base.hh revision 11331:cd5c48db28e6
1/* 2 * Copyright (c) 2012-2013, 2015 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2003-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Erik Hallnor 41 * Steve Reinhardt 42 * Ron Dreslinski 43 */ 44 45/** 46 * @file 47 * Declares a basic cache interface BaseCache. 48 */ 49 50#ifndef __MEM_CACHE_BASE_HH__ 51#define __MEM_CACHE_BASE_HH__ 52 53#include <algorithm> 54#include <list> 55#include <string> 56#include <vector> 57 58#include "base/misc.hh" 59#include "base/statistics.hh" 60#include "base/trace.hh" 61#include "base/types.hh" 62#include "debug/Cache.hh" 63#include "debug/CachePort.hh" 64#include "mem/cache/mshr_queue.hh" 65#include "mem/mem_object.hh" 66#include "mem/packet.hh" 67#include "mem/qport.hh" 68#include "mem/request.hh" 69#include "params/BaseCache.hh" 70#include "sim/eventq.hh" 71#include "sim/full_system.hh" 72#include "sim/sim_exit.hh" 73#include "sim/system.hh" 74 75class MSHR; 76/** 77 * A basic cache interface. Implements some common functions for speed. 78 */ 79class BaseCache : public MemObject 80{ 81 /** 82 * Indexes to enumerate the MSHR queues. 83 */ 84 enum MSHRQueueIndex { 85 MSHRQueue_MSHRs, 86 MSHRQueue_WriteBuffer 87 }; 88 89 public: 90 /** 91 * Reasons for caches to be blocked. 92 */ 93 enum BlockedCause { 94 Blocked_NoMSHRs = MSHRQueue_MSHRs, 95 Blocked_NoWBBuffers = MSHRQueue_WriteBuffer, 96 Blocked_NoTargets, 97 NUM_BLOCKED_CAUSES 98 }; 99 100 protected: 101 102 /** 103 * A cache master port is used for the memory-side port of the 104 * cache, and in addition to the basic timing port that only sends 105 * response packets through a transmit list, it also offers the 106 * ability to schedule and send request packets (requests & 107 * writebacks). The send event is scheduled through schedSendEvent, 108 * and the sendDeferredPacket of the timing port is modified to 109 * consider both the transmit list and the requests from the MSHR. 110 */ 111 class CacheMasterPort : public QueuedMasterPort 112 { 113 114 public: 115 116 /** 117 * Schedule a send of a request packet (from the MSHR). Note 118 * that we could already have a retry outstanding. 119 */ 120 void schedSendEvent(Tick time) 121 { 122 DPRINTF(CachePort, "Scheduling send event at %llu\n", time); 123 reqQueue.schedSendEvent(time); 124 } 125 126 protected: 127 128 CacheMasterPort(const std::string &_name, BaseCache *_cache, 129 ReqPacketQueue &_reqQueue, 130 SnoopRespPacketQueue &_snoopRespQueue) : 131 QueuedMasterPort(_name, _cache, _reqQueue, _snoopRespQueue) 132 { } 133 134 /** 135 * Memory-side port always snoops. 136 * 137 * @return always true 138 */ 139 virtual bool isSnooping() const { return true; } 140 }; 141 142 /** 143 * A cache slave port is used for the CPU-side port of the cache, 144 * and it is basically a simple timing port that uses a transmit 145 * list for responses to the CPU (or connected master). In 146 * addition, it has the functionality to block the port for 147 * incoming requests. If blocked, the port will issue a retry once 148 * unblocked. 149 */ 150 class CacheSlavePort : public QueuedSlavePort 151 { 152 153 public: 154 155 /** Do not accept any new requests. */ 156 void setBlocked(); 157 158 /** Return to normal operation and accept new requests. */ 159 void clearBlocked(); 160 161 bool isBlocked() const { return blocked; } 162 163 protected: 164 165 CacheSlavePort(const std::string &_name, BaseCache *_cache, 166 const std::string &_label); 167 168 /** A normal packet queue used to store responses. */ 169 RespPacketQueue queue; 170 171 bool blocked; 172 173 bool mustSendRetry; 174 175 private: 176 177 void processSendRetry(); 178 179 EventWrapper<CacheSlavePort, 180 &CacheSlavePort::processSendRetry> sendRetryEvent; 181 182 }; 183 184 CacheSlavePort *cpuSidePort; 185 CacheMasterPort *memSidePort; 186 187 protected: 188 189 /** Miss status registers */ 190 MSHRQueue mshrQueue; 191 192 /** Write/writeback buffer */ 193 MSHRQueue writeBuffer; 194 195 /** 196 * Allocate a buffer, passing the time indicating when schedule an 197 * event to the queued port to go and ask the MSHR and write queue 198 * if they have packets to send. 199 * 200 * allocateBufferInternal() function is called in: 201 * - MSHR allocateWriteBuffer (unchached write forwarded to WriteBuffer); 202 * - MSHR allocateMissBuffer (miss in MSHR queue); 203 */ 204 MSHR *allocateBufferInternal(MSHRQueue *mq, Addr addr, int size, 205 PacketPtr pkt, Tick time, 206 bool sched_send) 207 { 208 // check that the address is block aligned since we rely on 209 // this in a number of places when checking for matches and 210 // overlap 211 assert(addr == blockAlign(addr)); 212 213 MSHR *mshr = mq->allocate(addr, size, pkt, time, order++, 214 allocOnFill(pkt->cmd)); 215 216 if (mq->isFull()) { 217 setBlocked((BlockedCause)mq->index); 218 } 219 220 if (sched_send) 221 // schedule the send 222 schedMemSideSendEvent(time); 223 224 return mshr; 225 } 226 227 void markInServiceInternal(MSHR *mshr, bool pending_modified_resp) 228 { 229 MSHRQueue *mq = mshr->queue; 230 bool wasFull = mq->isFull(); 231 mq->markInService(mshr, pending_modified_resp); 232 if (wasFull && !mq->isFull()) { 233 clearBlocked((BlockedCause)mq->index); 234 } 235 } 236 237 /** 238 * Determine if we should allocate on a fill or not. 239 * 240 * @param cmd Packet command being added as an MSHR target 241 * 242 * @return Whether we should allocate on a fill or not 243 */ 244 virtual bool allocOnFill(MemCmd cmd) const = 0; 245 246 /** 247 * Write back dirty blocks in the cache using functional accesses. 248 */ 249 virtual void memWriteback() = 0; 250 /** 251 * Invalidates all blocks in the cache. 252 * 253 * @warn Dirty cache lines will not be written back to 254 * memory. Make sure to call functionalWriteback() first if you 255 * want the to write them to memory. 256 */ 257 virtual void memInvalidate() = 0; 258 /** 259 * Determine if there are any dirty blocks in the cache. 260 * 261 * \return true if at least one block is dirty, false otherwise. 262 */ 263 virtual bool isDirty() const = 0; 264 265 /** 266 * Determine if an address is in the ranges covered by this 267 * cache. This is useful to filter snoops. 268 * 269 * @param addr Address to check against 270 * 271 * @return If the address in question is in range 272 */ 273 bool inRange(Addr addr) const; 274 275 /** Block size of this cache */ 276 const unsigned blkSize; 277 278 /** 279 * The latency of tag lookup of a cache. It occurs when there is 280 * an access to the cache. 281 */ 282 const Cycles lookupLatency; 283 284 /** 285 * This is the forward latency of the cache. It occurs when there 286 * is a cache miss and a request is forwarded downstream, in 287 * particular an outbound miss. 288 */ 289 const Cycles forwardLatency; 290 291 /** The latency to fill a cache block */ 292 const Cycles fillLatency; 293 294 /** 295 * The latency of sending reponse to its upper level cache/core on 296 * a linefill. The responseLatency parameter captures this 297 * latency. 298 */ 299 const Cycles responseLatency; 300 301 /** The number of targets for each MSHR. */ 302 const int numTarget; 303 304 /** Do we forward snoops from mem side port through to cpu side port? */ 305 bool forwardSnoops; 306 307 /** 308 * Is this cache read only, for example the instruction cache, or 309 * table-walker cache. A cache that is read only should never see 310 * any writes, and should never get any dirty data (and hence 311 * never have to do any writebacks). 312 */ 313 const bool isReadOnly; 314 315 /** 316 * Bit vector of the blocking reasons for the access path. 317 * @sa #BlockedCause 318 */ 319 uint8_t blocked; 320 321 /** Increasing order number assigned to each incoming request. */ 322 uint64_t order; 323 324 /** Stores time the cache blocked for statistics. */ 325 Cycles blockedCycle; 326 327 /** Pointer to the MSHR that has no targets. */ 328 MSHR *noTargetMSHR; 329 330 /** The number of misses to trigger an exit event. */ 331 Counter missCount; 332 333 /** 334 * The address range to which the cache responds on the CPU side. 335 * Normally this is all possible memory addresses. */ 336 const AddrRangeList addrRanges; 337 338 public: 339 /** System we are currently operating in. */ 340 System *system; 341 342 // Statistics 343 /** 344 * @addtogroup CacheStatistics 345 * @{ 346 */ 347 348 /** Number of hits per thread for each type of command. @sa Packet::Command */ 349 Stats::Vector hits[MemCmd::NUM_MEM_CMDS]; 350 /** Number of hits for demand accesses. */ 351 Stats::Formula demandHits; 352 /** Number of hit for all accesses. */ 353 Stats::Formula overallHits; 354 355 /** Number of misses per thread for each type of command. @sa Packet::Command */ 356 Stats::Vector misses[MemCmd::NUM_MEM_CMDS]; 357 /** Number of misses for demand accesses. */ 358 Stats::Formula demandMisses; 359 /** Number of misses for all accesses. */ 360 Stats::Formula overallMisses; 361 362 /** 363 * Total number of cycles per thread/command spent waiting for a miss. 364 * Used to calculate the average miss latency. 365 */ 366 Stats::Vector missLatency[MemCmd::NUM_MEM_CMDS]; 367 /** Total number of cycles spent waiting for demand misses. */ 368 Stats::Formula demandMissLatency; 369 /** Total number of cycles spent waiting for all misses. */ 370 Stats::Formula overallMissLatency; 371 372 /** The number of accesses per command and thread. */ 373 Stats::Formula accesses[MemCmd::NUM_MEM_CMDS]; 374 /** The number of demand accesses. */ 375 Stats::Formula demandAccesses; 376 /** The number of overall accesses. */ 377 Stats::Formula overallAccesses; 378 379 /** The miss rate per command and thread. */ 380 Stats::Formula missRate[MemCmd::NUM_MEM_CMDS]; 381 /** The miss rate of all demand accesses. */ 382 Stats::Formula demandMissRate; 383 /** The miss rate for all accesses. */ 384 Stats::Formula overallMissRate; 385 386 /** The average miss latency per command and thread. */ 387 Stats::Formula avgMissLatency[MemCmd::NUM_MEM_CMDS]; 388 /** The average miss latency for demand misses. */ 389 Stats::Formula demandAvgMissLatency; 390 /** The average miss latency for all misses. */ 391 Stats::Formula overallAvgMissLatency; 392 393 /** The total number of cycles blocked for each blocked cause. */ 394 Stats::Vector blocked_cycles; 395 /** The number of times this cache blocked for each blocked cause. */ 396 Stats::Vector blocked_causes; 397 398 /** The average number of cycles blocked for each blocked cause. */ 399 Stats::Formula avg_blocked; 400 401 /** The number of fast writes (WH64) performed. */ 402 Stats::Scalar fastWrites; 403 404 /** The number of cache copies performed. */ 405 Stats::Scalar cacheCopies; 406 407 /** Number of blocks written back per thread. */ 408 Stats::Vector writebacks; 409 410 /** Number of misses that hit in the MSHRs per command and thread. */ 411 Stats::Vector mshr_hits[MemCmd::NUM_MEM_CMDS]; 412 /** Demand misses that hit in the MSHRs. */ 413 Stats::Formula demandMshrHits; 414 /** Total number of misses that hit in the MSHRs. */ 415 Stats::Formula overallMshrHits; 416 417 /** Number of misses that miss in the MSHRs, per command and thread. */ 418 Stats::Vector mshr_misses[MemCmd::NUM_MEM_CMDS]; 419 /** Demand misses that miss in the MSHRs. */ 420 Stats::Formula demandMshrMisses; 421 /** Total number of misses that miss in the MSHRs. */ 422 Stats::Formula overallMshrMisses; 423 424 /** Number of misses that miss in the MSHRs, per command and thread. */ 425 Stats::Vector mshr_uncacheable[MemCmd::NUM_MEM_CMDS]; 426 /** Total number of misses that miss in the MSHRs. */ 427 Stats::Formula overallMshrUncacheable; 428 429 /** Total cycle latency of each MSHR miss, per command and thread. */ 430 Stats::Vector mshr_miss_latency[MemCmd::NUM_MEM_CMDS]; 431 /** Total cycle latency of demand MSHR misses. */ 432 Stats::Formula demandMshrMissLatency; 433 /** Total cycle latency of overall MSHR misses. */ 434 Stats::Formula overallMshrMissLatency; 435 436 /** Total cycle latency of each MSHR miss, per command and thread. */ 437 Stats::Vector mshr_uncacheable_lat[MemCmd::NUM_MEM_CMDS]; 438 /** Total cycle latency of overall MSHR misses. */ 439 Stats::Formula overallMshrUncacheableLatency; 440 441#if 0 442 /** The total number of MSHR accesses per command and thread. */ 443 Stats::Formula mshrAccesses[MemCmd::NUM_MEM_CMDS]; 444 /** The total number of demand MSHR accesses. */ 445 Stats::Formula demandMshrAccesses; 446 /** The total number of MSHR accesses. */ 447 Stats::Formula overallMshrAccesses; 448#endif 449 450 /** The miss rate in the MSHRs pre command and thread. */ 451 Stats::Formula mshrMissRate[MemCmd::NUM_MEM_CMDS]; 452 /** The demand miss rate in the MSHRs. */ 453 Stats::Formula demandMshrMissRate; 454 /** The overall miss rate in the MSHRs. */ 455 Stats::Formula overallMshrMissRate; 456 457 /** The average latency of an MSHR miss, per command and thread. */ 458 Stats::Formula avgMshrMissLatency[MemCmd::NUM_MEM_CMDS]; 459 /** The average latency of a demand MSHR miss. */ 460 Stats::Formula demandAvgMshrMissLatency; 461 /** The average overall latency of an MSHR miss. */ 462 Stats::Formula overallAvgMshrMissLatency; 463 464 /** The average latency of an MSHR miss, per command and thread. */ 465 Stats::Formula avgMshrUncacheableLatency[MemCmd::NUM_MEM_CMDS]; 466 /** The average overall latency of an MSHR miss. */ 467 Stats::Formula overallAvgMshrUncacheableLatency; 468 469 /** The number of times a thread hit its MSHR cap. */ 470 Stats::Vector mshr_cap_events; 471 /** The number of times software prefetches caused the MSHR to block. */ 472 Stats::Vector soft_prefetch_mshr_full; 473 474 Stats::Scalar mshr_no_allocate_misses; 475 476 /** 477 * @} 478 */ 479 480 /** 481 * Register stats for this object. 482 */ 483 virtual void regStats(); 484 485 public: 486 BaseCache(const BaseCacheParams *p, unsigned blk_size); 487 ~BaseCache() {} 488 489 virtual void init(); 490 491 virtual BaseMasterPort &getMasterPort(const std::string &if_name, 492 PortID idx = InvalidPortID); 493 virtual BaseSlavePort &getSlavePort(const std::string &if_name, 494 PortID idx = InvalidPortID); 495 496 /** 497 * Query block size of a cache. 498 * @return The block size 499 */ 500 unsigned 501 getBlockSize() const 502 { 503 return blkSize; 504 } 505 506 507 Addr blockAlign(Addr addr) const { return (addr & ~(Addr(blkSize - 1))); } 508 509 510 const AddrRangeList &getAddrRanges() const { return addrRanges; } 511 512 MSHR *allocateMissBuffer(PacketPtr pkt, Tick time, bool sched_send = true) 513 { 514 return allocateBufferInternal(&mshrQueue, 515 blockAlign(pkt->getAddr()), blkSize, 516 pkt, time, sched_send); 517 } 518 519 MSHR *allocateWriteBuffer(PacketPtr pkt, Tick time) 520 { 521 // should only see writes or clean evicts here 522 assert(pkt->isWrite() || pkt->cmd == MemCmd::CleanEvict); 523 524 return allocateBufferInternal(&writeBuffer, 525 blockAlign(pkt->getAddr()), blkSize, 526 pkt, time, true); 527 } 528 529 /** 530 * Returns true if the cache is blocked for accesses. 531 */ 532 bool isBlocked() const 533 { 534 return blocked != 0; 535 } 536 537 /** 538 * Marks the access path of the cache as blocked for the given cause. This 539 * also sets the blocked flag in the slave interface. 540 * @param cause The reason for the cache blocking. 541 */ 542 void setBlocked(BlockedCause cause) 543 { 544 uint8_t flag = 1 << cause; 545 if (blocked == 0) { 546 blocked_causes[cause]++; 547 blockedCycle = curCycle(); 548 cpuSidePort->setBlocked(); 549 } 550 blocked |= flag; 551 DPRINTF(Cache,"Blocking for cause %d, mask=%d\n", cause, blocked); 552 } 553 554 /** 555 * Marks the cache as unblocked for the given cause. This also clears the 556 * blocked flags in the appropriate interfaces. 557 * @param cause The newly unblocked cause. 558 * @warning Calling this function can cause a blocked request on the bus to 559 * access the cache. The cache must be in a state to handle that request. 560 */ 561 void clearBlocked(BlockedCause cause) 562 { 563 uint8_t flag = 1 << cause; 564 blocked &= ~flag; 565 DPRINTF(Cache,"Unblocking for cause %d, mask=%d\n", cause, blocked); 566 if (blocked == 0) { 567 blocked_cycles[cause] += curCycle() - blockedCycle; 568 cpuSidePort->clearBlocked(); 569 } 570 } 571 572 /** 573 * Schedule a send event for the memory-side port. If already 574 * scheduled, this may reschedule the event at an earlier 575 * time. When the specified time is reached, the port is free to 576 * send either a response, a request, or a prefetch request. 577 * 578 * @param time The time when to attempt sending a packet. 579 */ 580 void schedMemSideSendEvent(Tick time) 581 { 582 memSidePort->schedSendEvent(time); 583 } 584 585 virtual bool inCache(Addr addr, bool is_secure) const = 0; 586 587 virtual bool inMissQueue(Addr addr, bool is_secure) const = 0; 588 589 void incMissCount(PacketPtr pkt) 590 { 591 assert(pkt->req->masterId() < system->maxMasters()); 592 misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 593 pkt->req->incAccessDepth(); 594 if (missCount) { 595 --missCount; 596 if (missCount == 0) 597 exitSimLoop("A cache reached the maximum miss count"); 598 } 599 } 600 void incHitCount(PacketPtr pkt) 601 { 602 assert(pkt->req->masterId() < system->maxMasters()); 603 hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 604 605 } 606 607}; 608 609#endif //__MEM_CACHE_BASE_HH__ 610