base.cc revision 13478
1/*
2 * Copyright (c) 2012-2013, 2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 *          Nikos Nikoleris
42 */
43
44/**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49#include "mem/cache/base.hh"
50
51#include "base/compiler.hh"
52#include "base/logging.hh"
53#include "debug/Cache.hh"
54#include "debug/CachePort.hh"
55#include "debug/CacheRepl.hh"
56#include "debug/CacheVerbose.hh"
57#include "mem/cache/mshr.hh"
58#include "mem/cache/prefetch/base.hh"
59#include "mem/cache/queue_entry.hh"
60#include "params/BaseCache.hh"
61#include "params/WriteAllocator.hh"
62#include "sim/core.hh"
63
64class BaseMasterPort;
65class BaseSlavePort;
66
67using namespace std;
68
69BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
70                                          BaseCache *_cache,
71                                          const std::string &_label)
72    : QueuedSlavePort(_name, _cache, queue), queue(*_cache, *this, _label),
73      blocked(false), mustSendRetry(false),
74      sendRetryEvent([this]{ processSendRetry(); }, _name)
75{
76}
77
78BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
79    : MemObject(p),
80      cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
81      memSidePort(p->name + ".mem_side", this, "MemSidePort"),
82      mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
83      writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
84      tags(p->tags),
85      prefetcher(p->prefetcher),
86      writeAllocator(p->write_allocator),
87      writebackClean(p->writeback_clean),
88      tempBlockWriteback(nullptr),
89      writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
90                                    name(), false,
91                                    EventBase::Delayed_Writeback_Pri),
92      blkSize(blk_size),
93      lookupLatency(p->tag_latency),
94      dataLatency(p->data_latency),
95      forwardLatency(p->tag_latency),
96      fillLatency(p->data_latency),
97      responseLatency(p->response_latency),
98      sequentialAccess(p->sequential_access),
99      numTarget(p->tgts_per_mshr),
100      forwardSnoops(true),
101      clusivity(p->clusivity),
102      isReadOnly(p->is_read_only),
103      blocked(0),
104      order(0),
105      noTargetMSHR(nullptr),
106      missCount(p->max_miss_count),
107      addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
108      system(p->system)
109{
110    // the MSHR queue has no reserve entries as we check the MSHR
111    // queue on every single allocation, whereas the write queue has
112    // as many reserve entries as we have MSHRs, since every MSHR may
113    // eventually require a writeback, and we do not check the write
114    // buffer before committing to an MSHR
115
116    // forward snoops is overridden in init() once we can query
117    // whether the connected master is actually snooping or not
118
119    tempBlock = new TempCacheBlk(blkSize);
120
121    tags->tagsInit();
122    if (prefetcher)
123        prefetcher->setCache(this);
124}
125
126BaseCache::~BaseCache()
127{
128    delete tempBlock;
129}
130
131void
132BaseCache::CacheSlavePort::setBlocked()
133{
134    assert(!blocked);
135    DPRINTF(CachePort, "Port is blocking new requests\n");
136    blocked = true;
137    // if we already scheduled a retry in this cycle, but it has not yet
138    // happened, cancel it
139    if (sendRetryEvent.scheduled()) {
140        owner.deschedule(sendRetryEvent);
141        DPRINTF(CachePort, "Port descheduled retry\n");
142        mustSendRetry = true;
143    }
144}
145
146void
147BaseCache::CacheSlavePort::clearBlocked()
148{
149    assert(blocked);
150    DPRINTF(CachePort, "Port is accepting new requests\n");
151    blocked = false;
152    if (mustSendRetry) {
153        // @TODO: need to find a better time (next cycle?)
154        owner.schedule(sendRetryEvent, curTick() + 1);
155    }
156}
157
158void
159BaseCache::CacheSlavePort::processSendRetry()
160{
161    DPRINTF(CachePort, "Port is sending retry\n");
162
163    // reset the flag and call retry
164    mustSendRetry = false;
165    sendRetryReq();
166}
167
168Addr
169BaseCache::regenerateBlkAddr(CacheBlk* blk)
170{
171    if (blk != tempBlock) {
172        return tags->regenerateBlkAddr(blk);
173    } else {
174        return tempBlock->getAddr();
175    }
176}
177
178void
179BaseCache::init()
180{
181    if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
182        fatal("Cache ports on %s are not connected\n", name());
183    cpuSidePort.sendRangeChange();
184    forwardSnoops = cpuSidePort.isSnooping();
185}
186
187BaseMasterPort &
188BaseCache::getMasterPort(const std::string &if_name, PortID idx)
189{
190    if (if_name == "mem_side") {
191        return memSidePort;
192    }  else {
193        return MemObject::getMasterPort(if_name, idx);
194    }
195}
196
197BaseSlavePort &
198BaseCache::getSlavePort(const std::string &if_name, PortID idx)
199{
200    if (if_name == "cpu_side") {
201        return cpuSidePort;
202    } else {
203        return MemObject::getSlavePort(if_name, idx);
204    }
205}
206
207bool
208BaseCache::inRange(Addr addr) const
209{
210    for (const auto& r : addrRanges) {
211        if (r.contains(addr)) {
212            return true;
213       }
214    }
215    return false;
216}
217
218void
219BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
220{
221    if (pkt->needsResponse()) {
222        pkt->makeTimingResponse();
223        // @todo: Make someone pay for this
224        pkt->headerDelay = pkt->payloadDelay = 0;
225
226        // In this case we are considering request_time that takes
227        // into account the delay of the xbar, if any, and just
228        // lat, neglecting responseLatency, modelling hit latency
229        // just as the value of lat overriden by access(), which calls
230        // the calculateAccessLatency() function.
231        cpuSidePort.schedTimingResp(pkt, request_time, true);
232    } else {
233        DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
234                pkt->print());
235
236        // queue the packet for deletion, as the sending cache is
237        // still relying on it; if the block is found in access(),
238        // CleanEvict and Writeback messages will be deleted
239        // here as well
240        pendingDelete.reset(pkt);
241    }
242}
243
244void
245BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
246                               Tick forward_time, Tick request_time)
247{
248    if (writeAllocator &&
249        pkt && pkt->isWrite() && !pkt->req->isUncacheable()) {
250        writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(),
251                                   pkt->getBlockAddr(blkSize));
252    }
253
254    if (mshr) {
255        /// MSHR hit
256        /// @note writebacks will be checked in getNextMSHR()
257        /// for any conflicting requests to the same block
258
259        //@todo remove hw_pf here
260
261        // Coalesce unless it was a software prefetch (see above).
262        if (pkt) {
263            assert(!pkt->isWriteback());
264            // CleanEvicts corresponding to blocks which have
265            // outstanding requests in MSHRs are simply sunk here
266            if (pkt->cmd == MemCmd::CleanEvict) {
267                pendingDelete.reset(pkt);
268            } else if (pkt->cmd == MemCmd::WriteClean) {
269                // A WriteClean should never coalesce with any
270                // outstanding cache maintenance requests.
271
272                // We use forward_time here because there is an
273                // uncached memory write, forwarded to WriteBuffer.
274                allocateWriteBuffer(pkt, forward_time);
275            } else {
276                DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
277                        pkt->print());
278
279                assert(pkt->req->masterId() < system->maxMasters());
280                mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
281
282                // We use forward_time here because it is the same
283                // considering new targets. We have multiple
284                // requests for the same address here. It
285                // specifies the latency to allocate an internal
286                // buffer and to schedule an event to the queued
287                // port and also takes into account the additional
288                // delay of the xbar.
289                mshr->allocateTarget(pkt, forward_time, order++,
290                                     allocOnFill(pkt->cmd));
291                if (mshr->getNumTargets() == numTarget) {
292                    noTargetMSHR = mshr;
293                    setBlocked(Blocked_NoTargets);
294                    // need to be careful with this... if this mshr isn't
295                    // ready yet (i.e. time > curTick()), we don't want to
296                    // move it ahead of mshrs that are ready
297                    // mshrQueue.moveToFront(mshr);
298                }
299            }
300        }
301    } else {
302        // no MSHR
303        assert(pkt->req->masterId() < system->maxMasters());
304        mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
305
306        if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
307            // We use forward_time here because there is an
308            // writeback or writeclean, forwarded to WriteBuffer.
309            allocateWriteBuffer(pkt, forward_time);
310        } else {
311            if (blk && blk->isValid()) {
312                // If we have a write miss to a valid block, we
313                // need to mark the block non-readable.  Otherwise
314                // if we allow reads while there's an outstanding
315                // write miss, the read could return stale data
316                // out of the cache block... a more aggressive
317                // system could detect the overlap (if any) and
318                // forward data out of the MSHRs, but we don't do
319                // that yet.  Note that we do need to leave the
320                // block valid so that it stays in the cache, in
321                // case we get an upgrade response (and hence no
322                // new data) when the write miss completes.
323                // As long as CPUs do proper store/load forwarding
324                // internally, and have a sufficiently weak memory
325                // model, this is probably unnecessary, but at some
326                // point it must have seemed like we needed it...
327                assert((pkt->needsWritable() && !blk->isWritable()) ||
328                       pkt->req->isCacheMaintenance());
329                blk->status &= ~BlkReadable;
330            }
331            // Here we are using forward_time, modelling the latency of
332            // a miss (outbound) just as forwardLatency, neglecting the
333            // lookupLatency component.
334            allocateMissBuffer(pkt, forward_time);
335        }
336    }
337}
338
339void
340BaseCache::recvTimingReq(PacketPtr pkt)
341{
342    // anything that is merely forwarded pays for the forward latency and
343    // the delay provided by the crossbar
344    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
345
346    Cycles lat;
347    CacheBlk *blk = nullptr;
348    bool satisfied = false;
349    {
350        PacketList writebacks;
351        // Note that lat is passed by reference here. The function
352        // access() will set the lat value.
353        satisfied = access(pkt, blk, lat, writebacks);
354
355        // copy writebacks to write buffer here to ensure they logically
356        // precede anything happening below
357        doWritebacks(writebacks, forward_time);
358    }
359
360    // Here we charge the headerDelay that takes into account the latencies
361    // of the bus, if the packet comes from it.
362    // The latency charged is just the value set by the access() function.
363    // In case of a hit we are neglecting response latency.
364    // In case of a miss we are neglecting forward latency.
365    Tick request_time = clockEdge(lat) + pkt->headerDelay;
366    // Here we reset the timing of the packet.
367    pkt->headerDelay = pkt->payloadDelay = 0;
368
369    if (satisfied) {
370        // notify before anything else as later handleTimingReqHit might turn
371        // the packet in a response
372        ppHit->notify(pkt);
373
374        if (prefetcher && blk && blk->wasPrefetched()) {
375            blk->status &= ~BlkHWPrefetched;
376        }
377
378        handleTimingReqHit(pkt, blk, request_time);
379    } else {
380        handleTimingReqMiss(pkt, blk, forward_time, request_time);
381
382        ppMiss->notify(pkt);
383    }
384
385    if (prefetcher) {
386        // track time of availability of next prefetch, if any
387        Tick next_pf_time = prefetcher->nextPrefetchReadyTime();
388        if (next_pf_time != MaxTick) {
389            schedMemSideSendEvent(next_pf_time);
390        }
391    }
392}
393
394void
395BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
396{
397    Tick completion_time = clockEdge(responseLatency) +
398        pkt->headerDelay + pkt->payloadDelay;
399
400    // Reset the bus additional time as it is now accounted for
401    pkt->headerDelay = pkt->payloadDelay = 0;
402
403    cpuSidePort.schedTimingResp(pkt, completion_time, true);
404}
405
406void
407BaseCache::recvTimingResp(PacketPtr pkt)
408{
409    assert(pkt->isResponse());
410
411    // all header delay should be paid for by the crossbar, unless
412    // this is a prefetch response from above
413    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
414             "%s saw a non-zero packet delay\n", name());
415
416    const bool is_error = pkt->isError();
417
418    if (is_error) {
419        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
420                pkt->print());
421    }
422
423    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
424            pkt->print());
425
426    // if this is a write, we should be looking at an uncacheable
427    // write
428    if (pkt->isWrite()) {
429        assert(pkt->req->isUncacheable());
430        handleUncacheableWriteResp(pkt);
431        return;
432    }
433
434    // we have dealt with any (uncacheable) writes above, from here on
435    // we know we are dealing with an MSHR due to a miss or a prefetch
436    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
437    assert(mshr);
438
439    if (mshr == noTargetMSHR) {
440        // we always clear at least one target
441        clearBlocked(Blocked_NoTargets);
442        noTargetMSHR = nullptr;
443    }
444
445    // Initial target is used just for stats
446    MSHR::Target *initial_tgt = mshr->getTarget();
447    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
448    Tick miss_latency = curTick() - initial_tgt->recvTime;
449
450    if (pkt->req->isUncacheable()) {
451        assert(pkt->req->masterId() < system->maxMasters());
452        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
453            miss_latency;
454    } else {
455        assert(pkt->req->masterId() < system->maxMasters());
456        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
457            miss_latency;
458    }
459
460    PacketList writebacks;
461
462    bool is_fill = !mshr->isForward &&
463        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp ||
464         mshr->wasWholeLineWrite);
465
466    // make sure that if the mshr was due to a whole line write then
467    // the response is an invalidation
468    assert(!mshr->wasWholeLineWrite || pkt->isInvalidate());
469
470    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
471
472    if (is_fill && !is_error) {
473        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
474                pkt->getAddr());
475
476        const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ?
477            writeAllocator->allocate() : mshr->allocOnFill();
478        blk = handleFill(pkt, blk, writebacks, allocate);
479        assert(blk != nullptr);
480    }
481
482    if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
483        // The block was marked not readable while there was a pending
484        // cache maintenance operation, restore its flag.
485        blk->status |= BlkReadable;
486
487        // This was a cache clean operation (without invalidate)
488        // and we have a copy of the block already. Since there
489        // is no invalidation, we can promote targets that don't
490        // require a writable copy
491        mshr->promoteReadable();
492    }
493
494    if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
495        // If at this point the referenced block is writable and the
496        // response is not a cache invalidate, we promote targets that
497        // were deferred as we couldn't guarrantee a writable copy
498        mshr->promoteWritable();
499    }
500
501    serviceMSHRTargets(mshr, pkt, blk);
502
503    if (mshr->promoteDeferredTargets()) {
504        // avoid later read getting stale data while write miss is
505        // outstanding.. see comment in timingAccess()
506        if (blk) {
507            blk->status &= ~BlkReadable;
508        }
509        mshrQueue.markPending(mshr);
510        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
511    } else {
512        // while we deallocate an mshr from the queue we still have to
513        // check the isFull condition before and after as we might
514        // have been using the reserved entries already
515        const bool was_full = mshrQueue.isFull();
516        mshrQueue.deallocate(mshr);
517        if (was_full && !mshrQueue.isFull()) {
518            clearBlocked(Blocked_NoMSHRs);
519        }
520
521        // Request the bus for a prefetch if this deallocation freed enough
522        // MSHRs for a prefetch to take place
523        if (prefetcher && mshrQueue.canPrefetch()) {
524            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
525                                         clockEdge());
526            if (next_pf_time != MaxTick)
527                schedMemSideSendEvent(next_pf_time);
528        }
529    }
530
531    // if we used temp block, check to see if its valid and then clear it out
532    if (blk == tempBlock && tempBlock->isValid()) {
533        evictBlock(blk, writebacks);
534    }
535
536    const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
537    // copy writebacks to write buffer
538    doWritebacks(writebacks, forward_time);
539
540    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
541    delete pkt;
542}
543
544
545Tick
546BaseCache::recvAtomic(PacketPtr pkt)
547{
548    // should assert here that there are no outstanding MSHRs or
549    // writebacks... that would mean that someone used an atomic
550    // access in timing mode
551
552    // We use lookupLatency here because it is used to specify the latency
553    // to access.
554    Cycles lat = lookupLatency;
555
556    CacheBlk *blk = nullptr;
557    PacketList writebacks;
558    bool satisfied = access(pkt, blk, lat, writebacks);
559
560    if (pkt->isClean() && blk && blk->isDirty()) {
561        // A cache clean opearation is looking for a dirty
562        // block. If a dirty block is encountered a WriteClean
563        // will update any copies to the path to the memory
564        // until the point of reference.
565        DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
566                __func__, pkt->print(), blk->print());
567        PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
568        writebacks.push_back(wb_pkt);
569        pkt->setSatisfied();
570    }
571
572    // handle writebacks resulting from the access here to ensure they
573    // logically precede anything happening below
574    doWritebacksAtomic(writebacks);
575    assert(writebacks.empty());
576
577    if (!satisfied) {
578        lat += handleAtomicReqMiss(pkt, blk, writebacks);
579    }
580
581    // Note that we don't invoke the prefetcher at all in atomic mode.
582    // It's not clear how to do it properly, particularly for
583    // prefetchers that aggressively generate prefetch candidates and
584    // rely on bandwidth contention to throttle them; these will tend
585    // to pollute the cache in atomic mode since there is no bandwidth
586    // contention.  If we ever do want to enable prefetching in atomic
587    // mode, though, this is the place to do it... see timingAccess()
588    // for an example (though we'd want to issue the prefetch(es)
589    // immediately rather than calling requestMemSideBus() as we do
590    // there).
591
592    // do any writebacks resulting from the response handling
593    doWritebacksAtomic(writebacks);
594
595    // if we used temp block, check to see if its valid and if so
596    // clear it out, but only do so after the call to recvAtomic is
597    // finished so that any downstream observers (such as a snoop
598    // filter), first see the fill, and only then see the eviction
599    if (blk == tempBlock && tempBlock->isValid()) {
600        // the atomic CPU calls recvAtomic for fetch and load/store
601        // sequentuially, and we may already have a tempBlock
602        // writeback from the fetch that we have not yet sent
603        if (tempBlockWriteback) {
604            // if that is the case, write the prevoius one back, and
605            // do not schedule any new event
606            writebackTempBlockAtomic();
607        } else {
608            // the writeback/clean eviction happens after the call to
609            // recvAtomic has finished (but before any successive
610            // calls), so that the response handling from the fill is
611            // allowed to happen first
612            schedule(writebackTempBlockAtomicEvent, curTick());
613        }
614
615        tempBlockWriteback = evictBlock(blk);
616    }
617
618    if (pkt->needsResponse()) {
619        pkt->makeAtomicResponse();
620    }
621
622    return lat * clockPeriod();
623}
624
625void
626BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
627{
628    Addr blk_addr = pkt->getBlockAddr(blkSize);
629    bool is_secure = pkt->isSecure();
630    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
631    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
632
633    pkt->pushLabel(name());
634
635    CacheBlkPrintWrapper cbpw(blk);
636
637    // Note that just because an L2/L3 has valid data doesn't mean an
638    // L1 doesn't have a more up-to-date modified copy that still
639    // needs to be found.  As a result we always update the request if
640    // we have it, but only declare it satisfied if we are the owner.
641
642    // see if we have data at all (owned or otherwise)
643    bool have_data = blk && blk->isValid()
644        && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
645                                     blk->data);
646
647    // data we have is dirty if marked as such or if we have an
648    // in-service MSHR that is pending a modified line
649    bool have_dirty =
650        have_data && (blk->isDirty() ||
651                      (mshr && mshr->inService && mshr->isPendingModified()));
652
653    bool done = have_dirty ||
654        cpuSidePort.trySatisfyFunctional(pkt) ||
655        mshrQueue.trySatisfyFunctional(pkt, blk_addr) ||
656        writeBuffer.trySatisfyFunctional(pkt, blk_addr) ||
657        memSidePort.trySatisfyFunctional(pkt);
658
659    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
660            (blk && blk->isValid()) ? "valid " : "",
661            have_data ? "data " : "", done ? "done " : "");
662
663    // We're leaving the cache, so pop cache->name() label
664    pkt->popLabel();
665
666    if (done) {
667        pkt->makeResponse();
668    } else {
669        // if it came as a request from the CPU side then make sure it
670        // continues towards the memory side
671        if (from_cpu_side) {
672            memSidePort.sendFunctional(pkt);
673        } else if (cpuSidePort.isSnooping()) {
674            // if it came from the memory side, it must be a snoop request
675            // and we should only forward it if we are forwarding snoops
676            cpuSidePort.sendFunctionalSnoop(pkt);
677        }
678    }
679}
680
681
682void
683BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
684{
685    assert(pkt->isRequest());
686
687    uint64_t overwrite_val;
688    bool overwrite_mem;
689    uint64_t condition_val64;
690    uint32_t condition_val32;
691
692    int offset = pkt->getOffset(blkSize);
693    uint8_t *blk_data = blk->data + offset;
694
695    assert(sizeof(uint64_t) >= pkt->getSize());
696
697    overwrite_mem = true;
698    // keep a copy of our possible write value, and copy what is at the
699    // memory address into the packet
700    pkt->writeData((uint8_t *)&overwrite_val);
701    pkt->setData(blk_data);
702
703    if (pkt->req->isCondSwap()) {
704        if (pkt->getSize() == sizeof(uint64_t)) {
705            condition_val64 = pkt->req->getExtraData();
706            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
707                                         sizeof(uint64_t));
708        } else if (pkt->getSize() == sizeof(uint32_t)) {
709            condition_val32 = (uint32_t)pkt->req->getExtraData();
710            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
711                                         sizeof(uint32_t));
712        } else
713            panic("Invalid size for conditional read/write\n");
714    }
715
716    if (overwrite_mem) {
717        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
718        blk->status |= BlkDirty;
719    }
720}
721
722QueueEntry*
723BaseCache::getNextQueueEntry()
724{
725    // Check both MSHR queue and write buffer for potential requests,
726    // note that null does not mean there is no request, it could
727    // simply be that it is not ready
728    MSHR *miss_mshr  = mshrQueue.getNext();
729    WriteQueueEntry *wq_entry = writeBuffer.getNext();
730
731    // If we got a write buffer request ready, first priority is a
732    // full write buffer, otherwise we favour the miss requests
733    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
734        // need to search MSHR queue for conflicting earlier miss.
735        MSHR *conflict_mshr =
736            mshrQueue.findPending(wq_entry->blkAddr,
737                                  wq_entry->isSecure);
738
739        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
740            // Service misses in order until conflict is cleared.
741            return conflict_mshr;
742
743            // @todo Note that we ignore the ready time of the conflict here
744        }
745
746        // No conflicts; issue write
747        return wq_entry;
748    } else if (miss_mshr) {
749        // need to check for conflicting earlier writeback
750        WriteQueueEntry *conflict_mshr =
751            writeBuffer.findPending(miss_mshr->blkAddr,
752                                    miss_mshr->isSecure);
753        if (conflict_mshr) {
754            // not sure why we don't check order here... it was in the
755            // original code but commented out.
756
757            // The only way this happens is if we are
758            // doing a write and we didn't have permissions
759            // then subsequently saw a writeback (owned got evicted)
760            // We need to make sure to perform the writeback first
761            // To preserve the dirty data, then we can issue the write
762
763            // should we return wq_entry here instead?  I.e. do we
764            // have to flush writes in order?  I don't think so... not
765            // for Alpha anyway.  Maybe for x86?
766            return conflict_mshr;
767
768            // @todo Note that we ignore the ready time of the conflict here
769        }
770
771        // No conflicts; issue read
772        return miss_mshr;
773    }
774
775    // fall through... no pending requests.  Try a prefetch.
776    assert(!miss_mshr && !wq_entry);
777    if (prefetcher && mshrQueue.canPrefetch()) {
778        // If we have a miss queue slot, we can try a prefetch
779        PacketPtr pkt = prefetcher->getPacket();
780        if (pkt) {
781            Addr pf_addr = pkt->getBlockAddr(blkSize);
782            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
783                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
784                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
785                // Update statistic on number of prefetches issued
786                // (hwpf_mshr_misses)
787                assert(pkt->req->masterId() < system->maxMasters());
788                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
789
790                // allocate an MSHR and return it, note
791                // that we send the packet straight away, so do not
792                // schedule the send
793                return allocateMissBuffer(pkt, curTick(), false);
794            } else {
795                // free the request and packet
796                delete pkt;
797            }
798        }
799    }
800
801    return nullptr;
802}
803
804void
805BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
806{
807    assert(pkt->isRequest());
808
809    assert(blk && blk->isValid());
810    // Occasionally this is not true... if we are a lower-level cache
811    // satisfying a string of Read and ReadEx requests from
812    // upper-level caches, a Read will mark the block as shared but we
813    // can satisfy a following ReadEx anyway since we can rely on the
814    // Read requester(s) to have buffered the ReadEx snoop and to
815    // invalidate their blocks after receiving them.
816    // assert(!pkt->needsWritable() || blk->isWritable());
817    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
818
819    // Check RMW operations first since both isRead() and
820    // isWrite() will be true for them
821    if (pkt->cmd == MemCmd::SwapReq) {
822        if (pkt->isAtomicOp()) {
823            // extract data from cache and save it into the data field in
824            // the packet as a return value from this atomic op
825            int offset = tags->extractBlkOffset(pkt->getAddr());
826            uint8_t *blk_data = blk->data + offset;
827            pkt->setData(blk_data);
828
829            // execute AMO operation
830            (*(pkt->getAtomicOp()))(blk_data);
831
832            // set block status to dirty
833            blk->status |= BlkDirty;
834        } else {
835            cmpAndSwap(blk, pkt);
836        }
837    } else if (pkt->isWrite()) {
838        // we have the block in a writable state and can go ahead,
839        // note that the line may be also be considered writable in
840        // downstream caches along the path to memory, but always
841        // Exclusive, and never Modified
842        assert(blk->isWritable());
843        // Write or WriteLine at the first cache with block in writable state
844        if (blk->checkWrite(pkt)) {
845            pkt->writeDataToBlock(blk->data, blkSize);
846        }
847        // Always mark the line as dirty (and thus transition to the
848        // Modified state) even if we are a failed StoreCond so we
849        // supply data to any snoops that have appended themselves to
850        // this cache before knowing the store will fail.
851        blk->status |= BlkDirty;
852        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
853    } else if (pkt->isRead()) {
854        if (pkt->isLLSC()) {
855            blk->trackLoadLocked(pkt);
856        }
857
858        // all read responses have a data payload
859        assert(pkt->hasRespData());
860        pkt->setDataFromBlock(blk->data, blkSize);
861    } else if (pkt->isUpgrade()) {
862        // sanity check
863        assert(!pkt->hasSharers());
864
865        if (blk->isDirty()) {
866            // we were in the Owned state, and a cache above us that
867            // has the line in Shared state needs to be made aware
868            // that the data it already has is in fact dirty
869            pkt->setCacheResponding();
870            blk->status &= ~BlkDirty;
871        }
872    } else if (pkt->isClean()) {
873        blk->status &= ~BlkDirty;
874    } else {
875        assert(pkt->isInvalidate());
876        invalidateBlock(blk);
877        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
878                pkt->print());
879    }
880}
881
882/////////////////////////////////////////////////////
883//
884// Access path: requests coming in from the CPU side
885//
886/////////////////////////////////////////////////////
887Cycles
888BaseCache::calculateAccessLatency(const CacheBlk* blk,
889                                  const Cycles lookup_lat) const
890{
891    Cycles lat(lookup_lat);
892
893    if (blk != nullptr) {
894        // First access tags, then data
895        if (sequentialAccess) {
896            lat += dataLatency;
897        // Latency is dictated by the slowest of tag and data latencies
898        } else {
899            lat = std::max(lookup_lat, dataLatency);
900        }
901
902        // Check if the block to be accessed is available. If not, apply the
903        // access latency on top of when the block is ready to be accessed.
904        const Tick when_ready = blk->getWhenReady();
905        if (when_ready > curTick() &&
906            ticksToCycles(when_ready - curTick()) > lat) {
907            lat += ticksToCycles(when_ready - curTick());
908        }
909    }
910
911    return lat;
912}
913
914bool
915BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
916                  PacketList &writebacks)
917{
918    // sanity check
919    assert(pkt->isRequest());
920
921    chatty_assert(!(isReadOnly && pkt->isWrite()),
922                  "Should never see a write in a read-only cache %s\n",
923                  name());
924
925    // Access block in the tags
926    Cycles tag_latency(0);
927    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency);
928
929    // Calculate access latency
930    lat = calculateAccessLatency(blk, tag_latency);
931
932    DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
933            blk ? "hit " + blk->print() : "miss");
934
935    if (pkt->req->isCacheMaintenance()) {
936        // A cache maintenance operation is always forwarded to the
937        // memory below even if the block is found in dirty state.
938
939        // We defer any changes to the state of the block until we
940        // create and mark as in service the mshr for the downstream
941        // packet.
942        return false;
943    }
944
945    if (pkt->isEviction()) {
946        // We check for presence of block in above caches before issuing
947        // Writeback or CleanEvict to write buffer. Therefore the only
948        // possible cases can be of a CleanEvict packet coming from above
949        // encountering a Writeback generated in this cache peer cache and
950        // waiting in the write buffer. Cases of upper level peer caches
951        // generating CleanEvict and Writeback or simply CleanEvict and
952        // CleanEvict almost simultaneously will be caught by snoops sent out
953        // by crossbar.
954        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
955                                                          pkt->isSecure());
956        if (wb_entry) {
957            assert(wb_entry->getNumTargets() == 1);
958            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
959            assert(wbPkt->isWriteback());
960
961            if (pkt->isCleanEviction()) {
962                // The CleanEvict and WritebackClean snoops into other
963                // peer caches of the same level while traversing the
964                // crossbar. If a copy of the block is found, the
965                // packet is deleted in the crossbar. Hence, none of
966                // the other upper level caches connected to this
967                // cache have the block, so we can clear the
968                // BLOCK_CACHED flag in the Writeback if set and
969                // discard the CleanEvict by returning true.
970                wbPkt->clearBlockCached();
971                return true;
972            } else {
973                assert(pkt->cmd == MemCmd::WritebackDirty);
974                // Dirty writeback from above trumps our clean
975                // writeback... discard here
976                // Note: markInService will remove entry from writeback buffer.
977                markInService(wb_entry);
978                delete wbPkt;
979            }
980        }
981    }
982
983    // Writeback handling is special case.  We can write the block into
984    // the cache without having a writeable copy (or any copy at all).
985    if (pkt->isWriteback()) {
986        assert(blkSize == pkt->getSize());
987
988        // we could get a clean writeback while we are having
989        // outstanding accesses to a block, do the simple thing for
990        // now and drop the clean writeback so that we do not upset
991        // any ordering/decisions about ownership already taken
992        if (pkt->cmd == MemCmd::WritebackClean &&
993            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
994            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
995                    "dropping\n", pkt->getAddr());
996            return true;
997        }
998
999        if (!blk) {
1000            // need to do a replacement
1001            blk = allocateBlock(pkt, writebacks);
1002            if (!blk) {
1003                // no replaceable block available: give up, fwd to next level.
1004                incMissCount(pkt);
1005                return false;
1006            }
1007
1008            blk->status |= BlkReadable;
1009        }
1010        // only mark the block dirty if we got a writeback command,
1011        // and leave it as is for a clean writeback
1012        if (pkt->cmd == MemCmd::WritebackDirty) {
1013            // TODO: the coherent cache can assert(!blk->isDirty());
1014            blk->status |= BlkDirty;
1015        }
1016        // if the packet does not have sharers, it is passing
1017        // writable, and we got the writeback in Modified or Exclusive
1018        // state, if not we are in the Owned or Shared state
1019        if (!pkt->hasSharers()) {
1020            blk->status |= BlkWritable;
1021        }
1022        // nothing else to do; writeback doesn't expect response
1023        assert(!pkt->needsResponse());
1024        pkt->writeDataToBlock(blk->data, blkSize);
1025        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1026        incHitCount(pkt);
1027        // populate the time when the block will be ready to access.
1028        blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1029            pkt->payloadDelay);
1030        return true;
1031    } else if (pkt->cmd == MemCmd::CleanEvict) {
1032        if (blk) {
1033            // Found the block in the tags, need to stop CleanEvict from
1034            // propagating further down the hierarchy. Returning true will
1035            // treat the CleanEvict like a satisfied write request and delete
1036            // it.
1037            return true;
1038        }
1039        // We didn't find the block here, propagate the CleanEvict further
1040        // down the memory hierarchy. Returning false will treat the CleanEvict
1041        // like a Writeback which could not find a replaceable block so has to
1042        // go to next level.
1043        return false;
1044    } else if (pkt->cmd == MemCmd::WriteClean) {
1045        // WriteClean handling is a special case. We can allocate a
1046        // block directly if it doesn't exist and we can update the
1047        // block immediately. The WriteClean transfers the ownership
1048        // of the block as well.
1049        assert(blkSize == pkt->getSize());
1050
1051        if (!blk) {
1052            if (pkt->writeThrough()) {
1053                // if this is a write through packet, we don't try to
1054                // allocate if the block is not present
1055                return false;
1056            } else {
1057                // a writeback that misses needs to allocate a new block
1058                blk = allocateBlock(pkt, writebacks);
1059                if (!blk) {
1060                    // no replaceable block available: give up, fwd to
1061                    // next level.
1062                    incMissCount(pkt);
1063                    return false;
1064                }
1065
1066                blk->status |= BlkReadable;
1067            }
1068        }
1069
1070        // at this point either this is a writeback or a write-through
1071        // write clean operation and the block is already in this
1072        // cache, we need to update the data and the block flags
1073        assert(blk);
1074        // TODO: the coherent cache can assert(!blk->isDirty());
1075        if (!pkt->writeThrough()) {
1076            blk->status |= BlkDirty;
1077        }
1078        // nothing else to do; writeback doesn't expect response
1079        assert(!pkt->needsResponse());
1080        pkt->writeDataToBlock(blk->data, blkSize);
1081        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1082
1083        incHitCount(pkt);
1084        // populate the time when the block will be ready to access.
1085        blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1086            pkt->payloadDelay);
1087        // if this a write-through packet it will be sent to cache
1088        // below
1089        return !pkt->writeThrough();
1090    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1091                       blk->isReadable())) {
1092        // OK to satisfy access
1093        incHitCount(pkt);
1094        satisfyRequest(pkt, blk);
1095        maintainClusivity(pkt->fromCache(), blk);
1096
1097        return true;
1098    }
1099
1100    // Can't satisfy access normally... either no block (blk == nullptr)
1101    // or have block but need writable
1102
1103    incMissCount(pkt);
1104
1105    if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1106        // complete miss on store conditional... just give up now
1107        pkt->req->setExtraData(0);
1108        return true;
1109    }
1110
1111    return false;
1112}
1113
1114void
1115BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1116{
1117    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1118        clusivity == Enums::mostly_excl) {
1119        // if we have responded to a cache, and our block is still
1120        // valid, but not dirty, and this cache is mostly exclusive
1121        // with respect to the cache above, drop the block
1122        invalidateBlock(blk);
1123    }
1124}
1125
1126CacheBlk*
1127BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1128                      bool allocate)
1129{
1130    assert(pkt->isResponse());
1131    Addr addr = pkt->getAddr();
1132    bool is_secure = pkt->isSecure();
1133#if TRACING_ON
1134    CacheBlk::State old_state = blk ? blk->status : 0;
1135#endif
1136
1137    // When handling a fill, we should have no writes to this line.
1138    assert(addr == pkt->getBlockAddr(blkSize));
1139    assert(!writeBuffer.findMatch(addr, is_secure));
1140
1141    if (!blk) {
1142        // better have read new data...
1143        assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp);
1144
1145        // need to do a replacement if allocating, otherwise we stick
1146        // with the temporary storage
1147        blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1148
1149        if (!blk) {
1150            // No replaceable block or a mostly exclusive
1151            // cache... just use temporary storage to complete the
1152            // current request and then get rid of it
1153            blk = tempBlock;
1154            tempBlock->insert(addr, is_secure);
1155            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1156                    is_secure ? "s" : "ns");
1157        }
1158    } else {
1159        // existing block... probably an upgrade
1160        // don't clear block status... if block is already dirty we
1161        // don't want to lose that
1162    }
1163
1164    // Block is guaranteed to be valid at this point
1165    assert(blk->isValid());
1166    assert(blk->isSecure() == is_secure);
1167    assert(regenerateBlkAddr(blk) == addr);
1168
1169    blk->status |= BlkReadable;
1170
1171    // sanity check for whole-line writes, which should always be
1172    // marked as writable as part of the fill, and then later marked
1173    // dirty as part of satisfyRequest
1174    if (pkt->cmd == MemCmd::InvalidateResp) {
1175        assert(!pkt->hasSharers());
1176    }
1177
1178    // here we deal with setting the appropriate state of the line,
1179    // and we start by looking at the hasSharers flag, and ignore the
1180    // cacheResponding flag (normally signalling dirty data) if the
1181    // packet has sharers, thus the line is never allocated as Owned
1182    // (dirty but not writable), and always ends up being either
1183    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1184    // for more details
1185    if (!pkt->hasSharers()) {
1186        // we could get a writable line from memory (rather than a
1187        // cache) even in a read-only cache, note that we set this bit
1188        // even for a read-only cache, possibly revisit this decision
1189        blk->status |= BlkWritable;
1190
1191        // check if we got this via cache-to-cache transfer (i.e., from a
1192        // cache that had the block in Modified or Owned state)
1193        if (pkt->cacheResponding()) {
1194            // we got the block in Modified state, and invalidated the
1195            // owners copy
1196            blk->status |= BlkDirty;
1197
1198            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1199                          "in read-only cache %s\n", name());
1200        }
1201    }
1202
1203    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1204            addr, is_secure ? "s" : "ns", old_state, blk->print());
1205
1206    // if we got new data, copy it in (checking for a read response
1207    // and a response that has data is the same in the end)
1208    if (pkt->isRead()) {
1209        // sanity checks
1210        assert(pkt->hasData());
1211        assert(pkt->getSize() == blkSize);
1212
1213        pkt->writeDataToBlock(blk->data, blkSize);
1214    }
1215    // We pay for fillLatency here.
1216    blk->setWhenReady(clockEdge(fillLatency) + pkt->payloadDelay);
1217
1218    return blk;
1219}
1220
1221CacheBlk*
1222BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1223{
1224    // Get address
1225    const Addr addr = pkt->getAddr();
1226
1227    // Get secure bit
1228    const bool is_secure = pkt->isSecure();
1229
1230    // Find replacement victim
1231    std::vector<CacheBlk*> evict_blks;
1232    CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks);
1233
1234    // It is valid to return nullptr if there is no victim
1235    if (!victim)
1236        return nullptr;
1237
1238    // Print victim block's information
1239    DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print());
1240
1241    // Check for transient state allocations. If any of the entries listed
1242    // for eviction has a transient state, the allocation fails
1243    for (const auto& blk : evict_blks) {
1244        if (blk->isValid()) {
1245            Addr repl_addr = regenerateBlkAddr(blk);
1246            MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1247            if (repl_mshr) {
1248                // must be an outstanding upgrade or clean request
1249                // on a block we're about to replace...
1250                assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1251                       repl_mshr->isCleaning());
1252
1253                // too hard to replace block with transient state
1254                // allocation failed, block not inserted
1255                return nullptr;
1256            }
1257        }
1258    }
1259
1260    // The victim will be replaced by a new entry, so increase the replacement
1261    // counter if a valid block is being replaced
1262    if (victim->isValid()) {
1263        DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1264                "(%s): %s\n", regenerateBlkAddr(victim),
1265                victim->isSecure() ? "s" : "ns",
1266                addr, is_secure ? "s" : "ns",
1267                victim->isDirty() ? "writeback" : "clean");
1268
1269        replacements++;
1270    }
1271
1272    // Evict valid blocks associated to this victim block
1273    for (const auto& blk : evict_blks) {
1274        if (blk->isValid()) {
1275            if (blk->wasPrefetched()) {
1276                unusedPrefetches++;
1277            }
1278
1279            evictBlock(blk, writebacks);
1280        }
1281    }
1282
1283    // Insert new block at victimized entry
1284    tags->insertBlock(addr, is_secure, pkt->req->masterId(),
1285                      pkt->req->taskId(), victim);
1286
1287    return victim;
1288}
1289
1290void
1291BaseCache::invalidateBlock(CacheBlk *blk)
1292{
1293    // If handling a block present in the Tags, let it do its invalidation
1294    // process, which will update stats and invalidate the block itself
1295    if (blk != tempBlock) {
1296        tags->invalidate(blk);
1297    } else {
1298        tempBlock->invalidate();
1299    }
1300}
1301
1302void
1303BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks)
1304{
1305    PacketPtr pkt = evictBlock(blk);
1306    if (pkt) {
1307        writebacks.push_back(pkt);
1308    }
1309}
1310
1311PacketPtr
1312BaseCache::writebackBlk(CacheBlk *blk)
1313{
1314    chatty_assert(!isReadOnly || writebackClean,
1315                  "Writeback from read-only cache");
1316    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1317
1318    writebacks[Request::wbMasterId]++;
1319
1320    RequestPtr req = std::make_shared<Request>(
1321        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1322
1323    if (blk->isSecure())
1324        req->setFlags(Request::SECURE);
1325
1326    req->taskId(blk->task_id);
1327
1328    PacketPtr pkt =
1329        new Packet(req, blk->isDirty() ?
1330                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1331
1332    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1333            pkt->print(), blk->isWritable(), blk->isDirty());
1334
1335    if (blk->isWritable()) {
1336        // not asserting shared means we pass the block in modified
1337        // state, mark our own block non-writeable
1338        blk->status &= ~BlkWritable;
1339    } else {
1340        // we are in the Owned state, tell the receiver
1341        pkt->setHasSharers();
1342    }
1343
1344    // make sure the block is not marked dirty
1345    blk->status &= ~BlkDirty;
1346
1347    pkt->allocate();
1348    pkt->setDataFromBlock(blk->data, blkSize);
1349
1350    return pkt;
1351}
1352
1353PacketPtr
1354BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1355{
1356    RequestPtr req = std::make_shared<Request>(
1357        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1358
1359    if (blk->isSecure()) {
1360        req->setFlags(Request::SECURE);
1361    }
1362    req->taskId(blk->task_id);
1363
1364    PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1365
1366    if (dest) {
1367        req->setFlags(dest);
1368        pkt->setWriteThrough();
1369    }
1370
1371    DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1372            blk->isWritable(), blk->isDirty());
1373
1374    if (blk->isWritable()) {
1375        // not asserting shared means we pass the block in modified
1376        // state, mark our own block non-writeable
1377        blk->status &= ~BlkWritable;
1378    } else {
1379        // we are in the Owned state, tell the receiver
1380        pkt->setHasSharers();
1381    }
1382
1383    // make sure the block is not marked dirty
1384    blk->status &= ~BlkDirty;
1385
1386    pkt->allocate();
1387    pkt->setDataFromBlock(blk->data, blkSize);
1388
1389    return pkt;
1390}
1391
1392
1393void
1394BaseCache::memWriteback()
1395{
1396    tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1397}
1398
1399void
1400BaseCache::memInvalidate()
1401{
1402    tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1403}
1404
1405bool
1406BaseCache::isDirty() const
1407{
1408    return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1409}
1410
1411bool
1412BaseCache::coalesce() const
1413{
1414    return writeAllocator && writeAllocator->coalesce();
1415}
1416
1417void
1418BaseCache::writebackVisitor(CacheBlk &blk)
1419{
1420    if (blk.isDirty()) {
1421        assert(blk.isValid());
1422
1423        RequestPtr request = std::make_shared<Request>(
1424            regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1425
1426        request->taskId(blk.task_id);
1427        if (blk.isSecure()) {
1428            request->setFlags(Request::SECURE);
1429        }
1430
1431        Packet packet(request, MemCmd::WriteReq);
1432        packet.dataStatic(blk.data);
1433
1434        memSidePort.sendFunctional(&packet);
1435
1436        blk.status &= ~BlkDirty;
1437    }
1438}
1439
1440void
1441BaseCache::invalidateVisitor(CacheBlk &blk)
1442{
1443    if (blk.isDirty())
1444        warn_once("Invalidating dirty cache lines. " \
1445                  "Expect things to break.\n");
1446
1447    if (blk.isValid()) {
1448        assert(!blk.isDirty());
1449        invalidateBlock(&blk);
1450    }
1451}
1452
1453Tick
1454BaseCache::nextQueueReadyTime() const
1455{
1456    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1457                              writeBuffer.nextReadyTime());
1458
1459    // Don't signal prefetch ready time if no MSHRs available
1460    // Will signal once enoguh MSHRs are deallocated
1461    if (prefetcher && mshrQueue.canPrefetch()) {
1462        nextReady = std::min(nextReady,
1463                             prefetcher->nextPrefetchReadyTime());
1464    }
1465
1466    return nextReady;
1467}
1468
1469
1470bool
1471BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1472{
1473    assert(mshr);
1474
1475    // use request from 1st target
1476    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1477
1478    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1479
1480    // if the cache is in write coalescing mode or (additionally) in
1481    // no allocation mode, and we have a write packet with an MSHR
1482    // that is not a whole-line write (due to incompatible flags etc),
1483    // then reset the write mode
1484    if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) {
1485        if (!mshr->isWholeLineWrite()) {
1486            // if we are currently write coalescing, hold on the
1487            // MSHR as many cycles extra as we need to completely
1488            // write a cache line
1489            if (writeAllocator->delay(mshr->blkAddr)) {
1490                Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod();
1491                DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow "
1492                        "for write coalescing\n", tgt_pkt->print(), delay);
1493                mshrQueue.delay(mshr, delay);
1494                return false;
1495            } else {
1496                writeAllocator->reset();
1497            }
1498        } else {
1499            writeAllocator->resetDelay(mshr->blkAddr);
1500        }
1501    }
1502
1503    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1504
1505    // either a prefetch that is not present upstream, or a normal
1506    // MSHR request, proceed to get the packet to send downstream
1507    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(),
1508                                     mshr->isWholeLineWrite());
1509
1510    mshr->isForward = (pkt == nullptr);
1511
1512    if (mshr->isForward) {
1513        // not a cache block request, but a response is expected
1514        // make copy of current packet to forward, keep current
1515        // copy for response handling
1516        pkt = new Packet(tgt_pkt, false, true);
1517        assert(!pkt->isWrite());
1518    }
1519
1520    // play it safe and append (rather than set) the sender state,
1521    // as forwarded packets may already have existing state
1522    pkt->pushSenderState(mshr);
1523
1524    if (pkt->isClean() && blk && blk->isDirty()) {
1525        // A cache clean opearation is looking for a dirty block. Mark
1526        // the packet so that the destination xbar can determine that
1527        // there will be a follow-up write packet as well.
1528        pkt->setSatisfied();
1529    }
1530
1531    if (!memSidePort.sendTimingReq(pkt)) {
1532        // we are awaiting a retry, but we
1533        // delete the packet and will be creating a new packet
1534        // when we get the opportunity
1535        delete pkt;
1536
1537        // note that we have now masked any requestBus and
1538        // schedSendEvent (we will wait for a retry before
1539        // doing anything), and this is so even if we do not
1540        // care about this packet and might override it before
1541        // it gets retried
1542        return true;
1543    } else {
1544        // As part of the call to sendTimingReq the packet is
1545        // forwarded to all neighbouring caches (and any caches
1546        // above them) as a snoop. Thus at this point we know if
1547        // any of the neighbouring caches are responding, and if
1548        // so, we know it is dirty, and we can determine if it is
1549        // being passed as Modified, making our MSHR the ordering
1550        // point
1551        bool pending_modified_resp = !pkt->hasSharers() &&
1552            pkt->cacheResponding();
1553        markInService(mshr, pending_modified_resp);
1554
1555        if (pkt->isClean() && blk && blk->isDirty()) {
1556            // A cache clean opearation is looking for a dirty
1557            // block. If a dirty block is encountered a WriteClean
1558            // will update any copies to the path to the memory
1559            // until the point of reference.
1560            DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1561                    __func__, pkt->print(), blk->print());
1562            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1563                                             pkt->id);
1564            PacketList writebacks;
1565            writebacks.push_back(wb_pkt);
1566            doWritebacks(writebacks, 0);
1567        }
1568
1569        return false;
1570    }
1571}
1572
1573bool
1574BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1575{
1576    assert(wq_entry);
1577
1578    // always a single target for write queue entries
1579    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1580
1581    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1582
1583    // forward as is, both for evictions and uncacheable writes
1584    if (!memSidePort.sendTimingReq(tgt_pkt)) {
1585        // note that we have now masked any requestBus and
1586        // schedSendEvent (we will wait for a retry before
1587        // doing anything), and this is so even if we do not
1588        // care about this packet and might override it before
1589        // it gets retried
1590        return true;
1591    } else {
1592        markInService(wq_entry);
1593        return false;
1594    }
1595}
1596
1597void
1598BaseCache::serialize(CheckpointOut &cp) const
1599{
1600    bool dirty(isDirty());
1601
1602    if (dirty) {
1603        warn("*** The cache still contains dirty data. ***\n");
1604        warn("    Make sure to drain the system using the correct flags.\n");
1605        warn("    This checkpoint will not restore correctly " \
1606             "and dirty data in the cache will be lost!\n");
1607    }
1608
1609    // Since we don't checkpoint the data in the cache, any dirty data
1610    // will be lost when restoring from a checkpoint of a system that
1611    // wasn't drained properly. Flag the checkpoint as invalid if the
1612    // cache contains dirty data.
1613    bool bad_checkpoint(dirty);
1614    SERIALIZE_SCALAR(bad_checkpoint);
1615}
1616
1617void
1618BaseCache::unserialize(CheckpointIn &cp)
1619{
1620    bool bad_checkpoint;
1621    UNSERIALIZE_SCALAR(bad_checkpoint);
1622    if (bad_checkpoint) {
1623        fatal("Restoring from checkpoints with dirty caches is not "
1624              "supported in the classic memory system. Please remove any "
1625              "caches or drain them properly before taking checkpoints.\n");
1626    }
1627}
1628
1629void
1630BaseCache::regStats()
1631{
1632    MemObject::regStats();
1633
1634    using namespace Stats;
1635
1636    // Hit statistics
1637    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1638        MemCmd cmd(access_idx);
1639        const string &cstr = cmd.toString();
1640
1641        hits[access_idx]
1642            .init(system->maxMasters())
1643            .name(name() + "." + cstr + "_hits")
1644            .desc("number of " + cstr + " hits")
1645            .flags(total | nozero | nonan)
1646            ;
1647        for (int i = 0; i < system->maxMasters(); i++) {
1648            hits[access_idx].subname(i, system->getMasterName(i));
1649        }
1650    }
1651
1652// These macros make it easier to sum the right subset of commands and
1653// to change the subset of commands that are considered "demand" vs
1654// "non-demand"
1655#define SUM_DEMAND(s) \
1656    (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1657     s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1658
1659// should writebacks be included here?  prior code was inconsistent...
1660#define SUM_NON_DEMAND(s) \
1661    (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq] + s[MemCmd::SoftPFExReq])
1662
1663    demandHits
1664        .name(name() + ".demand_hits")
1665        .desc("number of demand (read+write) hits")
1666        .flags(total | nozero | nonan)
1667        ;
1668    demandHits = SUM_DEMAND(hits);
1669    for (int i = 0; i < system->maxMasters(); i++) {
1670        demandHits.subname(i, system->getMasterName(i));
1671    }
1672
1673    overallHits
1674        .name(name() + ".overall_hits")
1675        .desc("number of overall hits")
1676        .flags(total | nozero | nonan)
1677        ;
1678    overallHits = demandHits + SUM_NON_DEMAND(hits);
1679    for (int i = 0; i < system->maxMasters(); i++) {
1680        overallHits.subname(i, system->getMasterName(i));
1681    }
1682
1683    // Miss statistics
1684    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1685        MemCmd cmd(access_idx);
1686        const string &cstr = cmd.toString();
1687
1688        misses[access_idx]
1689            .init(system->maxMasters())
1690            .name(name() + "." + cstr + "_misses")
1691            .desc("number of " + cstr + " misses")
1692            .flags(total | nozero | nonan)
1693            ;
1694        for (int i = 0; i < system->maxMasters(); i++) {
1695            misses[access_idx].subname(i, system->getMasterName(i));
1696        }
1697    }
1698
1699    demandMisses
1700        .name(name() + ".demand_misses")
1701        .desc("number of demand (read+write) misses")
1702        .flags(total | nozero | nonan)
1703        ;
1704    demandMisses = SUM_DEMAND(misses);
1705    for (int i = 0; i < system->maxMasters(); i++) {
1706        demandMisses.subname(i, system->getMasterName(i));
1707    }
1708
1709    overallMisses
1710        .name(name() + ".overall_misses")
1711        .desc("number of overall misses")
1712        .flags(total | nozero | nonan)
1713        ;
1714    overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1715    for (int i = 0; i < system->maxMasters(); i++) {
1716        overallMisses.subname(i, system->getMasterName(i));
1717    }
1718
1719    // Miss latency statistics
1720    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1721        MemCmd cmd(access_idx);
1722        const string &cstr = cmd.toString();
1723
1724        missLatency[access_idx]
1725            .init(system->maxMasters())
1726            .name(name() + "." + cstr + "_miss_latency")
1727            .desc("number of " + cstr + " miss cycles")
1728            .flags(total | nozero | nonan)
1729            ;
1730        for (int i = 0; i < system->maxMasters(); i++) {
1731            missLatency[access_idx].subname(i, system->getMasterName(i));
1732        }
1733    }
1734
1735    demandMissLatency
1736        .name(name() + ".demand_miss_latency")
1737        .desc("number of demand (read+write) miss cycles")
1738        .flags(total | nozero | nonan)
1739        ;
1740    demandMissLatency = SUM_DEMAND(missLatency);
1741    for (int i = 0; i < system->maxMasters(); i++) {
1742        demandMissLatency.subname(i, system->getMasterName(i));
1743    }
1744
1745    overallMissLatency
1746        .name(name() + ".overall_miss_latency")
1747        .desc("number of overall miss cycles")
1748        .flags(total | nozero | nonan)
1749        ;
1750    overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
1751    for (int i = 0; i < system->maxMasters(); i++) {
1752        overallMissLatency.subname(i, system->getMasterName(i));
1753    }
1754
1755    // access formulas
1756    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1757        MemCmd cmd(access_idx);
1758        const string &cstr = cmd.toString();
1759
1760        accesses[access_idx]
1761            .name(name() + "." + cstr + "_accesses")
1762            .desc("number of " + cstr + " accesses(hits+misses)")
1763            .flags(total | nozero | nonan)
1764            ;
1765        accesses[access_idx] = hits[access_idx] + misses[access_idx];
1766
1767        for (int i = 0; i < system->maxMasters(); i++) {
1768            accesses[access_idx].subname(i, system->getMasterName(i));
1769        }
1770    }
1771
1772    demandAccesses
1773        .name(name() + ".demand_accesses")
1774        .desc("number of demand (read+write) accesses")
1775        .flags(total | nozero | nonan)
1776        ;
1777    demandAccesses = demandHits + demandMisses;
1778    for (int i = 0; i < system->maxMasters(); i++) {
1779        demandAccesses.subname(i, system->getMasterName(i));
1780    }
1781
1782    overallAccesses
1783        .name(name() + ".overall_accesses")
1784        .desc("number of overall (read+write) accesses")
1785        .flags(total | nozero | nonan)
1786        ;
1787    overallAccesses = overallHits + overallMisses;
1788    for (int i = 0; i < system->maxMasters(); i++) {
1789        overallAccesses.subname(i, system->getMasterName(i));
1790    }
1791
1792    // miss rate formulas
1793    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1794        MemCmd cmd(access_idx);
1795        const string &cstr = cmd.toString();
1796
1797        missRate[access_idx]
1798            .name(name() + "." + cstr + "_miss_rate")
1799            .desc("miss rate for " + cstr + " accesses")
1800            .flags(total | nozero | nonan)
1801            ;
1802        missRate[access_idx] = misses[access_idx] / accesses[access_idx];
1803
1804        for (int i = 0; i < system->maxMasters(); i++) {
1805            missRate[access_idx].subname(i, system->getMasterName(i));
1806        }
1807    }
1808
1809    demandMissRate
1810        .name(name() + ".demand_miss_rate")
1811        .desc("miss rate for demand accesses")
1812        .flags(total | nozero | nonan)
1813        ;
1814    demandMissRate = demandMisses / demandAccesses;
1815    for (int i = 0; i < system->maxMasters(); i++) {
1816        demandMissRate.subname(i, system->getMasterName(i));
1817    }
1818
1819    overallMissRate
1820        .name(name() + ".overall_miss_rate")
1821        .desc("miss rate for overall accesses")
1822        .flags(total | nozero | nonan)
1823        ;
1824    overallMissRate = overallMisses / overallAccesses;
1825    for (int i = 0; i < system->maxMasters(); i++) {
1826        overallMissRate.subname(i, system->getMasterName(i));
1827    }
1828
1829    // miss latency formulas
1830    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1831        MemCmd cmd(access_idx);
1832        const string &cstr = cmd.toString();
1833
1834        avgMissLatency[access_idx]
1835            .name(name() + "." + cstr + "_avg_miss_latency")
1836            .desc("average " + cstr + " miss latency")
1837            .flags(total | nozero | nonan)
1838            ;
1839        avgMissLatency[access_idx] =
1840            missLatency[access_idx] / misses[access_idx];
1841
1842        for (int i = 0; i < system->maxMasters(); i++) {
1843            avgMissLatency[access_idx].subname(i, system->getMasterName(i));
1844        }
1845    }
1846
1847    demandAvgMissLatency
1848        .name(name() + ".demand_avg_miss_latency")
1849        .desc("average overall miss latency")
1850        .flags(total | nozero | nonan)
1851        ;
1852    demandAvgMissLatency = demandMissLatency / demandMisses;
1853    for (int i = 0; i < system->maxMasters(); i++) {
1854        demandAvgMissLatency.subname(i, system->getMasterName(i));
1855    }
1856
1857    overallAvgMissLatency
1858        .name(name() + ".overall_avg_miss_latency")
1859        .desc("average overall miss latency")
1860        .flags(total | nozero | nonan)
1861        ;
1862    overallAvgMissLatency = overallMissLatency / overallMisses;
1863    for (int i = 0; i < system->maxMasters(); i++) {
1864        overallAvgMissLatency.subname(i, system->getMasterName(i));
1865    }
1866
1867    blocked_cycles.init(NUM_BLOCKED_CAUSES);
1868    blocked_cycles
1869        .name(name() + ".blocked_cycles")
1870        .desc("number of cycles access was blocked")
1871        .subname(Blocked_NoMSHRs, "no_mshrs")
1872        .subname(Blocked_NoTargets, "no_targets")
1873        ;
1874
1875
1876    blocked_causes.init(NUM_BLOCKED_CAUSES);
1877    blocked_causes
1878        .name(name() + ".blocked")
1879        .desc("number of cycles access was blocked")
1880        .subname(Blocked_NoMSHRs, "no_mshrs")
1881        .subname(Blocked_NoTargets, "no_targets")
1882        ;
1883
1884    avg_blocked
1885        .name(name() + ".avg_blocked_cycles")
1886        .desc("average number of cycles each access was blocked")
1887        .subname(Blocked_NoMSHRs, "no_mshrs")
1888        .subname(Blocked_NoTargets, "no_targets")
1889        ;
1890
1891    avg_blocked = blocked_cycles / blocked_causes;
1892
1893    unusedPrefetches
1894        .name(name() + ".unused_prefetches")
1895        .desc("number of HardPF blocks evicted w/o reference")
1896        .flags(nozero)
1897        ;
1898
1899    writebacks
1900        .init(system->maxMasters())
1901        .name(name() + ".writebacks")
1902        .desc("number of writebacks")
1903        .flags(total | nozero | nonan)
1904        ;
1905    for (int i = 0; i < system->maxMasters(); i++) {
1906        writebacks.subname(i, system->getMasterName(i));
1907    }
1908
1909    // MSHR statistics
1910    // MSHR hit statistics
1911    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1912        MemCmd cmd(access_idx);
1913        const string &cstr = cmd.toString();
1914
1915        mshr_hits[access_idx]
1916            .init(system->maxMasters())
1917            .name(name() + "." + cstr + "_mshr_hits")
1918            .desc("number of " + cstr + " MSHR hits")
1919            .flags(total | nozero | nonan)
1920            ;
1921        for (int i = 0; i < system->maxMasters(); i++) {
1922            mshr_hits[access_idx].subname(i, system->getMasterName(i));
1923        }
1924    }
1925
1926    demandMshrHits
1927        .name(name() + ".demand_mshr_hits")
1928        .desc("number of demand (read+write) MSHR hits")
1929        .flags(total | nozero | nonan)
1930        ;
1931    demandMshrHits = SUM_DEMAND(mshr_hits);
1932    for (int i = 0; i < system->maxMasters(); i++) {
1933        demandMshrHits.subname(i, system->getMasterName(i));
1934    }
1935
1936    overallMshrHits
1937        .name(name() + ".overall_mshr_hits")
1938        .desc("number of overall MSHR hits")
1939        .flags(total | nozero | nonan)
1940        ;
1941    overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
1942    for (int i = 0; i < system->maxMasters(); i++) {
1943        overallMshrHits.subname(i, system->getMasterName(i));
1944    }
1945
1946    // MSHR miss statistics
1947    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1948        MemCmd cmd(access_idx);
1949        const string &cstr = cmd.toString();
1950
1951        mshr_misses[access_idx]
1952            .init(system->maxMasters())
1953            .name(name() + "." + cstr + "_mshr_misses")
1954            .desc("number of " + cstr + " MSHR misses")
1955            .flags(total | nozero | nonan)
1956            ;
1957        for (int i = 0; i < system->maxMasters(); i++) {
1958            mshr_misses[access_idx].subname(i, system->getMasterName(i));
1959        }
1960    }
1961
1962    demandMshrMisses
1963        .name(name() + ".demand_mshr_misses")
1964        .desc("number of demand (read+write) MSHR misses")
1965        .flags(total | nozero | nonan)
1966        ;
1967    demandMshrMisses = SUM_DEMAND(mshr_misses);
1968    for (int i = 0; i < system->maxMasters(); i++) {
1969        demandMshrMisses.subname(i, system->getMasterName(i));
1970    }
1971
1972    overallMshrMisses
1973        .name(name() + ".overall_mshr_misses")
1974        .desc("number of overall MSHR misses")
1975        .flags(total | nozero | nonan)
1976        ;
1977    overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
1978    for (int i = 0; i < system->maxMasters(); i++) {
1979        overallMshrMisses.subname(i, system->getMasterName(i));
1980    }
1981
1982    // MSHR miss latency statistics
1983    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1984        MemCmd cmd(access_idx);
1985        const string &cstr = cmd.toString();
1986
1987        mshr_miss_latency[access_idx]
1988            .init(system->maxMasters())
1989            .name(name() + "." + cstr + "_mshr_miss_latency")
1990            .desc("number of " + cstr + " MSHR miss cycles")
1991            .flags(total | nozero | nonan)
1992            ;
1993        for (int i = 0; i < system->maxMasters(); i++) {
1994            mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
1995        }
1996    }
1997
1998    demandMshrMissLatency
1999        .name(name() + ".demand_mshr_miss_latency")
2000        .desc("number of demand (read+write) MSHR miss cycles")
2001        .flags(total | nozero | nonan)
2002        ;
2003    demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
2004    for (int i = 0; i < system->maxMasters(); i++) {
2005        demandMshrMissLatency.subname(i, system->getMasterName(i));
2006    }
2007
2008    overallMshrMissLatency
2009        .name(name() + ".overall_mshr_miss_latency")
2010        .desc("number of overall MSHR miss cycles")
2011        .flags(total | nozero | nonan)
2012        ;
2013    overallMshrMissLatency =
2014        demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
2015    for (int i = 0; i < system->maxMasters(); i++) {
2016        overallMshrMissLatency.subname(i, system->getMasterName(i));
2017    }
2018
2019    // MSHR uncacheable statistics
2020    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2021        MemCmd cmd(access_idx);
2022        const string &cstr = cmd.toString();
2023
2024        mshr_uncacheable[access_idx]
2025            .init(system->maxMasters())
2026            .name(name() + "." + cstr + "_mshr_uncacheable")
2027            .desc("number of " + cstr + " MSHR uncacheable")
2028            .flags(total | nozero | nonan)
2029            ;
2030        for (int i = 0; i < system->maxMasters(); i++) {
2031            mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
2032        }
2033    }
2034
2035    overallMshrUncacheable
2036        .name(name() + ".overall_mshr_uncacheable_misses")
2037        .desc("number of overall MSHR uncacheable misses")
2038        .flags(total | nozero | nonan)
2039        ;
2040    overallMshrUncacheable =
2041        SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
2042    for (int i = 0; i < system->maxMasters(); i++) {
2043        overallMshrUncacheable.subname(i, system->getMasterName(i));
2044    }
2045
2046    // MSHR miss latency statistics
2047    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2048        MemCmd cmd(access_idx);
2049        const string &cstr = cmd.toString();
2050
2051        mshr_uncacheable_lat[access_idx]
2052            .init(system->maxMasters())
2053            .name(name() + "." + cstr + "_mshr_uncacheable_latency")
2054            .desc("number of " + cstr + " MSHR uncacheable cycles")
2055            .flags(total | nozero | nonan)
2056            ;
2057        for (int i = 0; i < system->maxMasters(); i++) {
2058            mshr_uncacheable_lat[access_idx].subname(
2059                i, system->getMasterName(i));
2060        }
2061    }
2062
2063    overallMshrUncacheableLatency
2064        .name(name() + ".overall_mshr_uncacheable_latency")
2065        .desc("number of overall MSHR uncacheable cycles")
2066        .flags(total | nozero | nonan)
2067        ;
2068    overallMshrUncacheableLatency =
2069        SUM_DEMAND(mshr_uncacheable_lat) +
2070        SUM_NON_DEMAND(mshr_uncacheable_lat);
2071    for (int i = 0; i < system->maxMasters(); i++) {
2072        overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2073    }
2074
2075#if 0
2076    // MSHR access formulas
2077    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2078        MemCmd cmd(access_idx);
2079        const string &cstr = cmd.toString();
2080
2081        mshrAccesses[access_idx]
2082            .name(name() + "." + cstr + "_mshr_accesses")
2083            .desc("number of " + cstr + " mshr accesses(hits+misses)")
2084            .flags(total | nozero | nonan)
2085            ;
2086        mshrAccesses[access_idx] =
2087            mshr_hits[access_idx] + mshr_misses[access_idx]
2088            + mshr_uncacheable[access_idx];
2089    }
2090
2091    demandMshrAccesses
2092        .name(name() + ".demand_mshr_accesses")
2093        .desc("number of demand (read+write) mshr accesses")
2094        .flags(total | nozero | nonan)
2095        ;
2096    demandMshrAccesses = demandMshrHits + demandMshrMisses;
2097
2098    overallMshrAccesses
2099        .name(name() + ".overall_mshr_accesses")
2100        .desc("number of overall (read+write) mshr accesses")
2101        .flags(total | nozero | nonan)
2102        ;
2103    overallMshrAccesses = overallMshrHits + overallMshrMisses
2104        + overallMshrUncacheable;
2105#endif
2106
2107    // MSHR miss rate formulas
2108    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2109        MemCmd cmd(access_idx);
2110        const string &cstr = cmd.toString();
2111
2112        mshrMissRate[access_idx]
2113            .name(name() + "." + cstr + "_mshr_miss_rate")
2114            .desc("mshr miss rate for " + cstr + " accesses")
2115            .flags(total | nozero | nonan)
2116            ;
2117        mshrMissRate[access_idx] =
2118            mshr_misses[access_idx] / accesses[access_idx];
2119
2120        for (int i = 0; i < system->maxMasters(); i++) {
2121            mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2122        }
2123    }
2124
2125    demandMshrMissRate
2126        .name(name() + ".demand_mshr_miss_rate")
2127        .desc("mshr miss rate for demand accesses")
2128        .flags(total | nozero | nonan)
2129        ;
2130    demandMshrMissRate = demandMshrMisses / demandAccesses;
2131    for (int i = 0; i < system->maxMasters(); i++) {
2132        demandMshrMissRate.subname(i, system->getMasterName(i));
2133    }
2134
2135    overallMshrMissRate
2136        .name(name() + ".overall_mshr_miss_rate")
2137        .desc("mshr miss rate for overall accesses")
2138        .flags(total | nozero | nonan)
2139        ;
2140    overallMshrMissRate = overallMshrMisses / overallAccesses;
2141    for (int i = 0; i < system->maxMasters(); i++) {
2142        overallMshrMissRate.subname(i, system->getMasterName(i));
2143    }
2144
2145    // mshrMiss latency formulas
2146    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2147        MemCmd cmd(access_idx);
2148        const string &cstr = cmd.toString();
2149
2150        avgMshrMissLatency[access_idx]
2151            .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2152            .desc("average " + cstr + " mshr miss latency")
2153            .flags(total | nozero | nonan)
2154            ;
2155        avgMshrMissLatency[access_idx] =
2156            mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2157
2158        for (int i = 0; i < system->maxMasters(); i++) {
2159            avgMshrMissLatency[access_idx].subname(
2160                i, system->getMasterName(i));
2161        }
2162    }
2163
2164    demandAvgMshrMissLatency
2165        .name(name() + ".demand_avg_mshr_miss_latency")
2166        .desc("average overall mshr miss latency")
2167        .flags(total | nozero | nonan)
2168        ;
2169    demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2170    for (int i = 0; i < system->maxMasters(); i++) {
2171        demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2172    }
2173
2174    overallAvgMshrMissLatency
2175        .name(name() + ".overall_avg_mshr_miss_latency")
2176        .desc("average overall mshr miss latency")
2177        .flags(total | nozero | nonan)
2178        ;
2179    overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2180    for (int i = 0; i < system->maxMasters(); i++) {
2181        overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2182    }
2183
2184    // mshrUncacheable latency formulas
2185    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2186        MemCmd cmd(access_idx);
2187        const string &cstr = cmd.toString();
2188
2189        avgMshrUncacheableLatency[access_idx]
2190            .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2191            .desc("average " + cstr + " mshr uncacheable latency")
2192            .flags(total | nozero | nonan)
2193            ;
2194        avgMshrUncacheableLatency[access_idx] =
2195            mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2196
2197        for (int i = 0; i < system->maxMasters(); i++) {
2198            avgMshrUncacheableLatency[access_idx].subname(
2199                i, system->getMasterName(i));
2200        }
2201    }
2202
2203    overallAvgMshrUncacheableLatency
2204        .name(name() + ".overall_avg_mshr_uncacheable_latency")
2205        .desc("average overall mshr uncacheable latency")
2206        .flags(total | nozero | nonan)
2207        ;
2208    overallAvgMshrUncacheableLatency =
2209        overallMshrUncacheableLatency / overallMshrUncacheable;
2210    for (int i = 0; i < system->maxMasters(); i++) {
2211        overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2212    }
2213
2214    replacements
2215        .name(name() + ".replacements")
2216        .desc("number of replacements")
2217        ;
2218}
2219
2220void
2221BaseCache::regProbePoints()
2222{
2223    ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit");
2224    ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss");
2225}
2226
2227///////////////
2228//
2229// CpuSidePort
2230//
2231///////////////
2232bool
2233BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2234{
2235    // Snoops shouldn't happen when bypassing caches
2236    assert(!cache->system->bypassCaches());
2237
2238    assert(pkt->isResponse());
2239
2240    // Express snoop responses from master to slave, e.g., from L1 to L2
2241    cache->recvTimingSnoopResp(pkt);
2242    return true;
2243}
2244
2245
2246bool
2247BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2248{
2249    if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2250        // always let express snoop packets through even if blocked
2251        return true;
2252    } else if (blocked || mustSendRetry) {
2253        // either already committed to send a retry, or blocked
2254        mustSendRetry = true;
2255        return false;
2256    }
2257    mustSendRetry = false;
2258    return true;
2259}
2260
2261bool
2262BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2263{
2264    assert(pkt->isRequest());
2265
2266    if (cache->system->bypassCaches()) {
2267        // Just forward the packet if caches are disabled.
2268        // @todo This should really enqueue the packet rather
2269        bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2270        assert(success);
2271        return true;
2272    } else if (tryTiming(pkt)) {
2273        cache->recvTimingReq(pkt);
2274        return true;
2275    }
2276    return false;
2277}
2278
2279Tick
2280BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2281{
2282    if (cache->system->bypassCaches()) {
2283        // Forward the request if the system is in cache bypass mode.
2284        return cache->memSidePort.sendAtomic(pkt);
2285    } else {
2286        return cache->recvAtomic(pkt);
2287    }
2288}
2289
2290void
2291BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2292{
2293    if (cache->system->bypassCaches()) {
2294        // The cache should be flushed if we are in cache bypass mode,
2295        // so we don't need to check if we need to update anything.
2296        cache->memSidePort.sendFunctional(pkt);
2297        return;
2298    }
2299
2300    // functional request
2301    cache->functionalAccess(pkt, true);
2302}
2303
2304AddrRangeList
2305BaseCache::CpuSidePort::getAddrRanges() const
2306{
2307    return cache->getAddrRanges();
2308}
2309
2310
2311BaseCache::
2312CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2313                         const std::string &_label)
2314    : CacheSlavePort(_name, _cache, _label), cache(_cache)
2315{
2316}
2317
2318///////////////
2319//
2320// MemSidePort
2321//
2322///////////////
2323bool
2324BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2325{
2326    cache->recvTimingResp(pkt);
2327    return true;
2328}
2329
2330// Express snooping requests to memside port
2331void
2332BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2333{
2334    // Snoops shouldn't happen when bypassing caches
2335    assert(!cache->system->bypassCaches());
2336
2337    // handle snooping requests
2338    cache->recvTimingSnoopReq(pkt);
2339}
2340
2341Tick
2342BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2343{
2344    // Snoops shouldn't happen when bypassing caches
2345    assert(!cache->system->bypassCaches());
2346
2347    return cache->recvAtomicSnoop(pkt);
2348}
2349
2350void
2351BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2352{
2353    // Snoops shouldn't happen when bypassing caches
2354    assert(!cache->system->bypassCaches());
2355
2356    // functional snoop (note that in contrast to atomic we don't have
2357    // a specific functionalSnoop method, as they have the same
2358    // behaviour regardless)
2359    cache->functionalAccess(pkt, false);
2360}
2361
2362void
2363BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2364{
2365    // sanity check
2366    assert(!waitingOnRetry);
2367
2368    // there should never be any deferred request packets in the
2369    // queue, instead we resly on the cache to provide the packets
2370    // from the MSHR queue or write queue
2371    assert(deferredPacketReadyTime() == MaxTick);
2372
2373    // check for request packets (requests & writebacks)
2374    QueueEntry* entry = cache.getNextQueueEntry();
2375
2376    if (!entry) {
2377        // can happen if e.g. we attempt a writeback and fail, but
2378        // before the retry, the writeback is eliminated because
2379        // we snoop another cache's ReadEx.
2380    } else {
2381        // let our snoop responses go first if there are responses to
2382        // the same addresses
2383        if (checkConflictingSnoop(entry->blkAddr)) {
2384            return;
2385        }
2386        waitingOnRetry = entry->sendPacket(cache);
2387    }
2388
2389    // if we succeeded and are not waiting for a retry, schedule the
2390    // next send considering when the next queue is ready, note that
2391    // snoop responses have their own packet queue and thus schedule
2392    // their own events
2393    if (!waitingOnRetry) {
2394        schedSendEvent(cache.nextQueueReadyTime());
2395    }
2396}
2397
2398BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2399                                    BaseCache *_cache,
2400                                    const std::string &_label)
2401    : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2402      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2403      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2404{
2405}
2406
2407void
2408WriteAllocator::updateMode(Addr write_addr, unsigned write_size,
2409                           Addr blk_addr)
2410{
2411    // check if we are continuing where the last write ended
2412    if (nextAddr == write_addr) {
2413        delayCtr[blk_addr] = delayThreshold;
2414        // stop if we have already saturated
2415        if (mode != WriteMode::NO_ALLOCATE) {
2416            byteCount += write_size;
2417            // switch to streaming mode if we have passed the lower
2418            // threshold
2419            if (mode == WriteMode::ALLOCATE &&
2420                byteCount > coalesceLimit) {
2421                mode = WriteMode::COALESCE;
2422                DPRINTF(Cache, "Switched to write coalescing\n");
2423            } else if (mode == WriteMode::COALESCE &&
2424                       byteCount > noAllocateLimit) {
2425                // and continue and switch to non-allocating mode if we
2426                // pass the upper threshold
2427                mode = WriteMode::NO_ALLOCATE;
2428                DPRINTF(Cache, "Switched to write-no-allocate\n");
2429            }
2430        }
2431    } else {
2432        // we did not see a write matching the previous one, start
2433        // over again
2434        byteCount = write_size;
2435        mode = WriteMode::ALLOCATE;
2436        resetDelay(blk_addr);
2437    }
2438    nextAddr = write_addr + write_size;
2439}
2440
2441WriteAllocator*
2442WriteAllocatorParams::create()
2443{
2444    return new WriteAllocator(this);
2445}
2446