base.hh revision 11331:cd5c48db28e6
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 *          Steve Reinhardt
42 *          Ron Dreslinski
43 */
44
45/**
46 * @file
47 * Declares a basic cache interface BaseCache.
48 */
49
50#ifndef __MEM_CACHE_BASE_HH__
51#define __MEM_CACHE_BASE_HH__
52
53#include <algorithm>
54#include <list>
55#include <string>
56#include <vector>
57
58#include "base/misc.hh"
59#include "base/statistics.hh"
60#include "base/trace.hh"
61#include "base/types.hh"
62#include "debug/Cache.hh"
63#include "debug/CachePort.hh"
64#include "mem/cache/mshr_queue.hh"
65#include "mem/mem_object.hh"
66#include "mem/packet.hh"
67#include "mem/qport.hh"
68#include "mem/request.hh"
69#include "params/BaseCache.hh"
70#include "sim/eventq.hh"
71#include "sim/full_system.hh"
72#include "sim/sim_exit.hh"
73#include "sim/system.hh"
74
75class MSHR;
76/**
77 * A basic cache interface. Implements some common functions for speed.
78 */
79class BaseCache : public MemObject
80{
81    /**
82     * Indexes to enumerate the MSHR queues.
83     */
84    enum MSHRQueueIndex {
85        MSHRQueue_MSHRs,
86        MSHRQueue_WriteBuffer
87    };
88
89  public:
90    /**
91     * Reasons for caches to be blocked.
92     */
93    enum BlockedCause {
94        Blocked_NoMSHRs = MSHRQueue_MSHRs,
95        Blocked_NoWBBuffers = MSHRQueue_WriteBuffer,
96        Blocked_NoTargets,
97        NUM_BLOCKED_CAUSES
98    };
99
100  protected:
101
102    /**
103     * A cache master port is used for the memory-side port of the
104     * cache, and in addition to the basic timing port that only sends
105     * response packets through a transmit list, it also offers the
106     * ability to schedule and send request packets (requests &
107     * writebacks). The send event is scheduled through schedSendEvent,
108     * and the sendDeferredPacket of the timing port is modified to
109     * consider both the transmit list and the requests from the MSHR.
110     */
111    class CacheMasterPort : public QueuedMasterPort
112    {
113
114      public:
115
116        /**
117         * Schedule a send of a request packet (from the MSHR). Note
118         * that we could already have a retry outstanding.
119         */
120        void schedSendEvent(Tick time)
121        {
122            DPRINTF(CachePort, "Scheduling send event at %llu\n", time);
123            reqQueue.schedSendEvent(time);
124        }
125
126      protected:
127
128        CacheMasterPort(const std::string &_name, BaseCache *_cache,
129                        ReqPacketQueue &_reqQueue,
130                        SnoopRespPacketQueue &_snoopRespQueue) :
131            QueuedMasterPort(_name, _cache, _reqQueue, _snoopRespQueue)
132        { }
133
134        /**
135         * Memory-side port always snoops.
136         *
137         * @return always true
138         */
139        virtual bool isSnooping() const { return true; }
140    };
141
142    /**
143     * A cache slave port is used for the CPU-side port of the cache,
144     * and it is basically a simple timing port that uses a transmit
145     * list for responses to the CPU (or connected master). In
146     * addition, it has the functionality to block the port for
147     * incoming requests. If blocked, the port will issue a retry once
148     * unblocked.
149     */
150    class CacheSlavePort : public QueuedSlavePort
151    {
152
153      public:
154
155        /** Do not accept any new requests. */
156        void setBlocked();
157
158        /** Return to normal operation and accept new requests. */
159        void clearBlocked();
160
161        bool isBlocked() const { return blocked; }
162
163      protected:
164
165        CacheSlavePort(const std::string &_name, BaseCache *_cache,
166                       const std::string &_label);
167
168        /** A normal packet queue used to store responses. */
169        RespPacketQueue queue;
170
171        bool blocked;
172
173        bool mustSendRetry;
174
175      private:
176
177        void processSendRetry();
178
179        EventWrapper<CacheSlavePort,
180                     &CacheSlavePort::processSendRetry> sendRetryEvent;
181
182    };
183
184    CacheSlavePort *cpuSidePort;
185    CacheMasterPort *memSidePort;
186
187  protected:
188
189    /** Miss status registers */
190    MSHRQueue mshrQueue;
191
192    /** Write/writeback buffer */
193    MSHRQueue writeBuffer;
194
195    /**
196     * Allocate a buffer, passing the time indicating when schedule an
197     * event to the queued port to go and ask the MSHR and write queue
198     * if they have packets to send.
199     *
200     * allocateBufferInternal() function is called in:
201     * - MSHR allocateWriteBuffer (unchached write forwarded to WriteBuffer);
202     * - MSHR allocateMissBuffer (miss in MSHR queue);
203     */
204    MSHR *allocateBufferInternal(MSHRQueue *mq, Addr addr, int size,
205                                 PacketPtr pkt, Tick time,
206                                 bool sched_send)
207    {
208        // check that the address is block aligned since we rely on
209        // this in a number of places when checking for matches and
210        // overlap
211        assert(addr == blockAlign(addr));
212
213        MSHR *mshr = mq->allocate(addr, size, pkt, time, order++,
214                                  allocOnFill(pkt->cmd));
215
216        if (mq->isFull()) {
217            setBlocked((BlockedCause)mq->index);
218        }
219
220        if (sched_send)
221            // schedule the send
222            schedMemSideSendEvent(time);
223
224        return mshr;
225    }
226
227    void markInServiceInternal(MSHR *mshr, bool pending_modified_resp)
228    {
229        MSHRQueue *mq = mshr->queue;
230        bool wasFull = mq->isFull();
231        mq->markInService(mshr, pending_modified_resp);
232        if (wasFull && !mq->isFull()) {
233            clearBlocked((BlockedCause)mq->index);
234        }
235    }
236
237    /**
238     * Determine if we should allocate on a fill or not.
239     *
240     * @param cmd Packet command being added as an MSHR target
241     *
242     * @return Whether we should allocate on a fill or not
243     */
244    virtual bool allocOnFill(MemCmd cmd) const = 0;
245
246    /**
247     * Write back dirty blocks in the cache using functional accesses.
248     */
249    virtual void memWriteback() = 0;
250    /**
251     * Invalidates all blocks in the cache.
252     *
253     * @warn Dirty cache lines will not be written back to
254     * memory. Make sure to call functionalWriteback() first if you
255     * want the to write them to memory.
256     */
257    virtual void memInvalidate() = 0;
258    /**
259     * Determine if there are any dirty blocks in the cache.
260     *
261     * \return true if at least one block is dirty, false otherwise.
262     */
263    virtual bool isDirty() const = 0;
264
265    /**
266     * Determine if an address is in the ranges covered by this
267     * cache. This is useful to filter snoops.
268     *
269     * @param addr Address to check against
270     *
271     * @return If the address in question is in range
272     */
273    bool inRange(Addr addr) const;
274
275    /** Block size of this cache */
276    const unsigned blkSize;
277
278    /**
279     * The latency of tag lookup of a cache. It occurs when there is
280     * an access to the cache.
281     */
282    const Cycles lookupLatency;
283
284    /**
285     * This is the forward latency of the cache. It occurs when there
286     * is a cache miss and a request is forwarded downstream, in
287     * particular an outbound miss.
288     */
289    const Cycles forwardLatency;
290
291    /** The latency to fill a cache block */
292    const Cycles fillLatency;
293
294    /**
295     * The latency of sending reponse to its upper level cache/core on
296     * a linefill. The responseLatency parameter captures this
297     * latency.
298     */
299    const Cycles responseLatency;
300
301    /** The number of targets for each MSHR. */
302    const int numTarget;
303
304    /** Do we forward snoops from mem side port through to cpu side port? */
305    bool forwardSnoops;
306
307    /**
308     * Is this cache read only, for example the instruction cache, or
309     * table-walker cache. A cache that is read only should never see
310     * any writes, and should never get any dirty data (and hence
311     * never have to do any writebacks).
312     */
313    const bool isReadOnly;
314
315    /**
316     * Bit vector of the blocking reasons for the access path.
317     * @sa #BlockedCause
318     */
319    uint8_t blocked;
320
321    /** Increasing order number assigned to each incoming request. */
322    uint64_t order;
323
324    /** Stores time the cache blocked for statistics. */
325    Cycles blockedCycle;
326
327    /** Pointer to the MSHR that has no targets. */
328    MSHR *noTargetMSHR;
329
330    /** The number of misses to trigger an exit event. */
331    Counter missCount;
332
333    /**
334     * The address range to which the cache responds on the CPU side.
335     * Normally this is all possible memory addresses. */
336    const AddrRangeList addrRanges;
337
338  public:
339    /** System we are currently operating in. */
340    System *system;
341
342    // Statistics
343    /**
344     * @addtogroup CacheStatistics
345     * @{
346     */
347
348    /** Number of hits per thread for each type of command. @sa Packet::Command */
349    Stats::Vector hits[MemCmd::NUM_MEM_CMDS];
350    /** Number of hits for demand accesses. */
351    Stats::Formula demandHits;
352    /** Number of hit for all accesses. */
353    Stats::Formula overallHits;
354
355    /** Number of misses per thread for each type of command. @sa Packet::Command */
356    Stats::Vector misses[MemCmd::NUM_MEM_CMDS];
357    /** Number of misses for demand accesses. */
358    Stats::Formula demandMisses;
359    /** Number of misses for all accesses. */
360    Stats::Formula overallMisses;
361
362    /**
363     * Total number of cycles per thread/command spent waiting for a miss.
364     * Used to calculate the average miss latency.
365     */
366    Stats::Vector missLatency[MemCmd::NUM_MEM_CMDS];
367    /** Total number of cycles spent waiting for demand misses. */
368    Stats::Formula demandMissLatency;
369    /** Total number of cycles spent waiting for all misses. */
370    Stats::Formula overallMissLatency;
371
372    /** The number of accesses per command and thread. */
373    Stats::Formula accesses[MemCmd::NUM_MEM_CMDS];
374    /** The number of demand accesses. */
375    Stats::Formula demandAccesses;
376    /** The number of overall accesses. */
377    Stats::Formula overallAccesses;
378
379    /** The miss rate per command and thread. */
380    Stats::Formula missRate[MemCmd::NUM_MEM_CMDS];
381    /** The miss rate of all demand accesses. */
382    Stats::Formula demandMissRate;
383    /** The miss rate for all accesses. */
384    Stats::Formula overallMissRate;
385
386    /** The average miss latency per command and thread. */
387    Stats::Formula avgMissLatency[MemCmd::NUM_MEM_CMDS];
388    /** The average miss latency for demand misses. */
389    Stats::Formula demandAvgMissLatency;
390    /** The average miss latency for all misses. */
391    Stats::Formula overallAvgMissLatency;
392
393    /** The total number of cycles blocked for each blocked cause. */
394    Stats::Vector blocked_cycles;
395    /** The number of times this cache blocked for each blocked cause. */
396    Stats::Vector blocked_causes;
397
398    /** The average number of cycles blocked for each blocked cause. */
399    Stats::Formula avg_blocked;
400
401    /** The number of fast writes (WH64) performed. */
402    Stats::Scalar fastWrites;
403
404    /** The number of cache copies performed. */
405    Stats::Scalar cacheCopies;
406
407    /** Number of blocks written back per thread. */
408    Stats::Vector writebacks;
409
410    /** Number of misses that hit in the MSHRs per command and thread. */
411    Stats::Vector mshr_hits[MemCmd::NUM_MEM_CMDS];
412    /** Demand misses that hit in the MSHRs. */
413    Stats::Formula demandMshrHits;
414    /** Total number of misses that hit in the MSHRs. */
415    Stats::Formula overallMshrHits;
416
417    /** Number of misses that miss in the MSHRs, per command and thread. */
418    Stats::Vector mshr_misses[MemCmd::NUM_MEM_CMDS];
419    /** Demand misses that miss in the MSHRs. */
420    Stats::Formula demandMshrMisses;
421    /** Total number of misses that miss in the MSHRs. */
422    Stats::Formula overallMshrMisses;
423
424    /** Number of misses that miss in the MSHRs, per command and thread. */
425    Stats::Vector mshr_uncacheable[MemCmd::NUM_MEM_CMDS];
426    /** Total number of misses that miss in the MSHRs. */
427    Stats::Formula overallMshrUncacheable;
428
429    /** Total cycle latency of each MSHR miss, per command and thread. */
430    Stats::Vector mshr_miss_latency[MemCmd::NUM_MEM_CMDS];
431    /** Total cycle latency of demand MSHR misses. */
432    Stats::Formula demandMshrMissLatency;
433    /** Total cycle latency of overall MSHR misses. */
434    Stats::Formula overallMshrMissLatency;
435
436    /** Total cycle latency of each MSHR miss, per command and thread. */
437    Stats::Vector mshr_uncacheable_lat[MemCmd::NUM_MEM_CMDS];
438    /** Total cycle latency of overall MSHR misses. */
439    Stats::Formula overallMshrUncacheableLatency;
440
441#if 0
442    /** The total number of MSHR accesses per command and thread. */
443    Stats::Formula mshrAccesses[MemCmd::NUM_MEM_CMDS];
444    /** The total number of demand MSHR accesses. */
445    Stats::Formula demandMshrAccesses;
446    /** The total number of MSHR accesses. */
447    Stats::Formula overallMshrAccesses;
448#endif
449
450    /** The miss rate in the MSHRs pre command and thread. */
451    Stats::Formula mshrMissRate[MemCmd::NUM_MEM_CMDS];
452    /** The demand miss rate in the MSHRs. */
453    Stats::Formula demandMshrMissRate;
454    /** The overall miss rate in the MSHRs. */
455    Stats::Formula overallMshrMissRate;
456
457    /** The average latency of an MSHR miss, per command and thread. */
458    Stats::Formula avgMshrMissLatency[MemCmd::NUM_MEM_CMDS];
459    /** The average latency of a demand MSHR miss. */
460    Stats::Formula demandAvgMshrMissLatency;
461    /** The average overall latency of an MSHR miss. */
462    Stats::Formula overallAvgMshrMissLatency;
463
464    /** The average latency of an MSHR miss, per command and thread. */
465    Stats::Formula avgMshrUncacheableLatency[MemCmd::NUM_MEM_CMDS];
466    /** The average overall latency of an MSHR miss. */
467    Stats::Formula overallAvgMshrUncacheableLatency;
468
469    /** The number of times a thread hit its MSHR cap. */
470    Stats::Vector mshr_cap_events;
471    /** The number of times software prefetches caused the MSHR to block. */
472    Stats::Vector soft_prefetch_mshr_full;
473
474    Stats::Scalar mshr_no_allocate_misses;
475
476    /**
477     * @}
478     */
479
480    /**
481     * Register stats for this object.
482     */
483    virtual void regStats();
484
485  public:
486    BaseCache(const BaseCacheParams *p, unsigned blk_size);
487    ~BaseCache() {}
488
489    virtual void init();
490
491    virtual BaseMasterPort &getMasterPort(const std::string &if_name,
492                                          PortID idx = InvalidPortID);
493    virtual BaseSlavePort &getSlavePort(const std::string &if_name,
494                                        PortID idx = InvalidPortID);
495
496    /**
497     * Query block size of a cache.
498     * @return  The block size
499     */
500    unsigned
501    getBlockSize() const
502    {
503        return blkSize;
504    }
505
506
507    Addr blockAlign(Addr addr) const { return (addr & ~(Addr(blkSize - 1))); }
508
509
510    const AddrRangeList &getAddrRanges() const { return addrRanges; }
511
512    MSHR *allocateMissBuffer(PacketPtr pkt, Tick time, bool sched_send = true)
513    {
514        return allocateBufferInternal(&mshrQueue,
515                                      blockAlign(pkt->getAddr()), blkSize,
516                                      pkt, time, sched_send);
517    }
518
519    MSHR *allocateWriteBuffer(PacketPtr pkt, Tick time)
520    {
521        // should only see writes or clean evicts here
522        assert(pkt->isWrite() || pkt->cmd == MemCmd::CleanEvict);
523
524        return allocateBufferInternal(&writeBuffer,
525                                      blockAlign(pkt->getAddr()), blkSize,
526                                      pkt, time, true);
527    }
528
529    /**
530     * Returns true if the cache is blocked for accesses.
531     */
532    bool isBlocked() const
533    {
534        return blocked != 0;
535    }
536
537    /**
538     * Marks the access path of the cache as blocked for the given cause. This
539     * also sets the blocked flag in the slave interface.
540     * @param cause The reason for the cache blocking.
541     */
542    void setBlocked(BlockedCause cause)
543    {
544        uint8_t flag = 1 << cause;
545        if (blocked == 0) {
546            blocked_causes[cause]++;
547            blockedCycle = curCycle();
548            cpuSidePort->setBlocked();
549        }
550        blocked |= flag;
551        DPRINTF(Cache,"Blocking for cause %d, mask=%d\n", cause, blocked);
552    }
553
554    /**
555     * Marks the cache as unblocked for the given cause. This also clears the
556     * blocked flags in the appropriate interfaces.
557     * @param cause The newly unblocked cause.
558     * @warning Calling this function can cause a blocked request on the bus to
559     * access the cache. The cache must be in a state to handle that request.
560     */
561    void clearBlocked(BlockedCause cause)
562    {
563        uint8_t flag = 1 << cause;
564        blocked &= ~flag;
565        DPRINTF(Cache,"Unblocking for cause %d, mask=%d\n", cause, blocked);
566        if (blocked == 0) {
567            blocked_cycles[cause] += curCycle() - blockedCycle;
568            cpuSidePort->clearBlocked();
569        }
570    }
571
572    /**
573     * Schedule a send event for the memory-side port. If already
574     * scheduled, this may reschedule the event at an earlier
575     * time. When the specified time is reached, the port is free to
576     * send either a response, a request, or a prefetch request.
577     *
578     * @param time The time when to attempt sending a packet.
579     */
580    void schedMemSideSendEvent(Tick time)
581    {
582        memSidePort->schedSendEvent(time);
583    }
584
585    virtual bool inCache(Addr addr, bool is_secure) const = 0;
586
587    virtual bool inMissQueue(Addr addr, bool is_secure) const = 0;
588
589    void incMissCount(PacketPtr pkt)
590    {
591        assert(pkt->req->masterId() < system->maxMasters());
592        misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
593        pkt->req->incAccessDepth();
594        if (missCount) {
595            --missCount;
596            if (missCount == 0)
597                exitSimLoop("A cache reached the maximum miss count");
598        }
599    }
600    void incHitCount(PacketPtr pkt)
601    {
602        assert(pkt->req->masterId() < system->maxMasters());
603        hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
604
605    }
606
607};
608
609#endif //__MEM_CACHE_BASE_HH__
610