base.cc revision 13419
1/* 2 * Copyright (c) 2012-2013, 2018 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2003-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Erik Hallnor 41 * Nikos Nikoleris 42 */ 43 44/** 45 * @file 46 * Definition of BaseCache functions. 47 */ 48 49#include "mem/cache/base.hh" 50 51#include "base/compiler.hh" 52#include "base/logging.hh" 53#include "debug/Cache.hh" 54#include "debug/CachePort.hh" 55#include "debug/CacheRepl.hh" 56#include "debug/CacheVerbose.hh" 57#include "mem/cache/mshr.hh" 58#include "mem/cache/prefetch/base.hh" 59#include "mem/cache/queue_entry.hh" 60#include "params/BaseCache.hh" 61#include "params/WriteAllocator.hh" 62#include "sim/core.hh" 63 64class BaseMasterPort; 65class BaseSlavePort; 66 67using namespace std; 68 69BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name, 70 BaseCache *_cache, 71 const std::string &_label) 72 : QueuedSlavePort(_name, _cache, queue), queue(*_cache, *this, _label), 73 blocked(false), mustSendRetry(false), 74 sendRetryEvent([this]{ processSendRetry(); }, _name) 75{ 76} 77 78BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size) 79 : MemObject(p), 80 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"), 81 memSidePort(p->name + ".mem_side", this, "MemSidePort"), 82 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below 83 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below 84 tags(p->tags), 85 prefetcher(p->prefetcher), 86 writeAllocator(p->write_allocator), 87 writebackClean(p->writeback_clean), 88 tempBlockWriteback(nullptr), 89 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); }, 90 name(), false, 91 EventBase::Delayed_Writeback_Pri), 92 blkSize(blk_size), 93 lookupLatency(p->tag_latency), 94 dataLatency(p->data_latency), 95 forwardLatency(p->tag_latency), 96 fillLatency(p->data_latency), 97 responseLatency(p->response_latency), 98 sequentialAccess(p->sequential_access), 99 numTarget(p->tgts_per_mshr), 100 forwardSnoops(true), 101 clusivity(p->clusivity), 102 isReadOnly(p->is_read_only), 103 blocked(0), 104 order(0), 105 noTargetMSHR(nullptr), 106 missCount(p->max_miss_count), 107 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()), 108 system(p->system) 109{ 110 // the MSHR queue has no reserve entries as we check the MSHR 111 // queue on every single allocation, whereas the write queue has 112 // as many reserve entries as we have MSHRs, since every MSHR may 113 // eventually require a writeback, and we do not check the write 114 // buffer before committing to an MSHR 115 116 // forward snoops is overridden in init() once we can query 117 // whether the connected master is actually snooping or not 118 119 tempBlock = new TempCacheBlk(blkSize); 120 121 tags->tagsInit(); 122 if (prefetcher) 123 prefetcher->setCache(this); 124} 125 126BaseCache::~BaseCache() 127{ 128 delete tempBlock; 129} 130 131void 132BaseCache::CacheSlavePort::setBlocked() 133{ 134 assert(!blocked); 135 DPRINTF(CachePort, "Port is blocking new requests\n"); 136 blocked = true; 137 // if we already scheduled a retry in this cycle, but it has not yet 138 // happened, cancel it 139 if (sendRetryEvent.scheduled()) { 140 owner.deschedule(sendRetryEvent); 141 DPRINTF(CachePort, "Port descheduled retry\n"); 142 mustSendRetry = true; 143 } 144} 145 146void 147BaseCache::CacheSlavePort::clearBlocked() 148{ 149 assert(blocked); 150 DPRINTF(CachePort, "Port is accepting new requests\n"); 151 blocked = false; 152 if (mustSendRetry) { 153 // @TODO: need to find a better time (next cycle?) 154 owner.schedule(sendRetryEvent, curTick() + 1); 155 } 156} 157 158void 159BaseCache::CacheSlavePort::processSendRetry() 160{ 161 DPRINTF(CachePort, "Port is sending retry\n"); 162 163 // reset the flag and call retry 164 mustSendRetry = false; 165 sendRetryReq(); 166} 167 168Addr 169BaseCache::regenerateBlkAddr(CacheBlk* blk) 170{ 171 if (blk != tempBlock) { 172 return tags->regenerateBlkAddr(blk); 173 } else { 174 return tempBlock->getAddr(); 175 } 176} 177 178void 179BaseCache::init() 180{ 181 if (!cpuSidePort.isConnected() || !memSidePort.isConnected()) 182 fatal("Cache ports on %s are not connected\n", name()); 183 cpuSidePort.sendRangeChange(); 184 forwardSnoops = cpuSidePort.isSnooping(); 185} 186 187BaseMasterPort & 188BaseCache::getMasterPort(const std::string &if_name, PortID idx) 189{ 190 if (if_name == "mem_side") { 191 return memSidePort; 192 } else { 193 return MemObject::getMasterPort(if_name, idx); 194 } 195} 196 197BaseSlavePort & 198BaseCache::getSlavePort(const std::string &if_name, PortID idx) 199{ 200 if (if_name == "cpu_side") { 201 return cpuSidePort; 202 } else { 203 return MemObject::getSlavePort(if_name, idx); 204 } 205} 206 207bool 208BaseCache::inRange(Addr addr) const 209{ 210 for (const auto& r : addrRanges) { 211 if (r.contains(addr)) { 212 return true; 213 } 214 } 215 return false; 216} 217 218void 219BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time) 220{ 221 if (pkt->needsResponse()) { 222 pkt->makeTimingResponse(); 223 // @todo: Make someone pay for this 224 pkt->headerDelay = pkt->payloadDelay = 0; 225 226 // In this case we are considering request_time that takes 227 // into account the delay of the xbar, if any, and just 228 // lat, neglecting responseLatency, modelling hit latency 229 // just as the value of lat overriden by access(), which calls 230 // the calculateAccessLatency() function. 231 cpuSidePort.schedTimingResp(pkt, request_time, true); 232 } else { 233 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__, 234 pkt->print()); 235 236 // queue the packet for deletion, as the sending cache is 237 // still relying on it; if the block is found in access(), 238 // CleanEvict and Writeback messages will be deleted 239 // here as well 240 pendingDelete.reset(pkt); 241 } 242} 243 244void 245BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk, 246 Tick forward_time, Tick request_time) 247{ 248 if (writeAllocator && 249 pkt && pkt->isWrite() && !pkt->req->isUncacheable()) { 250 writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(), 251 pkt->getBlockAddr(blkSize)); 252 } 253 254 if (mshr) { 255 /// MSHR hit 256 /// @note writebacks will be checked in getNextMSHR() 257 /// for any conflicting requests to the same block 258 259 //@todo remove hw_pf here 260 261 // Coalesce unless it was a software prefetch (see above). 262 if (pkt) { 263 assert(!pkt->isWriteback()); 264 // CleanEvicts corresponding to blocks which have 265 // outstanding requests in MSHRs are simply sunk here 266 if (pkt->cmd == MemCmd::CleanEvict) { 267 pendingDelete.reset(pkt); 268 } else if (pkt->cmd == MemCmd::WriteClean) { 269 // A WriteClean should never coalesce with any 270 // outstanding cache maintenance requests. 271 272 // We use forward_time here because there is an 273 // uncached memory write, forwarded to WriteBuffer. 274 allocateWriteBuffer(pkt, forward_time); 275 } else { 276 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__, 277 pkt->print()); 278 279 assert(pkt->req->masterId() < system->maxMasters()); 280 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 281 282 // We use forward_time here because it is the same 283 // considering new targets. We have multiple 284 // requests for the same address here. It 285 // specifies the latency to allocate an internal 286 // buffer and to schedule an event to the queued 287 // port and also takes into account the additional 288 // delay of the xbar. 289 mshr->allocateTarget(pkt, forward_time, order++, 290 allocOnFill(pkt->cmd)); 291 if (mshr->getNumTargets() == numTarget) { 292 noTargetMSHR = mshr; 293 setBlocked(Blocked_NoTargets); 294 // need to be careful with this... if this mshr isn't 295 // ready yet (i.e. time > curTick()), we don't want to 296 // move it ahead of mshrs that are ready 297 // mshrQueue.moveToFront(mshr); 298 } 299 } 300 } 301 } else { 302 // no MSHR 303 assert(pkt->req->masterId() < system->maxMasters()); 304 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 305 306 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) { 307 // We use forward_time here because there is an 308 // writeback or writeclean, forwarded to WriteBuffer. 309 allocateWriteBuffer(pkt, forward_time); 310 } else { 311 if (blk && blk->isValid()) { 312 // If we have a write miss to a valid block, we 313 // need to mark the block non-readable. Otherwise 314 // if we allow reads while there's an outstanding 315 // write miss, the read could return stale data 316 // out of the cache block... a more aggressive 317 // system could detect the overlap (if any) and 318 // forward data out of the MSHRs, but we don't do 319 // that yet. Note that we do need to leave the 320 // block valid so that it stays in the cache, in 321 // case we get an upgrade response (and hence no 322 // new data) when the write miss completes. 323 // As long as CPUs do proper store/load forwarding 324 // internally, and have a sufficiently weak memory 325 // model, this is probably unnecessary, but at some 326 // point it must have seemed like we needed it... 327 assert((pkt->needsWritable() && !blk->isWritable()) || 328 pkt->req->isCacheMaintenance()); 329 blk->status &= ~BlkReadable; 330 } 331 // Here we are using forward_time, modelling the latency of 332 // a miss (outbound) just as forwardLatency, neglecting the 333 // lookupLatency component. 334 allocateMissBuffer(pkt, forward_time); 335 } 336 } 337} 338 339void 340BaseCache::recvTimingReq(PacketPtr pkt) 341{ 342 // anything that is merely forwarded pays for the forward latency and 343 // the delay provided by the crossbar 344 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 345 346 Cycles lat; 347 CacheBlk *blk = nullptr; 348 bool satisfied = false; 349 { 350 PacketList writebacks; 351 // Note that lat is passed by reference here. The function 352 // access() will set the lat value. 353 satisfied = access(pkt, blk, lat, writebacks); 354 355 // copy writebacks to write buffer here to ensure they logically 356 // precede anything happening below 357 doWritebacks(writebacks, forward_time); 358 } 359 360 // Here we charge the headerDelay that takes into account the latencies 361 // of the bus, if the packet comes from it. 362 // The latency charged is just the value set by the access() function. 363 // In case of a hit we are neglecting response latency. 364 // In case of a miss we are neglecting forward latency. 365 Tick request_time = clockEdge(lat) + pkt->headerDelay; 366 // Here we reset the timing of the packet. 367 pkt->headerDelay = pkt->payloadDelay = 0; 368 369 if (satisfied) { 370 // notify before anything else as later handleTimingReqHit might turn 371 // the packet in a response 372 ppHit->notify(pkt); 373 374 if (prefetcher && blk && blk->wasPrefetched()) { 375 blk->status &= ~BlkHWPrefetched; 376 } 377 378 handleTimingReqHit(pkt, blk, request_time); 379 } else { 380 handleTimingReqMiss(pkt, blk, forward_time, request_time); 381 382 ppMiss->notify(pkt); 383 } 384 385 if (prefetcher) { 386 // track time of availability of next prefetch, if any 387 Tick next_pf_time = prefetcher->nextPrefetchReadyTime(); 388 if (next_pf_time != MaxTick) { 389 schedMemSideSendEvent(next_pf_time); 390 } 391 } 392} 393 394void 395BaseCache::handleUncacheableWriteResp(PacketPtr pkt) 396{ 397 Tick completion_time = clockEdge(responseLatency) + 398 pkt->headerDelay + pkt->payloadDelay; 399 400 // Reset the bus additional time as it is now accounted for 401 pkt->headerDelay = pkt->payloadDelay = 0; 402 403 cpuSidePort.schedTimingResp(pkt, completion_time, true); 404} 405 406void 407BaseCache::recvTimingResp(PacketPtr pkt) 408{ 409 assert(pkt->isResponse()); 410 411 // all header delay should be paid for by the crossbar, unless 412 // this is a prefetch response from above 413 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp, 414 "%s saw a non-zero packet delay\n", name()); 415 416 const bool is_error = pkt->isError(); 417 418 if (is_error) { 419 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__, 420 pkt->print()); 421 } 422 423 DPRINTF(Cache, "%s: Handling response %s\n", __func__, 424 pkt->print()); 425 426 // if this is a write, we should be looking at an uncacheable 427 // write 428 if (pkt->isWrite()) { 429 assert(pkt->req->isUncacheable()); 430 handleUncacheableWriteResp(pkt); 431 return; 432 } 433 434 // we have dealt with any (uncacheable) writes above, from here on 435 // we know we are dealing with an MSHR due to a miss or a prefetch 436 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState()); 437 assert(mshr); 438 439 if (mshr == noTargetMSHR) { 440 // we always clear at least one target 441 clearBlocked(Blocked_NoTargets); 442 noTargetMSHR = nullptr; 443 } 444 445 // Initial target is used just for stats 446 MSHR::Target *initial_tgt = mshr->getTarget(); 447 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); 448 Tick miss_latency = curTick() - initial_tgt->recvTime; 449 450 if (pkt->req->isUncacheable()) { 451 assert(pkt->req->masterId() < system->maxMasters()); 452 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += 453 miss_latency; 454 } else { 455 assert(pkt->req->masterId() < system->maxMasters()); 456 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += 457 miss_latency; 458 } 459 460 PacketList writebacks; 461 462 bool is_fill = !mshr->isForward && 463 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp || 464 mshr->wasWholeLineWrite); 465 466 // make sure that if the mshr was due to a whole line write then 467 // the response is an invalidation 468 assert(!mshr->wasWholeLineWrite || pkt->isInvalidate()); 469 470 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 471 472 if (is_fill && !is_error) { 473 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", 474 pkt->getAddr()); 475 476 const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ? 477 writeAllocator->allocate() : mshr->allocOnFill(); 478 blk = handleFill(pkt, blk, writebacks, allocate); 479 assert(blk != nullptr); 480 } 481 482 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) { 483 // The block was marked not readable while there was a pending 484 // cache maintenance operation, restore its flag. 485 blk->status |= BlkReadable; 486 487 // This was a cache clean operation (without invalidate) 488 // and we have a copy of the block already. Since there 489 // is no invalidation, we can promote targets that don't 490 // require a writable copy 491 mshr->promoteReadable(); 492 } 493 494 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) { 495 // If at this point the referenced block is writable and the 496 // response is not a cache invalidate, we promote targets that 497 // were deferred as we couldn't guarrantee a writable copy 498 mshr->promoteWritable(); 499 } 500 501 serviceMSHRTargets(mshr, pkt, blk, writebacks); 502 503 if (mshr->promoteDeferredTargets()) { 504 // avoid later read getting stale data while write miss is 505 // outstanding.. see comment in timingAccess() 506 if (blk) { 507 blk->status &= ~BlkReadable; 508 } 509 mshrQueue.markPending(mshr); 510 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay); 511 } else { 512 // while we deallocate an mshr from the queue we still have to 513 // check the isFull condition before and after as we might 514 // have been using the reserved entries already 515 const bool was_full = mshrQueue.isFull(); 516 mshrQueue.deallocate(mshr); 517 if (was_full && !mshrQueue.isFull()) { 518 clearBlocked(Blocked_NoMSHRs); 519 } 520 521 // Request the bus for a prefetch if this deallocation freed enough 522 // MSHRs for a prefetch to take place 523 if (prefetcher && mshrQueue.canPrefetch()) { 524 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), 525 clockEdge()); 526 if (next_pf_time != MaxTick) 527 schedMemSideSendEvent(next_pf_time); 528 } 529 } 530 531 // if we used temp block, check to see if its valid and then clear it out 532 if (blk == tempBlock && tempBlock->isValid()) { 533 evictBlock(blk, writebacks); 534 } 535 536 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 537 // copy writebacks to write buffer 538 doWritebacks(writebacks, forward_time); 539 540 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print()); 541 delete pkt; 542} 543 544 545Tick 546BaseCache::recvAtomic(PacketPtr pkt) 547{ 548 // should assert here that there are no outstanding MSHRs or 549 // writebacks... that would mean that someone used an atomic 550 // access in timing mode 551 552 // We use lookupLatency here because it is used to specify the latency 553 // to access. 554 Cycles lat = lookupLatency; 555 556 CacheBlk *blk = nullptr; 557 PacketList writebacks; 558 bool satisfied = access(pkt, blk, lat, writebacks); 559 560 if (pkt->isClean() && blk && blk->isDirty()) { 561 // A cache clean opearation is looking for a dirty 562 // block. If a dirty block is encountered a WriteClean 563 // will update any copies to the path to the memory 564 // until the point of reference. 565 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 566 __func__, pkt->print(), blk->print()); 567 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id); 568 writebacks.push_back(wb_pkt); 569 pkt->setSatisfied(); 570 } 571 572 // handle writebacks resulting from the access here to ensure they 573 // logically precede anything happening below 574 doWritebacksAtomic(writebacks); 575 assert(writebacks.empty()); 576 577 if (!satisfied) { 578 lat += handleAtomicReqMiss(pkt, blk, writebacks); 579 } 580 581 // Note that we don't invoke the prefetcher at all in atomic mode. 582 // It's not clear how to do it properly, particularly for 583 // prefetchers that aggressively generate prefetch candidates and 584 // rely on bandwidth contention to throttle them; these will tend 585 // to pollute the cache in atomic mode since there is no bandwidth 586 // contention. If we ever do want to enable prefetching in atomic 587 // mode, though, this is the place to do it... see timingAccess() 588 // for an example (though we'd want to issue the prefetch(es) 589 // immediately rather than calling requestMemSideBus() as we do 590 // there). 591 592 // do any writebacks resulting from the response handling 593 doWritebacksAtomic(writebacks); 594 595 // if we used temp block, check to see if its valid and if so 596 // clear it out, but only do so after the call to recvAtomic is 597 // finished so that any downstream observers (such as a snoop 598 // filter), first see the fill, and only then see the eviction 599 if (blk == tempBlock && tempBlock->isValid()) { 600 // the atomic CPU calls recvAtomic for fetch and load/store 601 // sequentuially, and we may already have a tempBlock 602 // writeback from the fetch that we have not yet sent 603 if (tempBlockWriteback) { 604 // if that is the case, write the prevoius one back, and 605 // do not schedule any new event 606 writebackTempBlockAtomic(); 607 } else { 608 // the writeback/clean eviction happens after the call to 609 // recvAtomic has finished (but before any successive 610 // calls), so that the response handling from the fill is 611 // allowed to happen first 612 schedule(writebackTempBlockAtomicEvent, curTick()); 613 } 614 615 tempBlockWriteback = evictBlock(blk); 616 } 617 618 if (pkt->needsResponse()) { 619 pkt->makeAtomicResponse(); 620 } 621 622 return lat * clockPeriod(); 623} 624 625void 626BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side) 627{ 628 Addr blk_addr = pkt->getBlockAddr(blkSize); 629 bool is_secure = pkt->isSecure(); 630 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 631 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 632 633 pkt->pushLabel(name()); 634 635 CacheBlkPrintWrapper cbpw(blk); 636 637 // Note that just because an L2/L3 has valid data doesn't mean an 638 // L1 doesn't have a more up-to-date modified copy that still 639 // needs to be found. As a result we always update the request if 640 // we have it, but only declare it satisfied if we are the owner. 641 642 // see if we have data at all (owned or otherwise) 643 bool have_data = blk && blk->isValid() 644 && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize, 645 blk->data); 646 647 // data we have is dirty if marked as such or if we have an 648 // in-service MSHR that is pending a modified line 649 bool have_dirty = 650 have_data && (blk->isDirty() || 651 (mshr && mshr->inService && mshr->isPendingModified())); 652 653 bool done = have_dirty || 654 cpuSidePort.trySatisfyFunctional(pkt) || 655 mshrQueue.trySatisfyFunctional(pkt, blk_addr) || 656 writeBuffer.trySatisfyFunctional(pkt, blk_addr) || 657 memSidePort.trySatisfyFunctional(pkt); 658 659 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(), 660 (blk && blk->isValid()) ? "valid " : "", 661 have_data ? "data " : "", done ? "done " : ""); 662 663 // We're leaving the cache, so pop cache->name() label 664 pkt->popLabel(); 665 666 if (done) { 667 pkt->makeResponse(); 668 } else { 669 // if it came as a request from the CPU side then make sure it 670 // continues towards the memory side 671 if (from_cpu_side) { 672 memSidePort.sendFunctional(pkt); 673 } else if (cpuSidePort.isSnooping()) { 674 // if it came from the memory side, it must be a snoop request 675 // and we should only forward it if we are forwarding snoops 676 cpuSidePort.sendFunctionalSnoop(pkt); 677 } 678 } 679} 680 681 682void 683BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) 684{ 685 assert(pkt->isRequest()); 686 687 uint64_t overwrite_val; 688 bool overwrite_mem; 689 uint64_t condition_val64; 690 uint32_t condition_val32; 691 692 int offset = pkt->getOffset(blkSize); 693 uint8_t *blk_data = blk->data + offset; 694 695 assert(sizeof(uint64_t) >= pkt->getSize()); 696 697 overwrite_mem = true; 698 // keep a copy of our possible write value, and copy what is at the 699 // memory address into the packet 700 pkt->writeData((uint8_t *)&overwrite_val); 701 pkt->setData(blk_data); 702 703 if (pkt->req->isCondSwap()) { 704 if (pkt->getSize() == sizeof(uint64_t)) { 705 condition_val64 = pkt->req->getExtraData(); 706 overwrite_mem = !std::memcmp(&condition_val64, blk_data, 707 sizeof(uint64_t)); 708 } else if (pkt->getSize() == sizeof(uint32_t)) { 709 condition_val32 = (uint32_t)pkt->req->getExtraData(); 710 overwrite_mem = !std::memcmp(&condition_val32, blk_data, 711 sizeof(uint32_t)); 712 } else 713 panic("Invalid size for conditional read/write\n"); 714 } 715 716 if (overwrite_mem) { 717 std::memcpy(blk_data, &overwrite_val, pkt->getSize()); 718 blk->status |= BlkDirty; 719 } 720} 721 722QueueEntry* 723BaseCache::getNextQueueEntry() 724{ 725 // Check both MSHR queue and write buffer for potential requests, 726 // note that null does not mean there is no request, it could 727 // simply be that it is not ready 728 MSHR *miss_mshr = mshrQueue.getNext(); 729 WriteQueueEntry *wq_entry = writeBuffer.getNext(); 730 731 // If we got a write buffer request ready, first priority is a 732 // full write buffer, otherwise we favour the miss requests 733 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) { 734 // need to search MSHR queue for conflicting earlier miss. 735 MSHR *conflict_mshr = 736 mshrQueue.findPending(wq_entry->blkAddr, 737 wq_entry->isSecure); 738 739 if (conflict_mshr && conflict_mshr->order < wq_entry->order) { 740 // Service misses in order until conflict is cleared. 741 return conflict_mshr; 742 743 // @todo Note that we ignore the ready time of the conflict here 744 } 745 746 // No conflicts; issue write 747 return wq_entry; 748 } else if (miss_mshr) { 749 // need to check for conflicting earlier writeback 750 WriteQueueEntry *conflict_mshr = 751 writeBuffer.findPending(miss_mshr->blkAddr, 752 miss_mshr->isSecure); 753 if (conflict_mshr) { 754 // not sure why we don't check order here... it was in the 755 // original code but commented out. 756 757 // The only way this happens is if we are 758 // doing a write and we didn't have permissions 759 // then subsequently saw a writeback (owned got evicted) 760 // We need to make sure to perform the writeback first 761 // To preserve the dirty data, then we can issue the write 762 763 // should we return wq_entry here instead? I.e. do we 764 // have to flush writes in order? I don't think so... not 765 // for Alpha anyway. Maybe for x86? 766 return conflict_mshr; 767 768 // @todo Note that we ignore the ready time of the conflict here 769 } 770 771 // No conflicts; issue read 772 return miss_mshr; 773 } 774 775 // fall through... no pending requests. Try a prefetch. 776 assert(!miss_mshr && !wq_entry); 777 if (prefetcher && mshrQueue.canPrefetch()) { 778 // If we have a miss queue slot, we can try a prefetch 779 PacketPtr pkt = prefetcher->getPacket(); 780 if (pkt) { 781 Addr pf_addr = pkt->getBlockAddr(blkSize); 782 if (!tags->findBlock(pf_addr, pkt->isSecure()) && 783 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && 784 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { 785 // Update statistic on number of prefetches issued 786 // (hwpf_mshr_misses) 787 assert(pkt->req->masterId() < system->maxMasters()); 788 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 789 790 // allocate an MSHR and return it, note 791 // that we send the packet straight away, so do not 792 // schedule the send 793 return allocateMissBuffer(pkt, curTick(), false); 794 } else { 795 // free the request and packet 796 delete pkt; 797 } 798 } 799 } 800 801 return nullptr; 802} 803 804void 805BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool) 806{ 807 assert(pkt->isRequest()); 808 809 assert(blk && blk->isValid()); 810 // Occasionally this is not true... if we are a lower-level cache 811 // satisfying a string of Read and ReadEx requests from 812 // upper-level caches, a Read will mark the block as shared but we 813 // can satisfy a following ReadEx anyway since we can rely on the 814 // Read requester(s) to have buffered the ReadEx snoop and to 815 // invalidate their blocks after receiving them. 816 // assert(!pkt->needsWritable() || blk->isWritable()); 817 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); 818 819 // Check RMW operations first since both isRead() and 820 // isWrite() will be true for them 821 if (pkt->cmd == MemCmd::SwapReq) { 822 if (pkt->isAtomicOp()) { 823 // extract data from cache and save it into the data field in 824 // the packet as a return value from this atomic op 825 int offset = tags->extractBlkOffset(pkt->getAddr()); 826 uint8_t *blk_data = blk->data + offset; 827 pkt->setData(blk_data); 828 829 // execute AMO operation 830 (*(pkt->getAtomicOp()))(blk_data); 831 832 // set block status to dirty 833 blk->status |= BlkDirty; 834 } else { 835 cmpAndSwap(blk, pkt); 836 } 837 } else if (pkt->isWrite()) { 838 // we have the block in a writable state and can go ahead, 839 // note that the line may be also be considered writable in 840 // downstream caches along the path to memory, but always 841 // Exclusive, and never Modified 842 assert(blk->isWritable()); 843 // Write or WriteLine at the first cache with block in writable state 844 if (blk->checkWrite(pkt)) { 845 pkt->writeDataToBlock(blk->data, blkSize); 846 } 847 // Always mark the line as dirty (and thus transition to the 848 // Modified state) even if we are a failed StoreCond so we 849 // supply data to any snoops that have appended themselves to 850 // this cache before knowing the store will fail. 851 blk->status |= BlkDirty; 852 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print()); 853 } else if (pkt->isRead()) { 854 if (pkt->isLLSC()) { 855 blk->trackLoadLocked(pkt); 856 } 857 858 // all read responses have a data payload 859 assert(pkt->hasRespData()); 860 pkt->setDataFromBlock(blk->data, blkSize); 861 } else if (pkt->isUpgrade()) { 862 // sanity check 863 assert(!pkt->hasSharers()); 864 865 if (blk->isDirty()) { 866 // we were in the Owned state, and a cache above us that 867 // has the line in Shared state needs to be made aware 868 // that the data it already has is in fact dirty 869 pkt->setCacheResponding(); 870 blk->status &= ~BlkDirty; 871 } 872 } else if (pkt->isClean()) { 873 blk->status &= ~BlkDirty; 874 } else { 875 assert(pkt->isInvalidate()); 876 invalidateBlock(blk); 877 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__, 878 pkt->print()); 879 } 880} 881 882///////////////////////////////////////////////////// 883// 884// Access path: requests coming in from the CPU side 885// 886///////////////////////////////////////////////////// 887Cycles 888BaseCache::calculateAccessLatency(const CacheBlk* blk, 889 const Cycles lookup_lat) const 890{ 891 Cycles lat(lookup_lat); 892 893 if (blk != nullptr) { 894 // First access tags, then data 895 if (sequentialAccess) { 896 lat += dataLatency; 897 // Latency is dictated by the slowest of tag and data latencies 898 } else { 899 lat = std::max(lookup_lat, dataLatency); 900 } 901 902 // Check if the block to be accessed is available. If not, apply the 903 // access latency on top of block->whenReady. 904 if (blk->whenReady > curTick() && 905 ticksToCycles(blk->whenReady - curTick()) > lat) { 906 lat += ticksToCycles(blk->whenReady - curTick()); 907 } 908 } 909 910 return lat; 911} 912 913bool 914BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 915 PacketList &writebacks) 916{ 917 // sanity check 918 assert(pkt->isRequest()); 919 920 chatty_assert(!(isReadOnly && pkt->isWrite()), 921 "Should never see a write in a read-only cache %s\n", 922 name()); 923 924 // Access block in the tags 925 Cycles tag_latency(0); 926 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency); 927 928 // Calculate access latency 929 lat = calculateAccessLatency(blk, tag_latency); 930 931 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(), 932 blk ? "hit " + blk->print() : "miss"); 933 934 if (pkt->req->isCacheMaintenance()) { 935 // A cache maintenance operation is always forwarded to the 936 // memory below even if the block is found in dirty state. 937 938 // We defer any changes to the state of the block until we 939 // create and mark as in service the mshr for the downstream 940 // packet. 941 return false; 942 } 943 944 if (pkt->isEviction()) { 945 // We check for presence of block in above caches before issuing 946 // Writeback or CleanEvict to write buffer. Therefore the only 947 // possible cases can be of a CleanEvict packet coming from above 948 // encountering a Writeback generated in this cache peer cache and 949 // waiting in the write buffer. Cases of upper level peer caches 950 // generating CleanEvict and Writeback or simply CleanEvict and 951 // CleanEvict almost simultaneously will be caught by snoops sent out 952 // by crossbar. 953 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(), 954 pkt->isSecure()); 955 if (wb_entry) { 956 assert(wb_entry->getNumTargets() == 1); 957 PacketPtr wbPkt = wb_entry->getTarget()->pkt; 958 assert(wbPkt->isWriteback()); 959 960 if (pkt->isCleanEviction()) { 961 // The CleanEvict and WritebackClean snoops into other 962 // peer caches of the same level while traversing the 963 // crossbar. If a copy of the block is found, the 964 // packet is deleted in the crossbar. Hence, none of 965 // the other upper level caches connected to this 966 // cache have the block, so we can clear the 967 // BLOCK_CACHED flag in the Writeback if set and 968 // discard the CleanEvict by returning true. 969 wbPkt->clearBlockCached(); 970 return true; 971 } else { 972 assert(pkt->cmd == MemCmd::WritebackDirty); 973 // Dirty writeback from above trumps our clean 974 // writeback... discard here 975 // Note: markInService will remove entry from writeback buffer. 976 markInService(wb_entry); 977 delete wbPkt; 978 } 979 } 980 } 981 982 // Writeback handling is special case. We can write the block into 983 // the cache without having a writeable copy (or any copy at all). 984 if (pkt->isWriteback()) { 985 assert(blkSize == pkt->getSize()); 986 987 // we could get a clean writeback while we are having 988 // outstanding accesses to a block, do the simple thing for 989 // now and drop the clean writeback so that we do not upset 990 // any ordering/decisions about ownership already taken 991 if (pkt->cmd == MemCmd::WritebackClean && 992 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) { 993 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, " 994 "dropping\n", pkt->getAddr()); 995 return true; 996 } 997 998 if (!blk) { 999 // need to do a replacement 1000 blk = allocateBlock(pkt, writebacks); 1001 if (!blk) { 1002 // no replaceable block available: give up, fwd to next level. 1003 incMissCount(pkt); 1004 return false; 1005 } 1006 1007 blk->status |= (BlkValid | BlkReadable); 1008 } 1009 // only mark the block dirty if we got a writeback command, 1010 // and leave it as is for a clean writeback 1011 if (pkt->cmd == MemCmd::WritebackDirty) { 1012 // TODO: the coherent cache can assert(!blk->isDirty()); 1013 blk->status |= BlkDirty; 1014 } 1015 // if the packet does not have sharers, it is passing 1016 // writable, and we got the writeback in Modified or Exclusive 1017 // state, if not we are in the Owned or Shared state 1018 if (!pkt->hasSharers()) { 1019 blk->status |= BlkWritable; 1020 } 1021 // nothing else to do; writeback doesn't expect response 1022 assert(!pkt->needsResponse()); 1023 pkt->writeDataToBlock(blk->data, blkSize); 1024 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 1025 incHitCount(pkt); 1026 // populate the time when the block will be ready to access. 1027 blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay + 1028 pkt->payloadDelay; 1029 return true; 1030 } else if (pkt->cmd == MemCmd::CleanEvict) { 1031 if (blk) { 1032 // Found the block in the tags, need to stop CleanEvict from 1033 // propagating further down the hierarchy. Returning true will 1034 // treat the CleanEvict like a satisfied write request and delete 1035 // it. 1036 return true; 1037 } 1038 // We didn't find the block here, propagate the CleanEvict further 1039 // down the memory hierarchy. Returning false will treat the CleanEvict 1040 // like a Writeback which could not find a replaceable block so has to 1041 // go to next level. 1042 return false; 1043 } else if (pkt->cmd == MemCmd::WriteClean) { 1044 // WriteClean handling is a special case. We can allocate a 1045 // block directly if it doesn't exist and we can update the 1046 // block immediately. The WriteClean transfers the ownership 1047 // of the block as well. 1048 assert(blkSize == pkt->getSize()); 1049 1050 if (!blk) { 1051 if (pkt->writeThrough()) { 1052 // if this is a write through packet, we don't try to 1053 // allocate if the block is not present 1054 return false; 1055 } else { 1056 // a writeback that misses needs to allocate a new block 1057 blk = allocateBlock(pkt, writebacks); 1058 if (!blk) { 1059 // no replaceable block available: give up, fwd to 1060 // next level. 1061 incMissCount(pkt); 1062 return false; 1063 } 1064 1065 blk->status |= (BlkValid | BlkReadable); 1066 } 1067 } 1068 1069 // at this point either this is a writeback or a write-through 1070 // write clean operation and the block is already in this 1071 // cache, we need to update the data and the block flags 1072 assert(blk); 1073 // TODO: the coherent cache can assert(!blk->isDirty()); 1074 if (!pkt->writeThrough()) { 1075 blk->status |= BlkDirty; 1076 } 1077 // nothing else to do; writeback doesn't expect response 1078 assert(!pkt->needsResponse()); 1079 pkt->writeDataToBlock(blk->data, blkSize); 1080 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 1081 1082 incHitCount(pkt); 1083 // populate the time when the block will be ready to access. 1084 blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay + 1085 pkt->payloadDelay; 1086 // if this a write-through packet it will be sent to cache 1087 // below 1088 return !pkt->writeThrough(); 1089 } else if (blk && (pkt->needsWritable() ? blk->isWritable() : 1090 blk->isReadable())) { 1091 // OK to satisfy access 1092 incHitCount(pkt); 1093 satisfyRequest(pkt, blk); 1094 maintainClusivity(pkt->fromCache(), blk); 1095 1096 return true; 1097 } 1098 1099 // Can't satisfy access normally... either no block (blk == nullptr) 1100 // or have block but need writable 1101 1102 incMissCount(pkt); 1103 1104 if (!blk && pkt->isLLSC() && pkt->isWrite()) { 1105 // complete miss on store conditional... just give up now 1106 pkt->req->setExtraData(0); 1107 return true; 1108 } 1109 1110 return false; 1111} 1112 1113void 1114BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk) 1115{ 1116 if (from_cache && blk && blk->isValid() && !blk->isDirty() && 1117 clusivity == Enums::mostly_excl) { 1118 // if we have responded to a cache, and our block is still 1119 // valid, but not dirty, and this cache is mostly exclusive 1120 // with respect to the cache above, drop the block 1121 invalidateBlock(blk); 1122 } 1123} 1124 1125CacheBlk* 1126BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks, 1127 bool allocate) 1128{ 1129 assert(pkt->isResponse()); 1130 Addr addr = pkt->getAddr(); 1131 bool is_secure = pkt->isSecure(); 1132#if TRACING_ON 1133 CacheBlk::State old_state = blk ? blk->status : 0; 1134#endif 1135 1136 // When handling a fill, we should have no writes to this line. 1137 assert(addr == pkt->getBlockAddr(blkSize)); 1138 assert(!writeBuffer.findMatch(addr, is_secure)); 1139 1140 if (!blk) { 1141 // better have read new data... 1142 assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp); 1143 1144 // need to do a replacement if allocating, otherwise we stick 1145 // with the temporary storage 1146 blk = allocate ? allocateBlock(pkt, writebacks) : nullptr; 1147 1148 if (!blk) { 1149 // No replaceable block or a mostly exclusive 1150 // cache... just use temporary storage to complete the 1151 // current request and then get rid of it 1152 assert(!tempBlock->isValid()); 1153 blk = tempBlock; 1154 tempBlock->insert(addr, is_secure); 1155 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, 1156 is_secure ? "s" : "ns"); 1157 } 1158 1159 // we should never be overwriting a valid block 1160 assert(!blk->isValid()); 1161 } else { 1162 // existing block... probably an upgrade 1163 assert(regenerateBlkAddr(blk) == addr); 1164 assert(blk->isSecure() == is_secure); 1165 // either we're getting new data or the block should already be valid 1166 assert(pkt->hasData() || blk->isValid()); 1167 // don't clear block status... if block is already dirty we 1168 // don't want to lose that 1169 } 1170 1171 blk->status |= BlkValid | BlkReadable; 1172 1173 // sanity check for whole-line writes, which should always be 1174 // marked as writable as part of the fill, and then later marked 1175 // dirty as part of satisfyRequest 1176 if (pkt->cmd == MemCmd::InvalidateResp) { 1177 assert(!pkt->hasSharers()); 1178 } 1179 1180 // here we deal with setting the appropriate state of the line, 1181 // and we start by looking at the hasSharers flag, and ignore the 1182 // cacheResponding flag (normally signalling dirty data) if the 1183 // packet has sharers, thus the line is never allocated as Owned 1184 // (dirty but not writable), and always ends up being either 1185 // Shared, Exclusive or Modified, see Packet::setCacheResponding 1186 // for more details 1187 if (!pkt->hasSharers()) { 1188 // we could get a writable line from memory (rather than a 1189 // cache) even in a read-only cache, note that we set this bit 1190 // even for a read-only cache, possibly revisit this decision 1191 blk->status |= BlkWritable; 1192 1193 // check if we got this via cache-to-cache transfer (i.e., from a 1194 // cache that had the block in Modified or Owned state) 1195 if (pkt->cacheResponding()) { 1196 // we got the block in Modified state, and invalidated the 1197 // owners copy 1198 blk->status |= BlkDirty; 1199 1200 chatty_assert(!isReadOnly, "Should never see dirty snoop response " 1201 "in read-only cache %s\n", name()); 1202 } 1203 } 1204 1205 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", 1206 addr, is_secure ? "s" : "ns", old_state, blk->print()); 1207 1208 // if we got new data, copy it in (checking for a read response 1209 // and a response that has data is the same in the end) 1210 if (pkt->isRead()) { 1211 // sanity checks 1212 assert(pkt->hasData()); 1213 assert(pkt->getSize() == blkSize); 1214 1215 pkt->writeDataToBlock(blk->data, blkSize); 1216 } 1217 // We pay for fillLatency here. 1218 blk->whenReady = clockEdge() + fillLatency * clockPeriod() + 1219 pkt->payloadDelay; 1220 1221 return blk; 1222} 1223 1224CacheBlk* 1225BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks) 1226{ 1227 // Get address 1228 const Addr addr = pkt->getAddr(); 1229 1230 // Get secure bit 1231 const bool is_secure = pkt->isSecure(); 1232 1233 // Find replacement victim 1234 std::vector<CacheBlk*> evict_blks; 1235 CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks); 1236 1237 // It is valid to return nullptr if there is no victim 1238 if (!victim) 1239 return nullptr; 1240 1241 // Print victim block's information 1242 DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print()); 1243 1244 // Check for transient state allocations. If any of the entries listed 1245 // for eviction has a transient state, the allocation fails 1246 for (const auto& blk : evict_blks) { 1247 if (blk->isValid()) { 1248 Addr repl_addr = regenerateBlkAddr(blk); 1249 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); 1250 if (repl_mshr) { 1251 // must be an outstanding upgrade or clean request 1252 // on a block we're about to replace... 1253 assert((!blk->isWritable() && repl_mshr->needsWritable()) || 1254 repl_mshr->isCleaning()); 1255 1256 // too hard to replace block with transient state 1257 // allocation failed, block not inserted 1258 return nullptr; 1259 } 1260 } 1261 } 1262 1263 // The victim will be replaced by a new entry, so increase the replacement 1264 // counter if a valid block is being replaced 1265 if (victim->isValid()) { 1266 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx " 1267 "(%s): %s\n", regenerateBlkAddr(victim), 1268 victim->isSecure() ? "s" : "ns", 1269 addr, is_secure ? "s" : "ns", 1270 victim->isDirty() ? "writeback" : "clean"); 1271 1272 replacements++; 1273 } 1274 1275 // Evict valid blocks associated to this victim block 1276 for (const auto& blk : evict_blks) { 1277 if (blk->isValid()) { 1278 if (blk->wasPrefetched()) { 1279 unusedPrefetches++; 1280 } 1281 1282 evictBlock(blk, writebacks); 1283 } 1284 } 1285 1286 // Insert new block at victimized entry 1287 tags->insertBlock(addr, is_secure, pkt->req->masterId(), 1288 pkt->req->taskId(), victim); 1289 1290 return victim; 1291} 1292 1293void 1294BaseCache::invalidateBlock(CacheBlk *blk) 1295{ 1296 // If handling a block present in the Tags, let it do its invalidation 1297 // process, which will update stats and invalidate the block itself 1298 if (blk != tempBlock) { 1299 tags->invalidate(blk); 1300 } else { 1301 tempBlock->invalidate(); 1302 } 1303} 1304 1305void 1306BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks) 1307{ 1308 PacketPtr pkt = evictBlock(blk); 1309 if (pkt) { 1310 writebacks.push_back(pkt); 1311 } 1312} 1313 1314PacketPtr 1315BaseCache::writebackBlk(CacheBlk *blk) 1316{ 1317 chatty_assert(!isReadOnly || writebackClean, 1318 "Writeback from read-only cache"); 1319 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean)); 1320 1321 writebacks[Request::wbMasterId]++; 1322 1323 RequestPtr req = std::make_shared<Request>( 1324 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId); 1325 1326 if (blk->isSecure()) 1327 req->setFlags(Request::SECURE); 1328 1329 req->taskId(blk->task_id); 1330 1331 PacketPtr pkt = 1332 new Packet(req, blk->isDirty() ? 1333 MemCmd::WritebackDirty : MemCmd::WritebackClean); 1334 1335 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n", 1336 pkt->print(), blk->isWritable(), blk->isDirty()); 1337 1338 if (blk->isWritable()) { 1339 // not asserting shared means we pass the block in modified 1340 // state, mark our own block non-writeable 1341 blk->status &= ~BlkWritable; 1342 } else { 1343 // we are in the Owned state, tell the receiver 1344 pkt->setHasSharers(); 1345 } 1346 1347 // make sure the block is not marked dirty 1348 blk->status &= ~BlkDirty; 1349 1350 pkt->allocate(); 1351 pkt->setDataFromBlock(blk->data, blkSize); 1352 1353 return pkt; 1354} 1355 1356PacketPtr 1357BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id) 1358{ 1359 RequestPtr req = std::make_shared<Request>( 1360 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId); 1361 1362 if (blk->isSecure()) { 1363 req->setFlags(Request::SECURE); 1364 } 1365 req->taskId(blk->task_id); 1366 1367 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id); 1368 1369 if (dest) { 1370 req->setFlags(dest); 1371 pkt->setWriteThrough(); 1372 } 1373 1374 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(), 1375 blk->isWritable(), blk->isDirty()); 1376 1377 if (blk->isWritable()) { 1378 // not asserting shared means we pass the block in modified 1379 // state, mark our own block non-writeable 1380 blk->status &= ~BlkWritable; 1381 } else { 1382 // we are in the Owned state, tell the receiver 1383 pkt->setHasSharers(); 1384 } 1385 1386 // make sure the block is not marked dirty 1387 blk->status &= ~BlkDirty; 1388 1389 pkt->allocate(); 1390 pkt->setDataFromBlock(blk->data, blkSize); 1391 1392 return pkt; 1393} 1394 1395 1396void 1397BaseCache::memWriteback() 1398{ 1399 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); }); 1400} 1401 1402void 1403BaseCache::memInvalidate() 1404{ 1405 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); }); 1406} 1407 1408bool 1409BaseCache::isDirty() const 1410{ 1411 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); }); 1412} 1413 1414bool 1415BaseCache::coalesce() const 1416{ 1417 return writeAllocator && writeAllocator->coalesce(); 1418} 1419 1420void 1421BaseCache::writebackVisitor(CacheBlk &blk) 1422{ 1423 if (blk.isDirty()) { 1424 assert(blk.isValid()); 1425 1426 RequestPtr request = std::make_shared<Request>( 1427 regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId); 1428 1429 request->taskId(blk.task_id); 1430 if (blk.isSecure()) { 1431 request->setFlags(Request::SECURE); 1432 } 1433 1434 Packet packet(request, MemCmd::WriteReq); 1435 packet.dataStatic(blk.data); 1436 1437 memSidePort.sendFunctional(&packet); 1438 1439 blk.status &= ~BlkDirty; 1440 } 1441} 1442 1443void 1444BaseCache::invalidateVisitor(CacheBlk &blk) 1445{ 1446 if (blk.isDirty()) 1447 warn_once("Invalidating dirty cache lines. " \ 1448 "Expect things to break.\n"); 1449 1450 if (blk.isValid()) { 1451 assert(!blk.isDirty()); 1452 invalidateBlock(&blk); 1453 } 1454} 1455 1456Tick 1457BaseCache::nextQueueReadyTime() const 1458{ 1459 Tick nextReady = std::min(mshrQueue.nextReadyTime(), 1460 writeBuffer.nextReadyTime()); 1461 1462 // Don't signal prefetch ready time if no MSHRs available 1463 // Will signal once enoguh MSHRs are deallocated 1464 if (prefetcher && mshrQueue.canPrefetch()) { 1465 nextReady = std::min(nextReady, 1466 prefetcher->nextPrefetchReadyTime()); 1467 } 1468 1469 return nextReady; 1470} 1471 1472 1473bool 1474BaseCache::sendMSHRQueuePacket(MSHR* mshr) 1475{ 1476 assert(mshr); 1477 1478 // use request from 1st target 1479 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 1480 1481 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print()); 1482 1483 // if the cache is in write coalescing mode or (additionally) in 1484 // no allocation mode, and we have a write packet with an MSHR 1485 // that is not a whole-line write (due to incompatible flags etc), 1486 // then reset the write mode 1487 if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) { 1488 if (!mshr->isWholeLineWrite()) { 1489 // if we are currently write coalescing, hold on the 1490 // MSHR as many cycles extra as we need to completely 1491 // write a cache line 1492 if (writeAllocator->delay(mshr->blkAddr)) { 1493 Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod(); 1494 DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow " 1495 "for write coalescing\n", tgt_pkt->print(), delay); 1496 mshrQueue.delay(mshr, delay); 1497 return false; 1498 } else { 1499 writeAllocator->reset(); 1500 } 1501 } else { 1502 writeAllocator->resetDelay(mshr->blkAddr); 1503 } 1504 } 1505 1506 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); 1507 1508 // either a prefetch that is not present upstream, or a normal 1509 // MSHR request, proceed to get the packet to send downstream 1510 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(), 1511 mshr->isWholeLineWrite()); 1512 1513 mshr->isForward = (pkt == nullptr); 1514 1515 if (mshr->isForward) { 1516 // not a cache block request, but a response is expected 1517 // make copy of current packet to forward, keep current 1518 // copy for response handling 1519 pkt = new Packet(tgt_pkt, false, true); 1520 assert(!pkt->isWrite()); 1521 } 1522 1523 // play it safe and append (rather than set) the sender state, 1524 // as forwarded packets may already have existing state 1525 pkt->pushSenderState(mshr); 1526 1527 if (pkt->isClean() && blk && blk->isDirty()) { 1528 // A cache clean opearation is looking for a dirty block. Mark 1529 // the packet so that the destination xbar can determine that 1530 // there will be a follow-up write packet as well. 1531 pkt->setSatisfied(); 1532 } 1533 1534 if (!memSidePort.sendTimingReq(pkt)) { 1535 // we are awaiting a retry, but we 1536 // delete the packet and will be creating a new packet 1537 // when we get the opportunity 1538 delete pkt; 1539 1540 // note that we have now masked any requestBus and 1541 // schedSendEvent (we will wait for a retry before 1542 // doing anything), and this is so even if we do not 1543 // care about this packet and might override it before 1544 // it gets retried 1545 return true; 1546 } else { 1547 // As part of the call to sendTimingReq the packet is 1548 // forwarded to all neighbouring caches (and any caches 1549 // above them) as a snoop. Thus at this point we know if 1550 // any of the neighbouring caches are responding, and if 1551 // so, we know it is dirty, and we can determine if it is 1552 // being passed as Modified, making our MSHR the ordering 1553 // point 1554 bool pending_modified_resp = !pkt->hasSharers() && 1555 pkt->cacheResponding(); 1556 markInService(mshr, pending_modified_resp); 1557 1558 if (pkt->isClean() && blk && blk->isDirty()) { 1559 // A cache clean opearation is looking for a dirty 1560 // block. If a dirty block is encountered a WriteClean 1561 // will update any copies to the path to the memory 1562 // until the point of reference. 1563 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 1564 __func__, pkt->print(), blk->print()); 1565 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), 1566 pkt->id); 1567 PacketList writebacks; 1568 writebacks.push_back(wb_pkt); 1569 doWritebacks(writebacks, 0); 1570 } 1571 1572 return false; 1573 } 1574} 1575 1576bool 1577BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry) 1578{ 1579 assert(wq_entry); 1580 1581 // always a single target for write queue entries 1582 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt; 1583 1584 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print()); 1585 1586 // forward as is, both for evictions and uncacheable writes 1587 if (!memSidePort.sendTimingReq(tgt_pkt)) { 1588 // note that we have now masked any requestBus and 1589 // schedSendEvent (we will wait for a retry before 1590 // doing anything), and this is so even if we do not 1591 // care about this packet and might override it before 1592 // it gets retried 1593 return true; 1594 } else { 1595 markInService(wq_entry); 1596 return false; 1597 } 1598} 1599 1600void 1601BaseCache::serialize(CheckpointOut &cp) const 1602{ 1603 bool dirty(isDirty()); 1604 1605 if (dirty) { 1606 warn("*** The cache still contains dirty data. ***\n"); 1607 warn(" Make sure to drain the system using the correct flags.\n"); 1608 warn(" This checkpoint will not restore correctly " \ 1609 "and dirty data in the cache will be lost!\n"); 1610 } 1611 1612 // Since we don't checkpoint the data in the cache, any dirty data 1613 // will be lost when restoring from a checkpoint of a system that 1614 // wasn't drained properly. Flag the checkpoint as invalid if the 1615 // cache contains dirty data. 1616 bool bad_checkpoint(dirty); 1617 SERIALIZE_SCALAR(bad_checkpoint); 1618} 1619 1620void 1621BaseCache::unserialize(CheckpointIn &cp) 1622{ 1623 bool bad_checkpoint; 1624 UNSERIALIZE_SCALAR(bad_checkpoint); 1625 if (bad_checkpoint) { 1626 fatal("Restoring from checkpoints with dirty caches is not " 1627 "supported in the classic memory system. Please remove any " 1628 "caches or drain them properly before taking checkpoints.\n"); 1629 } 1630} 1631 1632void 1633BaseCache::regStats() 1634{ 1635 MemObject::regStats(); 1636 1637 using namespace Stats; 1638 1639 // Hit statistics 1640 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1641 MemCmd cmd(access_idx); 1642 const string &cstr = cmd.toString(); 1643 1644 hits[access_idx] 1645 .init(system->maxMasters()) 1646 .name(name() + "." + cstr + "_hits") 1647 .desc("number of " + cstr + " hits") 1648 .flags(total | nozero | nonan) 1649 ; 1650 for (int i = 0; i < system->maxMasters(); i++) { 1651 hits[access_idx].subname(i, system->getMasterName(i)); 1652 } 1653 } 1654 1655// These macros make it easier to sum the right subset of commands and 1656// to change the subset of commands that are considered "demand" vs 1657// "non-demand" 1658#define SUM_DEMAND(s) \ 1659 (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \ 1660 s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq]) 1661 1662// should writebacks be included here? prior code was inconsistent... 1663#define SUM_NON_DEMAND(s) \ 1664 (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq] + s[MemCmd::SoftPFExReq]) 1665 1666 demandHits 1667 .name(name() + ".demand_hits") 1668 .desc("number of demand (read+write) hits") 1669 .flags(total | nozero | nonan) 1670 ; 1671 demandHits = SUM_DEMAND(hits); 1672 for (int i = 0; i < system->maxMasters(); i++) { 1673 demandHits.subname(i, system->getMasterName(i)); 1674 } 1675 1676 overallHits 1677 .name(name() + ".overall_hits") 1678 .desc("number of overall hits") 1679 .flags(total | nozero | nonan) 1680 ; 1681 overallHits = demandHits + SUM_NON_DEMAND(hits); 1682 for (int i = 0; i < system->maxMasters(); i++) { 1683 overallHits.subname(i, system->getMasterName(i)); 1684 } 1685 1686 // Miss statistics 1687 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1688 MemCmd cmd(access_idx); 1689 const string &cstr = cmd.toString(); 1690 1691 misses[access_idx] 1692 .init(system->maxMasters()) 1693 .name(name() + "." + cstr + "_misses") 1694 .desc("number of " + cstr + " misses") 1695 .flags(total | nozero | nonan) 1696 ; 1697 for (int i = 0; i < system->maxMasters(); i++) { 1698 misses[access_idx].subname(i, system->getMasterName(i)); 1699 } 1700 } 1701 1702 demandMisses 1703 .name(name() + ".demand_misses") 1704 .desc("number of demand (read+write) misses") 1705 .flags(total | nozero | nonan) 1706 ; 1707 demandMisses = SUM_DEMAND(misses); 1708 for (int i = 0; i < system->maxMasters(); i++) { 1709 demandMisses.subname(i, system->getMasterName(i)); 1710 } 1711 1712 overallMisses 1713 .name(name() + ".overall_misses") 1714 .desc("number of overall misses") 1715 .flags(total | nozero | nonan) 1716 ; 1717 overallMisses = demandMisses + SUM_NON_DEMAND(misses); 1718 for (int i = 0; i < system->maxMasters(); i++) { 1719 overallMisses.subname(i, system->getMasterName(i)); 1720 } 1721 1722 // Miss latency statistics 1723 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1724 MemCmd cmd(access_idx); 1725 const string &cstr = cmd.toString(); 1726 1727 missLatency[access_idx] 1728 .init(system->maxMasters()) 1729 .name(name() + "." + cstr + "_miss_latency") 1730 .desc("number of " + cstr + " miss cycles") 1731 .flags(total | nozero | nonan) 1732 ; 1733 for (int i = 0; i < system->maxMasters(); i++) { 1734 missLatency[access_idx].subname(i, system->getMasterName(i)); 1735 } 1736 } 1737 1738 demandMissLatency 1739 .name(name() + ".demand_miss_latency") 1740 .desc("number of demand (read+write) miss cycles") 1741 .flags(total | nozero | nonan) 1742 ; 1743 demandMissLatency = SUM_DEMAND(missLatency); 1744 for (int i = 0; i < system->maxMasters(); i++) { 1745 demandMissLatency.subname(i, system->getMasterName(i)); 1746 } 1747 1748 overallMissLatency 1749 .name(name() + ".overall_miss_latency") 1750 .desc("number of overall miss cycles") 1751 .flags(total | nozero | nonan) 1752 ; 1753 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency); 1754 for (int i = 0; i < system->maxMasters(); i++) { 1755 overallMissLatency.subname(i, system->getMasterName(i)); 1756 } 1757 1758 // access formulas 1759 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1760 MemCmd cmd(access_idx); 1761 const string &cstr = cmd.toString(); 1762 1763 accesses[access_idx] 1764 .name(name() + "." + cstr + "_accesses") 1765 .desc("number of " + cstr + " accesses(hits+misses)") 1766 .flags(total | nozero | nonan) 1767 ; 1768 accesses[access_idx] = hits[access_idx] + misses[access_idx]; 1769 1770 for (int i = 0; i < system->maxMasters(); i++) { 1771 accesses[access_idx].subname(i, system->getMasterName(i)); 1772 } 1773 } 1774 1775 demandAccesses 1776 .name(name() + ".demand_accesses") 1777 .desc("number of demand (read+write) accesses") 1778 .flags(total | nozero | nonan) 1779 ; 1780 demandAccesses = demandHits + demandMisses; 1781 for (int i = 0; i < system->maxMasters(); i++) { 1782 demandAccesses.subname(i, system->getMasterName(i)); 1783 } 1784 1785 overallAccesses 1786 .name(name() + ".overall_accesses") 1787 .desc("number of overall (read+write) accesses") 1788 .flags(total | nozero | nonan) 1789 ; 1790 overallAccesses = overallHits + overallMisses; 1791 for (int i = 0; i < system->maxMasters(); i++) { 1792 overallAccesses.subname(i, system->getMasterName(i)); 1793 } 1794 1795 // miss rate formulas 1796 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1797 MemCmd cmd(access_idx); 1798 const string &cstr = cmd.toString(); 1799 1800 missRate[access_idx] 1801 .name(name() + "." + cstr + "_miss_rate") 1802 .desc("miss rate for " + cstr + " accesses") 1803 .flags(total | nozero | nonan) 1804 ; 1805 missRate[access_idx] = misses[access_idx] / accesses[access_idx]; 1806 1807 for (int i = 0; i < system->maxMasters(); i++) { 1808 missRate[access_idx].subname(i, system->getMasterName(i)); 1809 } 1810 } 1811 1812 demandMissRate 1813 .name(name() + ".demand_miss_rate") 1814 .desc("miss rate for demand accesses") 1815 .flags(total | nozero | nonan) 1816 ; 1817 demandMissRate = demandMisses / demandAccesses; 1818 for (int i = 0; i < system->maxMasters(); i++) { 1819 demandMissRate.subname(i, system->getMasterName(i)); 1820 } 1821 1822 overallMissRate 1823 .name(name() + ".overall_miss_rate") 1824 .desc("miss rate for overall accesses") 1825 .flags(total | nozero | nonan) 1826 ; 1827 overallMissRate = overallMisses / overallAccesses; 1828 for (int i = 0; i < system->maxMasters(); i++) { 1829 overallMissRate.subname(i, system->getMasterName(i)); 1830 } 1831 1832 // miss latency formulas 1833 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1834 MemCmd cmd(access_idx); 1835 const string &cstr = cmd.toString(); 1836 1837 avgMissLatency[access_idx] 1838 .name(name() + "." + cstr + "_avg_miss_latency") 1839 .desc("average " + cstr + " miss latency") 1840 .flags(total | nozero | nonan) 1841 ; 1842 avgMissLatency[access_idx] = 1843 missLatency[access_idx] / misses[access_idx]; 1844 1845 for (int i = 0; i < system->maxMasters(); i++) { 1846 avgMissLatency[access_idx].subname(i, system->getMasterName(i)); 1847 } 1848 } 1849 1850 demandAvgMissLatency 1851 .name(name() + ".demand_avg_miss_latency") 1852 .desc("average overall miss latency") 1853 .flags(total | nozero | nonan) 1854 ; 1855 demandAvgMissLatency = demandMissLatency / demandMisses; 1856 for (int i = 0; i < system->maxMasters(); i++) { 1857 demandAvgMissLatency.subname(i, system->getMasterName(i)); 1858 } 1859 1860 overallAvgMissLatency 1861 .name(name() + ".overall_avg_miss_latency") 1862 .desc("average overall miss latency") 1863 .flags(total | nozero | nonan) 1864 ; 1865 overallAvgMissLatency = overallMissLatency / overallMisses; 1866 for (int i = 0; i < system->maxMasters(); i++) { 1867 overallAvgMissLatency.subname(i, system->getMasterName(i)); 1868 } 1869 1870 blocked_cycles.init(NUM_BLOCKED_CAUSES); 1871 blocked_cycles 1872 .name(name() + ".blocked_cycles") 1873 .desc("number of cycles access was blocked") 1874 .subname(Blocked_NoMSHRs, "no_mshrs") 1875 .subname(Blocked_NoTargets, "no_targets") 1876 ; 1877 1878 1879 blocked_causes.init(NUM_BLOCKED_CAUSES); 1880 blocked_causes 1881 .name(name() + ".blocked") 1882 .desc("number of cycles access was blocked") 1883 .subname(Blocked_NoMSHRs, "no_mshrs") 1884 .subname(Blocked_NoTargets, "no_targets") 1885 ; 1886 1887 avg_blocked 1888 .name(name() + ".avg_blocked_cycles") 1889 .desc("average number of cycles each access was blocked") 1890 .subname(Blocked_NoMSHRs, "no_mshrs") 1891 .subname(Blocked_NoTargets, "no_targets") 1892 ; 1893 1894 avg_blocked = blocked_cycles / blocked_causes; 1895 1896 unusedPrefetches 1897 .name(name() + ".unused_prefetches") 1898 .desc("number of HardPF blocks evicted w/o reference") 1899 .flags(nozero) 1900 ; 1901 1902 writebacks 1903 .init(system->maxMasters()) 1904 .name(name() + ".writebacks") 1905 .desc("number of writebacks") 1906 .flags(total | nozero | nonan) 1907 ; 1908 for (int i = 0; i < system->maxMasters(); i++) { 1909 writebacks.subname(i, system->getMasterName(i)); 1910 } 1911 1912 // MSHR statistics 1913 // MSHR hit statistics 1914 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1915 MemCmd cmd(access_idx); 1916 const string &cstr = cmd.toString(); 1917 1918 mshr_hits[access_idx] 1919 .init(system->maxMasters()) 1920 .name(name() + "." + cstr + "_mshr_hits") 1921 .desc("number of " + cstr + " MSHR hits") 1922 .flags(total | nozero | nonan) 1923 ; 1924 for (int i = 0; i < system->maxMasters(); i++) { 1925 mshr_hits[access_idx].subname(i, system->getMasterName(i)); 1926 } 1927 } 1928 1929 demandMshrHits 1930 .name(name() + ".demand_mshr_hits") 1931 .desc("number of demand (read+write) MSHR hits") 1932 .flags(total | nozero | nonan) 1933 ; 1934 demandMshrHits = SUM_DEMAND(mshr_hits); 1935 for (int i = 0; i < system->maxMasters(); i++) { 1936 demandMshrHits.subname(i, system->getMasterName(i)); 1937 } 1938 1939 overallMshrHits 1940 .name(name() + ".overall_mshr_hits") 1941 .desc("number of overall MSHR hits") 1942 .flags(total | nozero | nonan) 1943 ; 1944 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits); 1945 for (int i = 0; i < system->maxMasters(); i++) { 1946 overallMshrHits.subname(i, system->getMasterName(i)); 1947 } 1948 1949 // MSHR miss statistics 1950 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1951 MemCmd cmd(access_idx); 1952 const string &cstr = cmd.toString(); 1953 1954 mshr_misses[access_idx] 1955 .init(system->maxMasters()) 1956 .name(name() + "." + cstr + "_mshr_misses") 1957 .desc("number of " + cstr + " MSHR misses") 1958 .flags(total | nozero | nonan) 1959 ; 1960 for (int i = 0; i < system->maxMasters(); i++) { 1961 mshr_misses[access_idx].subname(i, system->getMasterName(i)); 1962 } 1963 } 1964 1965 demandMshrMisses 1966 .name(name() + ".demand_mshr_misses") 1967 .desc("number of demand (read+write) MSHR misses") 1968 .flags(total | nozero | nonan) 1969 ; 1970 demandMshrMisses = SUM_DEMAND(mshr_misses); 1971 for (int i = 0; i < system->maxMasters(); i++) { 1972 demandMshrMisses.subname(i, system->getMasterName(i)); 1973 } 1974 1975 overallMshrMisses 1976 .name(name() + ".overall_mshr_misses") 1977 .desc("number of overall MSHR misses") 1978 .flags(total | nozero | nonan) 1979 ; 1980 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses); 1981 for (int i = 0; i < system->maxMasters(); i++) { 1982 overallMshrMisses.subname(i, system->getMasterName(i)); 1983 } 1984 1985 // MSHR miss latency statistics 1986 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1987 MemCmd cmd(access_idx); 1988 const string &cstr = cmd.toString(); 1989 1990 mshr_miss_latency[access_idx] 1991 .init(system->maxMasters()) 1992 .name(name() + "." + cstr + "_mshr_miss_latency") 1993 .desc("number of " + cstr + " MSHR miss cycles") 1994 .flags(total | nozero | nonan) 1995 ; 1996 for (int i = 0; i < system->maxMasters(); i++) { 1997 mshr_miss_latency[access_idx].subname(i, system->getMasterName(i)); 1998 } 1999 } 2000 2001 demandMshrMissLatency 2002 .name(name() + ".demand_mshr_miss_latency") 2003 .desc("number of demand (read+write) MSHR miss cycles") 2004 .flags(total | nozero | nonan) 2005 ; 2006 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency); 2007 for (int i = 0; i < system->maxMasters(); i++) { 2008 demandMshrMissLatency.subname(i, system->getMasterName(i)); 2009 } 2010 2011 overallMshrMissLatency 2012 .name(name() + ".overall_mshr_miss_latency") 2013 .desc("number of overall MSHR miss cycles") 2014 .flags(total | nozero | nonan) 2015 ; 2016 overallMshrMissLatency = 2017 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency); 2018 for (int i = 0; i < system->maxMasters(); i++) { 2019 overallMshrMissLatency.subname(i, system->getMasterName(i)); 2020 } 2021 2022 // MSHR uncacheable statistics 2023 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2024 MemCmd cmd(access_idx); 2025 const string &cstr = cmd.toString(); 2026 2027 mshr_uncacheable[access_idx] 2028 .init(system->maxMasters()) 2029 .name(name() + "." + cstr + "_mshr_uncacheable") 2030 .desc("number of " + cstr + " MSHR uncacheable") 2031 .flags(total | nozero | nonan) 2032 ; 2033 for (int i = 0; i < system->maxMasters(); i++) { 2034 mshr_uncacheable[access_idx].subname(i, system->getMasterName(i)); 2035 } 2036 } 2037 2038 overallMshrUncacheable 2039 .name(name() + ".overall_mshr_uncacheable_misses") 2040 .desc("number of overall MSHR uncacheable misses") 2041 .flags(total | nozero | nonan) 2042 ; 2043 overallMshrUncacheable = 2044 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable); 2045 for (int i = 0; i < system->maxMasters(); i++) { 2046 overallMshrUncacheable.subname(i, system->getMasterName(i)); 2047 } 2048 2049 // MSHR miss latency statistics 2050 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2051 MemCmd cmd(access_idx); 2052 const string &cstr = cmd.toString(); 2053 2054 mshr_uncacheable_lat[access_idx] 2055 .init(system->maxMasters()) 2056 .name(name() + "." + cstr + "_mshr_uncacheable_latency") 2057 .desc("number of " + cstr + " MSHR uncacheable cycles") 2058 .flags(total | nozero | nonan) 2059 ; 2060 for (int i = 0; i < system->maxMasters(); i++) { 2061 mshr_uncacheable_lat[access_idx].subname( 2062 i, system->getMasterName(i)); 2063 } 2064 } 2065 2066 overallMshrUncacheableLatency 2067 .name(name() + ".overall_mshr_uncacheable_latency") 2068 .desc("number of overall MSHR uncacheable cycles") 2069 .flags(total | nozero | nonan) 2070 ; 2071 overallMshrUncacheableLatency = 2072 SUM_DEMAND(mshr_uncacheable_lat) + 2073 SUM_NON_DEMAND(mshr_uncacheable_lat); 2074 for (int i = 0; i < system->maxMasters(); i++) { 2075 overallMshrUncacheableLatency.subname(i, system->getMasterName(i)); 2076 } 2077 2078#if 0 2079 // MSHR access formulas 2080 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2081 MemCmd cmd(access_idx); 2082 const string &cstr = cmd.toString(); 2083 2084 mshrAccesses[access_idx] 2085 .name(name() + "." + cstr + "_mshr_accesses") 2086 .desc("number of " + cstr + " mshr accesses(hits+misses)") 2087 .flags(total | nozero | nonan) 2088 ; 2089 mshrAccesses[access_idx] = 2090 mshr_hits[access_idx] + mshr_misses[access_idx] 2091 + mshr_uncacheable[access_idx]; 2092 } 2093 2094 demandMshrAccesses 2095 .name(name() + ".demand_mshr_accesses") 2096 .desc("number of demand (read+write) mshr accesses") 2097 .flags(total | nozero | nonan) 2098 ; 2099 demandMshrAccesses = demandMshrHits + demandMshrMisses; 2100 2101 overallMshrAccesses 2102 .name(name() + ".overall_mshr_accesses") 2103 .desc("number of overall (read+write) mshr accesses") 2104 .flags(total | nozero | nonan) 2105 ; 2106 overallMshrAccesses = overallMshrHits + overallMshrMisses 2107 + overallMshrUncacheable; 2108#endif 2109 2110 // MSHR miss rate formulas 2111 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2112 MemCmd cmd(access_idx); 2113 const string &cstr = cmd.toString(); 2114 2115 mshrMissRate[access_idx] 2116 .name(name() + "." + cstr + "_mshr_miss_rate") 2117 .desc("mshr miss rate for " + cstr + " accesses") 2118 .flags(total | nozero | nonan) 2119 ; 2120 mshrMissRate[access_idx] = 2121 mshr_misses[access_idx] / accesses[access_idx]; 2122 2123 for (int i = 0; i < system->maxMasters(); i++) { 2124 mshrMissRate[access_idx].subname(i, system->getMasterName(i)); 2125 } 2126 } 2127 2128 demandMshrMissRate 2129 .name(name() + ".demand_mshr_miss_rate") 2130 .desc("mshr miss rate for demand accesses") 2131 .flags(total | nozero | nonan) 2132 ; 2133 demandMshrMissRate = demandMshrMisses / demandAccesses; 2134 for (int i = 0; i < system->maxMasters(); i++) { 2135 demandMshrMissRate.subname(i, system->getMasterName(i)); 2136 } 2137 2138 overallMshrMissRate 2139 .name(name() + ".overall_mshr_miss_rate") 2140 .desc("mshr miss rate for overall accesses") 2141 .flags(total | nozero | nonan) 2142 ; 2143 overallMshrMissRate = overallMshrMisses / overallAccesses; 2144 for (int i = 0; i < system->maxMasters(); i++) { 2145 overallMshrMissRate.subname(i, system->getMasterName(i)); 2146 } 2147 2148 // mshrMiss latency formulas 2149 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2150 MemCmd cmd(access_idx); 2151 const string &cstr = cmd.toString(); 2152 2153 avgMshrMissLatency[access_idx] 2154 .name(name() + "." + cstr + "_avg_mshr_miss_latency") 2155 .desc("average " + cstr + " mshr miss latency") 2156 .flags(total | nozero | nonan) 2157 ; 2158 avgMshrMissLatency[access_idx] = 2159 mshr_miss_latency[access_idx] / mshr_misses[access_idx]; 2160 2161 for (int i = 0; i < system->maxMasters(); i++) { 2162 avgMshrMissLatency[access_idx].subname( 2163 i, system->getMasterName(i)); 2164 } 2165 } 2166 2167 demandAvgMshrMissLatency 2168 .name(name() + ".demand_avg_mshr_miss_latency") 2169 .desc("average overall mshr miss latency") 2170 .flags(total | nozero | nonan) 2171 ; 2172 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses; 2173 for (int i = 0; i < system->maxMasters(); i++) { 2174 demandAvgMshrMissLatency.subname(i, system->getMasterName(i)); 2175 } 2176 2177 overallAvgMshrMissLatency 2178 .name(name() + ".overall_avg_mshr_miss_latency") 2179 .desc("average overall mshr miss latency") 2180 .flags(total | nozero | nonan) 2181 ; 2182 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses; 2183 for (int i = 0; i < system->maxMasters(); i++) { 2184 overallAvgMshrMissLatency.subname(i, system->getMasterName(i)); 2185 } 2186 2187 // mshrUncacheable latency formulas 2188 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2189 MemCmd cmd(access_idx); 2190 const string &cstr = cmd.toString(); 2191 2192 avgMshrUncacheableLatency[access_idx] 2193 .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency") 2194 .desc("average " + cstr + " mshr uncacheable latency") 2195 .flags(total | nozero | nonan) 2196 ; 2197 avgMshrUncacheableLatency[access_idx] = 2198 mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx]; 2199 2200 for (int i = 0; i < system->maxMasters(); i++) { 2201 avgMshrUncacheableLatency[access_idx].subname( 2202 i, system->getMasterName(i)); 2203 } 2204 } 2205 2206 overallAvgMshrUncacheableLatency 2207 .name(name() + ".overall_avg_mshr_uncacheable_latency") 2208 .desc("average overall mshr uncacheable latency") 2209 .flags(total | nozero | nonan) 2210 ; 2211 overallAvgMshrUncacheableLatency = 2212 overallMshrUncacheableLatency / overallMshrUncacheable; 2213 for (int i = 0; i < system->maxMasters(); i++) { 2214 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i)); 2215 } 2216 2217 replacements 2218 .name(name() + ".replacements") 2219 .desc("number of replacements") 2220 ; 2221} 2222 2223void 2224BaseCache::regProbePoints() 2225{ 2226 ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit"); 2227 ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss"); 2228} 2229 2230/////////////// 2231// 2232// CpuSidePort 2233// 2234/////////////// 2235bool 2236BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) 2237{ 2238 // Snoops shouldn't happen when bypassing caches 2239 assert(!cache->system->bypassCaches()); 2240 2241 assert(pkt->isResponse()); 2242 2243 // Express snoop responses from master to slave, e.g., from L1 to L2 2244 cache->recvTimingSnoopResp(pkt); 2245 return true; 2246} 2247 2248 2249bool 2250BaseCache::CpuSidePort::tryTiming(PacketPtr pkt) 2251{ 2252 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) { 2253 // always let express snoop packets through even if blocked 2254 return true; 2255 } else if (blocked || mustSendRetry) { 2256 // either already committed to send a retry, or blocked 2257 mustSendRetry = true; 2258 return false; 2259 } 2260 mustSendRetry = false; 2261 return true; 2262} 2263 2264bool 2265BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt) 2266{ 2267 assert(pkt->isRequest()); 2268 2269 if (cache->system->bypassCaches()) { 2270 // Just forward the packet if caches are disabled. 2271 // @todo This should really enqueue the packet rather 2272 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt); 2273 assert(success); 2274 return true; 2275 } else if (tryTiming(pkt)) { 2276 cache->recvTimingReq(pkt); 2277 return true; 2278 } 2279 return false; 2280} 2281 2282Tick 2283BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt) 2284{ 2285 if (cache->system->bypassCaches()) { 2286 // Forward the request if the system is in cache bypass mode. 2287 return cache->memSidePort.sendAtomic(pkt); 2288 } else { 2289 return cache->recvAtomic(pkt); 2290 } 2291} 2292 2293void 2294BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt) 2295{ 2296 if (cache->system->bypassCaches()) { 2297 // The cache should be flushed if we are in cache bypass mode, 2298 // so we don't need to check if we need to update anything. 2299 cache->memSidePort.sendFunctional(pkt); 2300 return; 2301 } 2302 2303 // functional request 2304 cache->functionalAccess(pkt, true); 2305} 2306 2307AddrRangeList 2308BaseCache::CpuSidePort::getAddrRanges() const 2309{ 2310 return cache->getAddrRanges(); 2311} 2312 2313 2314BaseCache:: 2315CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache, 2316 const std::string &_label) 2317 : CacheSlavePort(_name, _cache, _label), cache(_cache) 2318{ 2319} 2320 2321/////////////// 2322// 2323// MemSidePort 2324// 2325/////////////// 2326bool 2327BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt) 2328{ 2329 cache->recvTimingResp(pkt); 2330 return true; 2331} 2332 2333// Express snooping requests to memside port 2334void 2335BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) 2336{ 2337 // Snoops shouldn't happen when bypassing caches 2338 assert(!cache->system->bypassCaches()); 2339 2340 // handle snooping requests 2341 cache->recvTimingSnoopReq(pkt); 2342} 2343 2344Tick 2345BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) 2346{ 2347 // Snoops shouldn't happen when bypassing caches 2348 assert(!cache->system->bypassCaches()); 2349 2350 return cache->recvAtomicSnoop(pkt); 2351} 2352 2353void 2354BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) 2355{ 2356 // Snoops shouldn't happen when bypassing caches 2357 assert(!cache->system->bypassCaches()); 2358 2359 // functional snoop (note that in contrast to atomic we don't have 2360 // a specific functionalSnoop method, as they have the same 2361 // behaviour regardless) 2362 cache->functionalAccess(pkt, false); 2363} 2364 2365void 2366BaseCache::CacheReqPacketQueue::sendDeferredPacket() 2367{ 2368 // sanity check 2369 assert(!waitingOnRetry); 2370 2371 // there should never be any deferred request packets in the 2372 // queue, instead we resly on the cache to provide the packets 2373 // from the MSHR queue or write queue 2374 assert(deferredPacketReadyTime() == MaxTick); 2375 2376 // check for request packets (requests & writebacks) 2377 QueueEntry* entry = cache.getNextQueueEntry(); 2378 2379 if (!entry) { 2380 // can happen if e.g. we attempt a writeback and fail, but 2381 // before the retry, the writeback is eliminated because 2382 // we snoop another cache's ReadEx. 2383 } else { 2384 // let our snoop responses go first if there are responses to 2385 // the same addresses 2386 if (checkConflictingSnoop(entry->blkAddr)) { 2387 return; 2388 } 2389 waitingOnRetry = entry->sendPacket(cache); 2390 } 2391 2392 // if we succeeded and are not waiting for a retry, schedule the 2393 // next send considering when the next queue is ready, note that 2394 // snoop responses have their own packet queue and thus schedule 2395 // their own events 2396 if (!waitingOnRetry) { 2397 schedSendEvent(cache.nextQueueReadyTime()); 2398 } 2399} 2400 2401BaseCache::MemSidePort::MemSidePort(const std::string &_name, 2402 BaseCache *_cache, 2403 const std::string &_label) 2404 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), 2405 _reqQueue(*_cache, *this, _snoopRespQueue, _label), 2406 _snoopRespQueue(*_cache, *this, _label), cache(_cache) 2407{ 2408} 2409 2410void 2411WriteAllocator::updateMode(Addr write_addr, unsigned write_size, 2412 Addr blk_addr) 2413{ 2414 // check if we are continuing where the last write ended 2415 if (nextAddr == write_addr) { 2416 delayCtr[blk_addr] = delayThreshold; 2417 // stop if we have already saturated 2418 if (mode != WriteMode::NO_ALLOCATE) { 2419 byteCount += write_size; 2420 // switch to streaming mode if we have passed the lower 2421 // threshold 2422 if (mode == WriteMode::ALLOCATE && 2423 byteCount > coalesceLimit) { 2424 mode = WriteMode::COALESCE; 2425 DPRINTF(Cache, "Switched to write coalescing\n"); 2426 } else if (mode == WriteMode::COALESCE && 2427 byteCount > noAllocateLimit) { 2428 // and continue and switch to non-allocating mode if we 2429 // pass the upper threshold 2430 mode = WriteMode::NO_ALLOCATE; 2431 DPRINTF(Cache, "Switched to write-no-allocate\n"); 2432 } 2433 } 2434 } else { 2435 // we did not see a write matching the previous one, start 2436 // over again 2437 byteCount = write_size; 2438 mode = WriteMode::ALLOCATE; 2439 resetDelay(blk_addr); 2440 } 2441 nextAddr = write_addr + write_size; 2442} 2443 2444WriteAllocator* 2445WriteAllocatorParams::create() 2446{ 2447 return new WriteAllocator(this); 2448} 2449