base.hh revision 13352:75647326f19b
1/* 2 * Copyright (c) 2012-2013, 2015-2016, 2018 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2003-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Erik Hallnor 41 * Steve Reinhardt 42 * Ron Dreslinski 43 * Andreas Hansson 44 * Nikos Nikoleris 45 */ 46 47/** 48 * @file 49 * Declares a basic cache interface BaseCache. 50 */ 51 52#ifndef __MEM_CACHE_BASE_HH__ 53#define __MEM_CACHE_BASE_HH__ 54 55#include <cassert> 56#include <cstdint> 57#include <string> 58 59#include "base/addr_range.hh" 60#include "base/statistics.hh" 61#include "base/trace.hh" 62#include "base/types.hh" 63#include "debug/Cache.hh" 64#include "debug/CachePort.hh" 65#include "enums/Clusivity.hh" 66#include "mem/cache/cache_blk.hh" 67#include "mem/cache/mshr_queue.hh" 68#include "mem/cache/tags/base.hh" 69#include "mem/cache/write_queue.hh" 70#include "mem/cache/write_queue_entry.hh" 71#include "mem/mem_object.hh" 72#include "mem/packet.hh" 73#include "mem/packet_queue.hh" 74#include "mem/qport.hh" 75#include "mem/request.hh" 76#include "params/WriteAllocator.hh" 77#include "sim/eventq.hh" 78#include "sim/serialize.hh" 79#include "sim/sim_exit.hh" 80#include "sim/system.hh" 81 82class BaseMasterPort; 83class BasePrefetcher; 84class BaseSlavePort; 85class MSHR; 86class MasterPort; 87class QueueEntry; 88struct BaseCacheParams; 89 90/** 91 * A basic cache interface. Implements some common functions for speed. 92 */ 93class BaseCache : public MemObject 94{ 95 protected: 96 /** 97 * Indexes to enumerate the MSHR queues. 98 */ 99 enum MSHRQueueIndex { 100 MSHRQueue_MSHRs, 101 MSHRQueue_WriteBuffer 102 }; 103 104 public: 105 /** 106 * Reasons for caches to be blocked. 107 */ 108 enum BlockedCause { 109 Blocked_NoMSHRs = MSHRQueue_MSHRs, 110 Blocked_NoWBBuffers = MSHRQueue_WriteBuffer, 111 Blocked_NoTargets, 112 NUM_BLOCKED_CAUSES 113 }; 114 115 protected: 116 117 /** 118 * A cache master port is used for the memory-side port of the 119 * cache, and in addition to the basic timing port that only sends 120 * response packets through a transmit list, it also offers the 121 * ability to schedule and send request packets (requests & 122 * writebacks). The send event is scheduled through schedSendEvent, 123 * and the sendDeferredPacket of the timing port is modified to 124 * consider both the transmit list and the requests from the MSHR. 125 */ 126 class CacheMasterPort : public QueuedMasterPort 127 { 128 129 public: 130 131 /** 132 * Schedule a send of a request packet (from the MSHR). Note 133 * that we could already have a retry outstanding. 134 */ 135 void schedSendEvent(Tick time) 136 { 137 DPRINTF(CachePort, "Scheduling send event at %llu\n", time); 138 reqQueue.schedSendEvent(time); 139 } 140 141 protected: 142 143 CacheMasterPort(const std::string &_name, BaseCache *_cache, 144 ReqPacketQueue &_reqQueue, 145 SnoopRespPacketQueue &_snoopRespQueue) : 146 QueuedMasterPort(_name, _cache, _reqQueue, _snoopRespQueue) 147 { } 148 149 /** 150 * Memory-side port always snoops. 151 * 152 * @return always true 153 */ 154 virtual bool isSnooping() const { return true; } 155 }; 156 157 /** 158 * Override the default behaviour of sendDeferredPacket to enable 159 * the memory-side cache port to also send requests based on the 160 * current MSHR status. This queue has a pointer to our specific 161 * cache implementation and is used by the MemSidePort. 162 */ 163 class CacheReqPacketQueue : public ReqPacketQueue 164 { 165 166 protected: 167 168 BaseCache &cache; 169 SnoopRespPacketQueue &snoopRespQueue; 170 171 public: 172 173 CacheReqPacketQueue(BaseCache &cache, MasterPort &port, 174 SnoopRespPacketQueue &snoop_resp_queue, 175 const std::string &label) : 176 ReqPacketQueue(cache, port, label), cache(cache), 177 snoopRespQueue(snoop_resp_queue) { } 178 179 /** 180 * Override the normal sendDeferredPacket and do not only 181 * consider the transmit list (used for responses), but also 182 * requests. 183 */ 184 virtual void sendDeferredPacket(); 185 186 /** 187 * Check if there is a conflicting snoop response about to be 188 * send out, and if so simply stall any requests, and schedule 189 * a send event at the same time as the next snoop response is 190 * being sent out. 191 */ 192 bool checkConflictingSnoop(Addr addr) 193 { 194 if (snoopRespQueue.hasAddr(addr)) { 195 DPRINTF(CachePort, "Waiting for snoop response to be " 196 "sent\n"); 197 Tick when = snoopRespQueue.deferredPacketReadyTime(); 198 schedSendEvent(when); 199 return true; 200 } 201 return false; 202 } 203 }; 204 205 206 /** 207 * The memory-side port extends the base cache master port with 208 * access functions for functional, atomic and timing snoops. 209 */ 210 class MemSidePort : public CacheMasterPort 211 { 212 private: 213 214 /** The cache-specific queue. */ 215 CacheReqPacketQueue _reqQueue; 216 217 SnoopRespPacketQueue _snoopRespQueue; 218 219 // a pointer to our specific cache implementation 220 BaseCache *cache; 221 222 protected: 223 224 virtual void recvTimingSnoopReq(PacketPtr pkt); 225 226 virtual bool recvTimingResp(PacketPtr pkt); 227 228 virtual Tick recvAtomicSnoop(PacketPtr pkt); 229 230 virtual void recvFunctionalSnoop(PacketPtr pkt); 231 232 public: 233 234 MemSidePort(const std::string &_name, BaseCache *_cache, 235 const std::string &_label); 236 }; 237 238 /** 239 * A cache slave port is used for the CPU-side port of the cache, 240 * and it is basically a simple timing port that uses a transmit 241 * list for responses to the CPU (or connected master). In 242 * addition, it has the functionality to block the port for 243 * incoming requests. If blocked, the port will issue a retry once 244 * unblocked. 245 */ 246 class CacheSlavePort : public QueuedSlavePort 247 { 248 249 public: 250 251 /** Do not accept any new requests. */ 252 void setBlocked(); 253 254 /** Return to normal operation and accept new requests. */ 255 void clearBlocked(); 256 257 bool isBlocked() const { return blocked; } 258 259 protected: 260 261 CacheSlavePort(const std::string &_name, BaseCache *_cache, 262 const std::string &_label); 263 264 /** A normal packet queue used to store responses. */ 265 RespPacketQueue queue; 266 267 bool blocked; 268 269 bool mustSendRetry; 270 271 private: 272 273 void processSendRetry(); 274 275 EventFunctionWrapper sendRetryEvent; 276 277 }; 278 279 /** 280 * The CPU-side port extends the base cache slave port with access 281 * functions for functional, atomic and timing requests. 282 */ 283 class CpuSidePort : public CacheSlavePort 284 { 285 private: 286 287 // a pointer to our specific cache implementation 288 BaseCache *cache; 289 290 protected: 291 virtual bool recvTimingSnoopResp(PacketPtr pkt) override; 292 293 virtual bool tryTiming(PacketPtr pkt) override; 294 295 virtual bool recvTimingReq(PacketPtr pkt) override; 296 297 virtual Tick recvAtomic(PacketPtr pkt) override; 298 299 virtual void recvFunctional(PacketPtr pkt) override; 300 301 virtual AddrRangeList getAddrRanges() const override; 302 303 public: 304 305 CpuSidePort(const std::string &_name, BaseCache *_cache, 306 const std::string &_label); 307 308 }; 309 310 CpuSidePort cpuSidePort; 311 MemSidePort memSidePort; 312 313 protected: 314 315 /** Miss status registers */ 316 MSHRQueue mshrQueue; 317 318 /** Write/writeback buffer */ 319 WriteQueue writeBuffer; 320 321 /** Tag and data Storage */ 322 BaseTags *tags; 323 324 /** Prefetcher */ 325 BasePrefetcher *prefetcher; 326 327 /** 328 * Notify the prefetcher on every access, not just misses. 329 */ 330 const bool prefetchOnAccess; 331 332 /** 333 * The writeAllocator drive optimizations for streaming writes. 334 * It first determines whether a WriteReq MSHR should be delayed, 335 * thus ensuring that we wait longer in cases when we are write 336 * coalescing and allowing all the bytes of the line to be written 337 * before the MSHR packet is sent downstream. This works in unison 338 * with the tracking in the MSHR to check if the entire line is 339 * written. The write mode also affects the behaviour on filling 340 * any whole-line writes. Normally the cache allocates the line 341 * when receiving the InvalidateResp, but after seeing enough 342 * consecutive lines we switch to using the tempBlock, and thus 343 * end up not allocating the line, and instead turning the 344 * whole-line write into a writeback straight away. 345 */ 346 WriteAllocator * const writeAllocator; 347 348 /** 349 * Temporary cache block for occasional transitory use. We use 350 * the tempBlock to fill when allocation fails (e.g., when there 351 * is an outstanding request that accesses the victim block) or 352 * when we want to avoid allocation (e.g., exclusive caches) 353 */ 354 TempCacheBlk *tempBlock; 355 356 /** 357 * Upstream caches need this packet until true is returned, so 358 * hold it for deletion until a subsequent call 359 */ 360 std::unique_ptr<Packet> pendingDelete; 361 362 /** 363 * Mark a request as in service (sent downstream in the memory 364 * system), effectively making this MSHR the ordering point. 365 */ 366 void markInService(MSHR *mshr, bool pending_modified_resp) 367 { 368 bool wasFull = mshrQueue.isFull(); 369 mshrQueue.markInService(mshr, pending_modified_resp); 370 371 if (wasFull && !mshrQueue.isFull()) { 372 clearBlocked(Blocked_NoMSHRs); 373 } 374 } 375 376 void markInService(WriteQueueEntry *entry) 377 { 378 bool wasFull = writeBuffer.isFull(); 379 writeBuffer.markInService(entry); 380 381 if (wasFull && !writeBuffer.isFull()) { 382 clearBlocked(Blocked_NoWBBuffers); 383 } 384 } 385 386 /** 387 * Determine whether we should allocate on a fill or not. If this 388 * cache is mostly inclusive with regards to the upstream cache(s) 389 * we always allocate (for any non-forwarded and cacheable 390 * requests). In the case of a mostly exclusive cache, we allocate 391 * on fill if the packet did not come from a cache, thus if we: 392 * are dealing with a whole-line write (the latter behaves much 393 * like a writeback), the original target packet came from a 394 * non-caching source, or if we are performing a prefetch or LLSC. 395 * 396 * @param cmd Command of the incoming requesting packet 397 * @return Whether we should allocate on the fill 398 */ 399 inline bool allocOnFill(MemCmd cmd) const 400 { 401 return clusivity == Enums::mostly_incl || 402 cmd == MemCmd::WriteLineReq || 403 cmd == MemCmd::ReadReq || 404 cmd == MemCmd::WriteReq || 405 cmd.isPrefetch() || 406 cmd.isLLSC(); 407 } 408 409 /** 410 * Regenerate block address using tags. 411 * Block address regeneration depends on whether we're using a temporary 412 * block or not. 413 * 414 * @param blk The block to regenerate address. 415 * @return The block's address. 416 */ 417 Addr regenerateBlkAddr(CacheBlk* blk); 418 419 /** 420 * Does all the processing necessary to perform the provided request. 421 * @param pkt The memory request to perform. 422 * @param blk The cache block to be updated. 423 * @param lat The latency of the access. 424 * @param writebacks List for any writebacks that need to be performed. 425 * @return Boolean indicating whether the request was satisfied. 426 */ 427 virtual bool access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 428 PacketList &writebacks); 429 430 /* 431 * Handle a timing request that hit in the cache 432 * 433 * @param ptk The request packet 434 * @param blk The referenced block 435 * @param request_time The tick at which the block lookup is compete 436 */ 437 virtual void handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, 438 Tick request_time); 439 440 /* 441 * Handle a timing request that missed in the cache 442 * 443 * Implementation specific handling for different cache 444 * implementations 445 * 446 * @param ptk The request packet 447 * @param blk The referenced block 448 * @param forward_time The tick at which we can process dependent requests 449 * @param request_time The tick at which the block lookup is compete 450 */ 451 virtual void handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk, 452 Tick forward_time, 453 Tick request_time) = 0; 454 455 /* 456 * Handle a timing request that missed in the cache 457 * 458 * Common functionality across different cache implementations 459 * 460 * @param ptk The request packet 461 * @param blk The referenced block 462 * @param mshr Any existing mshr for the referenced cache block 463 * @param forward_time The tick at which we can process dependent requests 464 * @param request_time The tick at which the block lookup is compete 465 */ 466 void handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk, 467 Tick forward_time, Tick request_time); 468 469 /** 470 * Performs the access specified by the request. 471 * @param pkt The request to perform. 472 */ 473 virtual void recvTimingReq(PacketPtr pkt); 474 475 /** 476 * Handling the special case of uncacheable write responses to 477 * make recvTimingResp less cluttered. 478 */ 479 void handleUncacheableWriteResp(PacketPtr pkt); 480 481 /** 482 * Service non-deferred MSHR targets using the received response 483 * 484 * Iterates through the list of targets that can be serviced with 485 * the current response. Any writebacks that need to performed 486 * must be appended to the writebacks parameter. 487 * 488 * @param mshr The MSHR that corresponds to the reponse 489 * @param pkt The response packet 490 * @param blk The reference block 491 * @param writebacks List of writebacks that need to be performed 492 */ 493 virtual void serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt, 494 CacheBlk *blk, PacketList& writebacks) = 0; 495 496 /** 497 * Handles a response (cache line fill/write ack) from the bus. 498 * @param pkt The response packet 499 */ 500 virtual void recvTimingResp(PacketPtr pkt); 501 502 /** 503 * Snoops bus transactions to maintain coherence. 504 * @param pkt The current bus transaction. 505 */ 506 virtual void recvTimingSnoopReq(PacketPtr pkt) = 0; 507 508 /** 509 * Handle a snoop response. 510 * @param pkt Snoop response packet 511 */ 512 virtual void recvTimingSnoopResp(PacketPtr pkt) = 0; 513 514 /** 515 * Handle a request in atomic mode that missed in this cache 516 * 517 * Creates a downstream request, sends it to the memory below and 518 * handles the response. As we are in atomic mode all operations 519 * are performed immediately. 520 * 521 * @param pkt The packet with the requests 522 * @param blk The referenced block 523 * @param writebacks A list with packets for any performed writebacks 524 * @return Cycles for handling the request 525 */ 526 virtual Cycles handleAtomicReqMiss(PacketPtr pkt, CacheBlk *&blk, 527 PacketList &writebacks) = 0; 528 529 /** 530 * Performs the access specified by the request. 531 * @param pkt The request to perform. 532 * @return The number of ticks required for the access. 533 */ 534 virtual Tick recvAtomic(PacketPtr pkt); 535 536 /** 537 * Snoop for the provided request in the cache and return the estimated 538 * time taken. 539 * @param pkt The memory request to snoop 540 * @return The number of ticks required for the snoop. 541 */ 542 virtual Tick recvAtomicSnoop(PacketPtr pkt) = 0; 543 544 /** 545 * Performs the access specified by the request. 546 * 547 * @param pkt The request to perform. 548 * @param fromCpuSide from the CPU side port or the memory side port 549 */ 550 virtual void functionalAccess(PacketPtr pkt, bool from_cpu_side); 551 552 /** 553 * Handle doing the Compare and Swap function for SPARC. 554 */ 555 void cmpAndSwap(CacheBlk *blk, PacketPtr pkt); 556 557 /** 558 * Return the next queue entry to service, either a pending miss 559 * from the MSHR queue, a buffered write from the write buffer, or 560 * something from the prefetcher. This function is responsible 561 * for prioritizing among those sources on the fly. 562 */ 563 QueueEntry* getNextQueueEntry(); 564 565 /** 566 * Insert writebacks into the write buffer 567 */ 568 virtual void doWritebacks(PacketList& writebacks, Tick forward_time) = 0; 569 570 /** 571 * Send writebacks down the memory hierarchy in atomic mode 572 */ 573 virtual void doWritebacksAtomic(PacketList& writebacks) = 0; 574 575 /** 576 * Create an appropriate downstream bus request packet. 577 * 578 * Creates a new packet with the request to be send to the memory 579 * below, or nullptr if the current request in cpu_pkt should just 580 * be forwarded on. 581 * 582 * @param cpu_pkt The miss packet that needs to be satisfied. 583 * @param blk The referenced block, can be nullptr. 584 * @param needs_writable Indicates that the block must be writable 585 * even if the request in cpu_pkt doesn't indicate that. 586 * @param is_whole_line_write True if there are writes for the 587 * whole line 588 * @return A packet send to the memory below 589 */ 590 virtual PacketPtr createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk, 591 bool needs_writable, 592 bool is_whole_line_write) const = 0; 593 594 /** 595 * Determine if clean lines should be written back or not. In 596 * cases where a downstream cache is mostly inclusive we likely 597 * want it to act as a victim cache also for lines that have not 598 * been modified. Hence, we cannot simply drop the line (or send a 599 * clean evict), but rather need to send the actual data. 600 */ 601 const bool writebackClean; 602 603 /** 604 * Writebacks from the tempBlock, resulting on the response path 605 * in atomic mode, must happen after the call to recvAtomic has 606 * finished (for the right ordering of the packets). We therefore 607 * need to hold on to the packets, and have a method and an event 608 * to send them. 609 */ 610 PacketPtr tempBlockWriteback; 611 612 /** 613 * Send the outstanding tempBlock writeback. To be called after 614 * recvAtomic finishes in cases where the block we filled is in 615 * fact the tempBlock, and now needs to be written back. 616 */ 617 void writebackTempBlockAtomic() { 618 assert(tempBlockWriteback != nullptr); 619 PacketList writebacks{tempBlockWriteback}; 620 doWritebacksAtomic(writebacks); 621 tempBlockWriteback = nullptr; 622 } 623 624 /** 625 * An event to writeback the tempBlock after recvAtomic 626 * finishes. To avoid other calls to recvAtomic getting in 627 * between, we create this event with a higher priority. 628 */ 629 EventFunctionWrapper writebackTempBlockAtomicEvent; 630 631 /** 632 * Perform any necessary updates to the block and perform any data 633 * exchange between the packet and the block. The flags of the 634 * packet are also set accordingly. 635 * 636 * @param pkt Request packet from upstream that hit a block 637 * @param blk Cache block that the packet hit 638 * @param deferred_response Whether this request originally missed 639 * @param pending_downgrade Whether the writable flag is to be removed 640 */ 641 virtual void satisfyRequest(PacketPtr pkt, CacheBlk *blk, 642 bool deferred_response = false, 643 bool pending_downgrade = false); 644 645 /** 646 * Maintain the clusivity of this cache by potentially 647 * invalidating a block. This method works in conjunction with 648 * satisfyRequest, but is separate to allow us to handle all MSHR 649 * targets before potentially dropping a block. 650 * 651 * @param from_cache Whether we have dealt with a packet from a cache 652 * @param blk The block that should potentially be dropped 653 */ 654 void maintainClusivity(bool from_cache, CacheBlk *blk); 655 656 /** 657 * Handle a fill operation caused by a received packet. 658 * 659 * Populates a cache block and handles all outstanding requests for the 660 * satisfied fill request. This version takes two memory requests. One 661 * contains the fill data, the other is an optional target to satisfy. 662 * Note that the reason we return a list of writebacks rather than 663 * inserting them directly in the write buffer is that this function 664 * is called by both atomic and timing-mode accesses, and in atomic 665 * mode we don't mess with the write buffer (we just perform the 666 * writebacks atomically once the original request is complete). 667 * 668 * @param pkt The memory request with the fill data. 669 * @param blk The cache block if it already exists. 670 * @param writebacks List for any writebacks that need to be performed. 671 * @param allocate Whether to allocate a block or use the temp block 672 * @return Pointer to the new cache block. 673 */ 674 CacheBlk *handleFill(PacketPtr pkt, CacheBlk *blk, 675 PacketList &writebacks, bool allocate); 676 677 /** 678 * Allocate a new block and perform any necessary writebacks 679 * 680 * Find a victim block and if necessary prepare writebacks for any 681 * existing data. May return nullptr if there are no replaceable 682 * blocks. If a replaceable block is found, it inserts the new block in 683 * its place. The new block, however, is not set as valid yet. 684 * 685 * @param pkt Packet holding the address to update 686 * @param writebacks A list of writeback packets for the evicted blocks 687 * @return the allocated block 688 */ 689 CacheBlk *allocateBlock(const PacketPtr pkt, PacketList &writebacks); 690 /** 691 * Evict a cache block. 692 * 693 * Performs a writeback if necesssary and invalidates the block 694 * 695 * @param blk Block to invalidate 696 * @return A packet with the writeback, can be nullptr 697 */ 698 M5_NODISCARD virtual PacketPtr evictBlock(CacheBlk *blk) = 0; 699 700 /** 701 * Evict a cache block. 702 * 703 * Performs a writeback if necesssary and invalidates the block 704 * 705 * @param blk Block to invalidate 706 * @param writebacks Return a list of packets with writebacks 707 */ 708 virtual void evictBlock(CacheBlk *blk, PacketList &writebacks) = 0; 709 710 /** 711 * Invalidate a cache block. 712 * 713 * @param blk Block to invalidate 714 */ 715 void invalidateBlock(CacheBlk *blk); 716 717 /** 718 * Create a writeback request for the given block. 719 * 720 * @param blk The block to writeback. 721 * @return The writeback request for the block. 722 */ 723 PacketPtr writebackBlk(CacheBlk *blk); 724 725 /** 726 * Create a writeclean request for the given block. 727 * 728 * Creates a request that writes the block to the cache below 729 * without evicting the block from the current cache. 730 * 731 * @param blk The block to write clean. 732 * @param dest The destination of the write clean operation. 733 * @param id Use the given packet id for the write clean operation. 734 * @return The generated write clean packet. 735 */ 736 PacketPtr writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id); 737 738 /** 739 * Write back dirty blocks in the cache using functional accesses. 740 */ 741 virtual void memWriteback() override; 742 743 /** 744 * Invalidates all blocks in the cache. 745 * 746 * @warn Dirty cache lines will not be written back to 747 * memory. Make sure to call functionalWriteback() first if you 748 * want the to write them to memory. 749 */ 750 virtual void memInvalidate() override; 751 752 /** 753 * Determine if there are any dirty blocks in the cache. 754 * 755 * @return true if at least one block is dirty, false otherwise. 756 */ 757 bool isDirty() const; 758 759 /** 760 * Determine if an address is in the ranges covered by this 761 * cache. This is useful to filter snoops. 762 * 763 * @param addr Address to check against 764 * 765 * @return If the address in question is in range 766 */ 767 bool inRange(Addr addr) const; 768 769 /** 770 * Find next request ready time from among possible sources. 771 */ 772 Tick nextQueueReadyTime() const; 773 774 /** Block size of this cache */ 775 const unsigned blkSize; 776 777 /** 778 * The latency of tag lookup of a cache. It occurs when there is 779 * an access to the cache. 780 */ 781 const Cycles lookupLatency; 782 783 /** 784 * The latency of data access of a cache. It occurs when there is 785 * an access to the cache. 786 */ 787 const Cycles dataLatency; 788 789 /** 790 * This is the forward latency of the cache. It occurs when there 791 * is a cache miss and a request is forwarded downstream, in 792 * particular an outbound miss. 793 */ 794 const Cycles forwardLatency; 795 796 /** The latency to fill a cache block */ 797 const Cycles fillLatency; 798 799 /** 800 * The latency of sending reponse to its upper level cache/core on 801 * a linefill. The responseLatency parameter captures this 802 * latency. 803 */ 804 const Cycles responseLatency; 805 806 /** The number of targets for each MSHR. */ 807 const int numTarget; 808 809 /** Do we forward snoops from mem side port through to cpu side port? */ 810 bool forwardSnoops; 811 812 /** 813 * Clusivity with respect to the upstream cache, determining if we 814 * fill into both this cache and the cache above on a miss. Note 815 * that we currently do not support strict clusivity policies. 816 */ 817 const Enums::Clusivity clusivity; 818 819 /** 820 * Is this cache read only, for example the instruction cache, or 821 * table-walker cache. A cache that is read only should never see 822 * any writes, and should never get any dirty data (and hence 823 * never have to do any writebacks). 824 */ 825 const bool isReadOnly; 826 827 /** 828 * Bit vector of the blocking reasons for the access path. 829 * @sa #BlockedCause 830 */ 831 uint8_t blocked; 832 833 /** Increasing order number assigned to each incoming request. */ 834 uint64_t order; 835 836 /** Stores time the cache blocked for statistics. */ 837 Cycles blockedCycle; 838 839 /** Pointer to the MSHR that has no targets. */ 840 MSHR *noTargetMSHR; 841 842 /** The number of misses to trigger an exit event. */ 843 Counter missCount; 844 845 /** 846 * The address range to which the cache responds on the CPU side. 847 * Normally this is all possible memory addresses. */ 848 const AddrRangeList addrRanges; 849 850 public: 851 /** System we are currently operating in. */ 852 System *system; 853 854 // Statistics 855 /** 856 * @addtogroup CacheStatistics 857 * @{ 858 */ 859 860 /** Number of hits per thread for each type of command. 861 @sa Packet::Command */ 862 Stats::Vector hits[MemCmd::NUM_MEM_CMDS]; 863 /** Number of hits for demand accesses. */ 864 Stats::Formula demandHits; 865 /** Number of hit for all accesses. */ 866 Stats::Formula overallHits; 867 868 /** Number of misses per thread for each type of command. 869 @sa Packet::Command */ 870 Stats::Vector misses[MemCmd::NUM_MEM_CMDS]; 871 /** Number of misses for demand accesses. */ 872 Stats::Formula demandMisses; 873 /** Number of misses for all accesses. */ 874 Stats::Formula overallMisses; 875 876 /** 877 * Total number of cycles per thread/command spent waiting for a miss. 878 * Used to calculate the average miss latency. 879 */ 880 Stats::Vector missLatency[MemCmd::NUM_MEM_CMDS]; 881 /** Total number of cycles spent waiting for demand misses. */ 882 Stats::Formula demandMissLatency; 883 /** Total number of cycles spent waiting for all misses. */ 884 Stats::Formula overallMissLatency; 885 886 /** The number of accesses per command and thread. */ 887 Stats::Formula accesses[MemCmd::NUM_MEM_CMDS]; 888 /** The number of demand accesses. */ 889 Stats::Formula demandAccesses; 890 /** The number of overall accesses. */ 891 Stats::Formula overallAccesses; 892 893 /** The miss rate per command and thread. */ 894 Stats::Formula missRate[MemCmd::NUM_MEM_CMDS]; 895 /** The miss rate of all demand accesses. */ 896 Stats::Formula demandMissRate; 897 /** The miss rate for all accesses. */ 898 Stats::Formula overallMissRate; 899 900 /** The average miss latency per command and thread. */ 901 Stats::Formula avgMissLatency[MemCmd::NUM_MEM_CMDS]; 902 /** The average miss latency for demand misses. */ 903 Stats::Formula demandAvgMissLatency; 904 /** The average miss latency for all misses. */ 905 Stats::Formula overallAvgMissLatency; 906 907 /** The total number of cycles blocked for each blocked cause. */ 908 Stats::Vector blocked_cycles; 909 /** The number of times this cache blocked for each blocked cause. */ 910 Stats::Vector blocked_causes; 911 912 /** The average number of cycles blocked for each blocked cause. */ 913 Stats::Formula avg_blocked; 914 915 /** The number of times a HW-prefetched block is evicted w/o reference. */ 916 Stats::Scalar unusedPrefetches; 917 918 /** Number of blocks written back per thread. */ 919 Stats::Vector writebacks; 920 921 /** Number of misses that hit in the MSHRs per command and thread. */ 922 Stats::Vector mshr_hits[MemCmd::NUM_MEM_CMDS]; 923 /** Demand misses that hit in the MSHRs. */ 924 Stats::Formula demandMshrHits; 925 /** Total number of misses that hit in the MSHRs. */ 926 Stats::Formula overallMshrHits; 927 928 /** Number of misses that miss in the MSHRs, per command and thread. */ 929 Stats::Vector mshr_misses[MemCmd::NUM_MEM_CMDS]; 930 /** Demand misses that miss in the MSHRs. */ 931 Stats::Formula demandMshrMisses; 932 /** Total number of misses that miss in the MSHRs. */ 933 Stats::Formula overallMshrMisses; 934 935 /** Number of misses that miss in the MSHRs, per command and thread. */ 936 Stats::Vector mshr_uncacheable[MemCmd::NUM_MEM_CMDS]; 937 /** Total number of misses that miss in the MSHRs. */ 938 Stats::Formula overallMshrUncacheable; 939 940 /** Total cycle latency of each MSHR miss, per command and thread. */ 941 Stats::Vector mshr_miss_latency[MemCmd::NUM_MEM_CMDS]; 942 /** Total cycle latency of demand MSHR misses. */ 943 Stats::Formula demandMshrMissLatency; 944 /** Total cycle latency of overall MSHR misses. */ 945 Stats::Formula overallMshrMissLatency; 946 947 /** Total cycle latency of each MSHR miss, per command and thread. */ 948 Stats::Vector mshr_uncacheable_lat[MemCmd::NUM_MEM_CMDS]; 949 /** Total cycle latency of overall MSHR misses. */ 950 Stats::Formula overallMshrUncacheableLatency; 951 952#if 0 953 /** The total number of MSHR accesses per command and thread. */ 954 Stats::Formula mshrAccesses[MemCmd::NUM_MEM_CMDS]; 955 /** The total number of demand MSHR accesses. */ 956 Stats::Formula demandMshrAccesses; 957 /** The total number of MSHR accesses. */ 958 Stats::Formula overallMshrAccesses; 959#endif 960 961 /** The miss rate in the MSHRs pre command and thread. */ 962 Stats::Formula mshrMissRate[MemCmd::NUM_MEM_CMDS]; 963 /** The demand miss rate in the MSHRs. */ 964 Stats::Formula demandMshrMissRate; 965 /** The overall miss rate in the MSHRs. */ 966 Stats::Formula overallMshrMissRate; 967 968 /** The average latency of an MSHR miss, per command and thread. */ 969 Stats::Formula avgMshrMissLatency[MemCmd::NUM_MEM_CMDS]; 970 /** The average latency of a demand MSHR miss. */ 971 Stats::Formula demandAvgMshrMissLatency; 972 /** The average overall latency of an MSHR miss. */ 973 Stats::Formula overallAvgMshrMissLatency; 974 975 /** The average latency of an MSHR miss, per command and thread. */ 976 Stats::Formula avgMshrUncacheableLatency[MemCmd::NUM_MEM_CMDS]; 977 /** The average overall latency of an MSHR miss. */ 978 Stats::Formula overallAvgMshrUncacheableLatency; 979 980 /** Number of replacements of valid blocks. */ 981 Stats::Scalar replacements; 982 983 /** 984 * @} 985 */ 986 987 /** 988 * Register stats for this object. 989 */ 990 void regStats() override; 991 992 public: 993 BaseCache(const BaseCacheParams *p, unsigned blk_size); 994 ~BaseCache(); 995 996 void init() override; 997 998 BaseMasterPort &getMasterPort(const std::string &if_name, 999 PortID idx = InvalidPortID) override; 1000 BaseSlavePort &getSlavePort(const std::string &if_name, 1001 PortID idx = InvalidPortID) override; 1002 1003 /** 1004 * Query block size of a cache. 1005 * @return The block size 1006 */ 1007 unsigned 1008 getBlockSize() const 1009 { 1010 return blkSize; 1011 } 1012 1013 const AddrRangeList &getAddrRanges() const { return addrRanges; } 1014 1015 MSHR *allocateMissBuffer(PacketPtr pkt, Tick time, bool sched_send = true) 1016 { 1017 MSHR *mshr = mshrQueue.allocate(pkt->getBlockAddr(blkSize), blkSize, 1018 pkt, time, order++, 1019 allocOnFill(pkt->cmd)); 1020 1021 if (mshrQueue.isFull()) { 1022 setBlocked((BlockedCause)MSHRQueue_MSHRs); 1023 } 1024 1025 if (sched_send) { 1026 // schedule the send 1027 schedMemSideSendEvent(time); 1028 } 1029 1030 return mshr; 1031 } 1032 1033 void allocateWriteBuffer(PacketPtr pkt, Tick time) 1034 { 1035 // should only see writes or clean evicts here 1036 assert(pkt->isWrite() || pkt->cmd == MemCmd::CleanEvict); 1037 1038 Addr blk_addr = pkt->getBlockAddr(blkSize); 1039 1040 WriteQueueEntry *wq_entry = 1041 writeBuffer.findMatch(blk_addr, pkt->isSecure()); 1042 if (wq_entry && !wq_entry->inService) { 1043 DPRINTF(Cache, "Potential to merge writeback %s", pkt->print()); 1044 } 1045 1046 writeBuffer.allocate(blk_addr, blkSize, pkt, time, order++); 1047 1048 if (writeBuffer.isFull()) { 1049 setBlocked((BlockedCause)MSHRQueue_WriteBuffer); 1050 } 1051 1052 // schedule the send 1053 schedMemSideSendEvent(time); 1054 } 1055 1056 /** 1057 * Returns true if the cache is blocked for accesses. 1058 */ 1059 bool isBlocked() const 1060 { 1061 return blocked != 0; 1062 } 1063 1064 /** 1065 * Marks the access path of the cache as blocked for the given cause. This 1066 * also sets the blocked flag in the slave interface. 1067 * @param cause The reason for the cache blocking. 1068 */ 1069 void setBlocked(BlockedCause cause) 1070 { 1071 uint8_t flag = 1 << cause; 1072 if (blocked == 0) { 1073 blocked_causes[cause]++; 1074 blockedCycle = curCycle(); 1075 cpuSidePort.setBlocked(); 1076 } 1077 blocked |= flag; 1078 DPRINTF(Cache,"Blocking for cause %d, mask=%d\n", cause, blocked); 1079 } 1080 1081 /** 1082 * Marks the cache as unblocked for the given cause. This also clears the 1083 * blocked flags in the appropriate interfaces. 1084 * @param cause The newly unblocked cause. 1085 * @warning Calling this function can cause a blocked request on the bus to 1086 * access the cache. The cache must be in a state to handle that request. 1087 */ 1088 void clearBlocked(BlockedCause cause) 1089 { 1090 uint8_t flag = 1 << cause; 1091 blocked &= ~flag; 1092 DPRINTF(Cache,"Unblocking for cause %d, mask=%d\n", cause, blocked); 1093 if (blocked == 0) { 1094 blocked_cycles[cause] += curCycle() - blockedCycle; 1095 cpuSidePort.clearBlocked(); 1096 } 1097 } 1098 1099 /** 1100 * Schedule a send event for the memory-side port. If already 1101 * scheduled, this may reschedule the event at an earlier 1102 * time. When the specified time is reached, the port is free to 1103 * send either a response, a request, or a prefetch request. 1104 * 1105 * @param time The time when to attempt sending a packet. 1106 */ 1107 void schedMemSideSendEvent(Tick time) 1108 { 1109 memSidePort.schedSendEvent(time); 1110 } 1111 1112 bool inCache(Addr addr, bool is_secure) const { 1113 return tags->findBlock(addr, is_secure); 1114 } 1115 1116 bool inMissQueue(Addr addr, bool is_secure) const { 1117 return mshrQueue.findMatch(addr, is_secure); 1118 } 1119 1120 void incMissCount(PacketPtr pkt) 1121 { 1122 assert(pkt->req->masterId() < system->maxMasters()); 1123 misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 1124 pkt->req->incAccessDepth(); 1125 if (missCount) { 1126 --missCount; 1127 if (missCount == 0) 1128 exitSimLoop("A cache reached the maximum miss count"); 1129 } 1130 } 1131 void incHitCount(PacketPtr pkt) 1132 { 1133 assert(pkt->req->masterId() < system->maxMasters()); 1134 hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 1135 1136 } 1137 1138 /** 1139 * Cache block visitor that writes back dirty cache blocks using 1140 * functional writes. 1141 */ 1142 void writebackVisitor(CacheBlk &blk); 1143 1144 /** 1145 * Cache block visitor that invalidates all blocks in the cache. 1146 * 1147 * @warn Dirty cache lines will not be written back to memory. 1148 */ 1149 void invalidateVisitor(CacheBlk &blk); 1150 1151 /** 1152 * Take an MSHR, turn it into a suitable downstream packet, and 1153 * send it out. This construct allows a queue entry to choose a suitable 1154 * approach based on its type. 1155 * 1156 * @param mshr The MSHR to turn into a packet and send 1157 * @return True if the port is waiting for a retry 1158 */ 1159 virtual bool sendMSHRQueuePacket(MSHR* mshr); 1160 1161 /** 1162 * Similar to sendMSHR, but for a write-queue entry 1163 * instead. Create the packet, and send it, and if successful also 1164 * mark the entry in service. 1165 * 1166 * @param wq_entry The write-queue entry to turn into a packet and send 1167 * @return True if the port is waiting for a retry 1168 */ 1169 bool sendWriteQueuePacket(WriteQueueEntry* wq_entry); 1170 1171 /** 1172 * Serialize the state of the caches 1173 * 1174 * We currently don't support checkpointing cache state, so this panics. 1175 */ 1176 void serialize(CheckpointOut &cp) const override; 1177 void unserialize(CheckpointIn &cp) override; 1178 1179}; 1180 1181/** 1182 * The write allocator inspects write packets and detects streaming 1183 * patterns. The write allocator supports a single stream where writes 1184 * are expected to access consecutive locations and keeps track of 1185 * size of the area covered by the concecutive writes in byteCount. 1186 * 1187 * 1) When byteCount has surpassed the coallesceLimit the mode 1188 * switches from ALLOCATE to COALESCE where writes should be delayed 1189 * until the whole block is written at which point a single packet 1190 * (whole line write) can service them. 1191 * 1192 * 2) When byteCount has also exceeded the noAllocateLimit (whole 1193 * line) we switch to NO_ALLOCATE when writes should not allocate in 1194 * the cache but rather send a whole line write to the memory below. 1195 */ 1196class WriteAllocator : public SimObject { 1197 public: 1198 WriteAllocator(const WriteAllocatorParams *p) : 1199 SimObject(p), 1200 coalesceLimit(p->coalesce_limit * p->block_size), 1201 noAllocateLimit(p->no_allocate_limit * p->block_size), 1202 delayThreshold(p->delay_threshold) 1203 { 1204 reset(); 1205 } 1206 1207 /** 1208 * Should writes be coalesced? This is true if the mode is set to 1209 * NO_ALLOCATE. 1210 * 1211 * @return return true if the cache should coalesce writes. 1212 */ 1213 bool coalesce() const { 1214 return mode != WriteMode::ALLOCATE; 1215 } 1216 1217 /** 1218 * Should writes allocate? 1219 * 1220 * @return return true if the cache should not allocate for writes. 1221 */ 1222 bool allocate() const { 1223 return mode != WriteMode::NO_ALLOCATE; 1224 } 1225 1226 /** 1227 * Reset the write allocator state, meaning that it allocates for 1228 * writes and has not recorded any information about qualifying 1229 * writes that might trigger a switch to coalescing and later no 1230 * allocation. 1231 */ 1232 void reset() { 1233 mode = WriteMode::ALLOCATE; 1234 byteCount = 0; 1235 nextAddr = 0; 1236 } 1237 1238 /** 1239 * Access whether we need to delay the current write. 1240 * 1241 * @param blk_addr The block address the packet writes to 1242 * @return true if the current packet should be delayed 1243 */ 1244 bool delay(Addr blk_addr) { 1245 if (delayCtr[blk_addr] > 0) { 1246 --delayCtr[blk_addr]; 1247 return true; 1248 } else { 1249 return false; 1250 } 1251 } 1252 1253 /** 1254 * Clear delay counter for the input block 1255 * 1256 * @param blk_addr The accessed cache block 1257 */ 1258 void resetDelay(Addr blk_addr) { 1259 delayCtr.erase(blk_addr); 1260 } 1261 1262 /** 1263 * Update the write mode based on the current write 1264 * packet. This method compares the packet's address with any 1265 * current stream, and updates the tracking and the mode 1266 * accordingly. 1267 * 1268 * @param write_addr Start address of the write request 1269 * @param write_size Size of the write request 1270 * @param blk_addr The block address that this packet writes to 1271 */ 1272 void updateMode(Addr write_addr, unsigned write_size, Addr blk_addr); 1273 1274 private: 1275 /** 1276 * The current mode for write coalescing and allocation, either 1277 * normal operation (ALLOCATE), write coalescing (COALESCE), or 1278 * write coalescing without allocation (NO_ALLOCATE). 1279 */ 1280 enum class WriteMode : char { 1281 ALLOCATE, 1282 COALESCE, 1283 NO_ALLOCATE, 1284 }; 1285 WriteMode mode; 1286 1287 /** Address to match writes against to detect streams. */ 1288 Addr nextAddr; 1289 1290 /** 1291 * Bytes written contiguously. Saturating once we no longer 1292 * allocate. 1293 */ 1294 uint32_t byteCount; 1295 1296 /** 1297 * Limits for when to switch between the different write modes. 1298 */ 1299 const uint32_t coalesceLimit; 1300 const uint32_t noAllocateLimit; 1301 /** 1302 * The number of times the allocator will delay an WriteReq MSHR. 1303 */ 1304 const uint32_t delayThreshold; 1305 1306 /** 1307 * Keep track of the number of times the allocator has delayed an 1308 * WriteReq MSHR. 1309 */ 1310 std::unordered_map<Addr, Counter> delayCtr; 1311}; 1312 1313#endif //__MEM_CACHE_BASE_HH__ 1314