base.hh revision 10884
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 *          Steve Reinhardt
42 *          Ron Dreslinski
43 */
44
45/**
46 * @file
47 * Declares a basic cache interface BaseCache.
48 */
49
50#ifndef __BASE_CACHE_HH__
51#define __BASE_CACHE_HH__
52
53#include <algorithm>
54#include <list>
55#include <string>
56#include <vector>
57
58#include "base/misc.hh"
59#include "base/statistics.hh"
60#include "base/trace.hh"
61#include "base/types.hh"
62#include "debug/Cache.hh"
63#include "debug/CachePort.hh"
64#include "mem/cache/mshr_queue.hh"
65#include "mem/mem_object.hh"
66#include "mem/packet.hh"
67#include "mem/qport.hh"
68#include "mem/request.hh"
69#include "params/BaseCache.hh"
70#include "sim/eventq.hh"
71#include "sim/full_system.hh"
72#include "sim/sim_exit.hh"
73#include "sim/system.hh"
74
75class MSHR;
76/**
77 * A basic cache interface. Implements some common functions for speed.
78 */
79class BaseCache : public MemObject
80{
81    /**
82     * Indexes to enumerate the MSHR queues.
83     */
84    enum MSHRQueueIndex {
85        MSHRQueue_MSHRs,
86        MSHRQueue_WriteBuffer
87    };
88
89  public:
90    /**
91     * Reasons for caches to be blocked.
92     */
93    enum BlockedCause {
94        Blocked_NoMSHRs = MSHRQueue_MSHRs,
95        Blocked_NoWBBuffers = MSHRQueue_WriteBuffer,
96        Blocked_NoTargets,
97        NUM_BLOCKED_CAUSES
98    };
99
100    /**
101     * Reasons for cache to request a bus.
102     */
103    enum RequestCause {
104        Request_MSHR = MSHRQueue_MSHRs,
105        Request_WB = MSHRQueue_WriteBuffer,
106        Request_PF,
107        NUM_REQUEST_CAUSES
108    };
109
110  protected:
111
112    /**
113     * A cache master port is used for the memory-side port of the
114     * cache, and in addition to the basic timing port that only sends
115     * response packets through a transmit list, it also offers the
116     * ability to schedule and send request packets (requests &
117     * writebacks). The send event is scheduled through requestBus,
118     * and the sendDeferredPacket of the timing port is modified to
119     * consider both the transmit list and the requests from the MSHR.
120     */
121    class CacheMasterPort : public QueuedMasterPort
122    {
123
124      public:
125
126        /**
127         * Schedule a send of a request packet (from the MSHR). Note
128         * that we could already have a retry outstanding.
129         */
130        void requestBus(RequestCause cause, Tick time)
131        {
132            DPRINTF(CachePort, "Scheduling request at %llu due to %d\n",
133                    time, cause);
134            reqQueue.schedSendEvent(time);
135        }
136
137      protected:
138
139        CacheMasterPort(const std::string &_name, BaseCache *_cache,
140                        ReqPacketQueue &_reqQueue,
141                        SnoopRespPacketQueue &_snoopRespQueue) :
142            QueuedMasterPort(_name, _cache, _reqQueue, _snoopRespQueue)
143        { }
144
145        /**
146         * Memory-side port always snoops.
147         *
148         * @return always true
149         */
150        virtual bool isSnooping() const { return true; }
151    };
152
153    /**
154     * A cache slave port is used for the CPU-side port of the cache,
155     * and it is basically a simple timing port that uses a transmit
156     * list for responses to the CPU (or connected master). In
157     * addition, it has the functionality to block the port for
158     * incoming requests. If blocked, the port will issue a retry once
159     * unblocked.
160     */
161    class CacheSlavePort : public QueuedSlavePort
162    {
163
164      public:
165
166        /** Do not accept any new requests. */
167        void setBlocked();
168
169        /** Return to normal operation and accept new requests. */
170        void clearBlocked();
171
172        bool isBlocked() const { return blocked; }
173
174      protected:
175
176        CacheSlavePort(const std::string &_name, BaseCache *_cache,
177                       const std::string &_label);
178
179        /** A normal packet queue used to store responses. */
180        RespPacketQueue queue;
181
182        bool blocked;
183
184        bool mustSendRetry;
185
186      private:
187
188        void processSendRetry();
189
190        EventWrapper<CacheSlavePort,
191                     &CacheSlavePort::processSendRetry> sendRetryEvent;
192
193    };
194
195    CacheSlavePort *cpuSidePort;
196    CacheMasterPort *memSidePort;
197
198  protected:
199
200    /** Miss status registers */
201    MSHRQueue mshrQueue;
202
203    /** Write/writeback buffer */
204    MSHRQueue writeBuffer;
205
206    /**
207     * Allocate a buffer, passing the time indicating when schedule an
208     * event to the queued port to go and ask the MSHR and write queue
209     * if they have packets to send.
210     *
211     * allocateBufferInternal() function is called in:
212     * - MSHR allocateWriteBuffer (unchached write forwarded to WriteBuffer);
213     * - MSHR allocateMissBuffer (miss in MSHR queue);
214     */
215    MSHR *allocateBufferInternal(MSHRQueue *mq, Addr addr, int size,
216                                 PacketPtr pkt, Tick time, bool requestBus)
217    {
218        // check that the address is block aligned since we rely on
219        // this in a number of places when checking for matches and
220        // overlap
221        assert(addr == blockAlign(addr));
222
223        MSHR *mshr = mq->allocate(addr, size, pkt, time, order++);
224
225        if (mq->isFull()) {
226            setBlocked((BlockedCause)mq->index);
227        }
228
229        if (requestBus) {
230            requestMemSideBus((RequestCause)mq->index, time);
231        }
232
233        return mshr;
234    }
235
236    void markInServiceInternal(MSHR *mshr, bool pending_dirty_resp)
237    {
238        MSHRQueue *mq = mshr->queue;
239        bool wasFull = mq->isFull();
240        mq->markInService(mshr, pending_dirty_resp);
241        if (wasFull && !mq->isFull()) {
242            clearBlocked((BlockedCause)mq->index);
243        }
244    }
245
246    /**
247     * Write back dirty blocks in the cache using functional accesses.
248     */
249    virtual void memWriteback() = 0;
250    /**
251     * Invalidates all blocks in the cache.
252     *
253     * @warn Dirty cache lines will not be written back to
254     * memory. Make sure to call functionalWriteback() first if you
255     * want the to write them to memory.
256     */
257    virtual void memInvalidate() = 0;
258    /**
259     * Determine if there are any dirty blocks in the cache.
260     *
261     * \return true if at least one block is dirty, false otherwise.
262     */
263    virtual bool isDirty() const = 0;
264
265    /**
266     * Determine if an address is in the ranges covered by this
267     * cache. This is useful to filter snoops.
268     *
269     * @param addr Address to check against
270     *
271     * @return If the address in question is in range
272     */
273    bool inRange(Addr addr) const;
274
275    /** Block size of this cache */
276    const unsigned blkSize;
277
278    /**
279     * The latency of tag lookup of a cache. It occurs when there is
280     * an access to the cache.
281     */
282    const Cycles lookupLatency;
283
284    /**
285     * This is the forward latency of the cache. It occurs when there
286     * is a cache miss and a request is forwarded downstream, in
287     * particular an outbound miss.
288     */
289    const Cycles forwardLatency;
290
291    /** The latency to fill a cache block */
292    const Cycles fillLatency;
293
294    /**
295     * The latency of sending reponse to its upper level cache/core on
296     * a linefill. The responseLatency parameter captures this
297     * latency.
298     */
299    const Cycles responseLatency;
300
301    /** The number of targets for each MSHR. */
302    const int numTarget;
303
304    /** Do we forward snoops from mem side port through to cpu side port? */
305    const bool forwardSnoops;
306
307    /** Is this cache a toplevel cache (e.g. L1, I/O cache). If so we should
308     * never try to forward ownership and similar optimizations to the cpu
309     * side */
310    const bool isTopLevel;
311
312    /**
313     * Is this cache read only, for example the instruction cache, or
314     * table-walker cache. A cache that is read only should never see
315     * any writes, and should never get any dirty data (and hence
316     * never have to do any writebacks).
317     */
318    const bool isReadOnly;
319
320    /**
321     * Bit vector of the blocking reasons for the access path.
322     * @sa #BlockedCause
323     */
324    uint8_t blocked;
325
326    /** Increasing order number assigned to each incoming request. */
327    uint64_t order;
328
329    /** Stores time the cache blocked for statistics. */
330    Cycles blockedCycle;
331
332    /** Pointer to the MSHR that has no targets. */
333    MSHR *noTargetMSHR;
334
335    /** The number of misses to trigger an exit event. */
336    Counter missCount;
337
338    /**
339     * The address range to which the cache responds on the CPU side.
340     * Normally this is all possible memory addresses. */
341    const AddrRangeList addrRanges;
342
343  public:
344    /** System we are currently operating in. */
345    System *system;
346
347    // Statistics
348    /**
349     * @addtogroup CacheStatistics
350     * @{
351     */
352
353    /** Number of hits per thread for each type of command. @sa Packet::Command */
354    Stats::Vector hits[MemCmd::NUM_MEM_CMDS];
355    /** Number of hits for demand accesses. */
356    Stats::Formula demandHits;
357    /** Number of hit for all accesses. */
358    Stats::Formula overallHits;
359
360    /** Number of misses per thread for each type of command. @sa Packet::Command */
361    Stats::Vector misses[MemCmd::NUM_MEM_CMDS];
362    /** Number of misses for demand accesses. */
363    Stats::Formula demandMisses;
364    /** Number of misses for all accesses. */
365    Stats::Formula overallMisses;
366
367    /**
368     * Total number of cycles per thread/command spent waiting for a miss.
369     * Used to calculate the average miss latency.
370     */
371    Stats::Vector missLatency[MemCmd::NUM_MEM_CMDS];
372    /** Total number of cycles spent waiting for demand misses. */
373    Stats::Formula demandMissLatency;
374    /** Total number of cycles spent waiting for all misses. */
375    Stats::Formula overallMissLatency;
376
377    /** The number of accesses per command and thread. */
378    Stats::Formula accesses[MemCmd::NUM_MEM_CMDS];
379    /** The number of demand accesses. */
380    Stats::Formula demandAccesses;
381    /** The number of overall accesses. */
382    Stats::Formula overallAccesses;
383
384    /** The miss rate per command and thread. */
385    Stats::Formula missRate[MemCmd::NUM_MEM_CMDS];
386    /** The miss rate of all demand accesses. */
387    Stats::Formula demandMissRate;
388    /** The miss rate for all accesses. */
389    Stats::Formula overallMissRate;
390
391    /** The average miss latency per command and thread. */
392    Stats::Formula avgMissLatency[MemCmd::NUM_MEM_CMDS];
393    /** The average miss latency for demand misses. */
394    Stats::Formula demandAvgMissLatency;
395    /** The average miss latency for all misses. */
396    Stats::Formula overallAvgMissLatency;
397
398    /** The total number of cycles blocked for each blocked cause. */
399    Stats::Vector blocked_cycles;
400    /** The number of times this cache blocked for each blocked cause. */
401    Stats::Vector blocked_causes;
402
403    /** The average number of cycles blocked for each blocked cause. */
404    Stats::Formula avg_blocked;
405
406    /** The number of fast writes (WH64) performed. */
407    Stats::Scalar fastWrites;
408
409    /** The number of cache copies performed. */
410    Stats::Scalar cacheCopies;
411
412    /** Number of blocks written back per thread. */
413    Stats::Vector writebacks;
414
415    /** Number of misses that hit in the MSHRs per command and thread. */
416    Stats::Vector mshr_hits[MemCmd::NUM_MEM_CMDS];
417    /** Demand misses that hit in the MSHRs. */
418    Stats::Formula demandMshrHits;
419    /** Total number of misses that hit in the MSHRs. */
420    Stats::Formula overallMshrHits;
421
422    /** Number of misses that miss in the MSHRs, per command and thread. */
423    Stats::Vector mshr_misses[MemCmd::NUM_MEM_CMDS];
424    /** Demand misses that miss in the MSHRs. */
425    Stats::Formula demandMshrMisses;
426    /** Total number of misses that miss in the MSHRs. */
427    Stats::Formula overallMshrMisses;
428
429    /** Number of misses that miss in the MSHRs, per command and thread. */
430    Stats::Vector mshr_uncacheable[MemCmd::NUM_MEM_CMDS];
431    /** Total number of misses that miss in the MSHRs. */
432    Stats::Formula overallMshrUncacheable;
433
434    /** Total cycle latency of each MSHR miss, per command and thread. */
435    Stats::Vector mshr_miss_latency[MemCmd::NUM_MEM_CMDS];
436    /** Total cycle latency of demand MSHR misses. */
437    Stats::Formula demandMshrMissLatency;
438    /** Total cycle latency of overall MSHR misses. */
439    Stats::Formula overallMshrMissLatency;
440
441    /** Total cycle latency of each MSHR miss, per command and thread. */
442    Stats::Vector mshr_uncacheable_lat[MemCmd::NUM_MEM_CMDS];
443    /** Total cycle latency of overall MSHR misses. */
444    Stats::Formula overallMshrUncacheableLatency;
445
446#if 0
447    /** The total number of MSHR accesses per command and thread. */
448    Stats::Formula mshrAccesses[MemCmd::NUM_MEM_CMDS];
449    /** The total number of demand MSHR accesses. */
450    Stats::Formula demandMshrAccesses;
451    /** The total number of MSHR accesses. */
452    Stats::Formula overallMshrAccesses;
453#endif
454
455    /** The miss rate in the MSHRs pre command and thread. */
456    Stats::Formula mshrMissRate[MemCmd::NUM_MEM_CMDS];
457    /** The demand miss rate in the MSHRs. */
458    Stats::Formula demandMshrMissRate;
459    /** The overall miss rate in the MSHRs. */
460    Stats::Formula overallMshrMissRate;
461
462    /** The average latency of an MSHR miss, per command and thread. */
463    Stats::Formula avgMshrMissLatency[MemCmd::NUM_MEM_CMDS];
464    /** The average latency of a demand MSHR miss. */
465    Stats::Formula demandAvgMshrMissLatency;
466    /** The average overall latency of an MSHR miss. */
467    Stats::Formula overallAvgMshrMissLatency;
468
469    /** The average latency of an MSHR miss, per command and thread. */
470    Stats::Formula avgMshrUncacheableLatency[MemCmd::NUM_MEM_CMDS];
471    /** The average overall latency of an MSHR miss. */
472    Stats::Formula overallAvgMshrUncacheableLatency;
473
474    /** The number of times a thread hit its MSHR cap. */
475    Stats::Vector mshr_cap_events;
476    /** The number of times software prefetches caused the MSHR to block. */
477    Stats::Vector soft_prefetch_mshr_full;
478
479    Stats::Scalar mshr_no_allocate_misses;
480
481    /**
482     * @}
483     */
484
485    /**
486     * Register stats for this object.
487     */
488    virtual void regStats();
489
490  public:
491    typedef BaseCacheParams Params;
492    BaseCache(const Params *p);
493    ~BaseCache() {}
494
495    virtual void init();
496
497    virtual BaseMasterPort &getMasterPort(const std::string &if_name,
498                                          PortID idx = InvalidPortID);
499    virtual BaseSlavePort &getSlavePort(const std::string &if_name,
500                                        PortID idx = InvalidPortID);
501
502    /**
503     * Query block size of a cache.
504     * @return  The block size
505     */
506    unsigned
507    getBlockSize() const
508    {
509        return blkSize;
510    }
511
512
513    Addr blockAlign(Addr addr) const { return (addr & ~(Addr(blkSize - 1))); }
514
515
516    const AddrRangeList &getAddrRanges() const { return addrRanges; }
517
518    MSHR *allocateMissBuffer(PacketPtr pkt, Tick time, bool requestBus)
519    {
520        return allocateBufferInternal(&mshrQueue,
521                                      blockAlign(pkt->getAddr()), blkSize,
522                                      pkt, time, requestBus);
523    }
524
525    MSHR *allocateWriteBuffer(PacketPtr pkt, Tick time, bool requestBus)
526    {
527        // should only see clean evictions in a read-only cache
528        assert(!isReadOnly || pkt->cmd == MemCmd::CleanEvict);
529        assert(pkt->isWrite() && !pkt->isRead());
530        return allocateBufferInternal(&writeBuffer,
531                                      blockAlign(pkt->getAddr()), blkSize,
532                                      pkt, time, requestBus);
533    }
534
535    /**
536     * Returns true if the cache is blocked for accesses.
537     */
538    bool isBlocked() const
539    {
540        return blocked != 0;
541    }
542
543    /**
544     * Marks the access path of the cache as blocked for the given cause. This
545     * also sets the blocked flag in the slave interface.
546     * @param cause The reason for the cache blocking.
547     */
548    void setBlocked(BlockedCause cause)
549    {
550        uint8_t flag = 1 << cause;
551        if (blocked == 0) {
552            blocked_causes[cause]++;
553            blockedCycle = curCycle();
554            cpuSidePort->setBlocked();
555        }
556        blocked |= flag;
557        DPRINTF(Cache,"Blocking for cause %d, mask=%d\n", cause, blocked);
558    }
559
560    /**
561     * Marks the cache as unblocked for the given cause. This also clears the
562     * blocked flags in the appropriate interfaces.
563     * @param cause The newly unblocked cause.
564     * @warning Calling this function can cause a blocked request on the bus to
565     * access the cache. The cache must be in a state to handle that request.
566     */
567    void clearBlocked(BlockedCause cause)
568    {
569        uint8_t flag = 1 << cause;
570        blocked &= ~flag;
571        DPRINTF(Cache,"Unblocking for cause %d, mask=%d\n", cause, blocked);
572        if (blocked == 0) {
573            blocked_cycles[cause] += curCycle() - blockedCycle;
574            cpuSidePort->clearBlocked();
575        }
576    }
577
578    /**
579     * Request the master bus for the given cause and time.
580     * @param cause The reason for the request.
581     * @param time The time to make the request.
582     */
583    void requestMemSideBus(RequestCause cause, Tick time)
584    {
585        memSidePort->requestBus(cause, time);
586    }
587
588    /**
589     * Clear the master bus request for the given cause.
590     * @param cause The request reason to clear.
591     */
592    void deassertMemSideBusRequest(RequestCause cause)
593    {
594        // Obsolete... we no longer signal bus requests explicitly so
595        // we can't deassert them.  Leaving this in as a no-op since
596        // the prefetcher calls it to indicate that it no longer wants
597        // to request a prefetch, and someday that might be
598        // interesting again.
599    }
600
601    virtual unsigned int drain(DrainManager *dm);
602
603    virtual bool inCache(Addr addr, bool is_secure) const = 0;
604
605    virtual bool inMissQueue(Addr addr, bool is_secure) const = 0;
606
607    void incMissCount(PacketPtr pkt)
608    {
609        assert(pkt->req->masterId() < system->maxMasters());
610        misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
611        pkt->req->incAccessDepth();
612        if (missCount) {
613            --missCount;
614            if (missCount == 0)
615                exitSimLoop("A cache reached the maximum miss count");
616        }
617    }
618    void incHitCount(PacketPtr pkt)
619    {
620        assert(pkt->req->masterId() < system->maxMasters());
621        hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
622
623    }
624
625};
626
627#endif //__BASE_CACHE_HH__
628