base.hh revision 10821
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 *          Steve Reinhardt
42 *          Ron Dreslinski
43 */
44
45/**
46 * @file
47 * Declares a basic cache interface BaseCache.
48 */
49
50#ifndef __BASE_CACHE_HH__
51#define __BASE_CACHE_HH__
52
53#include <algorithm>
54#include <list>
55#include <string>
56#include <vector>
57
58#include "base/misc.hh"
59#include "base/statistics.hh"
60#include "base/trace.hh"
61#include "base/types.hh"
62#include "debug/Cache.hh"
63#include "debug/CachePort.hh"
64#include "mem/cache/mshr_queue.hh"
65#include "mem/mem_object.hh"
66#include "mem/packet.hh"
67#include "mem/qport.hh"
68#include "mem/request.hh"
69#include "params/BaseCache.hh"
70#include "sim/eventq.hh"
71#include "sim/full_system.hh"
72#include "sim/sim_exit.hh"
73#include "sim/system.hh"
74
75class MSHR;
76/**
77 * A basic cache interface. Implements some common functions for speed.
78 */
79class BaseCache : public MemObject
80{
81    /**
82     * Indexes to enumerate the MSHR queues.
83     */
84    enum MSHRQueueIndex {
85        MSHRQueue_MSHRs,
86        MSHRQueue_WriteBuffer
87    };
88
89  public:
90    /**
91     * Reasons for caches to be blocked.
92     */
93    enum BlockedCause {
94        Blocked_NoMSHRs = MSHRQueue_MSHRs,
95        Blocked_NoWBBuffers = MSHRQueue_WriteBuffer,
96        Blocked_NoTargets,
97        NUM_BLOCKED_CAUSES
98    };
99
100    /**
101     * Reasons for cache to request a bus.
102     */
103    enum RequestCause {
104        Request_MSHR = MSHRQueue_MSHRs,
105        Request_WB = MSHRQueue_WriteBuffer,
106        Request_PF,
107        NUM_REQUEST_CAUSES
108    };
109
110  protected:
111
112    /**
113     * A cache master port is used for the memory-side port of the
114     * cache, and in addition to the basic timing port that only sends
115     * response packets through a transmit list, it also offers the
116     * ability to schedule and send request packets (requests &
117     * writebacks). The send event is scheduled through requestBus,
118     * and the sendDeferredPacket of the timing port is modified to
119     * consider both the transmit list and the requests from the MSHR.
120     */
121    class CacheMasterPort : public QueuedMasterPort
122    {
123
124      public:
125
126        /**
127         * Schedule a send of a request packet (from the MSHR). Note
128         * that we could already have a retry outstanding.
129         */
130        void requestBus(RequestCause cause, Tick time)
131        {
132            DPRINTF(CachePort, "Scheduling request at %llu due to %d\n",
133                    time, cause);
134            reqQueue.schedSendEvent(time);
135        }
136
137      protected:
138
139        CacheMasterPort(const std::string &_name, BaseCache *_cache,
140                        ReqPacketQueue &_reqQueue,
141                        SnoopRespPacketQueue &_snoopRespQueue) :
142            QueuedMasterPort(_name, _cache, _reqQueue, _snoopRespQueue)
143        { }
144
145        /**
146         * Memory-side port always snoops.
147         *
148         * @return always true
149         */
150        virtual bool isSnooping() const { return true; }
151    };
152
153    /**
154     * A cache slave port is used for the CPU-side port of the cache,
155     * and it is basically a simple timing port that uses a transmit
156     * list for responses to the CPU (or connected master). In
157     * addition, it has the functionality to block the port for
158     * incoming requests. If blocked, the port will issue a retry once
159     * unblocked.
160     */
161    class CacheSlavePort : public QueuedSlavePort
162    {
163
164      public:
165
166        /** Do not accept any new requests. */
167        void setBlocked();
168
169        /** Return to normal operation and accept new requests. */
170        void clearBlocked();
171
172        bool isBlocked() const { return blocked; }
173
174      protected:
175
176        CacheSlavePort(const std::string &_name, BaseCache *_cache,
177                       const std::string &_label);
178
179        /** A normal packet queue used to store responses. */
180        RespPacketQueue queue;
181
182        bool blocked;
183
184        bool mustSendRetry;
185
186      private:
187
188        void processSendRetry();
189
190        EventWrapper<CacheSlavePort,
191                     &CacheSlavePort::processSendRetry> sendRetryEvent;
192
193    };
194
195    CacheSlavePort *cpuSidePort;
196    CacheMasterPort *memSidePort;
197
198  protected:
199
200    /** Miss status registers */
201    MSHRQueue mshrQueue;
202
203    /** Write/writeback buffer */
204    MSHRQueue writeBuffer;
205
206    /**
207     * Allocate a buffer, passing the time indicating when schedule an
208     * event to the queued port to go and ask the MSHR and write queue
209     * if they have packets to send.
210     *
211     * allocateBufferInternal() function is called in:
212     * - MSHR allocateWriteBuffer (unchached write forwarded to WriteBuffer);
213     * - MSHR allocateMissBuffer (miss in MSHR queue);
214     */
215    MSHR *allocateBufferInternal(MSHRQueue *mq, Addr addr, int size,
216                                 PacketPtr pkt, Tick time, bool requestBus)
217    {
218        // check that the address is block aligned since we rely on
219        // this in a number of places when checking for matches and
220        // overlap
221        assert(addr == blockAlign(addr));
222
223        MSHR *mshr = mq->allocate(addr, size, pkt, time, order++);
224
225        if (mq->isFull()) {
226            setBlocked((BlockedCause)mq->index);
227        }
228
229        if (requestBus) {
230            requestMemSideBus((RequestCause)mq->index, time);
231        }
232
233        return mshr;
234    }
235
236    void markInServiceInternal(MSHR *mshr, bool pending_dirty_resp)
237    {
238        MSHRQueue *mq = mshr->queue;
239        bool wasFull = mq->isFull();
240        mq->markInService(mshr, pending_dirty_resp);
241        if (wasFull && !mq->isFull()) {
242            clearBlocked((BlockedCause)mq->index);
243        }
244    }
245
246    /**
247     * Write back dirty blocks in the cache using functional accesses.
248     */
249    virtual void memWriteback() = 0;
250    /**
251     * Invalidates all blocks in the cache.
252     *
253     * @warn Dirty cache lines will not be written back to
254     * memory. Make sure to call functionalWriteback() first if you
255     * want the to write them to memory.
256     */
257    virtual void memInvalidate() = 0;
258    /**
259     * Determine if there are any dirty blocks in the cache.
260     *
261     * \return true if at least one block is dirty, false otherwise.
262     */
263    virtual bool isDirty() const = 0;
264
265    /**
266     * Determine if an address is in the ranges covered by this
267     * cache. This is useful to filter snoops.
268     *
269     * @param addr Address to check against
270     *
271     * @return If the address in question is in range
272     */
273    bool inRange(Addr addr) const;
274
275    /** Block size of this cache */
276    const unsigned blkSize;
277
278    /**
279     * The latency of tag lookup of a cache. It occurs when there is
280     * an access to the cache.
281     */
282    const Cycles lookupLatency;
283
284    /**
285     * This is the forward latency of the cache. It occurs when there
286     * is a cache miss and a request is forwarded downstream, in
287     * particular an outbound miss.
288     */
289    const Cycles forwardLatency;
290
291    /** The latency to fill a cache block */
292    const Cycles fillLatency;
293
294    /**
295     * The latency of sending reponse to its upper level cache/core on
296     * a linefill. The responseLatency parameter captures this
297     * latency.
298     */
299    const Cycles responseLatency;
300
301    /** The number of targets for each MSHR. */
302    const int numTarget;
303
304    /** Do we forward snoops from mem side port through to cpu side port? */
305    const bool forwardSnoops;
306
307    /** Is this cache a toplevel cache (e.g. L1, I/O cache). If so we should
308     * never try to forward ownership and similar optimizations to the cpu
309     * side */
310    const bool isTopLevel;
311
312    /**
313     * Bit vector of the blocking reasons for the access path.
314     * @sa #BlockedCause
315     */
316    uint8_t blocked;
317
318    /** Increasing order number assigned to each incoming request. */
319    uint64_t order;
320
321    /** Stores time the cache blocked for statistics. */
322    Cycles blockedCycle;
323
324    /** Pointer to the MSHR that has no targets. */
325    MSHR *noTargetMSHR;
326
327    /** The number of misses to trigger an exit event. */
328    Counter missCount;
329
330    /**
331     * The address range to which the cache responds on the CPU side.
332     * Normally this is all possible memory addresses. */
333    const AddrRangeList addrRanges;
334
335  public:
336    /** System we are currently operating in. */
337    System *system;
338
339    // Statistics
340    /**
341     * @addtogroup CacheStatistics
342     * @{
343     */
344
345    /** Number of hits per thread for each type of command. @sa Packet::Command */
346    Stats::Vector hits[MemCmd::NUM_MEM_CMDS];
347    /** Number of hits for demand accesses. */
348    Stats::Formula demandHits;
349    /** Number of hit for all accesses. */
350    Stats::Formula overallHits;
351
352    /** Number of misses per thread for each type of command. @sa Packet::Command */
353    Stats::Vector misses[MemCmd::NUM_MEM_CMDS];
354    /** Number of misses for demand accesses. */
355    Stats::Formula demandMisses;
356    /** Number of misses for all accesses. */
357    Stats::Formula overallMisses;
358
359    /**
360     * Total number of cycles per thread/command spent waiting for a miss.
361     * Used to calculate the average miss latency.
362     */
363    Stats::Vector missLatency[MemCmd::NUM_MEM_CMDS];
364    /** Total number of cycles spent waiting for demand misses. */
365    Stats::Formula demandMissLatency;
366    /** Total number of cycles spent waiting for all misses. */
367    Stats::Formula overallMissLatency;
368
369    /** The number of accesses per command and thread. */
370    Stats::Formula accesses[MemCmd::NUM_MEM_CMDS];
371    /** The number of demand accesses. */
372    Stats::Formula demandAccesses;
373    /** The number of overall accesses. */
374    Stats::Formula overallAccesses;
375
376    /** The miss rate per command and thread. */
377    Stats::Formula missRate[MemCmd::NUM_MEM_CMDS];
378    /** The miss rate of all demand accesses. */
379    Stats::Formula demandMissRate;
380    /** The miss rate for all accesses. */
381    Stats::Formula overallMissRate;
382
383    /** The average miss latency per command and thread. */
384    Stats::Formula avgMissLatency[MemCmd::NUM_MEM_CMDS];
385    /** The average miss latency for demand misses. */
386    Stats::Formula demandAvgMissLatency;
387    /** The average miss latency for all misses. */
388    Stats::Formula overallAvgMissLatency;
389
390    /** The total number of cycles blocked for each blocked cause. */
391    Stats::Vector blocked_cycles;
392    /** The number of times this cache blocked for each blocked cause. */
393    Stats::Vector blocked_causes;
394
395    /** The average number of cycles blocked for each blocked cause. */
396    Stats::Formula avg_blocked;
397
398    /** The number of fast writes (WH64) performed. */
399    Stats::Scalar fastWrites;
400
401    /** The number of cache copies performed. */
402    Stats::Scalar cacheCopies;
403
404    /** Number of blocks written back per thread. */
405    Stats::Vector writebacks;
406
407    /** Number of misses that hit in the MSHRs per command and thread. */
408    Stats::Vector mshr_hits[MemCmd::NUM_MEM_CMDS];
409    /** Demand misses that hit in the MSHRs. */
410    Stats::Formula demandMshrHits;
411    /** Total number of misses that hit in the MSHRs. */
412    Stats::Formula overallMshrHits;
413
414    /** Number of misses that miss in the MSHRs, per command and thread. */
415    Stats::Vector mshr_misses[MemCmd::NUM_MEM_CMDS];
416    /** Demand misses that miss in the MSHRs. */
417    Stats::Formula demandMshrMisses;
418    /** Total number of misses that miss in the MSHRs. */
419    Stats::Formula overallMshrMisses;
420
421    /** Number of misses that miss in the MSHRs, per command and thread. */
422    Stats::Vector mshr_uncacheable[MemCmd::NUM_MEM_CMDS];
423    /** Total number of misses that miss in the MSHRs. */
424    Stats::Formula overallMshrUncacheable;
425
426    /** Total cycle latency of each MSHR miss, per command and thread. */
427    Stats::Vector mshr_miss_latency[MemCmd::NUM_MEM_CMDS];
428    /** Total cycle latency of demand MSHR misses. */
429    Stats::Formula demandMshrMissLatency;
430    /** Total cycle latency of overall MSHR misses. */
431    Stats::Formula overallMshrMissLatency;
432
433    /** Total cycle latency of each MSHR miss, per command and thread. */
434    Stats::Vector mshr_uncacheable_lat[MemCmd::NUM_MEM_CMDS];
435    /** Total cycle latency of overall MSHR misses. */
436    Stats::Formula overallMshrUncacheableLatency;
437
438#if 0
439    /** The total number of MSHR accesses per command and thread. */
440    Stats::Formula mshrAccesses[MemCmd::NUM_MEM_CMDS];
441    /** The total number of demand MSHR accesses. */
442    Stats::Formula demandMshrAccesses;
443    /** The total number of MSHR accesses. */
444    Stats::Formula overallMshrAccesses;
445#endif
446
447    /** The miss rate in the MSHRs pre command and thread. */
448    Stats::Formula mshrMissRate[MemCmd::NUM_MEM_CMDS];
449    /** The demand miss rate in the MSHRs. */
450    Stats::Formula demandMshrMissRate;
451    /** The overall miss rate in the MSHRs. */
452    Stats::Formula overallMshrMissRate;
453
454    /** The average latency of an MSHR miss, per command and thread. */
455    Stats::Formula avgMshrMissLatency[MemCmd::NUM_MEM_CMDS];
456    /** The average latency of a demand MSHR miss. */
457    Stats::Formula demandAvgMshrMissLatency;
458    /** The average overall latency of an MSHR miss. */
459    Stats::Formula overallAvgMshrMissLatency;
460
461    /** The average latency of an MSHR miss, per command and thread. */
462    Stats::Formula avgMshrUncacheableLatency[MemCmd::NUM_MEM_CMDS];
463    /** The average overall latency of an MSHR miss. */
464    Stats::Formula overallAvgMshrUncacheableLatency;
465
466    /** The number of times a thread hit its MSHR cap. */
467    Stats::Vector mshr_cap_events;
468    /** The number of times software prefetches caused the MSHR to block. */
469    Stats::Vector soft_prefetch_mshr_full;
470
471    Stats::Scalar mshr_no_allocate_misses;
472
473    /**
474     * @}
475     */
476
477    /**
478     * Register stats for this object.
479     */
480    virtual void regStats();
481
482  public:
483    typedef BaseCacheParams Params;
484    BaseCache(const Params *p);
485    ~BaseCache() {}
486
487    virtual void init();
488
489    virtual BaseMasterPort &getMasterPort(const std::string &if_name,
490                                          PortID idx = InvalidPortID);
491    virtual BaseSlavePort &getSlavePort(const std::string &if_name,
492                                        PortID idx = InvalidPortID);
493
494    /**
495     * Query block size of a cache.
496     * @return  The block size
497     */
498    unsigned
499    getBlockSize() const
500    {
501        return blkSize;
502    }
503
504
505    Addr blockAlign(Addr addr) const { return (addr & ~(Addr(blkSize - 1))); }
506
507
508    const AddrRangeList &getAddrRanges() const { return addrRanges; }
509
510    MSHR *allocateMissBuffer(PacketPtr pkt, Tick time, bool requestBus)
511    {
512        return allocateBufferInternal(&mshrQueue,
513                                      blockAlign(pkt->getAddr()), blkSize,
514                                      pkt, time, requestBus);
515    }
516
517    MSHR *allocateWriteBuffer(PacketPtr pkt, Tick time, bool requestBus)
518    {
519        assert(pkt->isWrite() && !pkt->isRead());
520        return allocateBufferInternal(&writeBuffer,
521                                      blockAlign(pkt->getAddr()), blkSize,
522                                      pkt, time, requestBus);
523    }
524
525    /**
526     * Returns true if the cache is blocked for accesses.
527     */
528    bool isBlocked() const
529    {
530        return blocked != 0;
531    }
532
533    /**
534     * Marks the access path of the cache as blocked for the given cause. This
535     * also sets the blocked flag in the slave interface.
536     * @param cause The reason for the cache blocking.
537     */
538    void setBlocked(BlockedCause cause)
539    {
540        uint8_t flag = 1 << cause;
541        if (blocked == 0) {
542            blocked_causes[cause]++;
543            blockedCycle = curCycle();
544            cpuSidePort->setBlocked();
545        }
546        blocked |= flag;
547        DPRINTF(Cache,"Blocking for cause %d, mask=%d\n", cause, blocked);
548    }
549
550    /**
551     * Marks the cache as unblocked for the given cause. This also clears the
552     * blocked flags in the appropriate interfaces.
553     * @param cause The newly unblocked cause.
554     * @warning Calling this function can cause a blocked request on the bus to
555     * access the cache. The cache must be in a state to handle that request.
556     */
557    void clearBlocked(BlockedCause cause)
558    {
559        uint8_t flag = 1 << cause;
560        blocked &= ~flag;
561        DPRINTF(Cache,"Unblocking for cause %d, mask=%d\n", cause, blocked);
562        if (blocked == 0) {
563            blocked_cycles[cause] += curCycle() - blockedCycle;
564            cpuSidePort->clearBlocked();
565        }
566    }
567
568    /**
569     * Request the master bus for the given cause and time.
570     * @param cause The reason for the request.
571     * @param time The time to make the request.
572     */
573    void requestMemSideBus(RequestCause cause, Tick time)
574    {
575        memSidePort->requestBus(cause, time);
576    }
577
578    /**
579     * Clear the master bus request for the given cause.
580     * @param cause The request reason to clear.
581     */
582    void deassertMemSideBusRequest(RequestCause cause)
583    {
584        // Obsolete... we no longer signal bus requests explicitly so
585        // we can't deassert them.  Leaving this in as a no-op since
586        // the prefetcher calls it to indicate that it no longer wants
587        // to request a prefetch, and someday that might be
588        // interesting again.
589    }
590
591    virtual unsigned int drain(DrainManager *dm);
592
593    virtual bool inCache(Addr addr, bool is_secure) const = 0;
594
595    virtual bool inMissQueue(Addr addr, bool is_secure) const = 0;
596
597    void incMissCount(PacketPtr pkt)
598    {
599        assert(pkt->req->masterId() < system->maxMasters());
600        misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
601        pkt->req->incAccessDepth();
602        if (missCount) {
603            --missCount;
604            if (missCount == 0)
605                exitSimLoop("A cache reached the maximum miss count");
606        }
607    }
608    void incHitCount(PacketPtr pkt)
609    {
610        assert(pkt->req->masterId() < system->maxMasters());
611        hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
612
613    }
614
615};
616
617#endif //__BASE_CACHE_HH__
618