base.cc revision 13746:723109f11d56
1/* 2 * Copyright (c) 2012-2013, 2018 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2003-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Erik Hallnor 41 * Nikos Nikoleris 42 */ 43 44/** 45 * @file 46 * Definition of BaseCache functions. 47 */ 48 49#include "mem/cache/base.hh" 50 51#include "base/compiler.hh" 52#include "base/logging.hh" 53#include "debug/Cache.hh" 54#include "debug/CachePort.hh" 55#include "debug/CacheRepl.hh" 56#include "debug/CacheVerbose.hh" 57#include "mem/cache/mshr.hh" 58#include "mem/cache/prefetch/base.hh" 59#include "mem/cache/queue_entry.hh" 60#include "params/BaseCache.hh" 61#include "params/WriteAllocator.hh" 62#include "sim/core.hh" 63 64class BaseMasterPort; 65class BaseSlavePort; 66 67using namespace std; 68 69BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name, 70 BaseCache *_cache, 71 const std::string &_label) 72 : QueuedSlavePort(_name, _cache, queue), 73 queue(*_cache, *this, true, _label), 74 blocked(false), mustSendRetry(false), 75 sendRetryEvent([this]{ processSendRetry(); }, _name) 76{ 77} 78 79BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size) 80 : MemObject(p), 81 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"), 82 memSidePort(p->name + ".mem_side", this, "MemSidePort"), 83 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below 84 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below 85 tags(p->tags), 86 prefetcher(p->prefetcher), 87 writeAllocator(p->write_allocator), 88 writebackClean(p->writeback_clean), 89 tempBlockWriteback(nullptr), 90 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); }, 91 name(), false, 92 EventBase::Delayed_Writeback_Pri), 93 blkSize(blk_size), 94 lookupLatency(p->tag_latency), 95 dataLatency(p->data_latency), 96 forwardLatency(p->tag_latency), 97 fillLatency(p->data_latency), 98 responseLatency(p->response_latency), 99 sequentialAccess(p->sequential_access), 100 numTarget(p->tgts_per_mshr), 101 forwardSnoops(true), 102 clusivity(p->clusivity), 103 isReadOnly(p->is_read_only), 104 blocked(0), 105 order(0), 106 noTargetMSHR(nullptr), 107 missCount(p->max_miss_count), 108 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()), 109 system(p->system) 110{ 111 // the MSHR queue has no reserve entries as we check the MSHR 112 // queue on every single allocation, whereas the write queue has 113 // as many reserve entries as we have MSHRs, since every MSHR may 114 // eventually require a writeback, and we do not check the write 115 // buffer before committing to an MSHR 116 117 // forward snoops is overridden in init() once we can query 118 // whether the connected master is actually snooping or not 119 120 tempBlock = new TempCacheBlk(blkSize); 121 122 tags->tagsInit(); 123 if (prefetcher) 124 prefetcher->setCache(this); 125} 126 127BaseCache::~BaseCache() 128{ 129 delete tempBlock; 130} 131 132void 133BaseCache::CacheSlavePort::setBlocked() 134{ 135 assert(!blocked); 136 DPRINTF(CachePort, "Port is blocking new requests\n"); 137 blocked = true; 138 // if we already scheduled a retry in this cycle, but it has not yet 139 // happened, cancel it 140 if (sendRetryEvent.scheduled()) { 141 owner.deschedule(sendRetryEvent); 142 DPRINTF(CachePort, "Port descheduled retry\n"); 143 mustSendRetry = true; 144 } 145} 146 147void 148BaseCache::CacheSlavePort::clearBlocked() 149{ 150 assert(blocked); 151 DPRINTF(CachePort, "Port is accepting new requests\n"); 152 blocked = false; 153 if (mustSendRetry) { 154 // @TODO: need to find a better time (next cycle?) 155 owner.schedule(sendRetryEvent, curTick() + 1); 156 } 157} 158 159void 160BaseCache::CacheSlavePort::processSendRetry() 161{ 162 DPRINTF(CachePort, "Port is sending retry\n"); 163 164 // reset the flag and call retry 165 mustSendRetry = false; 166 sendRetryReq(); 167} 168 169Addr 170BaseCache::regenerateBlkAddr(CacheBlk* blk) 171{ 172 if (blk != tempBlock) { 173 return tags->regenerateBlkAddr(blk); 174 } else { 175 return tempBlock->getAddr(); 176 } 177} 178 179void 180BaseCache::init() 181{ 182 if (!cpuSidePort.isConnected() || !memSidePort.isConnected()) 183 fatal("Cache ports on %s are not connected\n", name()); 184 cpuSidePort.sendRangeChange(); 185 forwardSnoops = cpuSidePort.isSnooping(); 186} 187 188BaseMasterPort & 189BaseCache::getMasterPort(const std::string &if_name, PortID idx) 190{ 191 if (if_name == "mem_side") { 192 return memSidePort; 193 } else { 194 return MemObject::getMasterPort(if_name, idx); 195 } 196} 197 198BaseSlavePort & 199BaseCache::getSlavePort(const std::string &if_name, PortID idx) 200{ 201 if (if_name == "cpu_side") { 202 return cpuSidePort; 203 } else { 204 return MemObject::getSlavePort(if_name, idx); 205 } 206} 207 208bool 209BaseCache::inRange(Addr addr) const 210{ 211 for (const auto& r : addrRanges) { 212 if (r.contains(addr)) { 213 return true; 214 } 215 } 216 return false; 217} 218 219void 220BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time) 221{ 222 if (pkt->needsResponse()) { 223 // These delays should have been consumed by now 224 assert(pkt->headerDelay == 0); 225 assert(pkt->payloadDelay == 0); 226 227 pkt->makeTimingResponse(); 228 229 // In this case we are considering request_time that takes 230 // into account the delay of the xbar, if any, and just 231 // lat, neglecting responseLatency, modelling hit latency 232 // just as the value of lat overriden by access(), which calls 233 // the calculateAccessLatency() function. 234 cpuSidePort.schedTimingResp(pkt, request_time); 235 } else { 236 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__, 237 pkt->print()); 238 239 // queue the packet for deletion, as the sending cache is 240 // still relying on it; if the block is found in access(), 241 // CleanEvict and Writeback messages will be deleted 242 // here as well 243 pendingDelete.reset(pkt); 244 } 245} 246 247void 248BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk, 249 Tick forward_time, Tick request_time) 250{ 251 if (writeAllocator && 252 pkt && pkt->isWrite() && !pkt->req->isUncacheable()) { 253 writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(), 254 pkt->getBlockAddr(blkSize)); 255 } 256 257 if (mshr) { 258 /// MSHR hit 259 /// @note writebacks will be checked in getNextMSHR() 260 /// for any conflicting requests to the same block 261 262 //@todo remove hw_pf here 263 264 // Coalesce unless it was a software prefetch (see above). 265 if (pkt) { 266 assert(!pkt->isWriteback()); 267 // CleanEvicts corresponding to blocks which have 268 // outstanding requests in MSHRs are simply sunk here 269 if (pkt->cmd == MemCmd::CleanEvict) { 270 pendingDelete.reset(pkt); 271 } else if (pkt->cmd == MemCmd::WriteClean) { 272 // A WriteClean should never coalesce with any 273 // outstanding cache maintenance requests. 274 275 // We use forward_time here because there is an 276 // uncached memory write, forwarded to WriteBuffer. 277 allocateWriteBuffer(pkt, forward_time); 278 } else { 279 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__, 280 pkt->print()); 281 282 assert(pkt->req->masterId() < system->maxMasters()); 283 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 284 285 // We use forward_time here because it is the same 286 // considering new targets. We have multiple 287 // requests for the same address here. It 288 // specifies the latency to allocate an internal 289 // buffer and to schedule an event to the queued 290 // port and also takes into account the additional 291 // delay of the xbar. 292 mshr->allocateTarget(pkt, forward_time, order++, 293 allocOnFill(pkt->cmd)); 294 if (mshr->getNumTargets() == numTarget) { 295 noTargetMSHR = mshr; 296 setBlocked(Blocked_NoTargets); 297 // need to be careful with this... if this mshr isn't 298 // ready yet (i.e. time > curTick()), we don't want to 299 // move it ahead of mshrs that are ready 300 // mshrQueue.moveToFront(mshr); 301 } 302 } 303 } 304 } else { 305 // no MSHR 306 assert(pkt->req->masterId() < system->maxMasters()); 307 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 308 309 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) { 310 // We use forward_time here because there is an 311 // writeback or writeclean, forwarded to WriteBuffer. 312 allocateWriteBuffer(pkt, forward_time); 313 } else { 314 if (blk && blk->isValid()) { 315 // If we have a write miss to a valid block, we 316 // need to mark the block non-readable. Otherwise 317 // if we allow reads while there's an outstanding 318 // write miss, the read could return stale data 319 // out of the cache block... a more aggressive 320 // system could detect the overlap (if any) and 321 // forward data out of the MSHRs, but we don't do 322 // that yet. Note that we do need to leave the 323 // block valid so that it stays in the cache, in 324 // case we get an upgrade response (and hence no 325 // new data) when the write miss completes. 326 // As long as CPUs do proper store/load forwarding 327 // internally, and have a sufficiently weak memory 328 // model, this is probably unnecessary, but at some 329 // point it must have seemed like we needed it... 330 assert((pkt->needsWritable() && !blk->isWritable()) || 331 pkt->req->isCacheMaintenance()); 332 blk->status &= ~BlkReadable; 333 } 334 // Here we are using forward_time, modelling the latency of 335 // a miss (outbound) just as forwardLatency, neglecting the 336 // lookupLatency component. 337 allocateMissBuffer(pkt, forward_time); 338 } 339 } 340} 341 342void 343BaseCache::recvTimingReq(PacketPtr pkt) 344{ 345 // anything that is merely forwarded pays for the forward latency and 346 // the delay provided by the crossbar 347 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 348 349 Cycles lat; 350 CacheBlk *blk = nullptr; 351 bool satisfied = false; 352 { 353 PacketList writebacks; 354 // Note that lat is passed by reference here. The function 355 // access() will set the lat value. 356 satisfied = access(pkt, blk, lat, writebacks); 357 358 // copy writebacks to write buffer here to ensure they logically 359 // precede anything happening below 360 doWritebacks(writebacks, forward_time); 361 } 362 363 // Here we charge the headerDelay that takes into account the latencies 364 // of the bus, if the packet comes from it. 365 // The latency charged is just the value set by the access() function. 366 // In case of a hit we are neglecting response latency. 367 // In case of a miss we are neglecting forward latency. 368 Tick request_time = clockEdge(lat); 369 // Here we reset the timing of the packet. 370 pkt->headerDelay = pkt->payloadDelay = 0; 371 372 if (satisfied) { 373 // notify before anything else as later handleTimingReqHit might turn 374 // the packet in a response 375 ppHit->notify(pkt); 376 377 if (prefetcher && blk && blk->wasPrefetched()) { 378 blk->status &= ~BlkHWPrefetched; 379 } 380 381 handleTimingReqHit(pkt, blk, request_time); 382 } else { 383 handleTimingReqMiss(pkt, blk, forward_time, request_time); 384 385 ppMiss->notify(pkt); 386 } 387 388 if (prefetcher) { 389 // track time of availability of next prefetch, if any 390 Tick next_pf_time = prefetcher->nextPrefetchReadyTime(); 391 if (next_pf_time != MaxTick) { 392 schedMemSideSendEvent(next_pf_time); 393 } 394 } 395} 396 397void 398BaseCache::handleUncacheableWriteResp(PacketPtr pkt) 399{ 400 Tick completion_time = clockEdge(responseLatency) + 401 pkt->headerDelay + pkt->payloadDelay; 402 403 // Reset the bus additional time as it is now accounted for 404 pkt->headerDelay = pkt->payloadDelay = 0; 405 406 cpuSidePort.schedTimingResp(pkt, completion_time); 407} 408 409void 410BaseCache::recvTimingResp(PacketPtr pkt) 411{ 412 assert(pkt->isResponse()); 413 414 // all header delay should be paid for by the crossbar, unless 415 // this is a prefetch response from above 416 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp, 417 "%s saw a non-zero packet delay\n", name()); 418 419 const bool is_error = pkt->isError(); 420 421 if (is_error) { 422 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__, 423 pkt->print()); 424 } 425 426 DPRINTF(Cache, "%s: Handling response %s\n", __func__, 427 pkt->print()); 428 429 // if this is a write, we should be looking at an uncacheable 430 // write 431 if (pkt->isWrite()) { 432 assert(pkt->req->isUncacheable()); 433 handleUncacheableWriteResp(pkt); 434 return; 435 } 436 437 // we have dealt with any (uncacheable) writes above, from here on 438 // we know we are dealing with an MSHR due to a miss or a prefetch 439 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState()); 440 assert(mshr); 441 442 if (mshr == noTargetMSHR) { 443 // we always clear at least one target 444 clearBlocked(Blocked_NoTargets); 445 noTargetMSHR = nullptr; 446 } 447 448 // Initial target is used just for stats 449 MSHR::Target *initial_tgt = mshr->getTarget(); 450 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); 451 Tick miss_latency = curTick() - initial_tgt->recvTime; 452 453 if (pkt->req->isUncacheable()) { 454 assert(pkt->req->masterId() < system->maxMasters()); 455 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += 456 miss_latency; 457 } else { 458 assert(pkt->req->masterId() < system->maxMasters()); 459 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += 460 miss_latency; 461 } 462 463 PacketList writebacks; 464 465 bool is_fill = !mshr->isForward && 466 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp || 467 mshr->wasWholeLineWrite); 468 469 // make sure that if the mshr was due to a whole line write then 470 // the response is an invalidation 471 assert(!mshr->wasWholeLineWrite || pkt->isInvalidate()); 472 473 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 474 475 if (is_fill && !is_error) { 476 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", 477 pkt->getAddr()); 478 479 const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ? 480 writeAllocator->allocate() : mshr->allocOnFill(); 481 blk = handleFill(pkt, blk, writebacks, allocate); 482 assert(blk != nullptr); 483 ppFill->notify(pkt); 484 } 485 486 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) { 487 // The block was marked not readable while there was a pending 488 // cache maintenance operation, restore its flag. 489 blk->status |= BlkReadable; 490 491 // This was a cache clean operation (without invalidate) 492 // and we have a copy of the block already. Since there 493 // is no invalidation, we can promote targets that don't 494 // require a writable copy 495 mshr->promoteReadable(); 496 } 497 498 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) { 499 // If at this point the referenced block is writable and the 500 // response is not a cache invalidate, we promote targets that 501 // were deferred as we couldn't guarrantee a writable copy 502 mshr->promoteWritable(); 503 } 504 505 serviceMSHRTargets(mshr, pkt, blk); 506 507 if (mshr->promoteDeferredTargets()) { 508 // avoid later read getting stale data while write miss is 509 // outstanding.. see comment in timingAccess() 510 if (blk) { 511 blk->status &= ~BlkReadable; 512 } 513 mshrQueue.markPending(mshr); 514 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay); 515 } else { 516 // while we deallocate an mshr from the queue we still have to 517 // check the isFull condition before and after as we might 518 // have been using the reserved entries already 519 const bool was_full = mshrQueue.isFull(); 520 mshrQueue.deallocate(mshr); 521 if (was_full && !mshrQueue.isFull()) { 522 clearBlocked(Blocked_NoMSHRs); 523 } 524 525 // Request the bus for a prefetch if this deallocation freed enough 526 // MSHRs for a prefetch to take place 527 if (prefetcher && mshrQueue.canPrefetch()) { 528 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), 529 clockEdge()); 530 if (next_pf_time != MaxTick) 531 schedMemSideSendEvent(next_pf_time); 532 } 533 } 534 535 // if we used temp block, check to see if its valid and then clear it out 536 if (blk == tempBlock && tempBlock->isValid()) { 537 evictBlock(blk, writebacks); 538 } 539 540 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 541 // copy writebacks to write buffer 542 doWritebacks(writebacks, forward_time); 543 544 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print()); 545 delete pkt; 546} 547 548 549Tick 550BaseCache::recvAtomic(PacketPtr pkt) 551{ 552 // should assert here that there are no outstanding MSHRs or 553 // writebacks... that would mean that someone used an atomic 554 // access in timing mode 555 556 // We use lookupLatency here because it is used to specify the latency 557 // to access. 558 Cycles lat = lookupLatency; 559 560 CacheBlk *blk = nullptr; 561 PacketList writebacks; 562 bool satisfied = access(pkt, blk, lat, writebacks); 563 564 if (pkt->isClean() && blk && blk->isDirty()) { 565 // A cache clean opearation is looking for a dirty 566 // block. If a dirty block is encountered a WriteClean 567 // will update any copies to the path to the memory 568 // until the point of reference. 569 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 570 __func__, pkt->print(), blk->print()); 571 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id); 572 writebacks.push_back(wb_pkt); 573 pkt->setSatisfied(); 574 } 575 576 // handle writebacks resulting from the access here to ensure they 577 // logically precede anything happening below 578 doWritebacksAtomic(writebacks); 579 assert(writebacks.empty()); 580 581 if (!satisfied) { 582 lat += handleAtomicReqMiss(pkt, blk, writebacks); 583 } 584 585 // Note that we don't invoke the prefetcher at all in atomic mode. 586 // It's not clear how to do it properly, particularly for 587 // prefetchers that aggressively generate prefetch candidates and 588 // rely on bandwidth contention to throttle them; these will tend 589 // to pollute the cache in atomic mode since there is no bandwidth 590 // contention. If we ever do want to enable prefetching in atomic 591 // mode, though, this is the place to do it... see timingAccess() 592 // for an example (though we'd want to issue the prefetch(es) 593 // immediately rather than calling requestMemSideBus() as we do 594 // there). 595 596 // do any writebacks resulting from the response handling 597 doWritebacksAtomic(writebacks); 598 599 // if we used temp block, check to see if its valid and if so 600 // clear it out, but only do so after the call to recvAtomic is 601 // finished so that any downstream observers (such as a snoop 602 // filter), first see the fill, and only then see the eviction 603 if (blk == tempBlock && tempBlock->isValid()) { 604 // the atomic CPU calls recvAtomic for fetch and load/store 605 // sequentuially, and we may already have a tempBlock 606 // writeback from the fetch that we have not yet sent 607 if (tempBlockWriteback) { 608 // if that is the case, write the prevoius one back, and 609 // do not schedule any new event 610 writebackTempBlockAtomic(); 611 } else { 612 // the writeback/clean eviction happens after the call to 613 // recvAtomic has finished (but before any successive 614 // calls), so that the response handling from the fill is 615 // allowed to happen first 616 schedule(writebackTempBlockAtomicEvent, curTick()); 617 } 618 619 tempBlockWriteback = evictBlock(blk); 620 } 621 622 if (pkt->needsResponse()) { 623 pkt->makeAtomicResponse(); 624 } 625 626 return lat * clockPeriod(); 627} 628 629void 630BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side) 631{ 632 Addr blk_addr = pkt->getBlockAddr(blkSize); 633 bool is_secure = pkt->isSecure(); 634 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 635 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 636 637 pkt->pushLabel(name()); 638 639 CacheBlkPrintWrapper cbpw(blk); 640 641 // Note that just because an L2/L3 has valid data doesn't mean an 642 // L1 doesn't have a more up-to-date modified copy that still 643 // needs to be found. As a result we always update the request if 644 // we have it, but only declare it satisfied if we are the owner. 645 646 // see if we have data at all (owned or otherwise) 647 bool have_data = blk && blk->isValid() 648 && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize, 649 blk->data); 650 651 // data we have is dirty if marked as such or if we have an 652 // in-service MSHR that is pending a modified line 653 bool have_dirty = 654 have_data && (blk->isDirty() || 655 (mshr && mshr->inService && mshr->isPendingModified())); 656 657 bool done = have_dirty || 658 cpuSidePort.trySatisfyFunctional(pkt) || 659 mshrQueue.trySatisfyFunctional(pkt, blk_addr) || 660 writeBuffer.trySatisfyFunctional(pkt, blk_addr) || 661 memSidePort.trySatisfyFunctional(pkt); 662 663 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(), 664 (blk && blk->isValid()) ? "valid " : "", 665 have_data ? "data " : "", done ? "done " : ""); 666 667 // We're leaving the cache, so pop cache->name() label 668 pkt->popLabel(); 669 670 if (done) { 671 pkt->makeResponse(); 672 } else { 673 // if it came as a request from the CPU side then make sure it 674 // continues towards the memory side 675 if (from_cpu_side) { 676 memSidePort.sendFunctional(pkt); 677 } else if (cpuSidePort.isSnooping()) { 678 // if it came from the memory side, it must be a snoop request 679 // and we should only forward it if we are forwarding snoops 680 cpuSidePort.sendFunctionalSnoop(pkt); 681 } 682 } 683} 684 685 686void 687BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) 688{ 689 assert(pkt->isRequest()); 690 691 uint64_t overwrite_val; 692 bool overwrite_mem; 693 uint64_t condition_val64; 694 uint32_t condition_val32; 695 696 int offset = pkt->getOffset(blkSize); 697 uint8_t *blk_data = blk->data + offset; 698 699 assert(sizeof(uint64_t) >= pkt->getSize()); 700 701 overwrite_mem = true; 702 // keep a copy of our possible write value, and copy what is at the 703 // memory address into the packet 704 pkt->writeData((uint8_t *)&overwrite_val); 705 pkt->setData(blk_data); 706 707 if (pkt->req->isCondSwap()) { 708 if (pkt->getSize() == sizeof(uint64_t)) { 709 condition_val64 = pkt->req->getExtraData(); 710 overwrite_mem = !std::memcmp(&condition_val64, blk_data, 711 sizeof(uint64_t)); 712 } else if (pkt->getSize() == sizeof(uint32_t)) { 713 condition_val32 = (uint32_t)pkt->req->getExtraData(); 714 overwrite_mem = !std::memcmp(&condition_val32, blk_data, 715 sizeof(uint32_t)); 716 } else 717 panic("Invalid size for conditional read/write\n"); 718 } 719 720 if (overwrite_mem) { 721 std::memcpy(blk_data, &overwrite_val, pkt->getSize()); 722 blk->status |= BlkDirty; 723 } 724} 725 726QueueEntry* 727BaseCache::getNextQueueEntry() 728{ 729 // Check both MSHR queue and write buffer for potential requests, 730 // note that null does not mean there is no request, it could 731 // simply be that it is not ready 732 MSHR *miss_mshr = mshrQueue.getNext(); 733 WriteQueueEntry *wq_entry = writeBuffer.getNext(); 734 735 // If we got a write buffer request ready, first priority is a 736 // full write buffer, otherwise we favour the miss requests 737 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) { 738 // need to search MSHR queue for conflicting earlier miss. 739 MSHR *conflict_mshr = 740 mshrQueue.findPending(wq_entry->blkAddr, 741 wq_entry->isSecure); 742 743 if (conflict_mshr && conflict_mshr->order < wq_entry->order) { 744 // Service misses in order until conflict is cleared. 745 return conflict_mshr; 746 747 // @todo Note that we ignore the ready time of the conflict here 748 } 749 750 // No conflicts; issue write 751 return wq_entry; 752 } else if (miss_mshr) { 753 // need to check for conflicting earlier writeback 754 WriteQueueEntry *conflict_mshr = 755 writeBuffer.findPending(miss_mshr->blkAddr, 756 miss_mshr->isSecure); 757 if (conflict_mshr) { 758 // not sure why we don't check order here... it was in the 759 // original code but commented out. 760 761 // The only way this happens is if we are 762 // doing a write and we didn't have permissions 763 // then subsequently saw a writeback (owned got evicted) 764 // We need to make sure to perform the writeback first 765 // To preserve the dirty data, then we can issue the write 766 767 // should we return wq_entry here instead? I.e. do we 768 // have to flush writes in order? I don't think so... not 769 // for Alpha anyway. Maybe for x86? 770 return conflict_mshr; 771 772 // @todo Note that we ignore the ready time of the conflict here 773 } 774 775 // No conflicts; issue read 776 return miss_mshr; 777 } 778 779 // fall through... no pending requests. Try a prefetch. 780 assert(!miss_mshr && !wq_entry); 781 if (prefetcher && mshrQueue.canPrefetch()) { 782 // If we have a miss queue slot, we can try a prefetch 783 PacketPtr pkt = prefetcher->getPacket(); 784 if (pkt) { 785 Addr pf_addr = pkt->getBlockAddr(blkSize); 786 if (!tags->findBlock(pf_addr, pkt->isSecure()) && 787 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && 788 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { 789 // Update statistic on number of prefetches issued 790 // (hwpf_mshr_misses) 791 assert(pkt->req->masterId() < system->maxMasters()); 792 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 793 794 // allocate an MSHR and return it, note 795 // that we send the packet straight away, so do not 796 // schedule the send 797 return allocateMissBuffer(pkt, curTick(), false); 798 } else { 799 // free the request and packet 800 delete pkt; 801 } 802 } 803 } 804 805 return nullptr; 806} 807 808void 809BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool) 810{ 811 assert(pkt->isRequest()); 812 813 assert(blk && blk->isValid()); 814 // Occasionally this is not true... if we are a lower-level cache 815 // satisfying a string of Read and ReadEx requests from 816 // upper-level caches, a Read will mark the block as shared but we 817 // can satisfy a following ReadEx anyway since we can rely on the 818 // Read requester(s) to have buffered the ReadEx snoop and to 819 // invalidate their blocks after receiving them. 820 // assert(!pkt->needsWritable() || blk->isWritable()); 821 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); 822 823 // Check RMW operations first since both isRead() and 824 // isWrite() will be true for them 825 if (pkt->cmd == MemCmd::SwapReq) { 826 if (pkt->isAtomicOp()) { 827 // extract data from cache and save it into the data field in 828 // the packet as a return value from this atomic op 829 int offset = tags->extractBlkOffset(pkt->getAddr()); 830 uint8_t *blk_data = blk->data + offset; 831 pkt->setData(blk_data); 832 833 // execute AMO operation 834 (*(pkt->getAtomicOp()))(blk_data); 835 836 // set block status to dirty 837 blk->status |= BlkDirty; 838 } else { 839 cmpAndSwap(blk, pkt); 840 } 841 } else if (pkt->isWrite()) { 842 // we have the block in a writable state and can go ahead, 843 // note that the line may be also be considered writable in 844 // downstream caches along the path to memory, but always 845 // Exclusive, and never Modified 846 assert(blk->isWritable()); 847 // Write or WriteLine at the first cache with block in writable state 848 if (blk->checkWrite(pkt)) { 849 pkt->writeDataToBlock(blk->data, blkSize); 850 } 851 // Always mark the line as dirty (and thus transition to the 852 // Modified state) even if we are a failed StoreCond so we 853 // supply data to any snoops that have appended themselves to 854 // this cache before knowing the store will fail. 855 blk->status |= BlkDirty; 856 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print()); 857 } else if (pkt->isRead()) { 858 if (pkt->isLLSC()) { 859 blk->trackLoadLocked(pkt); 860 } 861 862 // all read responses have a data payload 863 assert(pkt->hasRespData()); 864 pkt->setDataFromBlock(blk->data, blkSize); 865 } else if (pkt->isUpgrade()) { 866 // sanity check 867 assert(!pkt->hasSharers()); 868 869 if (blk->isDirty()) { 870 // we were in the Owned state, and a cache above us that 871 // has the line in Shared state needs to be made aware 872 // that the data it already has is in fact dirty 873 pkt->setCacheResponding(); 874 blk->status &= ~BlkDirty; 875 } 876 } else if (pkt->isClean()) { 877 blk->status &= ~BlkDirty; 878 } else { 879 assert(pkt->isInvalidate()); 880 invalidateBlock(blk); 881 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__, 882 pkt->print()); 883 } 884} 885 886///////////////////////////////////////////////////// 887// 888// Access path: requests coming in from the CPU side 889// 890///////////////////////////////////////////////////// 891Cycles 892BaseCache::calculateAccessLatency(const CacheBlk* blk, const uint32_t delay, 893 const Cycles lookup_lat) const 894{ 895 Cycles lat(0); 896 897 if (blk != nullptr) { 898 // As soon as the access arrives, for sequential accesses first access 899 // tags, then the data entry. In the case of parallel accesses the 900 // latency is dictated by the slowest of tag and data latencies. 901 if (sequentialAccess) { 902 lat = ticksToCycles(delay) + lookup_lat + dataLatency; 903 } else { 904 lat = ticksToCycles(delay) + std::max(lookup_lat, dataLatency); 905 } 906 907 // Check if the block to be accessed is available. If not, apply the 908 // access latency on top of when the block is ready to be accessed. 909 const Tick tick = curTick() + delay; 910 const Tick when_ready = blk->getWhenReady(); 911 if (when_ready > tick && 912 ticksToCycles(when_ready - tick) > lat) { 913 lat += ticksToCycles(when_ready - tick); 914 } 915 } else { 916 // In case of a miss, apply lookup latency on top of the metadata 917 // delay, as the access can only start when it arrives. 918 lat = ticksToCycles(delay) + lookup_lat; 919 } 920 921 return lat; 922} 923 924bool 925BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 926 PacketList &writebacks) 927{ 928 // sanity check 929 assert(pkt->isRequest()); 930 931 chatty_assert(!(isReadOnly && pkt->isWrite()), 932 "Should never see a write in a read-only cache %s\n", 933 name()); 934 935 // Access block in the tags 936 Cycles tag_latency(0); 937 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency); 938 939 // Calculate access latency on top of when the packet arrives. This 940 // takes into account the bus delay. 941 lat = calculateAccessLatency(blk, pkt->headerDelay, 942 tag_latency); 943 944 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(), 945 blk ? "hit " + blk->print() : "miss"); 946 947 if (pkt->req->isCacheMaintenance()) { 948 // A cache maintenance operation is always forwarded to the 949 // memory below even if the block is found in dirty state. 950 951 // We defer any changes to the state of the block until we 952 // create and mark as in service the mshr for the downstream 953 // packet. 954 return false; 955 } 956 957 if (pkt->isEviction()) { 958 // We check for presence of block in above caches before issuing 959 // Writeback or CleanEvict to write buffer. Therefore the only 960 // possible cases can be of a CleanEvict packet coming from above 961 // encountering a Writeback generated in this cache peer cache and 962 // waiting in the write buffer. Cases of upper level peer caches 963 // generating CleanEvict and Writeback or simply CleanEvict and 964 // CleanEvict almost simultaneously will be caught by snoops sent out 965 // by crossbar. 966 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(), 967 pkt->isSecure()); 968 if (wb_entry) { 969 assert(wb_entry->getNumTargets() == 1); 970 PacketPtr wbPkt = wb_entry->getTarget()->pkt; 971 assert(wbPkt->isWriteback()); 972 973 if (pkt->isCleanEviction()) { 974 // The CleanEvict and WritebackClean snoops into other 975 // peer caches of the same level while traversing the 976 // crossbar. If a copy of the block is found, the 977 // packet is deleted in the crossbar. Hence, none of 978 // the other upper level caches connected to this 979 // cache have the block, so we can clear the 980 // BLOCK_CACHED flag in the Writeback if set and 981 // discard the CleanEvict by returning true. 982 wbPkt->clearBlockCached(); 983 return true; 984 } else { 985 assert(pkt->cmd == MemCmd::WritebackDirty); 986 // Dirty writeback from above trumps our clean 987 // writeback... discard here 988 // Note: markInService will remove entry from writeback buffer. 989 markInService(wb_entry); 990 delete wbPkt; 991 } 992 } 993 } 994 995 // Writeback handling is special case. We can write the block into 996 // the cache without having a writeable copy (or any copy at all). 997 if (pkt->isWriteback()) { 998 assert(blkSize == pkt->getSize()); 999 1000 // we could get a clean writeback while we are having 1001 // outstanding accesses to a block, do the simple thing for 1002 // now and drop the clean writeback so that we do not upset 1003 // any ordering/decisions about ownership already taken 1004 if (pkt->cmd == MemCmd::WritebackClean && 1005 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) { 1006 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, " 1007 "dropping\n", pkt->getAddr()); 1008 return true; 1009 } 1010 1011 if (!blk) { 1012 // need to do a replacement 1013 blk = allocateBlock(pkt, writebacks); 1014 if (!blk) { 1015 // no replaceable block available: give up, fwd to next level. 1016 incMissCount(pkt); 1017 return false; 1018 } 1019 1020 blk->status |= BlkReadable; 1021 } 1022 // only mark the block dirty if we got a writeback command, 1023 // and leave it as is for a clean writeback 1024 if (pkt->cmd == MemCmd::WritebackDirty) { 1025 // TODO: the coherent cache can assert(!blk->isDirty()); 1026 blk->status |= BlkDirty; 1027 } 1028 // if the packet does not have sharers, it is passing 1029 // writable, and we got the writeback in Modified or Exclusive 1030 // state, if not we are in the Owned or Shared state 1031 if (!pkt->hasSharers()) { 1032 blk->status |= BlkWritable; 1033 } 1034 // nothing else to do; writeback doesn't expect response 1035 assert(!pkt->needsResponse()); 1036 pkt->writeDataToBlock(blk->data, blkSize); 1037 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 1038 incHitCount(pkt); 1039 // populate the time when the block will be ready to access. 1040 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay + 1041 pkt->payloadDelay); 1042 return true; 1043 } else if (pkt->cmd == MemCmd::CleanEvict) { 1044 if (blk) { 1045 // Found the block in the tags, need to stop CleanEvict from 1046 // propagating further down the hierarchy. Returning true will 1047 // treat the CleanEvict like a satisfied write request and delete 1048 // it. 1049 return true; 1050 } 1051 // We didn't find the block here, propagate the CleanEvict further 1052 // down the memory hierarchy. Returning false will treat the CleanEvict 1053 // like a Writeback which could not find a replaceable block so has to 1054 // go to next level. 1055 return false; 1056 } else if (pkt->cmd == MemCmd::WriteClean) { 1057 // WriteClean handling is a special case. We can allocate a 1058 // block directly if it doesn't exist and we can update the 1059 // block immediately. The WriteClean transfers the ownership 1060 // of the block as well. 1061 assert(blkSize == pkt->getSize()); 1062 1063 if (!blk) { 1064 if (pkt->writeThrough()) { 1065 // if this is a write through packet, we don't try to 1066 // allocate if the block is not present 1067 return false; 1068 } else { 1069 // a writeback that misses needs to allocate a new block 1070 blk = allocateBlock(pkt, writebacks); 1071 if (!blk) { 1072 // no replaceable block available: give up, fwd to 1073 // next level. 1074 incMissCount(pkt); 1075 return false; 1076 } 1077 1078 blk->status |= BlkReadable; 1079 } 1080 } 1081 1082 // at this point either this is a writeback or a write-through 1083 // write clean operation and the block is already in this 1084 // cache, we need to update the data and the block flags 1085 assert(blk); 1086 // TODO: the coherent cache can assert(!blk->isDirty()); 1087 if (!pkt->writeThrough()) { 1088 blk->status |= BlkDirty; 1089 } 1090 // nothing else to do; writeback doesn't expect response 1091 assert(!pkt->needsResponse()); 1092 pkt->writeDataToBlock(blk->data, blkSize); 1093 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 1094 1095 incHitCount(pkt); 1096 // populate the time when the block will be ready to access. 1097 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay + 1098 pkt->payloadDelay); 1099 // if this a write-through packet it will be sent to cache 1100 // below 1101 return !pkt->writeThrough(); 1102 } else if (blk && (pkt->needsWritable() ? blk->isWritable() : 1103 blk->isReadable())) { 1104 // OK to satisfy access 1105 incHitCount(pkt); 1106 satisfyRequest(pkt, blk); 1107 maintainClusivity(pkt->fromCache(), blk); 1108 1109 return true; 1110 } 1111 1112 // Can't satisfy access normally... either no block (blk == nullptr) 1113 // or have block but need writable 1114 1115 incMissCount(pkt); 1116 1117 if (!blk && pkt->isLLSC() && pkt->isWrite()) { 1118 // complete miss on store conditional... just give up now 1119 pkt->req->setExtraData(0); 1120 return true; 1121 } 1122 1123 return false; 1124} 1125 1126void 1127BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk) 1128{ 1129 if (from_cache && blk && blk->isValid() && !blk->isDirty() && 1130 clusivity == Enums::mostly_excl) { 1131 // if we have responded to a cache, and our block is still 1132 // valid, but not dirty, and this cache is mostly exclusive 1133 // with respect to the cache above, drop the block 1134 invalidateBlock(blk); 1135 } 1136} 1137 1138CacheBlk* 1139BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks, 1140 bool allocate) 1141{ 1142 assert(pkt->isResponse()); 1143 Addr addr = pkt->getAddr(); 1144 bool is_secure = pkt->isSecure(); 1145#if TRACING_ON 1146 CacheBlk::State old_state = blk ? blk->status : 0; 1147#endif 1148 1149 // When handling a fill, we should have no writes to this line. 1150 assert(addr == pkt->getBlockAddr(blkSize)); 1151 assert(!writeBuffer.findMatch(addr, is_secure)); 1152 1153 if (!blk) { 1154 // better have read new data... 1155 assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp); 1156 1157 // need to do a replacement if allocating, otherwise we stick 1158 // with the temporary storage 1159 blk = allocate ? allocateBlock(pkt, writebacks) : nullptr; 1160 1161 if (!blk) { 1162 // No replaceable block or a mostly exclusive 1163 // cache... just use temporary storage to complete the 1164 // current request and then get rid of it 1165 blk = tempBlock; 1166 tempBlock->insert(addr, is_secure); 1167 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, 1168 is_secure ? "s" : "ns"); 1169 } 1170 } else { 1171 // existing block... probably an upgrade 1172 // don't clear block status... if block is already dirty we 1173 // don't want to lose that 1174 } 1175 1176 // Block is guaranteed to be valid at this point 1177 assert(blk->isValid()); 1178 assert(blk->isSecure() == is_secure); 1179 assert(regenerateBlkAddr(blk) == addr); 1180 1181 blk->status |= BlkReadable; 1182 1183 // sanity check for whole-line writes, which should always be 1184 // marked as writable as part of the fill, and then later marked 1185 // dirty as part of satisfyRequest 1186 if (pkt->cmd == MemCmd::InvalidateResp) { 1187 assert(!pkt->hasSharers()); 1188 } 1189 1190 // here we deal with setting the appropriate state of the line, 1191 // and we start by looking at the hasSharers flag, and ignore the 1192 // cacheResponding flag (normally signalling dirty data) if the 1193 // packet has sharers, thus the line is never allocated as Owned 1194 // (dirty but not writable), and always ends up being either 1195 // Shared, Exclusive or Modified, see Packet::setCacheResponding 1196 // for more details 1197 if (!pkt->hasSharers()) { 1198 // we could get a writable line from memory (rather than a 1199 // cache) even in a read-only cache, note that we set this bit 1200 // even for a read-only cache, possibly revisit this decision 1201 blk->status |= BlkWritable; 1202 1203 // check if we got this via cache-to-cache transfer (i.e., from a 1204 // cache that had the block in Modified or Owned state) 1205 if (pkt->cacheResponding()) { 1206 // we got the block in Modified state, and invalidated the 1207 // owners copy 1208 blk->status |= BlkDirty; 1209 1210 chatty_assert(!isReadOnly, "Should never see dirty snoop response " 1211 "in read-only cache %s\n", name()); 1212 } 1213 } 1214 1215 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", 1216 addr, is_secure ? "s" : "ns", old_state, blk->print()); 1217 1218 // if we got new data, copy it in (checking for a read response 1219 // and a response that has data is the same in the end) 1220 if (pkt->isRead()) { 1221 // sanity checks 1222 assert(pkt->hasData()); 1223 assert(pkt->getSize() == blkSize); 1224 1225 pkt->writeDataToBlock(blk->data, blkSize); 1226 } 1227 // We pay for fillLatency here. 1228 blk->setWhenReady(clockEdge(fillLatency) + pkt->payloadDelay); 1229 1230 return blk; 1231} 1232 1233CacheBlk* 1234BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks) 1235{ 1236 // Get address 1237 const Addr addr = pkt->getAddr(); 1238 1239 // Get secure bit 1240 const bool is_secure = pkt->isSecure(); 1241 1242 // Find replacement victim 1243 std::vector<CacheBlk*> evict_blks; 1244 CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks); 1245 1246 // It is valid to return nullptr if there is no victim 1247 if (!victim) 1248 return nullptr; 1249 1250 // Print victim block's information 1251 DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print()); 1252 1253 // Check for transient state allocations. If any of the entries listed 1254 // for eviction has a transient state, the allocation fails 1255 for (const auto& blk : evict_blks) { 1256 if (blk->isValid()) { 1257 Addr repl_addr = regenerateBlkAddr(blk); 1258 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); 1259 if (repl_mshr) { 1260 // must be an outstanding upgrade or clean request 1261 // on a block we're about to replace... 1262 assert((!blk->isWritable() && repl_mshr->needsWritable()) || 1263 repl_mshr->isCleaning()); 1264 1265 // too hard to replace block with transient state 1266 // allocation failed, block not inserted 1267 return nullptr; 1268 } 1269 } 1270 } 1271 1272 // The victim will be replaced by a new entry, so increase the replacement 1273 // counter if a valid block is being replaced 1274 if (victim->isValid()) { 1275 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx " 1276 "(%s): %s\n", regenerateBlkAddr(victim), 1277 victim->isSecure() ? "s" : "ns", 1278 addr, is_secure ? "s" : "ns", 1279 victim->isDirty() ? "writeback" : "clean"); 1280 1281 replacements++; 1282 } 1283 1284 // Evict valid blocks associated to this victim block 1285 for (const auto& blk : evict_blks) { 1286 if (blk->isValid()) { 1287 if (blk->wasPrefetched()) { 1288 unusedPrefetches++; 1289 } 1290 1291 evictBlock(blk, writebacks); 1292 } 1293 } 1294 1295 // Insert new block at victimized entry 1296 tags->insertBlock(addr, is_secure, pkt->req->masterId(), 1297 pkt->req->taskId(), victim); 1298 1299 return victim; 1300} 1301 1302void 1303BaseCache::invalidateBlock(CacheBlk *blk) 1304{ 1305 // If handling a block present in the Tags, let it do its invalidation 1306 // process, which will update stats and invalidate the block itself 1307 if (blk != tempBlock) { 1308 tags->invalidate(blk); 1309 } else { 1310 tempBlock->invalidate(); 1311 } 1312} 1313 1314void 1315BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks) 1316{ 1317 PacketPtr pkt = evictBlock(blk); 1318 if (pkt) { 1319 writebacks.push_back(pkt); 1320 } 1321} 1322 1323PacketPtr 1324BaseCache::writebackBlk(CacheBlk *blk) 1325{ 1326 chatty_assert(!isReadOnly || writebackClean, 1327 "Writeback from read-only cache"); 1328 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean)); 1329 1330 writebacks[Request::wbMasterId]++; 1331 1332 RequestPtr req = std::make_shared<Request>( 1333 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId); 1334 1335 if (blk->isSecure()) 1336 req->setFlags(Request::SECURE); 1337 1338 req->taskId(blk->task_id); 1339 1340 PacketPtr pkt = 1341 new Packet(req, blk->isDirty() ? 1342 MemCmd::WritebackDirty : MemCmd::WritebackClean); 1343 1344 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n", 1345 pkt->print(), blk->isWritable(), blk->isDirty()); 1346 1347 if (blk->isWritable()) { 1348 // not asserting shared means we pass the block in modified 1349 // state, mark our own block non-writeable 1350 blk->status &= ~BlkWritable; 1351 } else { 1352 // we are in the Owned state, tell the receiver 1353 pkt->setHasSharers(); 1354 } 1355 1356 // make sure the block is not marked dirty 1357 blk->status &= ~BlkDirty; 1358 1359 pkt->allocate(); 1360 pkt->setDataFromBlock(blk->data, blkSize); 1361 1362 return pkt; 1363} 1364 1365PacketPtr 1366BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id) 1367{ 1368 RequestPtr req = std::make_shared<Request>( 1369 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId); 1370 1371 if (blk->isSecure()) { 1372 req->setFlags(Request::SECURE); 1373 } 1374 req->taskId(blk->task_id); 1375 1376 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id); 1377 1378 if (dest) { 1379 req->setFlags(dest); 1380 pkt->setWriteThrough(); 1381 } 1382 1383 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(), 1384 blk->isWritable(), blk->isDirty()); 1385 1386 if (blk->isWritable()) { 1387 // not asserting shared means we pass the block in modified 1388 // state, mark our own block non-writeable 1389 blk->status &= ~BlkWritable; 1390 } else { 1391 // we are in the Owned state, tell the receiver 1392 pkt->setHasSharers(); 1393 } 1394 1395 // make sure the block is not marked dirty 1396 blk->status &= ~BlkDirty; 1397 1398 pkt->allocate(); 1399 pkt->setDataFromBlock(blk->data, blkSize); 1400 1401 return pkt; 1402} 1403 1404 1405void 1406BaseCache::memWriteback() 1407{ 1408 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); }); 1409} 1410 1411void 1412BaseCache::memInvalidate() 1413{ 1414 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); }); 1415} 1416 1417bool 1418BaseCache::isDirty() const 1419{ 1420 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); }); 1421} 1422 1423bool 1424BaseCache::coalesce() const 1425{ 1426 return writeAllocator && writeAllocator->coalesce(); 1427} 1428 1429void 1430BaseCache::writebackVisitor(CacheBlk &blk) 1431{ 1432 if (blk.isDirty()) { 1433 assert(blk.isValid()); 1434 1435 RequestPtr request = std::make_shared<Request>( 1436 regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId); 1437 1438 request->taskId(blk.task_id); 1439 if (blk.isSecure()) { 1440 request->setFlags(Request::SECURE); 1441 } 1442 1443 Packet packet(request, MemCmd::WriteReq); 1444 packet.dataStatic(blk.data); 1445 1446 memSidePort.sendFunctional(&packet); 1447 1448 blk.status &= ~BlkDirty; 1449 } 1450} 1451 1452void 1453BaseCache::invalidateVisitor(CacheBlk &blk) 1454{ 1455 if (blk.isDirty()) 1456 warn_once("Invalidating dirty cache lines. " \ 1457 "Expect things to break.\n"); 1458 1459 if (blk.isValid()) { 1460 assert(!blk.isDirty()); 1461 invalidateBlock(&blk); 1462 } 1463} 1464 1465Tick 1466BaseCache::nextQueueReadyTime() const 1467{ 1468 Tick nextReady = std::min(mshrQueue.nextReadyTime(), 1469 writeBuffer.nextReadyTime()); 1470 1471 // Don't signal prefetch ready time if no MSHRs available 1472 // Will signal once enoguh MSHRs are deallocated 1473 if (prefetcher && mshrQueue.canPrefetch()) { 1474 nextReady = std::min(nextReady, 1475 prefetcher->nextPrefetchReadyTime()); 1476 } 1477 1478 return nextReady; 1479} 1480 1481 1482bool 1483BaseCache::sendMSHRQueuePacket(MSHR* mshr) 1484{ 1485 assert(mshr); 1486 1487 // use request from 1st target 1488 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 1489 1490 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print()); 1491 1492 // if the cache is in write coalescing mode or (additionally) in 1493 // no allocation mode, and we have a write packet with an MSHR 1494 // that is not a whole-line write (due to incompatible flags etc), 1495 // then reset the write mode 1496 if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) { 1497 if (!mshr->isWholeLineWrite()) { 1498 // if we are currently write coalescing, hold on the 1499 // MSHR as many cycles extra as we need to completely 1500 // write a cache line 1501 if (writeAllocator->delay(mshr->blkAddr)) { 1502 Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod(); 1503 DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow " 1504 "for write coalescing\n", tgt_pkt->print(), delay); 1505 mshrQueue.delay(mshr, delay); 1506 return false; 1507 } else { 1508 writeAllocator->reset(); 1509 } 1510 } else { 1511 writeAllocator->resetDelay(mshr->blkAddr); 1512 } 1513 } 1514 1515 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); 1516 1517 // either a prefetch that is not present upstream, or a normal 1518 // MSHR request, proceed to get the packet to send downstream 1519 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(), 1520 mshr->isWholeLineWrite()); 1521 1522 mshr->isForward = (pkt == nullptr); 1523 1524 if (mshr->isForward) { 1525 // not a cache block request, but a response is expected 1526 // make copy of current packet to forward, keep current 1527 // copy for response handling 1528 pkt = new Packet(tgt_pkt, false, true); 1529 assert(!pkt->isWrite()); 1530 } 1531 1532 // play it safe and append (rather than set) the sender state, 1533 // as forwarded packets may already have existing state 1534 pkt->pushSenderState(mshr); 1535 1536 if (pkt->isClean() && blk && blk->isDirty()) { 1537 // A cache clean opearation is looking for a dirty block. Mark 1538 // the packet so that the destination xbar can determine that 1539 // there will be a follow-up write packet as well. 1540 pkt->setSatisfied(); 1541 } 1542 1543 if (!memSidePort.sendTimingReq(pkt)) { 1544 // we are awaiting a retry, but we 1545 // delete the packet and will be creating a new packet 1546 // when we get the opportunity 1547 delete pkt; 1548 1549 // note that we have now masked any requestBus and 1550 // schedSendEvent (we will wait for a retry before 1551 // doing anything), and this is so even if we do not 1552 // care about this packet and might override it before 1553 // it gets retried 1554 return true; 1555 } else { 1556 // As part of the call to sendTimingReq the packet is 1557 // forwarded to all neighbouring caches (and any caches 1558 // above them) as a snoop. Thus at this point we know if 1559 // any of the neighbouring caches are responding, and if 1560 // so, we know it is dirty, and we can determine if it is 1561 // being passed as Modified, making our MSHR the ordering 1562 // point 1563 bool pending_modified_resp = !pkt->hasSharers() && 1564 pkt->cacheResponding(); 1565 markInService(mshr, pending_modified_resp); 1566 1567 if (pkt->isClean() && blk && blk->isDirty()) { 1568 // A cache clean opearation is looking for a dirty 1569 // block. If a dirty block is encountered a WriteClean 1570 // will update any copies to the path to the memory 1571 // until the point of reference. 1572 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 1573 __func__, pkt->print(), blk->print()); 1574 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), 1575 pkt->id); 1576 PacketList writebacks; 1577 writebacks.push_back(wb_pkt); 1578 doWritebacks(writebacks, 0); 1579 } 1580 1581 return false; 1582 } 1583} 1584 1585bool 1586BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry) 1587{ 1588 assert(wq_entry); 1589 1590 // always a single target for write queue entries 1591 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt; 1592 1593 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print()); 1594 1595 // forward as is, both for evictions and uncacheable writes 1596 if (!memSidePort.sendTimingReq(tgt_pkt)) { 1597 // note that we have now masked any requestBus and 1598 // schedSendEvent (we will wait for a retry before 1599 // doing anything), and this is so even if we do not 1600 // care about this packet and might override it before 1601 // it gets retried 1602 return true; 1603 } else { 1604 markInService(wq_entry); 1605 return false; 1606 } 1607} 1608 1609void 1610BaseCache::serialize(CheckpointOut &cp) const 1611{ 1612 bool dirty(isDirty()); 1613 1614 if (dirty) { 1615 warn("*** The cache still contains dirty data. ***\n"); 1616 warn(" Make sure to drain the system using the correct flags.\n"); 1617 warn(" This checkpoint will not restore correctly " \ 1618 "and dirty data in the cache will be lost!\n"); 1619 } 1620 1621 // Since we don't checkpoint the data in the cache, any dirty data 1622 // will be lost when restoring from a checkpoint of a system that 1623 // wasn't drained properly. Flag the checkpoint as invalid if the 1624 // cache contains dirty data. 1625 bool bad_checkpoint(dirty); 1626 SERIALIZE_SCALAR(bad_checkpoint); 1627} 1628 1629void 1630BaseCache::unserialize(CheckpointIn &cp) 1631{ 1632 bool bad_checkpoint; 1633 UNSERIALIZE_SCALAR(bad_checkpoint); 1634 if (bad_checkpoint) { 1635 fatal("Restoring from checkpoints with dirty caches is not " 1636 "supported in the classic memory system. Please remove any " 1637 "caches or drain them properly before taking checkpoints.\n"); 1638 } 1639} 1640 1641void 1642BaseCache::regStats() 1643{ 1644 MemObject::regStats(); 1645 1646 using namespace Stats; 1647 1648 // Hit statistics 1649 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1650 MemCmd cmd(access_idx); 1651 const string &cstr = cmd.toString(); 1652 1653 hits[access_idx] 1654 .init(system->maxMasters()) 1655 .name(name() + "." + cstr + "_hits") 1656 .desc("number of " + cstr + " hits") 1657 .flags(total | nozero | nonan) 1658 ; 1659 for (int i = 0; i < system->maxMasters(); i++) { 1660 hits[access_idx].subname(i, system->getMasterName(i)); 1661 } 1662 } 1663 1664// These macros make it easier to sum the right subset of commands and 1665// to change the subset of commands that are considered "demand" vs 1666// "non-demand" 1667#define SUM_DEMAND(s) \ 1668 (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \ 1669 s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq]) 1670 1671// should writebacks be included here? prior code was inconsistent... 1672#define SUM_NON_DEMAND(s) \ 1673 (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq] + s[MemCmd::SoftPFExReq]) 1674 1675 demandHits 1676 .name(name() + ".demand_hits") 1677 .desc("number of demand (read+write) hits") 1678 .flags(total | nozero | nonan) 1679 ; 1680 demandHits = SUM_DEMAND(hits); 1681 for (int i = 0; i < system->maxMasters(); i++) { 1682 demandHits.subname(i, system->getMasterName(i)); 1683 } 1684 1685 overallHits 1686 .name(name() + ".overall_hits") 1687 .desc("number of overall hits") 1688 .flags(total | nozero | nonan) 1689 ; 1690 overallHits = demandHits + SUM_NON_DEMAND(hits); 1691 for (int i = 0; i < system->maxMasters(); i++) { 1692 overallHits.subname(i, system->getMasterName(i)); 1693 } 1694 1695 // Miss statistics 1696 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1697 MemCmd cmd(access_idx); 1698 const string &cstr = cmd.toString(); 1699 1700 misses[access_idx] 1701 .init(system->maxMasters()) 1702 .name(name() + "." + cstr + "_misses") 1703 .desc("number of " + cstr + " misses") 1704 .flags(total | nozero | nonan) 1705 ; 1706 for (int i = 0; i < system->maxMasters(); i++) { 1707 misses[access_idx].subname(i, system->getMasterName(i)); 1708 } 1709 } 1710 1711 demandMisses 1712 .name(name() + ".demand_misses") 1713 .desc("number of demand (read+write) misses") 1714 .flags(total | nozero | nonan) 1715 ; 1716 demandMisses = SUM_DEMAND(misses); 1717 for (int i = 0; i < system->maxMasters(); i++) { 1718 demandMisses.subname(i, system->getMasterName(i)); 1719 } 1720 1721 overallMisses 1722 .name(name() + ".overall_misses") 1723 .desc("number of overall misses") 1724 .flags(total | nozero | nonan) 1725 ; 1726 overallMisses = demandMisses + SUM_NON_DEMAND(misses); 1727 for (int i = 0; i < system->maxMasters(); i++) { 1728 overallMisses.subname(i, system->getMasterName(i)); 1729 } 1730 1731 // Miss latency statistics 1732 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1733 MemCmd cmd(access_idx); 1734 const string &cstr = cmd.toString(); 1735 1736 missLatency[access_idx] 1737 .init(system->maxMasters()) 1738 .name(name() + "." + cstr + "_miss_latency") 1739 .desc("number of " + cstr + " miss cycles") 1740 .flags(total | nozero | nonan) 1741 ; 1742 for (int i = 0; i < system->maxMasters(); i++) { 1743 missLatency[access_idx].subname(i, system->getMasterName(i)); 1744 } 1745 } 1746 1747 demandMissLatency 1748 .name(name() + ".demand_miss_latency") 1749 .desc("number of demand (read+write) miss cycles") 1750 .flags(total | nozero | nonan) 1751 ; 1752 demandMissLatency = SUM_DEMAND(missLatency); 1753 for (int i = 0; i < system->maxMasters(); i++) { 1754 demandMissLatency.subname(i, system->getMasterName(i)); 1755 } 1756 1757 overallMissLatency 1758 .name(name() + ".overall_miss_latency") 1759 .desc("number of overall miss cycles") 1760 .flags(total | nozero | nonan) 1761 ; 1762 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency); 1763 for (int i = 0; i < system->maxMasters(); i++) { 1764 overallMissLatency.subname(i, system->getMasterName(i)); 1765 } 1766 1767 // access formulas 1768 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1769 MemCmd cmd(access_idx); 1770 const string &cstr = cmd.toString(); 1771 1772 accesses[access_idx] 1773 .name(name() + "." + cstr + "_accesses") 1774 .desc("number of " + cstr + " accesses(hits+misses)") 1775 .flags(total | nozero | nonan) 1776 ; 1777 accesses[access_idx] = hits[access_idx] + misses[access_idx]; 1778 1779 for (int i = 0; i < system->maxMasters(); i++) { 1780 accesses[access_idx].subname(i, system->getMasterName(i)); 1781 } 1782 } 1783 1784 demandAccesses 1785 .name(name() + ".demand_accesses") 1786 .desc("number of demand (read+write) accesses") 1787 .flags(total | nozero | nonan) 1788 ; 1789 demandAccesses = demandHits + demandMisses; 1790 for (int i = 0; i < system->maxMasters(); i++) { 1791 demandAccesses.subname(i, system->getMasterName(i)); 1792 } 1793 1794 overallAccesses 1795 .name(name() + ".overall_accesses") 1796 .desc("number of overall (read+write) accesses") 1797 .flags(total | nozero | nonan) 1798 ; 1799 overallAccesses = overallHits + overallMisses; 1800 for (int i = 0; i < system->maxMasters(); i++) { 1801 overallAccesses.subname(i, system->getMasterName(i)); 1802 } 1803 1804 // miss rate formulas 1805 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1806 MemCmd cmd(access_idx); 1807 const string &cstr = cmd.toString(); 1808 1809 missRate[access_idx] 1810 .name(name() + "." + cstr + "_miss_rate") 1811 .desc("miss rate for " + cstr + " accesses") 1812 .flags(total | nozero | nonan) 1813 ; 1814 missRate[access_idx] = misses[access_idx] / accesses[access_idx]; 1815 1816 for (int i = 0; i < system->maxMasters(); i++) { 1817 missRate[access_idx].subname(i, system->getMasterName(i)); 1818 } 1819 } 1820 1821 demandMissRate 1822 .name(name() + ".demand_miss_rate") 1823 .desc("miss rate for demand accesses") 1824 .flags(total | nozero | nonan) 1825 ; 1826 demandMissRate = demandMisses / demandAccesses; 1827 for (int i = 0; i < system->maxMasters(); i++) { 1828 demandMissRate.subname(i, system->getMasterName(i)); 1829 } 1830 1831 overallMissRate 1832 .name(name() + ".overall_miss_rate") 1833 .desc("miss rate for overall accesses") 1834 .flags(total | nozero | nonan) 1835 ; 1836 overallMissRate = overallMisses / overallAccesses; 1837 for (int i = 0; i < system->maxMasters(); i++) { 1838 overallMissRate.subname(i, system->getMasterName(i)); 1839 } 1840 1841 // miss latency formulas 1842 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1843 MemCmd cmd(access_idx); 1844 const string &cstr = cmd.toString(); 1845 1846 avgMissLatency[access_idx] 1847 .name(name() + "." + cstr + "_avg_miss_latency") 1848 .desc("average " + cstr + " miss latency") 1849 .flags(total | nozero | nonan) 1850 ; 1851 avgMissLatency[access_idx] = 1852 missLatency[access_idx] / misses[access_idx]; 1853 1854 for (int i = 0; i < system->maxMasters(); i++) { 1855 avgMissLatency[access_idx].subname(i, system->getMasterName(i)); 1856 } 1857 } 1858 1859 demandAvgMissLatency 1860 .name(name() + ".demand_avg_miss_latency") 1861 .desc("average overall miss latency") 1862 .flags(total | nozero | nonan) 1863 ; 1864 demandAvgMissLatency = demandMissLatency / demandMisses; 1865 for (int i = 0; i < system->maxMasters(); i++) { 1866 demandAvgMissLatency.subname(i, system->getMasterName(i)); 1867 } 1868 1869 overallAvgMissLatency 1870 .name(name() + ".overall_avg_miss_latency") 1871 .desc("average overall miss latency") 1872 .flags(total | nozero | nonan) 1873 ; 1874 overallAvgMissLatency = overallMissLatency / overallMisses; 1875 for (int i = 0; i < system->maxMasters(); i++) { 1876 overallAvgMissLatency.subname(i, system->getMasterName(i)); 1877 } 1878 1879 blocked_cycles.init(NUM_BLOCKED_CAUSES); 1880 blocked_cycles 1881 .name(name() + ".blocked_cycles") 1882 .desc("number of cycles access was blocked") 1883 .subname(Blocked_NoMSHRs, "no_mshrs") 1884 .subname(Blocked_NoTargets, "no_targets") 1885 ; 1886 1887 1888 blocked_causes.init(NUM_BLOCKED_CAUSES); 1889 blocked_causes 1890 .name(name() + ".blocked") 1891 .desc("number of cycles access was blocked") 1892 .subname(Blocked_NoMSHRs, "no_mshrs") 1893 .subname(Blocked_NoTargets, "no_targets") 1894 ; 1895 1896 avg_blocked 1897 .name(name() + ".avg_blocked_cycles") 1898 .desc("average number of cycles each access was blocked") 1899 .subname(Blocked_NoMSHRs, "no_mshrs") 1900 .subname(Blocked_NoTargets, "no_targets") 1901 ; 1902 1903 avg_blocked = blocked_cycles / blocked_causes; 1904 1905 unusedPrefetches 1906 .name(name() + ".unused_prefetches") 1907 .desc("number of HardPF blocks evicted w/o reference") 1908 .flags(nozero) 1909 ; 1910 1911 writebacks 1912 .init(system->maxMasters()) 1913 .name(name() + ".writebacks") 1914 .desc("number of writebacks") 1915 .flags(total | nozero | nonan) 1916 ; 1917 for (int i = 0; i < system->maxMasters(); i++) { 1918 writebacks.subname(i, system->getMasterName(i)); 1919 } 1920 1921 // MSHR statistics 1922 // MSHR hit statistics 1923 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1924 MemCmd cmd(access_idx); 1925 const string &cstr = cmd.toString(); 1926 1927 mshr_hits[access_idx] 1928 .init(system->maxMasters()) 1929 .name(name() + "." + cstr + "_mshr_hits") 1930 .desc("number of " + cstr + " MSHR hits") 1931 .flags(total | nozero | nonan) 1932 ; 1933 for (int i = 0; i < system->maxMasters(); i++) { 1934 mshr_hits[access_idx].subname(i, system->getMasterName(i)); 1935 } 1936 } 1937 1938 demandMshrHits 1939 .name(name() + ".demand_mshr_hits") 1940 .desc("number of demand (read+write) MSHR hits") 1941 .flags(total | nozero | nonan) 1942 ; 1943 demandMshrHits = SUM_DEMAND(mshr_hits); 1944 for (int i = 0; i < system->maxMasters(); i++) { 1945 demandMshrHits.subname(i, system->getMasterName(i)); 1946 } 1947 1948 overallMshrHits 1949 .name(name() + ".overall_mshr_hits") 1950 .desc("number of overall MSHR hits") 1951 .flags(total | nozero | nonan) 1952 ; 1953 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits); 1954 for (int i = 0; i < system->maxMasters(); i++) { 1955 overallMshrHits.subname(i, system->getMasterName(i)); 1956 } 1957 1958 // MSHR miss statistics 1959 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1960 MemCmd cmd(access_idx); 1961 const string &cstr = cmd.toString(); 1962 1963 mshr_misses[access_idx] 1964 .init(system->maxMasters()) 1965 .name(name() + "." + cstr + "_mshr_misses") 1966 .desc("number of " + cstr + " MSHR misses") 1967 .flags(total | nozero | nonan) 1968 ; 1969 for (int i = 0; i < system->maxMasters(); i++) { 1970 mshr_misses[access_idx].subname(i, system->getMasterName(i)); 1971 } 1972 } 1973 1974 demandMshrMisses 1975 .name(name() + ".demand_mshr_misses") 1976 .desc("number of demand (read+write) MSHR misses") 1977 .flags(total | nozero | nonan) 1978 ; 1979 demandMshrMisses = SUM_DEMAND(mshr_misses); 1980 for (int i = 0; i < system->maxMasters(); i++) { 1981 demandMshrMisses.subname(i, system->getMasterName(i)); 1982 } 1983 1984 overallMshrMisses 1985 .name(name() + ".overall_mshr_misses") 1986 .desc("number of overall MSHR misses") 1987 .flags(total | nozero | nonan) 1988 ; 1989 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses); 1990 for (int i = 0; i < system->maxMasters(); i++) { 1991 overallMshrMisses.subname(i, system->getMasterName(i)); 1992 } 1993 1994 // MSHR miss latency statistics 1995 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1996 MemCmd cmd(access_idx); 1997 const string &cstr = cmd.toString(); 1998 1999 mshr_miss_latency[access_idx] 2000 .init(system->maxMasters()) 2001 .name(name() + "." + cstr + "_mshr_miss_latency") 2002 .desc("number of " + cstr + " MSHR miss cycles") 2003 .flags(total | nozero | nonan) 2004 ; 2005 for (int i = 0; i < system->maxMasters(); i++) { 2006 mshr_miss_latency[access_idx].subname(i, system->getMasterName(i)); 2007 } 2008 } 2009 2010 demandMshrMissLatency 2011 .name(name() + ".demand_mshr_miss_latency") 2012 .desc("number of demand (read+write) MSHR miss cycles") 2013 .flags(total | nozero | nonan) 2014 ; 2015 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency); 2016 for (int i = 0; i < system->maxMasters(); i++) { 2017 demandMshrMissLatency.subname(i, system->getMasterName(i)); 2018 } 2019 2020 overallMshrMissLatency 2021 .name(name() + ".overall_mshr_miss_latency") 2022 .desc("number of overall MSHR miss cycles") 2023 .flags(total | nozero | nonan) 2024 ; 2025 overallMshrMissLatency = 2026 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency); 2027 for (int i = 0; i < system->maxMasters(); i++) { 2028 overallMshrMissLatency.subname(i, system->getMasterName(i)); 2029 } 2030 2031 // MSHR uncacheable statistics 2032 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2033 MemCmd cmd(access_idx); 2034 const string &cstr = cmd.toString(); 2035 2036 mshr_uncacheable[access_idx] 2037 .init(system->maxMasters()) 2038 .name(name() + "." + cstr + "_mshr_uncacheable") 2039 .desc("number of " + cstr + " MSHR uncacheable") 2040 .flags(total | nozero | nonan) 2041 ; 2042 for (int i = 0; i < system->maxMasters(); i++) { 2043 mshr_uncacheable[access_idx].subname(i, system->getMasterName(i)); 2044 } 2045 } 2046 2047 overallMshrUncacheable 2048 .name(name() + ".overall_mshr_uncacheable_misses") 2049 .desc("number of overall MSHR uncacheable misses") 2050 .flags(total | nozero | nonan) 2051 ; 2052 overallMshrUncacheable = 2053 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable); 2054 for (int i = 0; i < system->maxMasters(); i++) { 2055 overallMshrUncacheable.subname(i, system->getMasterName(i)); 2056 } 2057 2058 // MSHR miss latency statistics 2059 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2060 MemCmd cmd(access_idx); 2061 const string &cstr = cmd.toString(); 2062 2063 mshr_uncacheable_lat[access_idx] 2064 .init(system->maxMasters()) 2065 .name(name() + "." + cstr + "_mshr_uncacheable_latency") 2066 .desc("number of " + cstr + " MSHR uncacheable cycles") 2067 .flags(total | nozero | nonan) 2068 ; 2069 for (int i = 0; i < system->maxMasters(); i++) { 2070 mshr_uncacheable_lat[access_idx].subname( 2071 i, system->getMasterName(i)); 2072 } 2073 } 2074 2075 overallMshrUncacheableLatency 2076 .name(name() + ".overall_mshr_uncacheable_latency") 2077 .desc("number of overall MSHR uncacheable cycles") 2078 .flags(total | nozero | nonan) 2079 ; 2080 overallMshrUncacheableLatency = 2081 SUM_DEMAND(mshr_uncacheable_lat) + 2082 SUM_NON_DEMAND(mshr_uncacheable_lat); 2083 for (int i = 0; i < system->maxMasters(); i++) { 2084 overallMshrUncacheableLatency.subname(i, system->getMasterName(i)); 2085 } 2086 2087#if 0 2088 // MSHR access formulas 2089 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2090 MemCmd cmd(access_idx); 2091 const string &cstr = cmd.toString(); 2092 2093 mshrAccesses[access_idx] 2094 .name(name() + "." + cstr + "_mshr_accesses") 2095 .desc("number of " + cstr + " mshr accesses(hits+misses)") 2096 .flags(total | nozero | nonan) 2097 ; 2098 mshrAccesses[access_idx] = 2099 mshr_hits[access_idx] + mshr_misses[access_idx] 2100 + mshr_uncacheable[access_idx]; 2101 } 2102 2103 demandMshrAccesses 2104 .name(name() + ".demand_mshr_accesses") 2105 .desc("number of demand (read+write) mshr accesses") 2106 .flags(total | nozero | nonan) 2107 ; 2108 demandMshrAccesses = demandMshrHits + demandMshrMisses; 2109 2110 overallMshrAccesses 2111 .name(name() + ".overall_mshr_accesses") 2112 .desc("number of overall (read+write) mshr accesses") 2113 .flags(total | nozero | nonan) 2114 ; 2115 overallMshrAccesses = overallMshrHits + overallMshrMisses 2116 + overallMshrUncacheable; 2117#endif 2118 2119 // MSHR miss rate formulas 2120 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2121 MemCmd cmd(access_idx); 2122 const string &cstr = cmd.toString(); 2123 2124 mshrMissRate[access_idx] 2125 .name(name() + "." + cstr + "_mshr_miss_rate") 2126 .desc("mshr miss rate for " + cstr + " accesses") 2127 .flags(total | nozero | nonan) 2128 ; 2129 mshrMissRate[access_idx] = 2130 mshr_misses[access_idx] / accesses[access_idx]; 2131 2132 for (int i = 0; i < system->maxMasters(); i++) { 2133 mshrMissRate[access_idx].subname(i, system->getMasterName(i)); 2134 } 2135 } 2136 2137 demandMshrMissRate 2138 .name(name() + ".demand_mshr_miss_rate") 2139 .desc("mshr miss rate for demand accesses") 2140 .flags(total | nozero | nonan) 2141 ; 2142 demandMshrMissRate = demandMshrMisses / demandAccesses; 2143 for (int i = 0; i < system->maxMasters(); i++) { 2144 demandMshrMissRate.subname(i, system->getMasterName(i)); 2145 } 2146 2147 overallMshrMissRate 2148 .name(name() + ".overall_mshr_miss_rate") 2149 .desc("mshr miss rate for overall accesses") 2150 .flags(total | nozero | nonan) 2151 ; 2152 overallMshrMissRate = overallMshrMisses / overallAccesses; 2153 for (int i = 0; i < system->maxMasters(); i++) { 2154 overallMshrMissRate.subname(i, system->getMasterName(i)); 2155 } 2156 2157 // mshrMiss latency formulas 2158 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2159 MemCmd cmd(access_idx); 2160 const string &cstr = cmd.toString(); 2161 2162 avgMshrMissLatency[access_idx] 2163 .name(name() + "." + cstr + "_avg_mshr_miss_latency") 2164 .desc("average " + cstr + " mshr miss latency") 2165 .flags(total | nozero | nonan) 2166 ; 2167 avgMshrMissLatency[access_idx] = 2168 mshr_miss_latency[access_idx] / mshr_misses[access_idx]; 2169 2170 for (int i = 0; i < system->maxMasters(); i++) { 2171 avgMshrMissLatency[access_idx].subname( 2172 i, system->getMasterName(i)); 2173 } 2174 } 2175 2176 demandAvgMshrMissLatency 2177 .name(name() + ".demand_avg_mshr_miss_latency") 2178 .desc("average overall mshr miss latency") 2179 .flags(total | nozero | nonan) 2180 ; 2181 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses; 2182 for (int i = 0; i < system->maxMasters(); i++) { 2183 demandAvgMshrMissLatency.subname(i, system->getMasterName(i)); 2184 } 2185 2186 overallAvgMshrMissLatency 2187 .name(name() + ".overall_avg_mshr_miss_latency") 2188 .desc("average overall mshr miss latency") 2189 .flags(total | nozero | nonan) 2190 ; 2191 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses; 2192 for (int i = 0; i < system->maxMasters(); i++) { 2193 overallAvgMshrMissLatency.subname(i, system->getMasterName(i)); 2194 } 2195 2196 // mshrUncacheable latency formulas 2197 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2198 MemCmd cmd(access_idx); 2199 const string &cstr = cmd.toString(); 2200 2201 avgMshrUncacheableLatency[access_idx] 2202 .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency") 2203 .desc("average " + cstr + " mshr uncacheable latency") 2204 .flags(total | nozero | nonan) 2205 ; 2206 avgMshrUncacheableLatency[access_idx] = 2207 mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx]; 2208 2209 for (int i = 0; i < system->maxMasters(); i++) { 2210 avgMshrUncacheableLatency[access_idx].subname( 2211 i, system->getMasterName(i)); 2212 } 2213 } 2214 2215 overallAvgMshrUncacheableLatency 2216 .name(name() + ".overall_avg_mshr_uncacheable_latency") 2217 .desc("average overall mshr uncacheable latency") 2218 .flags(total | nozero | nonan) 2219 ; 2220 overallAvgMshrUncacheableLatency = 2221 overallMshrUncacheableLatency / overallMshrUncacheable; 2222 for (int i = 0; i < system->maxMasters(); i++) { 2223 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i)); 2224 } 2225 2226 replacements 2227 .name(name() + ".replacements") 2228 .desc("number of replacements") 2229 ; 2230} 2231 2232void 2233BaseCache::regProbePoints() 2234{ 2235 ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit"); 2236 ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss"); 2237 ppFill = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Fill"); 2238} 2239 2240/////////////// 2241// 2242// CpuSidePort 2243// 2244/////////////// 2245bool 2246BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) 2247{ 2248 // Snoops shouldn't happen when bypassing caches 2249 assert(!cache->system->bypassCaches()); 2250 2251 assert(pkt->isResponse()); 2252 2253 // Express snoop responses from master to slave, e.g., from L1 to L2 2254 cache->recvTimingSnoopResp(pkt); 2255 return true; 2256} 2257 2258 2259bool 2260BaseCache::CpuSidePort::tryTiming(PacketPtr pkt) 2261{ 2262 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) { 2263 // always let express snoop packets through even if blocked 2264 return true; 2265 } else if (blocked || mustSendRetry) { 2266 // either already committed to send a retry, or blocked 2267 mustSendRetry = true; 2268 return false; 2269 } 2270 mustSendRetry = false; 2271 return true; 2272} 2273 2274bool 2275BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt) 2276{ 2277 assert(pkt->isRequest()); 2278 2279 if (cache->system->bypassCaches()) { 2280 // Just forward the packet if caches are disabled. 2281 // @todo This should really enqueue the packet rather 2282 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt); 2283 assert(success); 2284 return true; 2285 } else if (tryTiming(pkt)) { 2286 cache->recvTimingReq(pkt); 2287 return true; 2288 } 2289 return false; 2290} 2291 2292Tick 2293BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt) 2294{ 2295 if (cache->system->bypassCaches()) { 2296 // Forward the request if the system is in cache bypass mode. 2297 return cache->memSidePort.sendAtomic(pkt); 2298 } else { 2299 return cache->recvAtomic(pkt); 2300 } 2301} 2302 2303void 2304BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt) 2305{ 2306 if (cache->system->bypassCaches()) { 2307 // The cache should be flushed if we are in cache bypass mode, 2308 // so we don't need to check if we need to update anything. 2309 cache->memSidePort.sendFunctional(pkt); 2310 return; 2311 } 2312 2313 // functional request 2314 cache->functionalAccess(pkt, true); 2315} 2316 2317AddrRangeList 2318BaseCache::CpuSidePort::getAddrRanges() const 2319{ 2320 return cache->getAddrRanges(); 2321} 2322 2323 2324BaseCache:: 2325CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache, 2326 const std::string &_label) 2327 : CacheSlavePort(_name, _cache, _label), cache(_cache) 2328{ 2329} 2330 2331/////////////// 2332// 2333// MemSidePort 2334// 2335/////////////// 2336bool 2337BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt) 2338{ 2339 cache->recvTimingResp(pkt); 2340 return true; 2341} 2342 2343// Express snooping requests to memside port 2344void 2345BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) 2346{ 2347 // Snoops shouldn't happen when bypassing caches 2348 assert(!cache->system->bypassCaches()); 2349 2350 // handle snooping requests 2351 cache->recvTimingSnoopReq(pkt); 2352} 2353 2354Tick 2355BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) 2356{ 2357 // Snoops shouldn't happen when bypassing caches 2358 assert(!cache->system->bypassCaches()); 2359 2360 return cache->recvAtomicSnoop(pkt); 2361} 2362 2363void 2364BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) 2365{ 2366 // Snoops shouldn't happen when bypassing caches 2367 assert(!cache->system->bypassCaches()); 2368 2369 // functional snoop (note that in contrast to atomic we don't have 2370 // a specific functionalSnoop method, as they have the same 2371 // behaviour regardless) 2372 cache->functionalAccess(pkt, false); 2373} 2374 2375void 2376BaseCache::CacheReqPacketQueue::sendDeferredPacket() 2377{ 2378 // sanity check 2379 assert(!waitingOnRetry); 2380 2381 // there should never be any deferred request packets in the 2382 // queue, instead we resly on the cache to provide the packets 2383 // from the MSHR queue or write queue 2384 assert(deferredPacketReadyTime() == MaxTick); 2385 2386 // check for request packets (requests & writebacks) 2387 QueueEntry* entry = cache.getNextQueueEntry(); 2388 2389 if (!entry) { 2390 // can happen if e.g. we attempt a writeback and fail, but 2391 // before the retry, the writeback is eliminated because 2392 // we snoop another cache's ReadEx. 2393 } else { 2394 // let our snoop responses go first if there are responses to 2395 // the same addresses 2396 if (checkConflictingSnoop(entry->blkAddr)) { 2397 return; 2398 } 2399 waitingOnRetry = entry->sendPacket(cache); 2400 } 2401 2402 // if we succeeded and are not waiting for a retry, schedule the 2403 // next send considering when the next queue is ready, note that 2404 // snoop responses have their own packet queue and thus schedule 2405 // their own events 2406 if (!waitingOnRetry) { 2407 schedSendEvent(cache.nextQueueReadyTime()); 2408 } 2409} 2410 2411BaseCache::MemSidePort::MemSidePort(const std::string &_name, 2412 BaseCache *_cache, 2413 const std::string &_label) 2414 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), 2415 _reqQueue(*_cache, *this, _snoopRespQueue, _label), 2416 _snoopRespQueue(*_cache, *this, true, _label), cache(_cache) 2417{ 2418} 2419 2420void 2421WriteAllocator::updateMode(Addr write_addr, unsigned write_size, 2422 Addr blk_addr) 2423{ 2424 // check if we are continuing where the last write ended 2425 if (nextAddr == write_addr) { 2426 delayCtr[blk_addr] = delayThreshold; 2427 // stop if we have already saturated 2428 if (mode != WriteMode::NO_ALLOCATE) { 2429 byteCount += write_size; 2430 // switch to streaming mode if we have passed the lower 2431 // threshold 2432 if (mode == WriteMode::ALLOCATE && 2433 byteCount > coalesceLimit) { 2434 mode = WriteMode::COALESCE; 2435 DPRINTF(Cache, "Switched to write coalescing\n"); 2436 } else if (mode == WriteMode::COALESCE && 2437 byteCount > noAllocateLimit) { 2438 // and continue and switch to non-allocating mode if we 2439 // pass the upper threshold 2440 mode = WriteMode::NO_ALLOCATE; 2441 DPRINTF(Cache, "Switched to write-no-allocate\n"); 2442 } 2443 } 2444 } else { 2445 // we did not see a write matching the previous one, start 2446 // over again 2447 byteCount = write_size; 2448 mode = WriteMode::ALLOCATE; 2449 resetDelay(blk_addr); 2450 } 2451 nextAddr = write_addr + write_size; 2452} 2453 2454WriteAllocator* 2455WriteAllocatorParams::create() 2456{ 2457 return new WriteAllocator(this); 2458} 2459