Limits for when to switch between the different write modes. 1347 */ 1348 const uint32_t coalesceLimit; 1349 const uint32_t noAllocateLimit; 1350 /** 1351 * The number of times the allocator will delay an WriteReq MSHR. 1352 */ 1353 const uint32_t delayThreshold; 1354 1355 /** 1356 * Keep track of the number of times the allocator has delayed an 1357 * WriteReq MSHR. 1358 */ 1359 std::unordered_map<Addr, Counter> delayCtr; 1360}; 1361 1362#endif //__MEM_CACHE_BASE_HH__ 1363