base.hh revision 13350:247e4108a5e8
1/* 2 * Copyright (c) 2012-2013, 2015-2016, 2018 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2003-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Erik Hallnor 41 * Steve Reinhardt 42 * Ron Dreslinski 43 * Andreas Hansson 44 * Nikos Nikoleris 45 */ 46 47/** 48 * @file 49 * Declares a basic cache interface BaseCache. 50 */ 51 52#ifndef __MEM_CACHE_BASE_HH__ 53#define __MEM_CACHE_BASE_HH__ 54 55#include <cassert> 56#include <cstdint> 57#include <string> 58 59#include "base/addr_range.hh" 60#include "base/statistics.hh" 61#include "base/trace.hh" 62#include "base/types.hh" 63#include "debug/Cache.hh" 64#include "debug/CachePort.hh" 65#include "enums/Clusivity.hh" 66#include "mem/cache/cache_blk.hh" 67#include "mem/cache/mshr_queue.hh" 68#include "mem/cache/tags/base.hh" 69#include "mem/cache/write_queue.hh" 70#include "mem/cache/write_queue_entry.hh" 71#include "mem/mem_object.hh" 72#include "mem/packet.hh" 73#include "mem/packet_queue.hh" 74#include "mem/qport.hh" 75#include "mem/request.hh" 76#include "sim/eventq.hh" 77#include "sim/serialize.hh" 78#include "sim/sim_exit.hh" 79#include "sim/system.hh" 80 81class BaseMasterPort; 82class BasePrefetcher; 83class BaseSlavePort; 84class MSHR; 85class MasterPort; 86class QueueEntry; 87struct BaseCacheParams; 88 89/** 90 * A basic cache interface. Implements some common functions for speed. 91 */ 92class BaseCache : public MemObject 93{ 94 protected: 95 /** 96 * Indexes to enumerate the MSHR queues. 97 */ 98 enum MSHRQueueIndex { 99 MSHRQueue_MSHRs, 100 MSHRQueue_WriteBuffer 101 }; 102 103 public: 104 /** 105 * Reasons for caches to be blocked. 106 */ 107 enum BlockedCause { 108 Blocked_NoMSHRs = MSHRQueue_MSHRs, 109 Blocked_NoWBBuffers = MSHRQueue_WriteBuffer, 110 Blocked_NoTargets, 111 NUM_BLOCKED_CAUSES 112 }; 113 114 protected: 115 116 /** 117 * A cache master port is used for the memory-side port of the 118 * cache, and in addition to the basic timing port that only sends 119 * response packets through a transmit list, it also offers the 120 * ability to schedule and send request packets (requests & 121 * writebacks). The send event is scheduled through schedSendEvent, 122 * and the sendDeferredPacket of the timing port is modified to 123 * consider both the transmit list and the requests from the MSHR. 124 */ 125 class CacheMasterPort : public QueuedMasterPort 126 { 127 128 public: 129 130 /** 131 * Schedule a send of a request packet (from the MSHR). Note 132 * that we could already have a retry outstanding. 133 */ 134 void schedSendEvent(Tick time) 135 { 136 DPRINTF(CachePort, "Scheduling send event at %llu\n", time); 137 reqQueue.schedSendEvent(time); 138 } 139 140 protected: 141 142 CacheMasterPort(const std::string &_name, BaseCache *_cache, 143 ReqPacketQueue &_reqQueue, 144 SnoopRespPacketQueue &_snoopRespQueue) : 145 QueuedMasterPort(_name, _cache, _reqQueue, _snoopRespQueue) 146 { } 147 148 /** 149 * Memory-side port always snoops. 150 * 151 * @return always true 152 */ 153 virtual bool isSnooping() const { return true; } 154 }; 155 156 /** 157 * Override the default behaviour of sendDeferredPacket to enable 158 * the memory-side cache port to also send requests based on the 159 * current MSHR status. This queue has a pointer to our specific 160 * cache implementation and is used by the MemSidePort. 161 */ 162 class CacheReqPacketQueue : public ReqPacketQueue 163 { 164 165 protected: 166 167 BaseCache &cache; 168 SnoopRespPacketQueue &snoopRespQueue; 169 170 public: 171 172 CacheReqPacketQueue(BaseCache &cache, MasterPort &port, 173 SnoopRespPacketQueue &snoop_resp_queue, 174 const std::string &label) : 175 ReqPacketQueue(cache, port, label), cache(cache), 176 snoopRespQueue(snoop_resp_queue) { } 177 178 /** 179 * Override the normal sendDeferredPacket and do not only 180 * consider the transmit list (used for responses), but also 181 * requests. 182 */ 183 virtual void sendDeferredPacket(); 184 185 /** 186 * Check if there is a conflicting snoop response about to be 187 * send out, and if so simply stall any requests, and schedule 188 * a send event at the same time as the next snoop response is 189 * being sent out. 190 */ 191 bool checkConflictingSnoop(Addr addr) 192 { 193 if (snoopRespQueue.hasAddr(addr)) { 194 DPRINTF(CachePort, "Waiting for snoop response to be " 195 "sent\n"); 196 Tick when = snoopRespQueue.deferredPacketReadyTime(); 197 schedSendEvent(when); 198 return true; 199 } 200 return false; 201 } 202 }; 203 204 205 /** 206 * The memory-side port extends the base cache master port with 207 * access functions for functional, atomic and timing snoops. 208 */ 209 class MemSidePort : public CacheMasterPort 210 { 211 private: 212 213 /** The cache-specific queue. */ 214 CacheReqPacketQueue _reqQueue; 215 216 SnoopRespPacketQueue _snoopRespQueue; 217 218 // a pointer to our specific cache implementation 219 BaseCache *cache; 220 221 protected: 222 223 virtual void recvTimingSnoopReq(PacketPtr pkt); 224 225 virtual bool recvTimingResp(PacketPtr pkt); 226 227 virtual Tick recvAtomicSnoop(PacketPtr pkt); 228 229 virtual void recvFunctionalSnoop(PacketPtr pkt); 230 231 public: 232 233 MemSidePort(const std::string &_name, BaseCache *_cache, 234 const std::string &_label); 235 }; 236 237 /** 238 * A cache slave port is used for the CPU-side port of the cache, 239 * and it is basically a simple timing port that uses a transmit 240 * list for responses to the CPU (or connected master). In 241 * addition, it has the functionality to block the port for 242 * incoming requests. If blocked, the port will issue a retry once 243 * unblocked. 244 */ 245 class CacheSlavePort : public QueuedSlavePort 246 { 247 248 public: 249 250 /** Do not accept any new requests. */ 251 void setBlocked(); 252 253 /** Return to normal operation and accept new requests. */ 254 void clearBlocked(); 255 256 bool isBlocked() const { return blocked; } 257 258 protected: 259 260 CacheSlavePort(const std::string &_name, BaseCache *_cache, 261 const std::string &_label); 262 263 /** A normal packet queue used to store responses. */ 264 RespPacketQueue queue; 265 266 bool blocked; 267 268 bool mustSendRetry; 269 270 private: 271 272 void processSendRetry(); 273 274 EventFunctionWrapper sendRetryEvent; 275 276 }; 277 278 /** 279 * The CPU-side port extends the base cache slave port with access 280 * functions for functional, atomic and timing requests. 281 */ 282 class CpuSidePort : public CacheSlavePort 283 { 284 private: 285 286 // a pointer to our specific cache implementation 287 BaseCache *cache; 288 289 protected: 290 virtual bool recvTimingSnoopResp(PacketPtr pkt) override; 291 292 virtual bool tryTiming(PacketPtr pkt) override; 293 294 virtual bool recvTimingReq(PacketPtr pkt) override; 295 296 virtual Tick recvAtomic(PacketPtr pkt) override; 297 298 virtual void recvFunctional(PacketPtr pkt) override; 299 300 virtual AddrRangeList getAddrRanges() const override; 301 302 public: 303 304 CpuSidePort(const std::string &_name, BaseCache *_cache, 305 const std::string &_label); 306 307 }; 308 309 CpuSidePort cpuSidePort; 310 MemSidePort memSidePort; 311 312 protected: 313 314 /** Miss status registers */ 315 MSHRQueue mshrQueue; 316 317 /** Write/writeback buffer */ 318 WriteQueue writeBuffer; 319 320 /** Tag and data Storage */ 321 BaseTags *tags; 322 323 /** Prefetcher */ 324 BasePrefetcher *prefetcher; 325 326 /** 327 * Notify the prefetcher on every access, not just misses. 328 */ 329 const bool prefetchOnAccess; 330 331 /** 332 * Temporary cache block for occasional transitory use. We use 333 * the tempBlock to fill when allocation fails (e.g., when there 334 * is an outstanding request that accesses the victim block) or 335 * when we want to avoid allocation (e.g., exclusive caches) 336 */ 337 TempCacheBlk *tempBlock; 338 339 /** 340 * Upstream caches need this packet until true is returned, so 341 * hold it for deletion until a subsequent call 342 */ 343 std::unique_ptr<Packet> pendingDelete; 344 345 /** 346 * Mark a request as in service (sent downstream in the memory 347 * system), effectively making this MSHR the ordering point. 348 */ 349 void markInService(MSHR *mshr, bool pending_modified_resp) 350 { 351 bool wasFull = mshrQueue.isFull(); 352 mshrQueue.markInService(mshr, pending_modified_resp); 353 354 if (wasFull && !mshrQueue.isFull()) { 355 clearBlocked(Blocked_NoMSHRs); 356 } 357 } 358 359 void markInService(WriteQueueEntry *entry) 360 { 361 bool wasFull = writeBuffer.isFull(); 362 writeBuffer.markInService(entry); 363 364 if (wasFull && !writeBuffer.isFull()) { 365 clearBlocked(Blocked_NoWBBuffers); 366 } 367 } 368 369 /** 370 * Determine whether we should allocate on a fill or not. If this 371 * cache is mostly inclusive with regards to the upstream cache(s) 372 * we always allocate (for any non-forwarded and cacheable 373 * requests). In the case of a mostly exclusive cache, we allocate 374 * on fill if the packet did not come from a cache, thus if we: 375 * are dealing with a whole-line write (the latter behaves much 376 * like a writeback), the original target packet came from a 377 * non-caching source, or if we are performing a prefetch or LLSC. 378 * 379 * @param cmd Command of the incoming requesting packet 380 * @return Whether we should allocate on the fill 381 */ 382 inline bool allocOnFill(MemCmd cmd) const 383 { 384 return clusivity == Enums::mostly_incl || 385 cmd == MemCmd::WriteLineReq || 386 cmd == MemCmd::ReadReq || 387 cmd == MemCmd::WriteReq || 388 cmd.isPrefetch() || 389 cmd.isLLSC(); 390 } 391 392 /** 393 * Regenerate block address using tags. 394 * Block address regeneration depends on whether we're using a temporary 395 * block or not. 396 * 397 * @param blk The block to regenerate address. 398 * @return The block's address. 399 */ 400 Addr regenerateBlkAddr(CacheBlk* blk); 401 402 /** 403 * Does all the processing necessary to perform the provided request. 404 * @param pkt The memory request to perform. 405 * @param blk The cache block to be updated. 406 * @param lat The latency of the access. 407 * @param writebacks List for any writebacks that need to be performed. 408 * @return Boolean indicating whether the request was satisfied. 409 */ 410 virtual bool access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 411 PacketList &writebacks); 412 413 /* 414 * Handle a timing request that hit in the cache 415 * 416 * @param ptk The request packet 417 * @param blk The referenced block 418 * @param request_time The tick at which the block lookup is compete 419 */ 420 virtual void handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, 421 Tick request_time); 422 423 /* 424 * Handle a timing request that missed in the cache 425 * 426 * Implementation specific handling for different cache 427 * implementations 428 * 429 * @param ptk The request packet 430 * @param blk The referenced block 431 * @param forward_time The tick at which we can process dependent requests 432 * @param request_time The tick at which the block lookup is compete 433 */ 434 virtual void handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk, 435 Tick forward_time, 436 Tick request_time) = 0; 437 438 /* 439 * Handle a timing request that missed in the cache 440 * 441 * Common functionality across different cache implementations 442 * 443 * @param ptk The request packet 444 * @param blk The referenced block 445 * @param mshr Any existing mshr for the referenced cache block 446 * @param forward_time The tick at which we can process dependent requests 447 * @param request_time The tick at which the block lookup is compete 448 */ 449 void handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk, 450 Tick forward_time, Tick request_time); 451 452 /** 453 * Performs the access specified by the request. 454 * @param pkt The request to perform. 455 */ 456 virtual void recvTimingReq(PacketPtr pkt); 457 458 /** 459 * Handling the special case of uncacheable write responses to 460 * make recvTimingResp less cluttered. 461 */ 462 void handleUncacheableWriteResp(PacketPtr pkt); 463 464 /** 465 * Service non-deferred MSHR targets using the received response 466 * 467 * Iterates through the list of targets that can be serviced with 468 * the current response. Any writebacks that need to performed 469 * must be appended to the writebacks parameter. 470 * 471 * @param mshr The MSHR that corresponds to the reponse 472 * @param pkt The response packet 473 * @param blk The reference block 474 * @param writebacks List of writebacks that need to be performed 475 */ 476 virtual void serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt, 477 CacheBlk *blk, PacketList& writebacks) = 0; 478 479 /** 480 * Handles a response (cache line fill/write ack) from the bus. 481 * @param pkt The response packet 482 */ 483 virtual void recvTimingResp(PacketPtr pkt); 484 485 /** 486 * Snoops bus transactions to maintain coherence. 487 * @param pkt The current bus transaction. 488 */ 489 virtual void recvTimingSnoopReq(PacketPtr pkt) = 0; 490 491 /** 492 * Handle a snoop response. 493 * @param pkt Snoop response packet 494 */ 495 virtual void recvTimingSnoopResp(PacketPtr pkt) = 0; 496 497 /** 498 * Handle a request in atomic mode that missed in this cache 499 * 500 * Creates a downstream request, sends it to the memory below and 501 * handles the response. As we are in atomic mode all operations 502 * are performed immediately. 503 * 504 * @param pkt The packet with the requests 505 * @param blk The referenced block 506 * @param writebacks A list with packets for any performed writebacks 507 * @return Cycles for handling the request 508 */ 509 virtual Cycles handleAtomicReqMiss(PacketPtr pkt, CacheBlk *&blk, 510 PacketList &writebacks) = 0; 511 512 /** 513 * Performs the access specified by the request. 514 * @param pkt The request to perform. 515 * @return The number of ticks required for the access. 516 */ 517 virtual Tick recvAtomic(PacketPtr pkt); 518 519 /** 520 * Snoop for the provided request in the cache and return the estimated 521 * time taken. 522 * @param pkt The memory request to snoop 523 * @return The number of ticks required for the snoop. 524 */ 525 virtual Tick recvAtomicSnoop(PacketPtr pkt) = 0; 526 527 /** 528 * Performs the access specified by the request. 529 * 530 * @param pkt The request to perform. 531 * @param fromCpuSide from the CPU side port or the memory side port 532 */ 533 virtual void functionalAccess(PacketPtr pkt, bool from_cpu_side); 534 535 /** 536 * Handle doing the Compare and Swap function for SPARC. 537 */ 538 void cmpAndSwap(CacheBlk *blk, PacketPtr pkt); 539 540 /** 541 * Return the next queue entry to service, either a pending miss 542 * from the MSHR queue, a buffered write from the write buffer, or 543 * something from the prefetcher. This function is responsible 544 * for prioritizing among those sources on the fly. 545 */ 546 QueueEntry* getNextQueueEntry(); 547 548 /** 549 * Insert writebacks into the write buffer 550 */ 551 virtual void doWritebacks(PacketList& writebacks, Tick forward_time) = 0; 552 553 /** 554 * Send writebacks down the memory hierarchy in atomic mode 555 */ 556 virtual void doWritebacksAtomic(PacketList& writebacks) = 0; 557 558 /** 559 * Create an appropriate downstream bus request packet. 560 * 561 * Creates a new packet with the request to be send to the memory 562 * below, or nullptr if the current request in cpu_pkt should just 563 * be forwarded on. 564 * 565 * @param cpu_pkt The miss packet that needs to be satisfied. 566 * @param blk The referenced block, can be nullptr. 567 * @param needs_writable Indicates that the block must be writable 568 * even if the request in cpu_pkt doesn't indicate that. 569 * @param is_whole_line_write True if there are writes for the 570 * whole line 571 * @return A packet send to the memory below 572 */ 573 virtual PacketPtr createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk, 574 bool needs_writable, 575 bool is_whole_line_write) const = 0; 576 577 /** 578 * Determine if clean lines should be written back or not. In 579 * cases where a downstream cache is mostly inclusive we likely 580 * want it to act as a victim cache also for lines that have not 581 * been modified. Hence, we cannot simply drop the line (or send a 582 * clean evict), but rather need to send the actual data. 583 */ 584 const bool writebackClean; 585 586 /** 587 * Writebacks from the tempBlock, resulting on the response path 588 * in atomic mode, must happen after the call to recvAtomic has 589 * finished (for the right ordering of the packets). We therefore 590 * need to hold on to the packets, and have a method and an event 591 * to send them. 592 */ 593 PacketPtr tempBlockWriteback; 594 595 /** 596 * Send the outstanding tempBlock writeback. To be called after 597 * recvAtomic finishes in cases where the block we filled is in 598 * fact the tempBlock, and now needs to be written back. 599 */ 600 void writebackTempBlockAtomic() { 601 assert(tempBlockWriteback != nullptr); 602 PacketList writebacks{tempBlockWriteback}; 603 doWritebacksAtomic(writebacks); 604 tempBlockWriteback = nullptr; 605 } 606 607 /** 608 * An event to writeback the tempBlock after recvAtomic 609 * finishes. To avoid other calls to recvAtomic getting in 610 * between, we create this event with a higher priority. 611 */ 612 EventFunctionWrapper writebackTempBlockAtomicEvent; 613 614 /** 615 * Perform any necessary updates to the block and perform any data 616 * exchange between the packet and the block. The flags of the 617 * packet are also set accordingly. 618 * 619 * @param pkt Request packet from upstream that hit a block 620 * @param blk Cache block that the packet hit 621 * @param deferred_response Whether this request originally missed 622 * @param pending_downgrade Whether the writable flag is to be removed 623 */ 624 virtual void satisfyRequest(PacketPtr pkt, CacheBlk *blk, 625 bool deferred_response = false, 626 bool pending_downgrade = false); 627 628 /** 629 * Maintain the clusivity of this cache by potentially 630 * invalidating a block. This method works in conjunction with 631 * satisfyRequest, but is separate to allow us to handle all MSHR 632 * targets before potentially dropping a block. 633 * 634 * @param from_cache Whether we have dealt with a packet from a cache 635 * @param blk The block that should potentially be dropped 636 */ 637 void maintainClusivity(bool from_cache, CacheBlk *blk); 638 639 /** 640 * Handle a fill operation caused by a received packet. 641 * 642 * Populates a cache block and handles all outstanding requests for the 643 * satisfied fill request. This version takes two memory requests. One 644 * contains the fill data, the other is an optional target to satisfy. 645 * Note that the reason we return a list of writebacks rather than 646 * inserting them directly in the write buffer is that this function 647 * is called by both atomic and timing-mode accesses, and in atomic 648 * mode we don't mess with the write buffer (we just perform the 649 * writebacks atomically once the original request is complete). 650 * 651 * @param pkt The memory request with the fill data. 652 * @param blk The cache block if it already exists. 653 * @param writebacks List for any writebacks that need to be performed. 654 * @param allocate Whether to allocate a block or use the temp block 655 * @return Pointer to the new cache block. 656 */ 657 CacheBlk *handleFill(PacketPtr pkt, CacheBlk *blk, 658 PacketList &writebacks, bool allocate); 659 660 /** 661 * Allocate a new block and perform any necessary writebacks 662 * 663 * Find a victim block and if necessary prepare writebacks for any 664 * existing data. May return nullptr if there are no replaceable 665 * blocks. If a replaceable block is found, it inserts the new block in 666 * its place. The new block, however, is not set as valid yet. 667 * 668 * @param pkt Packet holding the address to update 669 * @param writebacks A list of writeback packets for the evicted blocks 670 * @return the allocated block 671 */ 672 CacheBlk *allocateBlock(const PacketPtr pkt, PacketList &writebacks); 673 /** 674 * Evict a cache block. 675 * 676 * Performs a writeback if necesssary and invalidates the block 677 * 678 * @param blk Block to invalidate 679 * @return A packet with the writeback, can be nullptr 680 */ 681 M5_NODISCARD virtual PacketPtr evictBlock(CacheBlk *blk) = 0; 682 683 /** 684 * Evict a cache block. 685 * 686 * Performs a writeback if necesssary and invalidates the block 687 * 688 * @param blk Block to invalidate 689 * @param writebacks Return a list of packets with writebacks 690 */ 691 virtual void evictBlock(CacheBlk *blk, PacketList &writebacks) = 0; 692 693 /** 694 * Invalidate a cache block. 695 * 696 * @param blk Block to invalidate 697 */ 698 void invalidateBlock(CacheBlk *blk); 699 700 /** 701 * Create a writeback request for the given block. 702 * 703 * @param blk The block to writeback. 704 * @return The writeback request for the block. 705 */ 706 PacketPtr writebackBlk(CacheBlk *blk); 707 708 /** 709 * Create a writeclean request for the given block. 710 * 711 * Creates a request that writes the block to the cache below 712 * without evicting the block from the current cache. 713 * 714 * @param blk The block to write clean. 715 * @param dest The destination of the write clean operation. 716 * @param id Use the given packet id for the write clean operation. 717 * @return The generated write clean packet. 718 */ 719 PacketPtr writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id); 720 721 /** 722 * Write back dirty blocks in the cache using functional accesses. 723 */ 724 virtual void memWriteback() override; 725 726 /** 727 * Invalidates all blocks in the cache. 728 * 729 * @warn Dirty cache lines will not be written back to 730 * memory. Make sure to call functionalWriteback() first if you 731 * want the to write them to memory. 732 */ 733 virtual void memInvalidate() override; 734 735 /** 736 * Determine if there are any dirty blocks in the cache. 737 * 738 * @return true if at least one block is dirty, false otherwise. 739 */ 740 bool isDirty() const; 741 742 /** 743 * Determine if an address is in the ranges covered by this 744 * cache. This is useful to filter snoops. 745 * 746 * @param addr Address to check against 747 * 748 * @return If the address in question is in range 749 */ 750 bool inRange(Addr addr) const; 751 752 /** 753 * Find next request ready time from among possible sources. 754 */ 755 Tick nextQueueReadyTime() const; 756 757 /** Block size of this cache */ 758 const unsigned blkSize; 759 760 /** 761 * The latency of tag lookup of a cache. It occurs when there is 762 * an access to the cache. 763 */ 764 const Cycles lookupLatency; 765 766 /** 767 * The latency of data access of a cache. It occurs when there is 768 * an access to the cache. 769 */ 770 const Cycles dataLatency; 771 772 /** 773 * This is the forward latency of the cache. It occurs when there 774 * is a cache miss and a request is forwarded downstream, in 775 * particular an outbound miss. 776 */ 777 const Cycles forwardLatency; 778 779 /** The latency to fill a cache block */ 780 const Cycles fillLatency; 781 782 /** 783 * The latency of sending reponse to its upper level cache/core on 784 * a linefill. The responseLatency parameter captures this 785 * latency. 786 */ 787 const Cycles responseLatency; 788 789 /** The number of targets for each MSHR. */ 790 const int numTarget; 791 792 /** Do we forward snoops from mem side port through to cpu side port? */ 793 bool forwardSnoops; 794 795 /** 796 * Clusivity with respect to the upstream cache, determining if we 797 * fill into both this cache and the cache above on a miss. Note 798 * that we currently do not support strict clusivity policies. 799 */ 800 const Enums::Clusivity clusivity; 801 802 /** 803 * Is this cache read only, for example the instruction cache, or 804 * table-walker cache. A cache that is read only should never see 805 * any writes, and should never get any dirty data (and hence 806 * never have to do any writebacks). 807 */ 808 const bool isReadOnly; 809 810 /** 811 * Bit vector of the blocking reasons for the access path. 812 * @sa #BlockedCause 813 */ 814 uint8_t blocked; 815 816 /** Increasing order number assigned to each incoming request. */ 817 uint64_t order; 818 819 /** Stores time the cache blocked for statistics. */ 820 Cycles blockedCycle; 821 822 /** Pointer to the MSHR that has no targets. */ 823 MSHR *noTargetMSHR; 824 825 /** The number of misses to trigger an exit event. */ 826 Counter missCount; 827 828 /** 829 * The address range to which the cache responds on the CPU side. 830 * Normally this is all possible memory addresses. */ 831 const AddrRangeList addrRanges; 832 833 public: 834 /** System we are currently operating in. */ 835 System *system; 836 837 // Statistics 838 /** 839 * @addtogroup CacheStatistics 840 * @{ 841 */ 842 843 /** Number of hits per thread for each type of command. 844 @sa Packet::Command */ 845 Stats::Vector hits[MemCmd::NUM_MEM_CMDS]; 846 /** Number of hits for demand accesses. */ 847 Stats::Formula demandHits; 848 /** Number of hit for all accesses. */ 849 Stats::Formula overallHits; 850 851 /** Number of misses per thread for each type of command. 852 @sa Packet::Command */ 853 Stats::Vector misses[MemCmd::NUM_MEM_CMDS]; 854 /** Number of misses for demand accesses. */ 855 Stats::Formula demandMisses; 856 /** Number of misses for all accesses. */ 857 Stats::Formula overallMisses; 858 859 /** 860 * Total number of cycles per thread/command spent waiting for a miss. 861 * Used to calculate the average miss latency. 862 */ 863 Stats::Vector missLatency[MemCmd::NUM_MEM_CMDS]; 864 /** Total number of cycles spent waiting for demand misses. */ 865 Stats::Formula demandMissLatency; 866 /** Total number of cycles spent waiting for all misses. */ 867 Stats::Formula overallMissLatency; 868 869 /** The number of accesses per command and thread. */ 870 Stats::Formula accesses[MemCmd::NUM_MEM_CMDS]; 871 /** The number of demand accesses. */ 872 Stats::Formula demandAccesses; 873 /** The number of overall accesses. */ 874 Stats::Formula overallAccesses; 875 876 /** The miss rate per command and thread. */ 877 Stats::Formula missRate[MemCmd::NUM_MEM_CMDS]; 878 /** The miss rate of all demand accesses. */ 879 Stats::Formula demandMissRate; 880 /** The miss rate for all accesses. */ 881 Stats::Formula overallMissRate; 882 883 /** The average miss latency per command and thread. */ 884 Stats::Formula avgMissLatency[MemCmd::NUM_MEM_CMDS]; 885 /** The average miss latency for demand misses. */ 886 Stats::Formula demandAvgMissLatency; 887 /** The average miss latency for all misses. */ 888 Stats::Formula overallAvgMissLatency; 889 890 /** The total number of cycles blocked for each blocked cause. */ 891 Stats::Vector blocked_cycles; 892 /** The number of times this cache blocked for each blocked cause. */ 893 Stats::Vector blocked_causes; 894 895 /** The average number of cycles blocked for each blocked cause. */ 896 Stats::Formula avg_blocked; 897 898 /** The number of times a HW-prefetched block is evicted w/o reference. */ 899 Stats::Scalar unusedPrefetches; 900 901 /** Number of blocks written back per thread. */ 902 Stats::Vector writebacks; 903 904 /** Number of misses that hit in the MSHRs per command and thread. */ 905 Stats::Vector mshr_hits[MemCmd::NUM_MEM_CMDS]; 906 /** Demand misses that hit in the MSHRs. */ 907 Stats::Formula demandMshrHits; 908 /** Total number of misses that hit in the MSHRs. */ 909 Stats::Formula overallMshrHits; 910 911 /** Number of misses that miss in the MSHRs, per command and thread. */ 912 Stats::Vector mshr_misses[MemCmd::NUM_MEM_CMDS]; 913 /** Demand misses that miss in the MSHRs. */ 914 Stats::Formula demandMshrMisses; 915 /** Total number of misses that miss in the MSHRs. */ 916 Stats::Formula overallMshrMisses; 917 918 /** Number of misses that miss in the MSHRs, per command and thread. */ 919 Stats::Vector mshr_uncacheable[MemCmd::NUM_MEM_CMDS]; 920 /** Total number of misses that miss in the MSHRs. */ 921 Stats::Formula overallMshrUncacheable; 922 923 /** Total cycle latency of each MSHR miss, per command and thread. */ 924 Stats::Vector mshr_miss_latency[MemCmd::NUM_MEM_CMDS]; 925 /** Total cycle latency of demand MSHR misses. */ 926 Stats::Formula demandMshrMissLatency; 927 /** Total cycle latency of overall MSHR misses. */ 928 Stats::Formula overallMshrMissLatency; 929 930 /** Total cycle latency of each MSHR miss, per command and thread. */ 931 Stats::Vector mshr_uncacheable_lat[MemCmd::NUM_MEM_CMDS]; 932 /** Total cycle latency of overall MSHR misses. */ 933 Stats::Formula overallMshrUncacheableLatency; 934 935#if 0 936 /** The total number of MSHR accesses per command and thread. */ 937 Stats::Formula mshrAccesses[MemCmd::NUM_MEM_CMDS]; 938 /** The total number of demand MSHR accesses. */ 939 Stats::Formula demandMshrAccesses; 940 /** The total number of MSHR accesses. */ 941 Stats::Formula overallMshrAccesses; 942#endif 943 944 /** The miss rate in the MSHRs pre command and thread. */ 945 Stats::Formula mshrMissRate[MemCmd::NUM_MEM_CMDS]; 946 /** The demand miss rate in the MSHRs. */ 947 Stats::Formula demandMshrMissRate; 948 /** The overall miss rate in the MSHRs. */ 949 Stats::Formula overallMshrMissRate; 950 951 /** The average latency of an MSHR miss, per command and thread. */ 952 Stats::Formula avgMshrMissLatency[MemCmd::NUM_MEM_CMDS]; 953 /** The average latency of a demand MSHR miss. */ 954 Stats::Formula demandAvgMshrMissLatency; 955 /** The average overall latency of an MSHR miss. */ 956 Stats::Formula overallAvgMshrMissLatency; 957 958 /** The average latency of an MSHR miss, per command and thread. */ 959 Stats::Formula avgMshrUncacheableLatency[MemCmd::NUM_MEM_CMDS]; 960 /** The average overall latency of an MSHR miss. */ 961 Stats::Formula overallAvgMshrUncacheableLatency; 962 963 /** Number of replacements of valid blocks. */ 964 Stats::Scalar replacements; 965 966 /** 967 * @} 968 */ 969 970 /** 971 * Register stats for this object. 972 */ 973 void regStats() override; 974 975 public: 976 BaseCache(const BaseCacheParams *p, unsigned blk_size); 977 ~BaseCache(); 978 979 void init() override; 980 981 BaseMasterPort &getMasterPort(const std::string &if_name, 982 PortID idx = InvalidPortID) override; 983 BaseSlavePort &getSlavePort(const std::string &if_name, 984 PortID idx = InvalidPortID) override; 985 986 /** 987 * Query block size of a cache. 988 * @return The block size 989 */ 990 unsigned 991 getBlockSize() const 992 { 993 return blkSize; 994 } 995 996 const AddrRangeList &getAddrRanges() const { return addrRanges; } 997 998 MSHR *allocateMissBuffer(PacketPtr pkt, Tick time, bool sched_send = true) 999 { 1000 MSHR *mshr = mshrQueue.allocate(pkt->getBlockAddr(blkSize), blkSize, 1001 pkt, time, order++, 1002 allocOnFill(pkt->cmd)); 1003 1004 if (mshrQueue.isFull()) { 1005 setBlocked((BlockedCause)MSHRQueue_MSHRs); 1006 } 1007 1008 if (sched_send) { 1009 // schedule the send 1010 schedMemSideSendEvent(time); 1011 } 1012 1013 return mshr; 1014 } 1015 1016 void allocateWriteBuffer(PacketPtr pkt, Tick time) 1017 { 1018 // should only see writes or clean evicts here 1019 assert(pkt->isWrite() || pkt->cmd == MemCmd::CleanEvict); 1020 1021 Addr blk_addr = pkt->getBlockAddr(blkSize); 1022 1023 WriteQueueEntry *wq_entry = 1024 writeBuffer.findMatch(blk_addr, pkt->isSecure()); 1025 if (wq_entry && !wq_entry->inService) { 1026 DPRINTF(Cache, "Potential to merge writeback %s", pkt->print()); 1027 } 1028 1029 writeBuffer.allocate(blk_addr, blkSize, pkt, time, order++); 1030 1031 if (writeBuffer.isFull()) { 1032 setBlocked((BlockedCause)MSHRQueue_WriteBuffer); 1033 } 1034 1035 // schedule the send 1036 schedMemSideSendEvent(time); 1037 } 1038 1039 /** 1040 * Returns true if the cache is blocked for accesses. 1041 */ 1042 bool isBlocked() const 1043 { 1044 return blocked != 0; 1045 } 1046 1047 /** 1048 * Marks the access path of the cache as blocked for the given cause. This 1049 * also sets the blocked flag in the slave interface. 1050 * @param cause The reason for the cache blocking. 1051 */ 1052 void setBlocked(BlockedCause cause) 1053 { 1054 uint8_t flag = 1 << cause; 1055 if (blocked == 0) { 1056 blocked_causes[cause]++; 1057 blockedCycle = curCycle(); 1058 cpuSidePort.setBlocked(); 1059 } 1060 blocked |= flag; 1061 DPRINTF(Cache,"Blocking for cause %d, mask=%d\n", cause, blocked); 1062 } 1063 1064 /** 1065 * Marks the cache as unblocked for the given cause. This also clears the 1066 * blocked flags in the appropriate interfaces. 1067 * @param cause The newly unblocked cause. 1068 * @warning Calling this function can cause a blocked request on the bus to 1069 * access the cache. The cache must be in a state to handle that request. 1070 */ 1071 void clearBlocked(BlockedCause cause) 1072 { 1073 uint8_t flag = 1 << cause; 1074 blocked &= ~flag; 1075 DPRINTF(Cache,"Unblocking for cause %d, mask=%d\n", cause, blocked); 1076 if (blocked == 0) { 1077 blocked_cycles[cause] += curCycle() - blockedCycle; 1078 cpuSidePort.clearBlocked(); 1079 } 1080 } 1081 1082 /** 1083 * Schedule a send event for the memory-side port. If already 1084 * scheduled, this may reschedule the event at an earlier 1085 * time. When the specified time is reached, the port is free to 1086 * send either a response, a request, or a prefetch request. 1087 * 1088 * @param time The time when to attempt sending a packet. 1089 */ 1090 void schedMemSideSendEvent(Tick time) 1091 { 1092 memSidePort.schedSendEvent(time); 1093 } 1094 1095 bool inCache(Addr addr, bool is_secure) const { 1096 return tags->findBlock(addr, is_secure); 1097 } 1098 1099 bool inMissQueue(Addr addr, bool is_secure) const { 1100 return mshrQueue.findMatch(addr, is_secure); 1101 } 1102 1103 void incMissCount(PacketPtr pkt) 1104 { 1105 assert(pkt->req->masterId() < system->maxMasters()); 1106 misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 1107 pkt->req->incAccessDepth(); 1108 if (missCount) { 1109 --missCount; 1110 if (missCount == 0) 1111 exitSimLoop("A cache reached the maximum miss count"); 1112 } 1113 } 1114 void incHitCount(PacketPtr pkt) 1115 { 1116 assert(pkt->req->masterId() < system->maxMasters()); 1117 hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 1118 1119 } 1120 1121 /** 1122 * Cache block visitor that writes back dirty cache blocks using 1123 * functional writes. 1124 */ 1125 void writebackVisitor(CacheBlk &blk); 1126 1127 /** 1128 * Cache block visitor that invalidates all blocks in the cache. 1129 * 1130 * @warn Dirty cache lines will not be written back to memory. 1131 */ 1132 void invalidateVisitor(CacheBlk &blk); 1133 1134 /** 1135 * Take an MSHR, turn it into a suitable downstream packet, and 1136 * send it out. This construct allows a queue entry to choose a suitable 1137 * approach based on its type. 1138 * 1139 * @param mshr The MSHR to turn into a packet and send 1140 * @return True if the port is waiting for a retry 1141 */ 1142 virtual bool sendMSHRQueuePacket(MSHR* mshr); 1143 1144 /** 1145 * Similar to sendMSHR, but for a write-queue entry 1146 * instead. Create the packet, and send it, and if successful also 1147 * mark the entry in service. 1148 * 1149 * @param wq_entry The write-queue entry to turn into a packet and send 1150 * @return True if the port is waiting for a retry 1151 */ 1152 bool sendWriteQueuePacket(WriteQueueEntry* wq_entry); 1153 1154 /** 1155 * Serialize the state of the caches 1156 * 1157 * We currently don't support checkpointing cache state, so this panics. 1158 */ 1159 void serialize(CheckpointOut &cp) const override; 1160 void unserialize(CheckpointIn &cp) override; 1161 1162}; 1163 1164#endif //__MEM_CACHE_BASE_HH__ 1165