base.hh revision 13717
1/*
2 * Copyright (c) 2012-2013, 2015-2016, 2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 *          Steve Reinhardt
42 *          Ron Dreslinski
43 *          Andreas Hansson
44 *          Nikos Nikoleris
45 */
46
47/**
48 * @file
49 * Declares a basic cache interface BaseCache.
50 */
51
52#ifndef __MEM_CACHE_BASE_HH__
53#define __MEM_CACHE_BASE_HH__
54
55#include <cassert>
56#include <cstdint>
57#include <string>
58
59#include "base/addr_range.hh"
60#include "base/statistics.hh"
61#include "base/trace.hh"
62#include "base/types.hh"
63#include "debug/Cache.hh"
64#include "debug/CachePort.hh"
65#include "enums/Clusivity.hh"
66#include "mem/cache/cache_blk.hh"
67#include "mem/cache/mshr_queue.hh"
68#include "mem/cache/tags/base.hh"
69#include "mem/cache/write_queue.hh"
70#include "mem/cache/write_queue_entry.hh"
71#include "mem/mem_object.hh"
72#include "mem/packet.hh"
73#include "mem/packet_queue.hh"
74#include "mem/qport.hh"
75#include "mem/request.hh"
76#include "params/WriteAllocator.hh"
77#include "sim/eventq.hh"
78#include "sim/probe/probe.hh"
79#include "sim/serialize.hh"
80#include "sim/sim_exit.hh"
81#include "sim/system.hh"
82
83class BaseMasterPort;
84class BasePrefetcher;
85class BaseSlavePort;
86class MSHR;
87class MasterPort;
88class QueueEntry;
89struct BaseCacheParams;
90
91/**
92 * A basic cache interface. Implements some common functions for speed.
93 */
94class BaseCache : public MemObject
95{
96  protected:
97    /**
98     * Indexes to enumerate the MSHR queues.
99     */
100    enum MSHRQueueIndex {
101        MSHRQueue_MSHRs,
102        MSHRQueue_WriteBuffer
103    };
104
105  public:
106    /**
107     * Reasons for caches to be blocked.
108     */
109    enum BlockedCause {
110        Blocked_NoMSHRs = MSHRQueue_MSHRs,
111        Blocked_NoWBBuffers = MSHRQueue_WriteBuffer,
112        Blocked_NoTargets,
113        NUM_BLOCKED_CAUSES
114    };
115
116  protected:
117
118    /**
119     * A cache master port is used for the memory-side port of the
120     * cache, and in addition to the basic timing port that only sends
121     * response packets through a transmit list, it also offers the
122     * ability to schedule and send request packets (requests &
123     * writebacks). The send event is scheduled through schedSendEvent,
124     * and the sendDeferredPacket of the timing port is modified to
125     * consider both the transmit list and the requests from the MSHR.
126     */
127    class CacheMasterPort : public QueuedMasterPort
128    {
129
130      public:
131
132        /**
133         * Schedule a send of a request packet (from the MSHR). Note
134         * that we could already have a retry outstanding.
135         */
136        void schedSendEvent(Tick time)
137        {
138            DPRINTF(CachePort, "Scheduling send event at %llu\n", time);
139            reqQueue.schedSendEvent(time);
140        }
141
142      protected:
143
144        CacheMasterPort(const std::string &_name, BaseCache *_cache,
145                        ReqPacketQueue &_reqQueue,
146                        SnoopRespPacketQueue &_snoopRespQueue) :
147            QueuedMasterPort(_name, _cache, _reqQueue, _snoopRespQueue)
148        { }
149
150        /**
151         * Memory-side port always snoops.
152         *
153         * @return always true
154         */
155        virtual bool isSnooping() const { return true; }
156    };
157
158    /**
159     * Override the default behaviour of sendDeferredPacket to enable
160     * the memory-side cache port to also send requests based on the
161     * current MSHR status. This queue has a pointer to our specific
162     * cache implementation and is used by the MemSidePort.
163     */
164    class CacheReqPacketQueue : public ReqPacketQueue
165    {
166
167      protected:
168
169        BaseCache &cache;
170        SnoopRespPacketQueue &snoopRespQueue;
171
172      public:
173
174        CacheReqPacketQueue(BaseCache &cache, MasterPort &port,
175                            SnoopRespPacketQueue &snoop_resp_queue,
176                            const std::string &label) :
177            ReqPacketQueue(cache, port, label), cache(cache),
178            snoopRespQueue(snoop_resp_queue) { }
179
180        /**
181         * Override the normal sendDeferredPacket and do not only
182         * consider the transmit list (used for responses), but also
183         * requests.
184         */
185        virtual void sendDeferredPacket();
186
187        /**
188         * Check if there is a conflicting snoop response about to be
189         * send out, and if so simply stall any requests, and schedule
190         * a send event at the same time as the next snoop response is
191         * being sent out.
192         */
193        bool checkConflictingSnoop(Addr addr)
194        {
195            if (snoopRespQueue.hasAddr(addr)) {
196                DPRINTF(CachePort, "Waiting for snoop response to be "
197                        "sent\n");
198                Tick when = snoopRespQueue.deferredPacketReadyTime();
199                schedSendEvent(when);
200                return true;
201            }
202            return false;
203        }
204    };
205
206
207    /**
208     * The memory-side port extends the base cache master port with
209     * access functions for functional, atomic and timing snoops.
210     */
211    class MemSidePort : public CacheMasterPort
212    {
213      private:
214
215        /** The cache-specific queue. */
216        CacheReqPacketQueue _reqQueue;
217
218        SnoopRespPacketQueue _snoopRespQueue;
219
220        // a pointer to our specific cache implementation
221        BaseCache *cache;
222
223      protected:
224
225        virtual void recvTimingSnoopReq(PacketPtr pkt);
226
227        virtual bool recvTimingResp(PacketPtr pkt);
228
229        virtual Tick recvAtomicSnoop(PacketPtr pkt);
230
231        virtual void recvFunctionalSnoop(PacketPtr pkt);
232
233      public:
234
235        MemSidePort(const std::string &_name, BaseCache *_cache,
236                    const std::string &_label);
237    };
238
239    /**
240     * A cache slave port is used for the CPU-side port of the cache,
241     * and it is basically a simple timing port that uses a transmit
242     * list for responses to the CPU (or connected master). In
243     * addition, it has the functionality to block the port for
244     * incoming requests. If blocked, the port will issue a retry once
245     * unblocked.
246     */
247    class CacheSlavePort : public QueuedSlavePort
248    {
249
250      public:
251
252        /** Do not accept any new requests. */
253        void setBlocked();
254
255        /** Return to normal operation and accept new requests. */
256        void clearBlocked();
257
258        bool isBlocked() const { return blocked; }
259
260      protected:
261
262        CacheSlavePort(const std::string &_name, BaseCache *_cache,
263                       const std::string &_label);
264
265        /** A normal packet queue used to store responses. */
266        RespPacketQueue queue;
267
268        bool blocked;
269
270        bool mustSendRetry;
271
272      private:
273
274        void processSendRetry();
275
276        EventFunctionWrapper sendRetryEvent;
277
278    };
279
280    /**
281     * The CPU-side port extends the base cache slave port with access
282     * functions for functional, atomic and timing requests.
283     */
284    class CpuSidePort : public CacheSlavePort
285    {
286      private:
287
288        // a pointer to our specific cache implementation
289        BaseCache *cache;
290
291      protected:
292        virtual bool recvTimingSnoopResp(PacketPtr pkt) override;
293
294        virtual bool tryTiming(PacketPtr pkt) override;
295
296        virtual bool recvTimingReq(PacketPtr pkt) override;
297
298        virtual Tick recvAtomic(PacketPtr pkt) override;
299
300        virtual void recvFunctional(PacketPtr pkt) override;
301
302        virtual AddrRangeList getAddrRanges() const override;
303
304      public:
305
306        CpuSidePort(const std::string &_name, BaseCache *_cache,
307                    const std::string &_label);
308
309    };
310
311    CpuSidePort cpuSidePort;
312    MemSidePort memSidePort;
313
314  protected:
315
316    /** Miss status registers */
317    MSHRQueue mshrQueue;
318
319    /** Write/writeback buffer */
320    WriteQueue writeBuffer;
321
322    /** Tag and data Storage */
323    BaseTags *tags;
324
325    /** Prefetcher */
326    BasePrefetcher *prefetcher;
327
328    /** To probe when a cache hit occurs */
329    ProbePointArg<PacketPtr> *ppHit;
330
331    /** To probe when a cache miss occurs */
332    ProbePointArg<PacketPtr> *ppMiss;
333
334    /** To probe when a cache fill occurs */
335    ProbePointArg<PacketPtr> *ppFill;
336
337    /**
338     * The writeAllocator drive optimizations for streaming writes.
339     * It first determines whether a WriteReq MSHR should be delayed,
340     * thus ensuring that we wait longer in cases when we are write
341     * coalescing and allowing all the bytes of the line to be written
342     * before the MSHR packet is sent downstream. This works in unison
343     * with the tracking in the MSHR to check if the entire line is
344     * written. The write mode also affects the behaviour on filling
345     * any whole-line writes. Normally the cache allocates the line
346     * when receiving the InvalidateResp, but after seeing enough
347     * consecutive lines we switch to using the tempBlock, and thus
348     * end up not allocating the line, and instead turning the
349     * whole-line write into a writeback straight away.
350     */
351    WriteAllocator * const writeAllocator;
352
353    /**
354     * Temporary cache block for occasional transitory use.  We use
355     * the tempBlock to fill when allocation fails (e.g., when there
356     * is an outstanding request that accesses the victim block) or
357     * when we want to avoid allocation (e.g., exclusive caches)
358     */
359    TempCacheBlk *tempBlock;
360
361    /**
362     * Upstream caches need this packet until true is returned, so
363     * hold it for deletion until a subsequent call
364     */
365    std::unique_ptr<Packet> pendingDelete;
366
367    /**
368     * Mark a request as in service (sent downstream in the memory
369     * system), effectively making this MSHR the ordering point.
370     */
371    void markInService(MSHR *mshr, bool pending_modified_resp)
372    {
373        bool wasFull = mshrQueue.isFull();
374        mshrQueue.markInService(mshr, pending_modified_resp);
375
376        if (wasFull && !mshrQueue.isFull()) {
377            clearBlocked(Blocked_NoMSHRs);
378        }
379    }
380
381    void markInService(WriteQueueEntry *entry)
382    {
383        bool wasFull = writeBuffer.isFull();
384        writeBuffer.markInService(entry);
385
386        if (wasFull && !writeBuffer.isFull()) {
387            clearBlocked(Blocked_NoWBBuffers);
388        }
389    }
390
391    /**
392     * Determine whether we should allocate on a fill or not. If this
393     * cache is mostly inclusive with regards to the upstream cache(s)
394     * we always allocate (for any non-forwarded and cacheable
395     * requests). In the case of a mostly exclusive cache, we allocate
396     * on fill if the packet did not come from a cache, thus if we:
397     * are dealing with a whole-line write (the latter behaves much
398     * like a writeback), the original target packet came from a
399     * non-caching source, or if we are performing a prefetch or LLSC.
400     *
401     * @param cmd Command of the incoming requesting packet
402     * @return Whether we should allocate on the fill
403     */
404    inline bool allocOnFill(MemCmd cmd) const
405    {
406        return clusivity == Enums::mostly_incl ||
407            cmd == MemCmd::WriteLineReq ||
408            cmd == MemCmd::ReadReq ||
409            cmd == MemCmd::WriteReq ||
410            cmd.isPrefetch() ||
411            cmd.isLLSC();
412    }
413
414    /**
415     * Regenerate block address using tags.
416     * Block address regeneration depends on whether we're using a temporary
417     * block or not.
418     *
419     * @param blk The block to regenerate address.
420     * @return The block's address.
421     */
422    Addr regenerateBlkAddr(CacheBlk* blk);
423
424    /**
425     * Calculate access latency in ticks given a tag lookup latency, and
426     * whether access was a hit or miss.
427     *
428     * @param blk The cache block that was accessed.
429     * @param lookup_lat Latency of the respective tag lookup.
430     * @return The number of ticks that pass due to a block access.
431     */
432    Cycles calculateAccessLatency(const CacheBlk* blk,
433                                  const Cycles lookup_lat) const;
434
435    /**
436     * Does all the processing necessary to perform the provided request.
437     * @param pkt The memory request to perform.
438     * @param blk The cache block to be updated.
439     * @param lat The latency of the access.
440     * @param writebacks List for any writebacks that need to be performed.
441     * @return Boolean indicating whether the request was satisfied.
442     */
443    virtual bool access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
444                        PacketList &writebacks);
445
446    /*
447     * Handle a timing request that hit in the cache
448     *
449     * @param ptk The request packet
450     * @param blk The referenced block
451     * @param request_time The tick at which the block lookup is compete
452     */
453    virtual void handleTimingReqHit(PacketPtr pkt, CacheBlk *blk,
454                                    Tick request_time);
455
456    /*
457     * Handle a timing request that missed in the cache
458     *
459     * Implementation specific handling for different cache
460     * implementations
461     *
462     * @param ptk The request packet
463     * @param blk The referenced block
464     * @param forward_time The tick at which we can process dependent requests
465     * @param request_time The tick at which the block lookup is compete
466     */
467    virtual void handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk,
468                                     Tick forward_time,
469                                     Tick request_time) = 0;
470
471    /*
472     * Handle a timing request that missed in the cache
473     *
474     * Common functionality across different cache implementations
475     *
476     * @param ptk The request packet
477     * @param blk The referenced block
478     * @param mshr Any existing mshr for the referenced cache block
479     * @param forward_time The tick at which we can process dependent requests
480     * @param request_time The tick at which the block lookup is compete
481     */
482    void handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
483                             Tick forward_time, Tick request_time);
484
485    /**
486     * Performs the access specified by the request.
487     * @param pkt The request to perform.
488     */
489    virtual void recvTimingReq(PacketPtr pkt);
490
491    /**
492     * Handling the special case of uncacheable write responses to
493     * make recvTimingResp less cluttered.
494     */
495    void handleUncacheableWriteResp(PacketPtr pkt);
496
497    /**
498     * Service non-deferred MSHR targets using the received response
499     *
500     * Iterates through the list of targets that can be serviced with
501     * the current response.
502     *
503     * @param mshr The MSHR that corresponds to the reponse
504     * @param pkt The response packet
505     * @param blk The reference block
506     */
507    virtual void serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt,
508                                    CacheBlk *blk) = 0;
509
510    /**
511     * Handles a response (cache line fill/write ack) from the bus.
512     * @param pkt The response packet
513     */
514    virtual void recvTimingResp(PacketPtr pkt);
515
516    /**
517     * Snoops bus transactions to maintain coherence.
518     * @param pkt The current bus transaction.
519     */
520    virtual void recvTimingSnoopReq(PacketPtr pkt) = 0;
521
522    /**
523     * Handle a snoop response.
524     * @param pkt Snoop response packet
525     */
526    virtual void recvTimingSnoopResp(PacketPtr pkt) = 0;
527
528    /**
529     * Handle a request in atomic mode that missed in this cache
530     *
531     * Creates a downstream request, sends it to the memory below and
532     * handles the response. As we are in atomic mode all operations
533     * are performed immediately.
534     *
535     * @param pkt The packet with the requests
536     * @param blk The referenced block
537     * @param writebacks A list with packets for any performed writebacks
538     * @return Cycles for handling the request
539     */
540    virtual Cycles handleAtomicReqMiss(PacketPtr pkt, CacheBlk *&blk,
541                                       PacketList &writebacks) = 0;
542
543    /**
544     * Performs the access specified by the request.
545     * @param pkt The request to perform.
546     * @return The number of ticks required for the access.
547     */
548    virtual Tick recvAtomic(PacketPtr pkt);
549
550    /**
551     * Snoop for the provided request in the cache and return the estimated
552     * time taken.
553     * @param pkt The memory request to snoop
554     * @return The number of ticks required for the snoop.
555     */
556    virtual Tick recvAtomicSnoop(PacketPtr pkt) = 0;
557
558    /**
559     * Performs the access specified by the request.
560     *
561     * @param pkt The request to perform.
562     * @param fromCpuSide from the CPU side port or the memory side port
563     */
564    virtual void functionalAccess(PacketPtr pkt, bool from_cpu_side);
565
566    /**
567     * Handle doing the Compare and Swap function for SPARC.
568     */
569    void cmpAndSwap(CacheBlk *blk, PacketPtr pkt);
570
571    /**
572     * Return the next queue entry to service, either a pending miss
573     * from the MSHR queue, a buffered write from the write buffer, or
574     * something from the prefetcher. This function is responsible
575     * for prioritizing among those sources on the fly.
576     */
577    QueueEntry* getNextQueueEntry();
578
579    /**
580     * Insert writebacks into the write buffer
581     */
582    virtual void doWritebacks(PacketList& writebacks, Tick forward_time) = 0;
583
584    /**
585     * Send writebacks down the memory hierarchy in atomic mode
586     */
587    virtual void doWritebacksAtomic(PacketList& writebacks) = 0;
588
589    /**
590     * Create an appropriate downstream bus request packet.
591     *
592     * Creates a new packet with the request to be send to the memory
593     * below, or nullptr if the current request in cpu_pkt should just
594     * be forwarded on.
595     *
596     * @param cpu_pkt The miss packet that needs to be satisfied.
597     * @param blk The referenced block, can be nullptr.
598     * @param needs_writable Indicates that the block must be writable
599     * even if the request in cpu_pkt doesn't indicate that.
600     * @param is_whole_line_write True if there are writes for the
601     * whole line
602     * @return A packet send to the memory below
603     */
604    virtual PacketPtr createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
605                                       bool needs_writable,
606                                       bool is_whole_line_write) const = 0;
607
608    /**
609     * Determine if clean lines should be written back or not. In
610     * cases where a downstream cache is mostly inclusive we likely
611     * want it to act as a victim cache also for lines that have not
612     * been modified. Hence, we cannot simply drop the line (or send a
613     * clean evict), but rather need to send the actual data.
614     */
615    const bool writebackClean;
616
617    /**
618     * Writebacks from the tempBlock, resulting on the response path
619     * in atomic mode, must happen after the call to recvAtomic has
620     * finished (for the right ordering of the packets). We therefore
621     * need to hold on to the packets, and have a method and an event
622     * to send them.
623     */
624    PacketPtr tempBlockWriteback;
625
626    /**
627     * Send the outstanding tempBlock writeback. To be called after
628     * recvAtomic finishes in cases where the block we filled is in
629     * fact the tempBlock, and now needs to be written back.
630     */
631    void writebackTempBlockAtomic() {
632        assert(tempBlockWriteback != nullptr);
633        PacketList writebacks{tempBlockWriteback};
634        doWritebacksAtomic(writebacks);
635        tempBlockWriteback = nullptr;
636    }
637
638    /**
639     * An event to writeback the tempBlock after recvAtomic
640     * finishes. To avoid other calls to recvAtomic getting in
641     * between, we create this event with a higher priority.
642     */
643    EventFunctionWrapper writebackTempBlockAtomicEvent;
644
645    /**
646     * Perform any necessary updates to the block and perform any data
647     * exchange between the packet and the block. The flags of the
648     * packet are also set accordingly.
649     *
650     * @param pkt Request packet from upstream that hit a block
651     * @param blk Cache block that the packet hit
652     * @param deferred_response Whether this request originally missed
653     * @param pending_downgrade Whether the writable flag is to be removed
654     */
655    virtual void satisfyRequest(PacketPtr pkt, CacheBlk *blk,
656                                bool deferred_response = false,
657                                bool pending_downgrade = false);
658
659    /**
660     * Maintain the clusivity of this cache by potentially
661     * invalidating a block. This method works in conjunction with
662     * satisfyRequest, but is separate to allow us to handle all MSHR
663     * targets before potentially dropping a block.
664     *
665     * @param from_cache Whether we have dealt with a packet from a cache
666     * @param blk The block that should potentially be dropped
667     */
668    void maintainClusivity(bool from_cache, CacheBlk *blk);
669
670    /**
671     * Handle a fill operation caused by a received packet.
672     *
673     * Populates a cache block and handles all outstanding requests for the
674     * satisfied fill request. This version takes two memory requests. One
675     * contains the fill data, the other is an optional target to satisfy.
676     * Note that the reason we return a list of writebacks rather than
677     * inserting them directly in the write buffer is that this function
678     * is called by both atomic and timing-mode accesses, and in atomic
679     * mode we don't mess with the write buffer (we just perform the
680     * writebacks atomically once the original request is complete).
681     *
682     * @param pkt The memory request with the fill data.
683     * @param blk The cache block if it already exists.
684     * @param writebacks List for any writebacks that need to be performed.
685     * @param allocate Whether to allocate a block or use the temp block
686     * @return Pointer to the new cache block.
687     */
688    CacheBlk *handleFill(PacketPtr pkt, CacheBlk *blk,
689                         PacketList &writebacks, bool allocate);
690
691    /**
692     * Allocate a new block and perform any necessary writebacks
693     *
694     * Find a victim block and if necessary prepare writebacks for any
695     * existing data. May return nullptr if there are no replaceable
696     * blocks. If a replaceable block is found, it inserts the new block in
697     * its place. The new block, however, is not set as valid yet.
698     *
699     * @param pkt Packet holding the address to update
700     * @param writebacks A list of writeback packets for the evicted blocks
701     * @return the allocated block
702     */
703    CacheBlk *allocateBlock(const PacketPtr pkt, PacketList &writebacks);
704    /**
705     * Evict a cache block.
706     *
707     * Performs a writeback if necesssary and invalidates the block
708     *
709     * @param blk Block to invalidate
710     * @return A packet with the writeback, can be nullptr
711     */
712    M5_NODISCARD virtual PacketPtr evictBlock(CacheBlk *blk) = 0;
713
714    /**
715     * Evict a cache block.
716     *
717     * Performs a writeback if necesssary and invalidates the block
718     *
719     * @param blk Block to invalidate
720     * @param writebacks Return a list of packets with writebacks
721     */
722    void evictBlock(CacheBlk *blk, PacketList &writebacks);
723
724    /**
725     * Invalidate a cache block.
726     *
727     * @param blk Block to invalidate
728     */
729    void invalidateBlock(CacheBlk *blk);
730
731    /**
732     * Create a writeback request for the given block.
733     *
734     * @param blk The block to writeback.
735     * @return The writeback request for the block.
736     */
737    PacketPtr writebackBlk(CacheBlk *blk);
738
739    /**
740     * Create a writeclean request for the given block.
741     *
742     * Creates a request that writes the block to the cache below
743     * without evicting the block from the current cache.
744     *
745     * @param blk The block to write clean.
746     * @param dest The destination of the write clean operation.
747     * @param id Use the given packet id for the write clean operation.
748     * @return The generated write clean packet.
749     */
750    PacketPtr writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id);
751
752    /**
753     * Write back dirty blocks in the cache using functional accesses.
754     */
755    virtual void memWriteback() override;
756
757    /**
758     * Invalidates all blocks in the cache.
759     *
760     * @warn Dirty cache lines will not be written back to
761     * memory. Make sure to call functionalWriteback() first if you
762     * want the to write them to memory.
763     */
764    virtual void memInvalidate() override;
765
766    /**
767     * Determine if there are any dirty blocks in the cache.
768     *
769     * @return true if at least one block is dirty, false otherwise.
770     */
771    bool isDirty() const;
772
773    /**
774     * Determine if an address is in the ranges covered by this
775     * cache. This is useful to filter snoops.
776     *
777     * @param addr Address to check against
778     *
779     * @return If the address in question is in range
780     */
781    bool inRange(Addr addr) const;
782
783    /**
784     * Find next request ready time from among possible sources.
785     */
786    Tick nextQueueReadyTime() const;
787
788    /** Block size of this cache */
789    const unsigned blkSize;
790
791    /**
792     * The latency of tag lookup of a cache. It occurs when there is
793     * an access to the cache.
794     */
795    const Cycles lookupLatency;
796
797    /**
798     * The latency of data access of a cache. It occurs when there is
799     * an access to the cache.
800     */
801    const Cycles dataLatency;
802
803    /**
804     * This is the forward latency of the cache. It occurs when there
805     * is a cache miss and a request is forwarded downstream, in
806     * particular an outbound miss.
807     */
808    const Cycles forwardLatency;
809
810    /** The latency to fill a cache block */
811    const Cycles fillLatency;
812
813    /**
814     * The latency of sending reponse to its upper level cache/core on
815     * a linefill. The responseLatency parameter captures this
816     * latency.
817     */
818    const Cycles responseLatency;
819
820    /**
821     * Whether tags and data are accessed sequentially.
822     */
823    const bool sequentialAccess;
824
825    /** The number of targets for each MSHR. */
826    const int numTarget;
827
828    /** Do we forward snoops from mem side port through to cpu side port? */
829    bool forwardSnoops;
830
831    /**
832     * Clusivity with respect to the upstream cache, determining if we
833     * fill into both this cache and the cache above on a miss. Note
834     * that we currently do not support strict clusivity policies.
835     */
836    const Enums::Clusivity clusivity;
837
838    /**
839     * Is this cache read only, for example the instruction cache, or
840     * table-walker cache. A cache that is read only should never see
841     * any writes, and should never get any dirty data (and hence
842     * never have to do any writebacks).
843     */
844    const bool isReadOnly;
845
846    /**
847     * Bit vector of the blocking reasons for the access path.
848     * @sa #BlockedCause
849     */
850    uint8_t blocked;
851
852    /** Increasing order number assigned to each incoming request. */
853    uint64_t order;
854
855    /** Stores time the cache blocked for statistics. */
856    Cycles blockedCycle;
857
858    /** Pointer to the MSHR that has no targets. */
859    MSHR *noTargetMSHR;
860
861    /** The number of misses to trigger an exit event. */
862    Counter missCount;
863
864    /**
865     * The address range to which the cache responds on the CPU side.
866     * Normally this is all possible memory addresses. */
867    const AddrRangeList addrRanges;
868
869  public:
870    /** System we are currently operating in. */
871    System *system;
872
873    // Statistics
874    /**
875     * @addtogroup CacheStatistics
876     * @{
877     */
878
879    /** Number of hits per thread for each type of command.
880        @sa Packet::Command */
881    Stats::Vector hits[MemCmd::NUM_MEM_CMDS];
882    /** Number of hits for demand accesses. */
883    Stats::Formula demandHits;
884    /** Number of hit for all accesses. */
885    Stats::Formula overallHits;
886
887    /** Number of misses per thread for each type of command.
888        @sa Packet::Command */
889    Stats::Vector misses[MemCmd::NUM_MEM_CMDS];
890    /** Number of misses for demand accesses. */
891    Stats::Formula demandMisses;
892    /** Number of misses for all accesses. */
893    Stats::Formula overallMisses;
894
895    /**
896     * Total number of cycles per thread/command spent waiting for a miss.
897     * Used to calculate the average miss latency.
898     */
899    Stats::Vector missLatency[MemCmd::NUM_MEM_CMDS];
900    /** Total number of cycles spent waiting for demand misses. */
901    Stats::Formula demandMissLatency;
902    /** Total number of cycles spent waiting for all misses. */
903    Stats::Formula overallMissLatency;
904
905    /** The number of accesses per command and thread. */
906    Stats::Formula accesses[MemCmd::NUM_MEM_CMDS];
907    /** The number of demand accesses. */
908    Stats::Formula demandAccesses;
909    /** The number of overall accesses. */
910    Stats::Formula overallAccesses;
911
912    /** The miss rate per command and thread. */
913    Stats::Formula missRate[MemCmd::NUM_MEM_CMDS];
914    /** The miss rate of all demand accesses. */
915    Stats::Formula demandMissRate;
916    /** The miss rate for all accesses. */
917    Stats::Formula overallMissRate;
918
919    /** The average miss latency per command and thread. */
920    Stats::Formula avgMissLatency[MemCmd::NUM_MEM_CMDS];
921    /** The average miss latency for demand misses. */
922    Stats::Formula demandAvgMissLatency;
923    /** The average miss latency for all misses. */
924    Stats::Formula overallAvgMissLatency;
925
926    /** The total number of cycles blocked for each blocked cause. */
927    Stats::Vector blocked_cycles;
928    /** The number of times this cache blocked for each blocked cause. */
929    Stats::Vector blocked_causes;
930
931    /** The average number of cycles blocked for each blocked cause. */
932    Stats::Formula avg_blocked;
933
934    /** The number of times a HW-prefetched block is evicted w/o reference. */
935    Stats::Scalar unusedPrefetches;
936
937    /** Number of blocks written back per thread. */
938    Stats::Vector writebacks;
939
940    /** Number of misses that hit in the MSHRs per command and thread. */
941    Stats::Vector mshr_hits[MemCmd::NUM_MEM_CMDS];
942    /** Demand misses that hit in the MSHRs. */
943    Stats::Formula demandMshrHits;
944    /** Total number of misses that hit in the MSHRs. */
945    Stats::Formula overallMshrHits;
946
947    /** Number of misses that miss in the MSHRs, per command and thread. */
948    Stats::Vector mshr_misses[MemCmd::NUM_MEM_CMDS];
949    /** Demand misses that miss in the MSHRs. */
950    Stats::Formula demandMshrMisses;
951    /** Total number of misses that miss in the MSHRs. */
952    Stats::Formula overallMshrMisses;
953
954    /** Number of misses that miss in the MSHRs, per command and thread. */
955    Stats::Vector mshr_uncacheable[MemCmd::NUM_MEM_CMDS];
956    /** Total number of misses that miss in the MSHRs. */
957    Stats::Formula overallMshrUncacheable;
958
959    /** Total cycle latency of each MSHR miss, per command and thread. */
960    Stats::Vector mshr_miss_latency[MemCmd::NUM_MEM_CMDS];
961    /** Total cycle latency of demand MSHR misses. */
962    Stats::Formula demandMshrMissLatency;
963    /** Total cycle latency of overall MSHR misses. */
964    Stats::Formula overallMshrMissLatency;
965
966    /** Total cycle latency of each MSHR miss, per command and thread. */
967    Stats::Vector mshr_uncacheable_lat[MemCmd::NUM_MEM_CMDS];
968    /** Total cycle latency of overall MSHR misses. */
969    Stats::Formula overallMshrUncacheableLatency;
970
971#if 0
972    /** The total number of MSHR accesses per command and thread. */
973    Stats::Formula mshrAccesses[MemCmd::NUM_MEM_CMDS];
974    /** The total number of demand MSHR accesses. */
975    Stats::Formula demandMshrAccesses;
976    /** The total number of MSHR accesses. */
977    Stats::Formula overallMshrAccesses;
978#endif
979
980    /** The miss rate in the MSHRs pre command and thread. */
981    Stats::Formula mshrMissRate[MemCmd::NUM_MEM_CMDS];
982    /** The demand miss rate in the MSHRs. */
983    Stats::Formula demandMshrMissRate;
984    /** The overall miss rate in the MSHRs. */
985    Stats::Formula overallMshrMissRate;
986
987    /** The average latency of an MSHR miss, per command and thread. */
988    Stats::Formula avgMshrMissLatency[MemCmd::NUM_MEM_CMDS];
989    /** The average latency of a demand MSHR miss. */
990    Stats::Formula demandAvgMshrMissLatency;
991    /** The average overall latency of an MSHR miss. */
992    Stats::Formula overallAvgMshrMissLatency;
993
994    /** The average latency of an MSHR miss, per command and thread. */
995    Stats::Formula avgMshrUncacheableLatency[MemCmd::NUM_MEM_CMDS];
996    /** The average overall latency of an MSHR miss. */
997    Stats::Formula overallAvgMshrUncacheableLatency;
998
999    /** Number of replacements of valid blocks. */
1000    Stats::Scalar replacements;
1001
1002    /**
1003     * @}
1004     */
1005
1006    /**
1007     * Register stats for this object.
1008     */
1009    void regStats() override;
1010
1011    /** Registers probes. */
1012    void regProbePoints() override;
1013
1014  public:
1015    BaseCache(const BaseCacheParams *p, unsigned blk_size);
1016    ~BaseCache();
1017
1018    void init() override;
1019
1020    BaseMasterPort &getMasterPort(const std::string &if_name,
1021                                  PortID idx = InvalidPortID) override;
1022    BaseSlavePort &getSlavePort(const std::string &if_name,
1023                                PortID idx = InvalidPortID) override;
1024
1025    /**
1026     * Query block size of a cache.
1027     * @return  The block size
1028     */
1029    unsigned
1030    getBlockSize() const
1031    {
1032        return blkSize;
1033    }
1034
1035    const AddrRangeList &getAddrRanges() const { return addrRanges; }
1036
1037    MSHR *allocateMissBuffer(PacketPtr pkt, Tick time, bool sched_send = true)
1038    {
1039        MSHR *mshr = mshrQueue.allocate(pkt->getBlockAddr(blkSize), blkSize,
1040                                        pkt, time, order++,
1041                                        allocOnFill(pkt->cmd));
1042
1043        if (mshrQueue.isFull()) {
1044            setBlocked((BlockedCause)MSHRQueue_MSHRs);
1045        }
1046
1047        if (sched_send) {
1048            // schedule the send
1049            schedMemSideSendEvent(time);
1050        }
1051
1052        return mshr;
1053    }
1054
1055    void allocateWriteBuffer(PacketPtr pkt, Tick time)
1056    {
1057        // should only see writes or clean evicts here
1058        assert(pkt->isWrite() || pkt->cmd == MemCmd::CleanEvict);
1059
1060        Addr blk_addr = pkt->getBlockAddr(blkSize);
1061
1062        WriteQueueEntry *wq_entry =
1063            writeBuffer.findMatch(blk_addr, pkt->isSecure());
1064        if (wq_entry && !wq_entry->inService) {
1065            DPRINTF(Cache, "Potential to merge writeback %s", pkt->print());
1066        }
1067
1068        writeBuffer.allocate(blk_addr, blkSize, pkt, time, order++);
1069
1070        if (writeBuffer.isFull()) {
1071            setBlocked((BlockedCause)MSHRQueue_WriteBuffer);
1072        }
1073
1074        // schedule the send
1075        schedMemSideSendEvent(time);
1076    }
1077
1078    /**
1079     * Returns true if the cache is blocked for accesses.
1080     */
1081    bool isBlocked() const
1082    {
1083        return blocked != 0;
1084    }
1085
1086    /**
1087     * Marks the access path of the cache as blocked for the given cause. This
1088     * also sets the blocked flag in the slave interface.
1089     * @param cause The reason for the cache blocking.
1090     */
1091    void setBlocked(BlockedCause cause)
1092    {
1093        uint8_t flag = 1 << cause;
1094        if (blocked == 0) {
1095            blocked_causes[cause]++;
1096            blockedCycle = curCycle();
1097            cpuSidePort.setBlocked();
1098        }
1099        blocked |= flag;
1100        DPRINTF(Cache,"Blocking for cause %d, mask=%d\n", cause, blocked);
1101    }
1102
1103    /**
1104     * Marks the cache as unblocked for the given cause. This also clears the
1105     * blocked flags in the appropriate interfaces.
1106     * @param cause The newly unblocked cause.
1107     * @warning Calling this function can cause a blocked request on the bus to
1108     * access the cache. The cache must be in a state to handle that request.
1109     */
1110    void clearBlocked(BlockedCause cause)
1111    {
1112        uint8_t flag = 1 << cause;
1113        blocked &= ~flag;
1114        DPRINTF(Cache,"Unblocking for cause %d, mask=%d\n", cause, blocked);
1115        if (blocked == 0) {
1116            blocked_cycles[cause] += curCycle() - blockedCycle;
1117            cpuSidePort.clearBlocked();
1118        }
1119    }
1120
1121    /**
1122     * Schedule a send event for the memory-side port. If already
1123     * scheduled, this may reschedule the event at an earlier
1124     * time. When the specified time is reached, the port is free to
1125     * send either a response, a request, or a prefetch request.
1126     *
1127     * @param time The time when to attempt sending a packet.
1128     */
1129    void schedMemSideSendEvent(Tick time)
1130    {
1131        memSidePort.schedSendEvent(time);
1132    }
1133
1134    bool inCache(Addr addr, bool is_secure) const {
1135        return tags->findBlock(addr, is_secure);
1136    }
1137
1138    bool hasBeenPrefetched(Addr addr, bool is_secure) const {
1139        CacheBlk *block = tags->findBlock(addr, is_secure);
1140        if (block) {
1141            return block->wasPrefetched();
1142        } else {
1143            return false;
1144        }
1145    }
1146
1147    bool inMissQueue(Addr addr, bool is_secure) const {
1148        return mshrQueue.findMatch(addr, is_secure);
1149    }
1150
1151    void incMissCount(PacketPtr pkt)
1152    {
1153        assert(pkt->req->masterId() < system->maxMasters());
1154        misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
1155        pkt->req->incAccessDepth();
1156        if (missCount) {
1157            --missCount;
1158            if (missCount == 0)
1159                exitSimLoop("A cache reached the maximum miss count");
1160        }
1161    }
1162    void incHitCount(PacketPtr pkt)
1163    {
1164        assert(pkt->req->masterId() < system->maxMasters());
1165        hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
1166
1167    }
1168
1169    /**
1170     * Checks if the cache is coalescing writes
1171     *
1172     * @return True if the cache is coalescing writes
1173     */
1174    bool coalesce() const;
1175
1176
1177    /**
1178     * Cache block visitor that writes back dirty cache blocks using
1179     * functional writes.
1180     */
1181    void writebackVisitor(CacheBlk &blk);
1182
1183    /**
1184     * Cache block visitor that invalidates all blocks in the cache.
1185     *
1186     * @warn Dirty cache lines will not be written back to memory.
1187     */
1188    void invalidateVisitor(CacheBlk &blk);
1189
1190    /**
1191     * Take an MSHR, turn it into a suitable downstream packet, and
1192     * send it out. This construct allows a queue entry to choose a suitable
1193     * approach based on its type.
1194     *
1195     * @param mshr The MSHR to turn into a packet and send
1196     * @return True if the port is waiting for a retry
1197     */
1198    virtual bool sendMSHRQueuePacket(MSHR* mshr);
1199
1200    /**
1201     * Similar to sendMSHR, but for a write-queue entry
1202     * instead. Create the packet, and send it, and if successful also
1203     * mark the entry in service.
1204     *
1205     * @param wq_entry The write-queue entry to turn into a packet and send
1206     * @return True if the port is waiting for a retry
1207     */
1208    bool sendWriteQueuePacket(WriteQueueEntry* wq_entry);
1209
1210    /**
1211     * Serialize the state of the caches
1212     *
1213     * We currently don't support checkpointing cache state, so this panics.
1214     */
1215    void serialize(CheckpointOut &cp) const override;
1216    void unserialize(CheckpointIn &cp) override;
1217};
1218
1219/**
1220 * The write allocator inspects write packets and detects streaming
1221 * patterns. The write allocator supports a single stream where writes
1222 * are expected to access consecutive locations and keeps track of
1223 * size of the area covered by the concecutive writes in byteCount.
1224 *
1225 * 1) When byteCount has surpassed the coallesceLimit the mode
1226 * switches from ALLOCATE to COALESCE where writes should be delayed
1227 * until the whole block is written at which point a single packet
1228 * (whole line write) can service them.
1229 *
1230 * 2) When byteCount has also exceeded the noAllocateLimit (whole
1231 * line) we switch to NO_ALLOCATE when writes should not allocate in
1232 * the cache but rather send a whole line write to the memory below.
1233 */
1234class WriteAllocator : public SimObject {
1235  public:
1236    WriteAllocator(const WriteAllocatorParams *p) :
1237        SimObject(p),
1238        coalesceLimit(p->coalesce_limit * p->block_size),
1239        noAllocateLimit(p->no_allocate_limit * p->block_size),
1240        delayThreshold(p->delay_threshold)
1241    {
1242        reset();
1243    }
1244
1245    /**
1246     * Should writes be coalesced? This is true if the mode is set to
1247     * NO_ALLOCATE.
1248     *
1249     * @return return true if the cache should coalesce writes.
1250     */
1251    bool coalesce() const {
1252        return mode != WriteMode::ALLOCATE;
1253    }
1254
1255    /**
1256     * Should writes allocate?
1257     *
1258     * @return return true if the cache should not allocate for writes.
1259     */
1260    bool allocate() const {
1261        return mode != WriteMode::NO_ALLOCATE;
1262    }
1263
1264    /**
1265     * Reset the write allocator state, meaning that it allocates for
1266     * writes and has not recorded any information about qualifying
1267     * writes that might trigger a switch to coalescing and later no
1268     * allocation.
1269     */
1270    void reset() {
1271        mode = WriteMode::ALLOCATE;
1272        byteCount = 0;
1273        nextAddr = 0;
1274    }
1275
1276    /**
1277     * Access whether we need to delay the current write.
1278     *
1279     * @param blk_addr The block address the packet writes to
1280     * @return true if the current packet should be delayed
1281     */
1282    bool delay(Addr blk_addr) {
1283        if (delayCtr[blk_addr] > 0) {
1284            --delayCtr[blk_addr];
1285            return true;
1286        } else {
1287            return false;
1288        }
1289    }
1290
1291    /**
1292     * Clear delay counter for the input block
1293     *
1294     * @param blk_addr The accessed cache block
1295     */
1296    void resetDelay(Addr blk_addr) {
1297        delayCtr.erase(blk_addr);
1298    }
1299
1300    /**
1301     * Update the write mode based on the current write
1302     * packet. This method compares the packet's address with any
1303     * current stream, and updates the tracking and the mode
1304     * accordingly.
1305     *
1306     * @param write_addr Start address of the write request
1307     * @param write_size Size of the write request
1308     * @param blk_addr The block address that this packet writes to
1309     */
1310    void updateMode(Addr write_addr, unsigned write_size, Addr blk_addr);
1311
1312  private:
1313    /**
1314     * The current mode for write coalescing and allocation, either
1315     * normal operation (ALLOCATE), write coalescing (COALESCE), or
1316     * write coalescing without allocation (NO_ALLOCATE).
1317     */
1318    enum class WriteMode : char {
1319        ALLOCATE,
1320        COALESCE,
1321        NO_ALLOCATE,
1322    };
1323    WriteMode mode;
1324
1325    /** Address to match writes against to detect streams. */
1326    Addr nextAddr;
1327
1328    /**
1329     * Bytes written contiguously. Saturating once we no longer
1330     * allocate.
1331     */
1332    uint32_t byteCount;
1333
1334    /**
1335     * Limits for when to switch between the different write modes.
1336     */
1337    const uint32_t coalesceLimit;
1338    const uint32_t noAllocateLimit;
1339    /**
1340     * The number of times the allocator will delay an WriteReq MSHR.
1341     */
1342    const uint32_t delayThreshold;
1343
1344    /**
1345     * Keep track of the number of times the allocator has delayed an
1346     * WriteReq MSHR.
1347     */
1348    std::unordered_map<Addr, Counter> delayCtr;
1349};
1350
1351#endif //__MEM_CACHE_BASE_HH__
1352