base.cc revision 13416
1/* 2 * Copyright (c) 2012-2013, 2018 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2003-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Erik Hallnor 41 * Nikos Nikoleris 42 */ 43 44/** 45 * @file 46 * Definition of BaseCache functions. 47 */ 48 49#include "mem/cache/base.hh" 50 51#include "base/compiler.hh" 52#include "base/logging.hh" 53#include "debug/Cache.hh" 54#include "debug/CachePort.hh" 55#include "debug/CacheRepl.hh" 56#include "debug/CacheVerbose.hh" 57#include "mem/cache/mshr.hh" 58#include "mem/cache/prefetch/base.hh" 59#include "mem/cache/queue_entry.hh" 60#include "params/BaseCache.hh" 61#include "params/WriteAllocator.hh" 62#include "sim/core.hh" 63 64class BaseMasterPort; 65class BaseSlavePort; 66 67using namespace std; 68 69BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name, 70 BaseCache *_cache, 71 const std::string &_label) 72 : QueuedSlavePort(_name, _cache, queue), queue(*_cache, *this, _label), 73 blocked(false), mustSendRetry(false), 74 sendRetryEvent([this]{ processSendRetry(); }, _name) 75{ 76} 77 78BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size) 79 : MemObject(p), 80 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"), 81 memSidePort(p->name + ".mem_side", this, "MemSidePort"), 82 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below 83 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below 84 tags(p->tags), 85 prefetcher(p->prefetcher), 86 writeAllocator(p->write_allocator), 87 writebackClean(p->writeback_clean), 88 tempBlockWriteback(nullptr), 89 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); }, 90 name(), false, 91 EventBase::Delayed_Writeback_Pri), 92 blkSize(blk_size), 93 lookupLatency(p->tag_latency), 94 dataLatency(p->data_latency), 95 forwardLatency(p->tag_latency), 96 fillLatency(p->data_latency), 97 responseLatency(p->response_latency), 98 numTarget(p->tgts_per_mshr), 99 forwardSnoops(true), 100 clusivity(p->clusivity), 101 isReadOnly(p->is_read_only), 102 blocked(0), 103 order(0), 104 noTargetMSHR(nullptr), 105 missCount(p->max_miss_count), 106 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()), 107 system(p->system) 108{ 109 // the MSHR queue has no reserve entries as we check the MSHR 110 // queue on every single allocation, whereas the write queue has 111 // as many reserve entries as we have MSHRs, since every MSHR may 112 // eventually require a writeback, and we do not check the write 113 // buffer before committing to an MSHR 114 115 // forward snoops is overridden in init() once we can query 116 // whether the connected master is actually snooping or not 117 118 tempBlock = new TempCacheBlk(blkSize); 119 120 tags->tagsInit(this); 121 if (prefetcher) 122 prefetcher->setCache(this); 123} 124 125BaseCache::~BaseCache() 126{ 127 delete tempBlock; 128} 129 130void 131BaseCache::CacheSlavePort::setBlocked() 132{ 133 assert(!blocked); 134 DPRINTF(CachePort, "Port is blocking new requests\n"); 135 blocked = true; 136 // if we already scheduled a retry in this cycle, but it has not yet 137 // happened, cancel it 138 if (sendRetryEvent.scheduled()) { 139 owner.deschedule(sendRetryEvent); 140 DPRINTF(CachePort, "Port descheduled retry\n"); 141 mustSendRetry = true; 142 } 143} 144 145void 146BaseCache::CacheSlavePort::clearBlocked() 147{ 148 assert(blocked); 149 DPRINTF(CachePort, "Port is accepting new requests\n"); 150 blocked = false; 151 if (mustSendRetry) { 152 // @TODO: need to find a better time (next cycle?) 153 owner.schedule(sendRetryEvent, curTick() + 1); 154 } 155} 156 157void 158BaseCache::CacheSlavePort::processSendRetry() 159{ 160 DPRINTF(CachePort, "Port is sending retry\n"); 161 162 // reset the flag and call retry 163 mustSendRetry = false; 164 sendRetryReq(); 165} 166 167Addr 168BaseCache::regenerateBlkAddr(CacheBlk* blk) 169{ 170 if (blk != tempBlock) { 171 return tags->regenerateBlkAddr(blk); 172 } else { 173 return tempBlock->getAddr(); 174 } 175} 176 177void 178BaseCache::init() 179{ 180 if (!cpuSidePort.isConnected() || !memSidePort.isConnected()) 181 fatal("Cache ports on %s are not connected\n", name()); 182 cpuSidePort.sendRangeChange(); 183 forwardSnoops = cpuSidePort.isSnooping(); 184} 185 186BaseMasterPort & 187BaseCache::getMasterPort(const std::string &if_name, PortID idx) 188{ 189 if (if_name == "mem_side") { 190 return memSidePort; 191 } else { 192 return MemObject::getMasterPort(if_name, idx); 193 } 194} 195 196BaseSlavePort & 197BaseCache::getSlavePort(const std::string &if_name, PortID idx) 198{ 199 if (if_name == "cpu_side") { 200 return cpuSidePort; 201 } else { 202 return MemObject::getSlavePort(if_name, idx); 203 } 204} 205 206bool 207BaseCache::inRange(Addr addr) const 208{ 209 for (const auto& r : addrRanges) { 210 if (r.contains(addr)) { 211 return true; 212 } 213 } 214 return false; 215} 216 217void 218BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time) 219{ 220 if (pkt->needsResponse()) { 221 pkt->makeTimingResponse(); 222 // @todo: Make someone pay for this 223 pkt->headerDelay = pkt->payloadDelay = 0; 224 225 // In this case we are considering request_time that takes 226 // into account the delay of the xbar, if any, and just 227 // lat, neglecting responseLatency, modelling hit latency 228 // just as lookupLatency or or the value of lat overriden 229 // by access(), that calls accessBlock() function. 230 cpuSidePort.schedTimingResp(pkt, request_time, true); 231 } else { 232 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__, 233 pkt->print()); 234 235 // queue the packet for deletion, as the sending cache is 236 // still relying on it; if the block is found in access(), 237 // CleanEvict and Writeback messages will be deleted 238 // here as well 239 pendingDelete.reset(pkt); 240 } 241} 242 243void 244BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk, 245 Tick forward_time, Tick request_time) 246{ 247 if (writeAllocator && 248 pkt && pkt->isWrite() && !pkt->req->isUncacheable()) { 249 writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(), 250 pkt->getBlockAddr(blkSize)); 251 } 252 253 if (mshr) { 254 /// MSHR hit 255 /// @note writebacks will be checked in getNextMSHR() 256 /// for any conflicting requests to the same block 257 258 //@todo remove hw_pf here 259 260 // Coalesce unless it was a software prefetch (see above). 261 if (pkt) { 262 assert(!pkt->isWriteback()); 263 // CleanEvicts corresponding to blocks which have 264 // outstanding requests in MSHRs are simply sunk here 265 if (pkt->cmd == MemCmd::CleanEvict) { 266 pendingDelete.reset(pkt); 267 } else if (pkt->cmd == MemCmd::WriteClean) { 268 // A WriteClean should never coalesce with any 269 // outstanding cache maintenance requests. 270 271 // We use forward_time here because there is an 272 // uncached memory write, forwarded to WriteBuffer. 273 allocateWriteBuffer(pkt, forward_time); 274 } else { 275 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__, 276 pkt->print()); 277 278 assert(pkt->req->masterId() < system->maxMasters()); 279 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 280 281 // We use forward_time here because it is the same 282 // considering new targets. We have multiple 283 // requests for the same address here. It 284 // specifies the latency to allocate an internal 285 // buffer and to schedule an event to the queued 286 // port and also takes into account the additional 287 // delay of the xbar. 288 mshr->allocateTarget(pkt, forward_time, order++, 289 allocOnFill(pkt->cmd)); 290 if (mshr->getNumTargets() == numTarget) { 291 noTargetMSHR = mshr; 292 setBlocked(Blocked_NoTargets); 293 // need to be careful with this... if this mshr isn't 294 // ready yet (i.e. time > curTick()), we don't want to 295 // move it ahead of mshrs that are ready 296 // mshrQueue.moveToFront(mshr); 297 } 298 } 299 } 300 } else { 301 // no MSHR 302 assert(pkt->req->masterId() < system->maxMasters()); 303 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 304 305 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) { 306 // We use forward_time here because there is an 307 // writeback or writeclean, forwarded to WriteBuffer. 308 allocateWriteBuffer(pkt, forward_time); 309 } else { 310 if (blk && blk->isValid()) { 311 // If we have a write miss to a valid block, we 312 // need to mark the block non-readable. Otherwise 313 // if we allow reads while there's an outstanding 314 // write miss, the read could return stale data 315 // out of the cache block... a more aggressive 316 // system could detect the overlap (if any) and 317 // forward data out of the MSHRs, but we don't do 318 // that yet. Note that we do need to leave the 319 // block valid so that it stays in the cache, in 320 // case we get an upgrade response (and hence no 321 // new data) when the write miss completes. 322 // As long as CPUs do proper store/load forwarding 323 // internally, and have a sufficiently weak memory 324 // model, this is probably unnecessary, but at some 325 // point it must have seemed like we needed it... 326 assert((pkt->needsWritable() && !blk->isWritable()) || 327 pkt->req->isCacheMaintenance()); 328 blk->status &= ~BlkReadable; 329 } 330 // Here we are using forward_time, modelling the latency of 331 // a miss (outbound) just as forwardLatency, neglecting the 332 // lookupLatency component. 333 allocateMissBuffer(pkt, forward_time); 334 } 335 } 336} 337 338void 339BaseCache::recvTimingReq(PacketPtr pkt) 340{ 341 // anything that is merely forwarded pays for the forward latency and 342 // the delay provided by the crossbar 343 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 344 345 // We use lookupLatency here because it is used to specify the latency 346 // to access. 347 Cycles lat = lookupLatency; 348 CacheBlk *blk = nullptr; 349 bool satisfied = false; 350 { 351 PacketList writebacks; 352 // Note that lat is passed by reference here. The function 353 // access() calls accessBlock() which can modify lat value. 354 satisfied = access(pkt, blk, lat, writebacks); 355 356 // copy writebacks to write buffer here to ensure they logically 357 // precede anything happening below 358 doWritebacks(writebacks, forward_time); 359 } 360 361 // Here we charge the headerDelay that takes into account the latencies 362 // of the bus, if the packet comes from it. 363 // The latency charged it is just lat that is the value of lookupLatency 364 // modified by access() function, or if not just lookupLatency. 365 // In case of a hit we are neglecting response latency. 366 // In case of a miss we are neglecting forward latency. 367 Tick request_time = clockEdge(lat) + pkt->headerDelay; 368 // Here we reset the timing of the packet. 369 pkt->headerDelay = pkt->payloadDelay = 0; 370 371 if (satisfied) { 372 // notify before anything else as later handleTimingReqHit might turn 373 // the packet in a response 374 ppHit->notify(pkt); 375 376 if (prefetcher && blk && blk->wasPrefetched()) { 377 blk->status &= ~BlkHWPrefetched; 378 } 379 380 handleTimingReqHit(pkt, blk, request_time); 381 } else { 382 handleTimingReqMiss(pkt, blk, forward_time, request_time); 383 384 ppMiss->notify(pkt); 385 } 386 387 if (prefetcher) { 388 // track time of availability of next prefetch, if any 389 Tick next_pf_time = prefetcher->nextPrefetchReadyTime(); 390 if (next_pf_time != MaxTick) { 391 schedMemSideSendEvent(next_pf_time); 392 } 393 } 394} 395 396void 397BaseCache::handleUncacheableWriteResp(PacketPtr pkt) 398{ 399 Tick completion_time = clockEdge(responseLatency) + 400 pkt->headerDelay + pkt->payloadDelay; 401 402 // Reset the bus additional time as it is now accounted for 403 pkt->headerDelay = pkt->payloadDelay = 0; 404 405 cpuSidePort.schedTimingResp(pkt, completion_time, true); 406} 407 408void 409BaseCache::recvTimingResp(PacketPtr pkt) 410{ 411 assert(pkt->isResponse()); 412 413 // all header delay should be paid for by the crossbar, unless 414 // this is a prefetch response from above 415 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp, 416 "%s saw a non-zero packet delay\n", name()); 417 418 const bool is_error = pkt->isError(); 419 420 if (is_error) { 421 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__, 422 pkt->print()); 423 } 424 425 DPRINTF(Cache, "%s: Handling response %s\n", __func__, 426 pkt->print()); 427 428 // if this is a write, we should be looking at an uncacheable 429 // write 430 if (pkt->isWrite()) { 431 assert(pkt->req->isUncacheable()); 432 handleUncacheableWriteResp(pkt); 433 return; 434 } 435 436 // we have dealt with any (uncacheable) writes above, from here on 437 // we know we are dealing with an MSHR due to a miss or a prefetch 438 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState()); 439 assert(mshr); 440 441 if (mshr == noTargetMSHR) { 442 // we always clear at least one target 443 clearBlocked(Blocked_NoTargets); 444 noTargetMSHR = nullptr; 445 } 446 447 // Initial target is used just for stats 448 MSHR::Target *initial_tgt = mshr->getTarget(); 449 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); 450 Tick miss_latency = curTick() - initial_tgt->recvTime; 451 452 if (pkt->req->isUncacheable()) { 453 assert(pkt->req->masterId() < system->maxMasters()); 454 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += 455 miss_latency; 456 } else { 457 assert(pkt->req->masterId() < system->maxMasters()); 458 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += 459 miss_latency; 460 } 461 462 PacketList writebacks; 463 464 bool is_fill = !mshr->isForward && 465 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp || 466 mshr->wasWholeLineWrite); 467 468 // make sure that if the mshr was due to a whole line write then 469 // the response is an invalidation 470 assert(!mshr->wasWholeLineWrite || pkt->isInvalidate()); 471 472 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 473 474 if (is_fill && !is_error) { 475 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", 476 pkt->getAddr()); 477 478 const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ? 479 writeAllocator->allocate() : mshr->allocOnFill(); 480 blk = handleFill(pkt, blk, writebacks, allocate); 481 assert(blk != nullptr); 482 } 483 484 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) { 485 // The block was marked not readable while there was a pending 486 // cache maintenance operation, restore its flag. 487 blk->status |= BlkReadable; 488 489 // This was a cache clean operation (without invalidate) 490 // and we have a copy of the block already. Since there 491 // is no invalidation, we can promote targets that don't 492 // require a writable copy 493 mshr->promoteReadable(); 494 } 495 496 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) { 497 // If at this point the referenced block is writable and the 498 // response is not a cache invalidate, we promote targets that 499 // were deferred as we couldn't guarrantee a writable copy 500 mshr->promoteWritable(); 501 } 502 503 serviceMSHRTargets(mshr, pkt, blk, writebacks); 504 505 if (mshr->promoteDeferredTargets()) { 506 // avoid later read getting stale data while write miss is 507 // outstanding.. see comment in timingAccess() 508 if (blk) { 509 blk->status &= ~BlkReadable; 510 } 511 mshrQueue.markPending(mshr); 512 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay); 513 } else { 514 // while we deallocate an mshr from the queue we still have to 515 // check the isFull condition before and after as we might 516 // have been using the reserved entries already 517 const bool was_full = mshrQueue.isFull(); 518 mshrQueue.deallocate(mshr); 519 if (was_full && !mshrQueue.isFull()) { 520 clearBlocked(Blocked_NoMSHRs); 521 } 522 523 // Request the bus for a prefetch if this deallocation freed enough 524 // MSHRs for a prefetch to take place 525 if (prefetcher && mshrQueue.canPrefetch()) { 526 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), 527 clockEdge()); 528 if (next_pf_time != MaxTick) 529 schedMemSideSendEvent(next_pf_time); 530 } 531 } 532 533 // if we used temp block, check to see if its valid and then clear it out 534 if (blk == tempBlock && tempBlock->isValid()) { 535 evictBlock(blk, writebacks); 536 } 537 538 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 539 // copy writebacks to write buffer 540 doWritebacks(writebacks, forward_time); 541 542 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print()); 543 delete pkt; 544} 545 546 547Tick 548BaseCache::recvAtomic(PacketPtr pkt) 549{ 550 // should assert here that there are no outstanding MSHRs or 551 // writebacks... that would mean that someone used an atomic 552 // access in timing mode 553 554 // We use lookupLatency here because it is used to specify the latency 555 // to access. 556 Cycles lat = lookupLatency; 557 558 CacheBlk *blk = nullptr; 559 PacketList writebacks; 560 bool satisfied = access(pkt, blk, lat, writebacks); 561 562 if (pkt->isClean() && blk && blk->isDirty()) { 563 // A cache clean opearation is looking for a dirty 564 // block. If a dirty block is encountered a WriteClean 565 // will update any copies to the path to the memory 566 // until the point of reference. 567 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 568 __func__, pkt->print(), blk->print()); 569 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id); 570 writebacks.push_back(wb_pkt); 571 pkt->setSatisfied(); 572 } 573 574 // handle writebacks resulting from the access here to ensure they 575 // logically precede anything happening below 576 doWritebacksAtomic(writebacks); 577 assert(writebacks.empty()); 578 579 if (!satisfied) { 580 lat += handleAtomicReqMiss(pkt, blk, writebacks); 581 } 582 583 // Note that we don't invoke the prefetcher at all in atomic mode. 584 // It's not clear how to do it properly, particularly for 585 // prefetchers that aggressively generate prefetch candidates and 586 // rely on bandwidth contention to throttle them; these will tend 587 // to pollute the cache in atomic mode since there is no bandwidth 588 // contention. If we ever do want to enable prefetching in atomic 589 // mode, though, this is the place to do it... see timingAccess() 590 // for an example (though we'd want to issue the prefetch(es) 591 // immediately rather than calling requestMemSideBus() as we do 592 // there). 593 594 // do any writebacks resulting from the response handling 595 doWritebacksAtomic(writebacks); 596 597 // if we used temp block, check to see if its valid and if so 598 // clear it out, but only do so after the call to recvAtomic is 599 // finished so that any downstream observers (such as a snoop 600 // filter), first see the fill, and only then see the eviction 601 if (blk == tempBlock && tempBlock->isValid()) { 602 // the atomic CPU calls recvAtomic for fetch and load/store 603 // sequentuially, and we may already have a tempBlock 604 // writeback from the fetch that we have not yet sent 605 if (tempBlockWriteback) { 606 // if that is the case, write the prevoius one back, and 607 // do not schedule any new event 608 writebackTempBlockAtomic(); 609 } else { 610 // the writeback/clean eviction happens after the call to 611 // recvAtomic has finished (but before any successive 612 // calls), so that the response handling from the fill is 613 // allowed to happen first 614 schedule(writebackTempBlockAtomicEvent, curTick()); 615 } 616 617 tempBlockWriteback = evictBlock(blk); 618 } 619 620 if (pkt->needsResponse()) { 621 pkt->makeAtomicResponse(); 622 } 623 624 return lat * clockPeriod(); 625} 626 627void 628BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side) 629{ 630 Addr blk_addr = pkt->getBlockAddr(blkSize); 631 bool is_secure = pkt->isSecure(); 632 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 633 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 634 635 pkt->pushLabel(name()); 636 637 CacheBlkPrintWrapper cbpw(blk); 638 639 // Note that just because an L2/L3 has valid data doesn't mean an 640 // L1 doesn't have a more up-to-date modified copy that still 641 // needs to be found. As a result we always update the request if 642 // we have it, but only declare it satisfied if we are the owner. 643 644 // see if we have data at all (owned or otherwise) 645 bool have_data = blk && blk->isValid() 646 && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize, 647 blk->data); 648 649 // data we have is dirty if marked as such or if we have an 650 // in-service MSHR that is pending a modified line 651 bool have_dirty = 652 have_data && (blk->isDirty() || 653 (mshr && mshr->inService && mshr->isPendingModified())); 654 655 bool done = have_dirty || 656 cpuSidePort.trySatisfyFunctional(pkt) || 657 mshrQueue.trySatisfyFunctional(pkt, blk_addr) || 658 writeBuffer.trySatisfyFunctional(pkt, blk_addr) || 659 memSidePort.trySatisfyFunctional(pkt); 660 661 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(), 662 (blk && blk->isValid()) ? "valid " : "", 663 have_data ? "data " : "", done ? "done " : ""); 664 665 // We're leaving the cache, so pop cache->name() label 666 pkt->popLabel(); 667 668 if (done) { 669 pkt->makeResponse(); 670 } else { 671 // if it came as a request from the CPU side then make sure it 672 // continues towards the memory side 673 if (from_cpu_side) { 674 memSidePort.sendFunctional(pkt); 675 } else if (cpuSidePort.isSnooping()) { 676 // if it came from the memory side, it must be a snoop request 677 // and we should only forward it if we are forwarding snoops 678 cpuSidePort.sendFunctionalSnoop(pkt); 679 } 680 } 681} 682 683 684void 685BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) 686{ 687 assert(pkt->isRequest()); 688 689 uint64_t overwrite_val; 690 bool overwrite_mem; 691 uint64_t condition_val64; 692 uint32_t condition_val32; 693 694 int offset = pkt->getOffset(blkSize); 695 uint8_t *blk_data = blk->data + offset; 696 697 assert(sizeof(uint64_t) >= pkt->getSize()); 698 699 overwrite_mem = true; 700 // keep a copy of our possible write value, and copy what is at the 701 // memory address into the packet 702 pkt->writeData((uint8_t *)&overwrite_val); 703 pkt->setData(blk_data); 704 705 if (pkt->req->isCondSwap()) { 706 if (pkt->getSize() == sizeof(uint64_t)) { 707 condition_val64 = pkt->req->getExtraData(); 708 overwrite_mem = !std::memcmp(&condition_val64, blk_data, 709 sizeof(uint64_t)); 710 } else if (pkt->getSize() == sizeof(uint32_t)) { 711 condition_val32 = (uint32_t)pkt->req->getExtraData(); 712 overwrite_mem = !std::memcmp(&condition_val32, blk_data, 713 sizeof(uint32_t)); 714 } else 715 panic("Invalid size for conditional read/write\n"); 716 } 717 718 if (overwrite_mem) { 719 std::memcpy(blk_data, &overwrite_val, pkt->getSize()); 720 blk->status |= BlkDirty; 721 } 722} 723 724QueueEntry* 725BaseCache::getNextQueueEntry() 726{ 727 // Check both MSHR queue and write buffer for potential requests, 728 // note that null does not mean there is no request, it could 729 // simply be that it is not ready 730 MSHR *miss_mshr = mshrQueue.getNext(); 731 WriteQueueEntry *wq_entry = writeBuffer.getNext(); 732 733 // If we got a write buffer request ready, first priority is a 734 // full write buffer, otherwise we favour the miss requests 735 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) { 736 // need to search MSHR queue for conflicting earlier miss. 737 MSHR *conflict_mshr = 738 mshrQueue.findPending(wq_entry->blkAddr, 739 wq_entry->isSecure); 740 741 if (conflict_mshr && conflict_mshr->order < wq_entry->order) { 742 // Service misses in order until conflict is cleared. 743 return conflict_mshr; 744 745 // @todo Note that we ignore the ready time of the conflict here 746 } 747 748 // No conflicts; issue write 749 return wq_entry; 750 } else if (miss_mshr) { 751 // need to check for conflicting earlier writeback 752 WriteQueueEntry *conflict_mshr = 753 writeBuffer.findPending(miss_mshr->blkAddr, 754 miss_mshr->isSecure); 755 if (conflict_mshr) { 756 // not sure why we don't check order here... it was in the 757 // original code but commented out. 758 759 // The only way this happens is if we are 760 // doing a write and we didn't have permissions 761 // then subsequently saw a writeback (owned got evicted) 762 // We need to make sure to perform the writeback first 763 // To preserve the dirty data, then we can issue the write 764 765 // should we return wq_entry here instead? I.e. do we 766 // have to flush writes in order? I don't think so... not 767 // for Alpha anyway. Maybe for x86? 768 return conflict_mshr; 769 770 // @todo Note that we ignore the ready time of the conflict here 771 } 772 773 // No conflicts; issue read 774 return miss_mshr; 775 } 776 777 // fall through... no pending requests. Try a prefetch. 778 assert(!miss_mshr && !wq_entry); 779 if (prefetcher && mshrQueue.canPrefetch()) { 780 // If we have a miss queue slot, we can try a prefetch 781 PacketPtr pkt = prefetcher->getPacket(); 782 if (pkt) { 783 Addr pf_addr = pkt->getBlockAddr(blkSize); 784 if (!tags->findBlock(pf_addr, pkt->isSecure()) && 785 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && 786 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { 787 // Update statistic on number of prefetches issued 788 // (hwpf_mshr_misses) 789 assert(pkt->req->masterId() < system->maxMasters()); 790 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 791 792 // allocate an MSHR and return it, note 793 // that we send the packet straight away, so do not 794 // schedule the send 795 return allocateMissBuffer(pkt, curTick(), false); 796 } else { 797 // free the request and packet 798 delete pkt; 799 } 800 } 801 } 802 803 return nullptr; 804} 805 806void 807BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool) 808{ 809 assert(pkt->isRequest()); 810 811 assert(blk && blk->isValid()); 812 // Occasionally this is not true... if we are a lower-level cache 813 // satisfying a string of Read and ReadEx requests from 814 // upper-level caches, a Read will mark the block as shared but we 815 // can satisfy a following ReadEx anyway since we can rely on the 816 // Read requester(s) to have buffered the ReadEx snoop and to 817 // invalidate their blocks after receiving them. 818 // assert(!pkt->needsWritable() || blk->isWritable()); 819 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); 820 821 // Check RMW operations first since both isRead() and 822 // isWrite() will be true for them 823 if (pkt->cmd == MemCmd::SwapReq) { 824 if (pkt->isAtomicOp()) { 825 // extract data from cache and save it into the data field in 826 // the packet as a return value from this atomic op 827 int offset = tags->extractBlkOffset(pkt->getAddr()); 828 uint8_t *blk_data = blk->data + offset; 829 pkt->setData(blk_data); 830 831 // execute AMO operation 832 (*(pkt->getAtomicOp()))(blk_data); 833 834 // set block status to dirty 835 blk->status |= BlkDirty; 836 } else { 837 cmpAndSwap(blk, pkt); 838 } 839 } else if (pkt->isWrite()) { 840 // we have the block in a writable state and can go ahead, 841 // note that the line may be also be considered writable in 842 // downstream caches along the path to memory, but always 843 // Exclusive, and never Modified 844 assert(blk->isWritable()); 845 // Write or WriteLine at the first cache with block in writable state 846 if (blk->checkWrite(pkt)) { 847 pkt->writeDataToBlock(blk->data, blkSize); 848 } 849 // Always mark the line as dirty (and thus transition to the 850 // Modified state) even if we are a failed StoreCond so we 851 // supply data to any snoops that have appended themselves to 852 // this cache before knowing the store will fail. 853 blk->status |= BlkDirty; 854 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print()); 855 } else if (pkt->isRead()) { 856 if (pkt->isLLSC()) { 857 blk->trackLoadLocked(pkt); 858 } 859 860 // all read responses have a data payload 861 assert(pkt->hasRespData()); 862 pkt->setDataFromBlock(blk->data, blkSize); 863 } else if (pkt->isUpgrade()) { 864 // sanity check 865 assert(!pkt->hasSharers()); 866 867 if (blk->isDirty()) { 868 // we were in the Owned state, and a cache above us that 869 // has the line in Shared state needs to be made aware 870 // that the data it already has is in fact dirty 871 pkt->setCacheResponding(); 872 blk->status &= ~BlkDirty; 873 } 874 } else if (pkt->isClean()) { 875 blk->status &= ~BlkDirty; 876 } else { 877 assert(pkt->isInvalidate()); 878 invalidateBlock(blk); 879 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__, 880 pkt->print()); 881 } 882} 883 884///////////////////////////////////////////////////// 885// 886// Access path: requests coming in from the CPU side 887// 888///////////////////////////////////////////////////// 889 890bool 891BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 892 PacketList &writebacks) 893{ 894 // sanity check 895 assert(pkt->isRequest()); 896 897 chatty_assert(!(isReadOnly && pkt->isWrite()), 898 "Should never see a write in a read-only cache %s\n", 899 name()); 900 901 // Here lat is the value passed as parameter to accessBlock() function 902 // that can modify its value. 903 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat); 904 905 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(), 906 blk ? "hit " + blk->print() : "miss"); 907 908 if (pkt->req->isCacheMaintenance()) { 909 // A cache maintenance operation is always forwarded to the 910 // memory below even if the block is found in dirty state. 911 912 // We defer any changes to the state of the block until we 913 // create and mark as in service the mshr for the downstream 914 // packet. 915 return false; 916 } 917 918 if (pkt->isEviction()) { 919 // We check for presence of block in above caches before issuing 920 // Writeback or CleanEvict to write buffer. Therefore the only 921 // possible cases can be of a CleanEvict packet coming from above 922 // encountering a Writeback generated in this cache peer cache and 923 // waiting in the write buffer. Cases of upper level peer caches 924 // generating CleanEvict and Writeback or simply CleanEvict and 925 // CleanEvict almost simultaneously will be caught by snoops sent out 926 // by crossbar. 927 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(), 928 pkt->isSecure()); 929 if (wb_entry) { 930 assert(wb_entry->getNumTargets() == 1); 931 PacketPtr wbPkt = wb_entry->getTarget()->pkt; 932 assert(wbPkt->isWriteback()); 933 934 if (pkt->isCleanEviction()) { 935 // The CleanEvict and WritebackClean snoops into other 936 // peer caches of the same level while traversing the 937 // crossbar. If a copy of the block is found, the 938 // packet is deleted in the crossbar. Hence, none of 939 // the other upper level caches connected to this 940 // cache have the block, so we can clear the 941 // BLOCK_CACHED flag in the Writeback if set and 942 // discard the CleanEvict by returning true. 943 wbPkt->clearBlockCached(); 944 return true; 945 } else { 946 assert(pkt->cmd == MemCmd::WritebackDirty); 947 // Dirty writeback from above trumps our clean 948 // writeback... discard here 949 // Note: markInService will remove entry from writeback buffer. 950 markInService(wb_entry); 951 delete wbPkt; 952 } 953 } 954 } 955 956 // Writeback handling is special case. We can write the block into 957 // the cache without having a writeable copy (or any copy at all). 958 if (pkt->isWriteback()) { 959 assert(blkSize == pkt->getSize()); 960 961 // we could get a clean writeback while we are having 962 // outstanding accesses to a block, do the simple thing for 963 // now and drop the clean writeback so that we do not upset 964 // any ordering/decisions about ownership already taken 965 if (pkt->cmd == MemCmd::WritebackClean && 966 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) { 967 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, " 968 "dropping\n", pkt->getAddr()); 969 return true; 970 } 971 972 if (!blk) { 973 // need to do a replacement 974 blk = allocateBlock(pkt, writebacks); 975 if (!blk) { 976 // no replaceable block available: give up, fwd to next level. 977 incMissCount(pkt); 978 return false; 979 } 980 981 blk->status |= (BlkValid | BlkReadable); 982 } 983 // only mark the block dirty if we got a writeback command, 984 // and leave it as is for a clean writeback 985 if (pkt->cmd == MemCmd::WritebackDirty) { 986 // TODO: the coherent cache can assert(!blk->isDirty()); 987 blk->status |= BlkDirty; 988 } 989 // if the packet does not have sharers, it is passing 990 // writable, and we got the writeback in Modified or Exclusive 991 // state, if not we are in the Owned or Shared state 992 if (!pkt->hasSharers()) { 993 blk->status |= BlkWritable; 994 } 995 // nothing else to do; writeback doesn't expect response 996 assert(!pkt->needsResponse()); 997 pkt->writeDataToBlock(blk->data, blkSize); 998 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 999 incHitCount(pkt); 1000 // populate the time when the block will be ready to access. 1001 blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay + 1002 pkt->payloadDelay; 1003 return true; 1004 } else if (pkt->cmd == MemCmd::CleanEvict) { 1005 if (blk) { 1006 // Found the block in the tags, need to stop CleanEvict from 1007 // propagating further down the hierarchy. Returning true will 1008 // treat the CleanEvict like a satisfied write request and delete 1009 // it. 1010 return true; 1011 } 1012 // We didn't find the block here, propagate the CleanEvict further 1013 // down the memory hierarchy. Returning false will treat the CleanEvict 1014 // like a Writeback which could not find a replaceable block so has to 1015 // go to next level. 1016 return false; 1017 } else if (pkt->cmd == MemCmd::WriteClean) { 1018 // WriteClean handling is a special case. We can allocate a 1019 // block directly if it doesn't exist and we can update the 1020 // block immediately. The WriteClean transfers the ownership 1021 // of the block as well. 1022 assert(blkSize == pkt->getSize()); 1023 1024 if (!blk) { 1025 if (pkt->writeThrough()) { 1026 // if this is a write through packet, we don't try to 1027 // allocate if the block is not present 1028 return false; 1029 } else { 1030 // a writeback that misses needs to allocate a new block 1031 blk = allocateBlock(pkt, writebacks); 1032 if (!blk) { 1033 // no replaceable block available: give up, fwd to 1034 // next level. 1035 incMissCount(pkt); 1036 return false; 1037 } 1038 1039 blk->status |= (BlkValid | BlkReadable); 1040 } 1041 } 1042 1043 // at this point either this is a writeback or a write-through 1044 // write clean operation and the block is already in this 1045 // cache, we need to update the data and the block flags 1046 assert(blk); 1047 // TODO: the coherent cache can assert(!blk->isDirty()); 1048 if (!pkt->writeThrough()) { 1049 blk->status |= BlkDirty; 1050 } 1051 // nothing else to do; writeback doesn't expect response 1052 assert(!pkt->needsResponse()); 1053 pkt->writeDataToBlock(blk->data, blkSize); 1054 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 1055 1056 incHitCount(pkt); 1057 // populate the time when the block will be ready to access. 1058 blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay + 1059 pkt->payloadDelay; 1060 // if this a write-through packet it will be sent to cache 1061 // below 1062 return !pkt->writeThrough(); 1063 } else if (blk && (pkt->needsWritable() ? blk->isWritable() : 1064 blk->isReadable())) { 1065 // OK to satisfy access 1066 incHitCount(pkt); 1067 satisfyRequest(pkt, blk); 1068 maintainClusivity(pkt->fromCache(), blk); 1069 1070 return true; 1071 } 1072 1073 // Can't satisfy access normally... either no block (blk == nullptr) 1074 // or have block but need writable 1075 1076 incMissCount(pkt); 1077 1078 if (!blk && pkt->isLLSC() && pkt->isWrite()) { 1079 // complete miss on store conditional... just give up now 1080 pkt->req->setExtraData(0); 1081 return true; 1082 } 1083 1084 return false; 1085} 1086 1087void 1088BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk) 1089{ 1090 if (from_cache && blk && blk->isValid() && !blk->isDirty() && 1091 clusivity == Enums::mostly_excl) { 1092 // if we have responded to a cache, and our block is still 1093 // valid, but not dirty, and this cache is mostly exclusive 1094 // with respect to the cache above, drop the block 1095 invalidateBlock(blk); 1096 } 1097} 1098 1099CacheBlk* 1100BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks, 1101 bool allocate) 1102{ 1103 assert(pkt->isResponse()); 1104 Addr addr = pkt->getAddr(); 1105 bool is_secure = pkt->isSecure(); 1106#if TRACING_ON 1107 CacheBlk::State old_state = blk ? blk->status : 0; 1108#endif 1109 1110 // When handling a fill, we should have no writes to this line. 1111 assert(addr == pkt->getBlockAddr(blkSize)); 1112 assert(!writeBuffer.findMatch(addr, is_secure)); 1113 1114 if (!blk) { 1115 // better have read new data... 1116 assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp); 1117 1118 // need to do a replacement if allocating, otherwise we stick 1119 // with the temporary storage 1120 blk = allocate ? allocateBlock(pkt, writebacks) : nullptr; 1121 1122 if (!blk) { 1123 // No replaceable block or a mostly exclusive 1124 // cache... just use temporary storage to complete the 1125 // current request and then get rid of it 1126 assert(!tempBlock->isValid()); 1127 blk = tempBlock; 1128 tempBlock->insert(addr, is_secure); 1129 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, 1130 is_secure ? "s" : "ns"); 1131 } 1132 1133 // we should never be overwriting a valid block 1134 assert(!blk->isValid()); 1135 } else { 1136 // existing block... probably an upgrade 1137 assert(regenerateBlkAddr(blk) == addr); 1138 assert(blk->isSecure() == is_secure); 1139 // either we're getting new data or the block should already be valid 1140 assert(pkt->hasData() || blk->isValid()); 1141 // don't clear block status... if block is already dirty we 1142 // don't want to lose that 1143 } 1144 1145 blk->status |= BlkValid | BlkReadable; 1146 1147 // sanity check for whole-line writes, which should always be 1148 // marked as writable as part of the fill, and then later marked 1149 // dirty as part of satisfyRequest 1150 if (pkt->cmd == MemCmd::InvalidateResp) { 1151 assert(!pkt->hasSharers()); 1152 } 1153 1154 // here we deal with setting the appropriate state of the line, 1155 // and we start by looking at the hasSharers flag, and ignore the 1156 // cacheResponding flag (normally signalling dirty data) if the 1157 // packet has sharers, thus the line is never allocated as Owned 1158 // (dirty but not writable), and always ends up being either 1159 // Shared, Exclusive or Modified, see Packet::setCacheResponding 1160 // for more details 1161 if (!pkt->hasSharers()) { 1162 // we could get a writable line from memory (rather than a 1163 // cache) even in a read-only cache, note that we set this bit 1164 // even for a read-only cache, possibly revisit this decision 1165 blk->status |= BlkWritable; 1166 1167 // check if we got this via cache-to-cache transfer (i.e., from a 1168 // cache that had the block in Modified or Owned state) 1169 if (pkt->cacheResponding()) { 1170 // we got the block in Modified state, and invalidated the 1171 // owners copy 1172 blk->status |= BlkDirty; 1173 1174 chatty_assert(!isReadOnly, "Should never see dirty snoop response " 1175 "in read-only cache %s\n", name()); 1176 } 1177 } 1178 1179 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", 1180 addr, is_secure ? "s" : "ns", old_state, blk->print()); 1181 1182 // if we got new data, copy it in (checking for a read response 1183 // and a response that has data is the same in the end) 1184 if (pkt->isRead()) { 1185 // sanity checks 1186 assert(pkt->hasData()); 1187 assert(pkt->getSize() == blkSize); 1188 1189 pkt->writeDataToBlock(blk->data, blkSize); 1190 } 1191 // We pay for fillLatency here. 1192 blk->whenReady = clockEdge() + fillLatency * clockPeriod() + 1193 pkt->payloadDelay; 1194 1195 return blk; 1196} 1197 1198CacheBlk* 1199BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks) 1200{ 1201 // Get address 1202 const Addr addr = pkt->getAddr(); 1203 1204 // Get secure bit 1205 const bool is_secure = pkt->isSecure(); 1206 1207 // Find replacement victim 1208 std::vector<CacheBlk*> evict_blks; 1209 CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks); 1210 1211 // It is valid to return nullptr if there is no victim 1212 if (!victim) 1213 return nullptr; 1214 1215 // Print victim block's information 1216 DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print()); 1217 1218 // Check for transient state allocations. If any of the entries listed 1219 // for eviction has a transient state, the allocation fails 1220 for (const auto& blk : evict_blks) { 1221 if (blk->isValid()) { 1222 Addr repl_addr = regenerateBlkAddr(blk); 1223 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); 1224 if (repl_mshr) { 1225 // must be an outstanding upgrade or clean request 1226 // on a block we're about to replace... 1227 assert((!blk->isWritable() && repl_mshr->needsWritable()) || 1228 repl_mshr->isCleaning()); 1229 1230 // too hard to replace block with transient state 1231 // allocation failed, block not inserted 1232 return nullptr; 1233 } 1234 } 1235 } 1236 1237 // The victim will be replaced by a new entry, so increase the replacement 1238 // counter if a valid block is being replaced 1239 if (victim->isValid()) { 1240 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx " 1241 "(%s): %s\n", regenerateBlkAddr(victim), 1242 victim->isSecure() ? "s" : "ns", 1243 addr, is_secure ? "s" : "ns", 1244 victim->isDirty() ? "writeback" : "clean"); 1245 1246 replacements++; 1247 } 1248 1249 // Evict valid blocks associated to this victim block 1250 for (const auto& blk : evict_blks) { 1251 if (blk->isValid()) { 1252 if (blk->wasPrefetched()) { 1253 unusedPrefetches++; 1254 } 1255 1256 evictBlock(blk, writebacks); 1257 } 1258 } 1259 1260 // Insert new block at victimized entry 1261 tags->insertBlock(addr, is_secure, pkt->req->masterId(), 1262 pkt->req->taskId(), victim); 1263 1264 return victim; 1265} 1266 1267void 1268BaseCache::invalidateBlock(CacheBlk *blk) 1269{ 1270 // If handling a block present in the Tags, let it do its invalidation 1271 // process, which will update stats and invalidate the block itself 1272 if (blk != tempBlock) { 1273 tags->invalidate(blk); 1274 } else { 1275 tempBlock->invalidate(); 1276 } 1277} 1278 1279void 1280BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks) 1281{ 1282 PacketPtr pkt = evictBlock(blk); 1283 if (pkt) { 1284 writebacks.push_back(pkt); 1285 } 1286} 1287 1288PacketPtr 1289BaseCache::writebackBlk(CacheBlk *blk) 1290{ 1291 chatty_assert(!isReadOnly || writebackClean, 1292 "Writeback from read-only cache"); 1293 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean)); 1294 1295 writebacks[Request::wbMasterId]++; 1296 1297 RequestPtr req = std::make_shared<Request>( 1298 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId); 1299 1300 if (blk->isSecure()) 1301 req->setFlags(Request::SECURE); 1302 1303 req->taskId(blk->task_id); 1304 1305 PacketPtr pkt = 1306 new Packet(req, blk->isDirty() ? 1307 MemCmd::WritebackDirty : MemCmd::WritebackClean); 1308 1309 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n", 1310 pkt->print(), blk->isWritable(), blk->isDirty()); 1311 1312 if (blk->isWritable()) { 1313 // not asserting shared means we pass the block in modified 1314 // state, mark our own block non-writeable 1315 blk->status &= ~BlkWritable; 1316 } else { 1317 // we are in the Owned state, tell the receiver 1318 pkt->setHasSharers(); 1319 } 1320 1321 // make sure the block is not marked dirty 1322 blk->status &= ~BlkDirty; 1323 1324 pkt->allocate(); 1325 pkt->setDataFromBlock(blk->data, blkSize); 1326 1327 return pkt; 1328} 1329 1330PacketPtr 1331BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id) 1332{ 1333 RequestPtr req = std::make_shared<Request>( 1334 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId); 1335 1336 if (blk->isSecure()) { 1337 req->setFlags(Request::SECURE); 1338 } 1339 req->taskId(blk->task_id); 1340 1341 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id); 1342 1343 if (dest) { 1344 req->setFlags(dest); 1345 pkt->setWriteThrough(); 1346 } 1347 1348 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(), 1349 blk->isWritable(), blk->isDirty()); 1350 1351 if (blk->isWritable()) { 1352 // not asserting shared means we pass the block in modified 1353 // state, mark our own block non-writeable 1354 blk->status &= ~BlkWritable; 1355 } else { 1356 // we are in the Owned state, tell the receiver 1357 pkt->setHasSharers(); 1358 } 1359 1360 // make sure the block is not marked dirty 1361 blk->status &= ~BlkDirty; 1362 1363 pkt->allocate(); 1364 pkt->setDataFromBlock(blk->data, blkSize); 1365 1366 return pkt; 1367} 1368 1369 1370void 1371BaseCache::memWriteback() 1372{ 1373 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); }); 1374} 1375 1376void 1377BaseCache::memInvalidate() 1378{ 1379 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); }); 1380} 1381 1382bool 1383BaseCache::isDirty() const 1384{ 1385 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); }); 1386} 1387 1388bool 1389BaseCache::coalesce() const 1390{ 1391 return writeAllocator && writeAllocator->coalesce(); 1392} 1393 1394void 1395BaseCache::writebackVisitor(CacheBlk &blk) 1396{ 1397 if (blk.isDirty()) { 1398 assert(blk.isValid()); 1399 1400 RequestPtr request = std::make_shared<Request>( 1401 regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId); 1402 1403 request->taskId(blk.task_id); 1404 if (blk.isSecure()) { 1405 request->setFlags(Request::SECURE); 1406 } 1407 1408 Packet packet(request, MemCmd::WriteReq); 1409 packet.dataStatic(blk.data); 1410 1411 memSidePort.sendFunctional(&packet); 1412 1413 blk.status &= ~BlkDirty; 1414 } 1415} 1416 1417void 1418BaseCache::invalidateVisitor(CacheBlk &blk) 1419{ 1420 if (blk.isDirty()) 1421 warn_once("Invalidating dirty cache lines. " \ 1422 "Expect things to break.\n"); 1423 1424 if (blk.isValid()) { 1425 assert(!blk.isDirty()); 1426 invalidateBlock(&blk); 1427 } 1428} 1429 1430Tick 1431BaseCache::nextQueueReadyTime() const 1432{ 1433 Tick nextReady = std::min(mshrQueue.nextReadyTime(), 1434 writeBuffer.nextReadyTime()); 1435 1436 // Don't signal prefetch ready time if no MSHRs available 1437 // Will signal once enoguh MSHRs are deallocated 1438 if (prefetcher && mshrQueue.canPrefetch()) { 1439 nextReady = std::min(nextReady, 1440 prefetcher->nextPrefetchReadyTime()); 1441 } 1442 1443 return nextReady; 1444} 1445 1446 1447bool 1448BaseCache::sendMSHRQueuePacket(MSHR* mshr) 1449{ 1450 assert(mshr); 1451 1452 // use request from 1st target 1453 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 1454 1455 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print()); 1456 1457 // if the cache is in write coalescing mode or (additionally) in 1458 // no allocation mode, and we have a write packet with an MSHR 1459 // that is not a whole-line write (due to incompatible flags etc), 1460 // then reset the write mode 1461 if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) { 1462 if (!mshr->isWholeLineWrite()) { 1463 // if we are currently write coalescing, hold on the 1464 // MSHR as many cycles extra as we need to completely 1465 // write a cache line 1466 if (writeAllocator->delay(mshr->blkAddr)) { 1467 Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod(); 1468 DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow " 1469 "for write coalescing\n", tgt_pkt->print(), delay); 1470 mshrQueue.delay(mshr, delay); 1471 return false; 1472 } else { 1473 writeAllocator->reset(); 1474 } 1475 } else { 1476 writeAllocator->resetDelay(mshr->blkAddr); 1477 } 1478 } 1479 1480 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); 1481 1482 // either a prefetch that is not present upstream, or a normal 1483 // MSHR request, proceed to get the packet to send downstream 1484 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(), 1485 mshr->isWholeLineWrite()); 1486 1487 mshr->isForward = (pkt == nullptr); 1488 1489 if (mshr->isForward) { 1490 // not a cache block request, but a response is expected 1491 // make copy of current packet to forward, keep current 1492 // copy for response handling 1493 pkt = new Packet(tgt_pkt, false, true); 1494 assert(!pkt->isWrite()); 1495 } 1496 1497 // play it safe and append (rather than set) the sender state, 1498 // as forwarded packets may already have existing state 1499 pkt->pushSenderState(mshr); 1500 1501 if (pkt->isClean() && blk && blk->isDirty()) { 1502 // A cache clean opearation is looking for a dirty block. Mark 1503 // the packet so that the destination xbar can determine that 1504 // there will be a follow-up write packet as well. 1505 pkt->setSatisfied(); 1506 } 1507 1508 if (!memSidePort.sendTimingReq(pkt)) { 1509 // we are awaiting a retry, but we 1510 // delete the packet and will be creating a new packet 1511 // when we get the opportunity 1512 delete pkt; 1513 1514 // note that we have now masked any requestBus and 1515 // schedSendEvent (we will wait for a retry before 1516 // doing anything), and this is so even if we do not 1517 // care about this packet and might override it before 1518 // it gets retried 1519 return true; 1520 } else { 1521 // As part of the call to sendTimingReq the packet is 1522 // forwarded to all neighbouring caches (and any caches 1523 // above them) as a snoop. Thus at this point we know if 1524 // any of the neighbouring caches are responding, and if 1525 // so, we know it is dirty, and we can determine if it is 1526 // being passed as Modified, making our MSHR the ordering 1527 // point 1528 bool pending_modified_resp = !pkt->hasSharers() && 1529 pkt->cacheResponding(); 1530 markInService(mshr, pending_modified_resp); 1531 1532 if (pkt->isClean() && blk && blk->isDirty()) { 1533 // A cache clean opearation is looking for a dirty 1534 // block. If a dirty block is encountered a WriteClean 1535 // will update any copies to the path to the memory 1536 // until the point of reference. 1537 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 1538 __func__, pkt->print(), blk->print()); 1539 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), 1540 pkt->id); 1541 PacketList writebacks; 1542 writebacks.push_back(wb_pkt); 1543 doWritebacks(writebacks, 0); 1544 } 1545 1546 return false; 1547 } 1548} 1549 1550bool 1551BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry) 1552{ 1553 assert(wq_entry); 1554 1555 // always a single target for write queue entries 1556 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt; 1557 1558 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print()); 1559 1560 // forward as is, both for evictions and uncacheable writes 1561 if (!memSidePort.sendTimingReq(tgt_pkt)) { 1562 // note that we have now masked any requestBus and 1563 // schedSendEvent (we will wait for a retry before 1564 // doing anything), and this is so even if we do not 1565 // care about this packet and might override it before 1566 // it gets retried 1567 return true; 1568 } else { 1569 markInService(wq_entry); 1570 return false; 1571 } 1572} 1573 1574void 1575BaseCache::serialize(CheckpointOut &cp) const 1576{ 1577 bool dirty(isDirty()); 1578 1579 if (dirty) { 1580 warn("*** The cache still contains dirty data. ***\n"); 1581 warn(" Make sure to drain the system using the correct flags.\n"); 1582 warn(" This checkpoint will not restore correctly " \ 1583 "and dirty data in the cache will be lost!\n"); 1584 } 1585 1586 // Since we don't checkpoint the data in the cache, any dirty data 1587 // will be lost when restoring from a checkpoint of a system that 1588 // wasn't drained properly. Flag the checkpoint as invalid if the 1589 // cache contains dirty data. 1590 bool bad_checkpoint(dirty); 1591 SERIALIZE_SCALAR(bad_checkpoint); 1592} 1593 1594void 1595BaseCache::unserialize(CheckpointIn &cp) 1596{ 1597 bool bad_checkpoint; 1598 UNSERIALIZE_SCALAR(bad_checkpoint); 1599 if (bad_checkpoint) { 1600 fatal("Restoring from checkpoints with dirty caches is not " 1601 "supported in the classic memory system. Please remove any " 1602 "caches or drain them properly before taking checkpoints.\n"); 1603 } 1604} 1605 1606void 1607BaseCache::regStats() 1608{ 1609 MemObject::regStats(); 1610 1611 using namespace Stats; 1612 1613 // Hit statistics 1614 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1615 MemCmd cmd(access_idx); 1616 const string &cstr = cmd.toString(); 1617 1618 hits[access_idx] 1619 .init(system->maxMasters()) 1620 .name(name() + "." + cstr + "_hits") 1621 .desc("number of " + cstr + " hits") 1622 .flags(total | nozero | nonan) 1623 ; 1624 for (int i = 0; i < system->maxMasters(); i++) { 1625 hits[access_idx].subname(i, system->getMasterName(i)); 1626 } 1627 } 1628 1629// These macros make it easier to sum the right subset of commands and 1630// to change the subset of commands that are considered "demand" vs 1631// "non-demand" 1632#define SUM_DEMAND(s) \ 1633 (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \ 1634 s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq]) 1635 1636// should writebacks be included here? prior code was inconsistent... 1637#define SUM_NON_DEMAND(s) \ 1638 (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq] + s[MemCmd::SoftPFExReq]) 1639 1640 demandHits 1641 .name(name() + ".demand_hits") 1642 .desc("number of demand (read+write) hits") 1643 .flags(total | nozero | nonan) 1644 ; 1645 demandHits = SUM_DEMAND(hits); 1646 for (int i = 0; i < system->maxMasters(); i++) { 1647 demandHits.subname(i, system->getMasterName(i)); 1648 } 1649 1650 overallHits 1651 .name(name() + ".overall_hits") 1652 .desc("number of overall hits") 1653 .flags(total | nozero | nonan) 1654 ; 1655 overallHits = demandHits + SUM_NON_DEMAND(hits); 1656 for (int i = 0; i < system->maxMasters(); i++) { 1657 overallHits.subname(i, system->getMasterName(i)); 1658 } 1659 1660 // Miss statistics 1661 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1662 MemCmd cmd(access_idx); 1663 const string &cstr = cmd.toString(); 1664 1665 misses[access_idx] 1666 .init(system->maxMasters()) 1667 .name(name() + "." + cstr + "_misses") 1668 .desc("number of " + cstr + " misses") 1669 .flags(total | nozero | nonan) 1670 ; 1671 for (int i = 0; i < system->maxMasters(); i++) { 1672 misses[access_idx].subname(i, system->getMasterName(i)); 1673 } 1674 } 1675 1676 demandMisses 1677 .name(name() + ".demand_misses") 1678 .desc("number of demand (read+write) misses") 1679 .flags(total | nozero | nonan) 1680 ; 1681 demandMisses = SUM_DEMAND(misses); 1682 for (int i = 0; i < system->maxMasters(); i++) { 1683 demandMisses.subname(i, system->getMasterName(i)); 1684 } 1685 1686 overallMisses 1687 .name(name() + ".overall_misses") 1688 .desc("number of overall misses") 1689 .flags(total | nozero | nonan) 1690 ; 1691 overallMisses = demandMisses + SUM_NON_DEMAND(misses); 1692 for (int i = 0; i < system->maxMasters(); i++) { 1693 overallMisses.subname(i, system->getMasterName(i)); 1694 } 1695 1696 // Miss latency statistics 1697 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1698 MemCmd cmd(access_idx); 1699 const string &cstr = cmd.toString(); 1700 1701 missLatency[access_idx] 1702 .init(system->maxMasters()) 1703 .name(name() + "." + cstr + "_miss_latency") 1704 .desc("number of " + cstr + " miss cycles") 1705 .flags(total | nozero | nonan) 1706 ; 1707 for (int i = 0; i < system->maxMasters(); i++) { 1708 missLatency[access_idx].subname(i, system->getMasterName(i)); 1709 } 1710 } 1711 1712 demandMissLatency 1713 .name(name() + ".demand_miss_latency") 1714 .desc("number of demand (read+write) miss cycles") 1715 .flags(total | nozero | nonan) 1716 ; 1717 demandMissLatency = SUM_DEMAND(missLatency); 1718 for (int i = 0; i < system->maxMasters(); i++) { 1719 demandMissLatency.subname(i, system->getMasterName(i)); 1720 } 1721 1722 overallMissLatency 1723 .name(name() + ".overall_miss_latency") 1724 .desc("number of overall miss cycles") 1725 .flags(total | nozero | nonan) 1726 ; 1727 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency); 1728 for (int i = 0; i < system->maxMasters(); i++) { 1729 overallMissLatency.subname(i, system->getMasterName(i)); 1730 } 1731 1732 // access formulas 1733 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1734 MemCmd cmd(access_idx); 1735 const string &cstr = cmd.toString(); 1736 1737 accesses[access_idx] 1738 .name(name() + "." + cstr + "_accesses") 1739 .desc("number of " + cstr + " accesses(hits+misses)") 1740 .flags(total | nozero | nonan) 1741 ; 1742 accesses[access_idx] = hits[access_idx] + misses[access_idx]; 1743 1744 for (int i = 0; i < system->maxMasters(); i++) { 1745 accesses[access_idx].subname(i, system->getMasterName(i)); 1746 } 1747 } 1748 1749 demandAccesses 1750 .name(name() + ".demand_accesses") 1751 .desc("number of demand (read+write) accesses") 1752 .flags(total | nozero | nonan) 1753 ; 1754 demandAccesses = demandHits + demandMisses; 1755 for (int i = 0; i < system->maxMasters(); i++) { 1756 demandAccesses.subname(i, system->getMasterName(i)); 1757 } 1758 1759 overallAccesses 1760 .name(name() + ".overall_accesses") 1761 .desc("number of overall (read+write) accesses") 1762 .flags(total | nozero | nonan) 1763 ; 1764 overallAccesses = overallHits + overallMisses; 1765 for (int i = 0; i < system->maxMasters(); i++) { 1766 overallAccesses.subname(i, system->getMasterName(i)); 1767 } 1768 1769 // miss rate formulas 1770 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1771 MemCmd cmd(access_idx); 1772 const string &cstr = cmd.toString(); 1773 1774 missRate[access_idx] 1775 .name(name() + "." + cstr + "_miss_rate") 1776 .desc("miss rate for " + cstr + " accesses") 1777 .flags(total | nozero | nonan) 1778 ; 1779 missRate[access_idx] = misses[access_idx] / accesses[access_idx]; 1780 1781 for (int i = 0; i < system->maxMasters(); i++) { 1782 missRate[access_idx].subname(i, system->getMasterName(i)); 1783 } 1784 } 1785 1786 demandMissRate 1787 .name(name() + ".demand_miss_rate") 1788 .desc("miss rate for demand accesses") 1789 .flags(total | nozero | nonan) 1790 ; 1791 demandMissRate = demandMisses / demandAccesses; 1792 for (int i = 0; i < system->maxMasters(); i++) { 1793 demandMissRate.subname(i, system->getMasterName(i)); 1794 } 1795 1796 overallMissRate 1797 .name(name() + ".overall_miss_rate") 1798 .desc("miss rate for overall accesses") 1799 .flags(total | nozero | nonan) 1800 ; 1801 overallMissRate = overallMisses / overallAccesses; 1802 for (int i = 0; i < system->maxMasters(); i++) { 1803 overallMissRate.subname(i, system->getMasterName(i)); 1804 } 1805 1806 // miss latency formulas 1807 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1808 MemCmd cmd(access_idx); 1809 const string &cstr = cmd.toString(); 1810 1811 avgMissLatency[access_idx] 1812 .name(name() + "." + cstr + "_avg_miss_latency") 1813 .desc("average " + cstr + " miss latency") 1814 .flags(total | nozero | nonan) 1815 ; 1816 avgMissLatency[access_idx] = 1817 missLatency[access_idx] / misses[access_idx]; 1818 1819 for (int i = 0; i < system->maxMasters(); i++) { 1820 avgMissLatency[access_idx].subname(i, system->getMasterName(i)); 1821 } 1822 } 1823 1824 demandAvgMissLatency 1825 .name(name() + ".demand_avg_miss_latency") 1826 .desc("average overall miss latency") 1827 .flags(total | nozero | nonan) 1828 ; 1829 demandAvgMissLatency = demandMissLatency / demandMisses; 1830 for (int i = 0; i < system->maxMasters(); i++) { 1831 demandAvgMissLatency.subname(i, system->getMasterName(i)); 1832 } 1833 1834 overallAvgMissLatency 1835 .name(name() + ".overall_avg_miss_latency") 1836 .desc("average overall miss latency") 1837 .flags(total | nozero | nonan) 1838 ; 1839 overallAvgMissLatency = overallMissLatency / overallMisses; 1840 for (int i = 0; i < system->maxMasters(); i++) { 1841 overallAvgMissLatency.subname(i, system->getMasterName(i)); 1842 } 1843 1844 blocked_cycles.init(NUM_BLOCKED_CAUSES); 1845 blocked_cycles 1846 .name(name() + ".blocked_cycles") 1847 .desc("number of cycles access was blocked") 1848 .subname(Blocked_NoMSHRs, "no_mshrs") 1849 .subname(Blocked_NoTargets, "no_targets") 1850 ; 1851 1852 1853 blocked_causes.init(NUM_BLOCKED_CAUSES); 1854 blocked_causes 1855 .name(name() + ".blocked") 1856 .desc("number of cycles access was blocked") 1857 .subname(Blocked_NoMSHRs, "no_mshrs") 1858 .subname(Blocked_NoTargets, "no_targets") 1859 ; 1860 1861 avg_blocked 1862 .name(name() + ".avg_blocked_cycles") 1863 .desc("average number of cycles each access was blocked") 1864 .subname(Blocked_NoMSHRs, "no_mshrs") 1865 .subname(Blocked_NoTargets, "no_targets") 1866 ; 1867 1868 avg_blocked = blocked_cycles / blocked_causes; 1869 1870 unusedPrefetches 1871 .name(name() + ".unused_prefetches") 1872 .desc("number of HardPF blocks evicted w/o reference") 1873 .flags(nozero) 1874 ; 1875 1876 writebacks 1877 .init(system->maxMasters()) 1878 .name(name() + ".writebacks") 1879 .desc("number of writebacks") 1880 .flags(total | nozero | nonan) 1881 ; 1882 for (int i = 0; i < system->maxMasters(); i++) { 1883 writebacks.subname(i, system->getMasterName(i)); 1884 } 1885 1886 // MSHR statistics 1887 // MSHR hit statistics 1888 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1889 MemCmd cmd(access_idx); 1890 const string &cstr = cmd.toString(); 1891 1892 mshr_hits[access_idx] 1893 .init(system->maxMasters()) 1894 .name(name() + "." + cstr + "_mshr_hits") 1895 .desc("number of " + cstr + " MSHR hits") 1896 .flags(total | nozero | nonan) 1897 ; 1898 for (int i = 0; i < system->maxMasters(); i++) { 1899 mshr_hits[access_idx].subname(i, system->getMasterName(i)); 1900 } 1901 } 1902 1903 demandMshrHits 1904 .name(name() + ".demand_mshr_hits") 1905 .desc("number of demand (read+write) MSHR hits") 1906 .flags(total | nozero | nonan) 1907 ; 1908 demandMshrHits = SUM_DEMAND(mshr_hits); 1909 for (int i = 0; i < system->maxMasters(); i++) { 1910 demandMshrHits.subname(i, system->getMasterName(i)); 1911 } 1912 1913 overallMshrHits 1914 .name(name() + ".overall_mshr_hits") 1915 .desc("number of overall MSHR hits") 1916 .flags(total | nozero | nonan) 1917 ; 1918 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits); 1919 for (int i = 0; i < system->maxMasters(); i++) { 1920 overallMshrHits.subname(i, system->getMasterName(i)); 1921 } 1922 1923 // MSHR miss statistics 1924 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1925 MemCmd cmd(access_idx); 1926 const string &cstr = cmd.toString(); 1927 1928 mshr_misses[access_idx] 1929 .init(system->maxMasters()) 1930 .name(name() + "." + cstr + "_mshr_misses") 1931 .desc("number of " + cstr + " MSHR misses") 1932 .flags(total | nozero | nonan) 1933 ; 1934 for (int i = 0; i < system->maxMasters(); i++) { 1935 mshr_misses[access_idx].subname(i, system->getMasterName(i)); 1936 } 1937 } 1938 1939 demandMshrMisses 1940 .name(name() + ".demand_mshr_misses") 1941 .desc("number of demand (read+write) MSHR misses") 1942 .flags(total | nozero | nonan) 1943 ; 1944 demandMshrMisses = SUM_DEMAND(mshr_misses); 1945 for (int i = 0; i < system->maxMasters(); i++) { 1946 demandMshrMisses.subname(i, system->getMasterName(i)); 1947 } 1948 1949 overallMshrMisses 1950 .name(name() + ".overall_mshr_misses") 1951 .desc("number of overall MSHR misses") 1952 .flags(total | nozero | nonan) 1953 ; 1954 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses); 1955 for (int i = 0; i < system->maxMasters(); i++) { 1956 overallMshrMisses.subname(i, system->getMasterName(i)); 1957 } 1958 1959 // MSHR miss latency statistics 1960 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1961 MemCmd cmd(access_idx); 1962 const string &cstr = cmd.toString(); 1963 1964 mshr_miss_latency[access_idx] 1965 .init(system->maxMasters()) 1966 .name(name() + "." + cstr + "_mshr_miss_latency") 1967 .desc("number of " + cstr + " MSHR miss cycles") 1968 .flags(total | nozero | nonan) 1969 ; 1970 for (int i = 0; i < system->maxMasters(); i++) { 1971 mshr_miss_latency[access_idx].subname(i, system->getMasterName(i)); 1972 } 1973 } 1974 1975 demandMshrMissLatency 1976 .name(name() + ".demand_mshr_miss_latency") 1977 .desc("number of demand (read+write) MSHR miss cycles") 1978 .flags(total | nozero | nonan) 1979 ; 1980 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency); 1981 for (int i = 0; i < system->maxMasters(); i++) { 1982 demandMshrMissLatency.subname(i, system->getMasterName(i)); 1983 } 1984 1985 overallMshrMissLatency 1986 .name(name() + ".overall_mshr_miss_latency") 1987 .desc("number of overall MSHR miss cycles") 1988 .flags(total | nozero | nonan) 1989 ; 1990 overallMshrMissLatency = 1991 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency); 1992 for (int i = 0; i < system->maxMasters(); i++) { 1993 overallMshrMissLatency.subname(i, system->getMasterName(i)); 1994 } 1995 1996 // MSHR uncacheable statistics 1997 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1998 MemCmd cmd(access_idx); 1999 const string &cstr = cmd.toString(); 2000 2001 mshr_uncacheable[access_idx] 2002 .init(system->maxMasters()) 2003 .name(name() + "." + cstr + "_mshr_uncacheable") 2004 .desc("number of " + cstr + " MSHR uncacheable") 2005 .flags(total | nozero | nonan) 2006 ; 2007 for (int i = 0; i < system->maxMasters(); i++) { 2008 mshr_uncacheable[access_idx].subname(i, system->getMasterName(i)); 2009 } 2010 } 2011 2012 overallMshrUncacheable 2013 .name(name() + ".overall_mshr_uncacheable_misses") 2014 .desc("number of overall MSHR uncacheable misses") 2015 .flags(total | nozero | nonan) 2016 ; 2017 overallMshrUncacheable = 2018 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable); 2019 for (int i = 0; i < system->maxMasters(); i++) { 2020 overallMshrUncacheable.subname(i, system->getMasterName(i)); 2021 } 2022 2023 // MSHR miss latency statistics 2024 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2025 MemCmd cmd(access_idx); 2026 const string &cstr = cmd.toString(); 2027 2028 mshr_uncacheable_lat[access_idx] 2029 .init(system->maxMasters()) 2030 .name(name() + "." + cstr + "_mshr_uncacheable_latency") 2031 .desc("number of " + cstr + " MSHR uncacheable cycles") 2032 .flags(total | nozero | nonan) 2033 ; 2034 for (int i = 0; i < system->maxMasters(); i++) { 2035 mshr_uncacheable_lat[access_idx].subname( 2036 i, system->getMasterName(i)); 2037 } 2038 } 2039 2040 overallMshrUncacheableLatency 2041 .name(name() + ".overall_mshr_uncacheable_latency") 2042 .desc("number of overall MSHR uncacheable cycles") 2043 .flags(total | nozero | nonan) 2044 ; 2045 overallMshrUncacheableLatency = 2046 SUM_DEMAND(mshr_uncacheable_lat) + 2047 SUM_NON_DEMAND(mshr_uncacheable_lat); 2048 for (int i = 0; i < system->maxMasters(); i++) { 2049 overallMshrUncacheableLatency.subname(i, system->getMasterName(i)); 2050 } 2051 2052#if 0 2053 // MSHR access formulas 2054 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2055 MemCmd cmd(access_idx); 2056 const string &cstr = cmd.toString(); 2057 2058 mshrAccesses[access_idx] 2059 .name(name() + "." + cstr + "_mshr_accesses") 2060 .desc("number of " + cstr + " mshr accesses(hits+misses)") 2061 .flags(total | nozero | nonan) 2062 ; 2063 mshrAccesses[access_idx] = 2064 mshr_hits[access_idx] + mshr_misses[access_idx] 2065 + mshr_uncacheable[access_idx]; 2066 } 2067 2068 demandMshrAccesses 2069 .name(name() + ".demand_mshr_accesses") 2070 .desc("number of demand (read+write) mshr accesses") 2071 .flags(total | nozero | nonan) 2072 ; 2073 demandMshrAccesses = demandMshrHits + demandMshrMisses; 2074 2075 overallMshrAccesses 2076 .name(name() + ".overall_mshr_accesses") 2077 .desc("number of overall (read+write) mshr accesses") 2078 .flags(total | nozero | nonan) 2079 ; 2080 overallMshrAccesses = overallMshrHits + overallMshrMisses 2081 + overallMshrUncacheable; 2082#endif 2083 2084 // MSHR miss rate formulas 2085 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2086 MemCmd cmd(access_idx); 2087 const string &cstr = cmd.toString(); 2088 2089 mshrMissRate[access_idx] 2090 .name(name() + "." + cstr + "_mshr_miss_rate") 2091 .desc("mshr miss rate for " + cstr + " accesses") 2092 .flags(total | nozero | nonan) 2093 ; 2094 mshrMissRate[access_idx] = 2095 mshr_misses[access_idx] / accesses[access_idx]; 2096 2097 for (int i = 0; i < system->maxMasters(); i++) { 2098 mshrMissRate[access_idx].subname(i, system->getMasterName(i)); 2099 } 2100 } 2101 2102 demandMshrMissRate 2103 .name(name() + ".demand_mshr_miss_rate") 2104 .desc("mshr miss rate for demand accesses") 2105 .flags(total | nozero | nonan) 2106 ; 2107 demandMshrMissRate = demandMshrMisses / demandAccesses; 2108 for (int i = 0; i < system->maxMasters(); i++) { 2109 demandMshrMissRate.subname(i, system->getMasterName(i)); 2110 } 2111 2112 overallMshrMissRate 2113 .name(name() + ".overall_mshr_miss_rate") 2114 .desc("mshr miss rate for overall accesses") 2115 .flags(total | nozero | nonan) 2116 ; 2117 overallMshrMissRate = overallMshrMisses / overallAccesses; 2118 for (int i = 0; i < system->maxMasters(); i++) { 2119 overallMshrMissRate.subname(i, system->getMasterName(i)); 2120 } 2121 2122 // mshrMiss latency formulas 2123 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2124 MemCmd cmd(access_idx); 2125 const string &cstr = cmd.toString(); 2126 2127 avgMshrMissLatency[access_idx] 2128 .name(name() + "." + cstr + "_avg_mshr_miss_latency") 2129 .desc("average " + cstr + " mshr miss latency") 2130 .flags(total | nozero | nonan) 2131 ; 2132 avgMshrMissLatency[access_idx] = 2133 mshr_miss_latency[access_idx] / mshr_misses[access_idx]; 2134 2135 for (int i = 0; i < system->maxMasters(); i++) { 2136 avgMshrMissLatency[access_idx].subname( 2137 i, system->getMasterName(i)); 2138 } 2139 } 2140 2141 demandAvgMshrMissLatency 2142 .name(name() + ".demand_avg_mshr_miss_latency") 2143 .desc("average overall mshr miss latency") 2144 .flags(total | nozero | nonan) 2145 ; 2146 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses; 2147 for (int i = 0; i < system->maxMasters(); i++) { 2148 demandAvgMshrMissLatency.subname(i, system->getMasterName(i)); 2149 } 2150 2151 overallAvgMshrMissLatency 2152 .name(name() + ".overall_avg_mshr_miss_latency") 2153 .desc("average overall mshr miss latency") 2154 .flags(total | nozero | nonan) 2155 ; 2156 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses; 2157 for (int i = 0; i < system->maxMasters(); i++) { 2158 overallAvgMshrMissLatency.subname(i, system->getMasterName(i)); 2159 } 2160 2161 // mshrUncacheable latency formulas 2162 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2163 MemCmd cmd(access_idx); 2164 const string &cstr = cmd.toString(); 2165 2166 avgMshrUncacheableLatency[access_idx] 2167 .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency") 2168 .desc("average " + cstr + " mshr uncacheable latency") 2169 .flags(total | nozero | nonan) 2170 ; 2171 avgMshrUncacheableLatency[access_idx] = 2172 mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx]; 2173 2174 for (int i = 0; i < system->maxMasters(); i++) { 2175 avgMshrUncacheableLatency[access_idx].subname( 2176 i, system->getMasterName(i)); 2177 } 2178 } 2179 2180 overallAvgMshrUncacheableLatency 2181 .name(name() + ".overall_avg_mshr_uncacheable_latency") 2182 .desc("average overall mshr uncacheable latency") 2183 .flags(total | nozero | nonan) 2184 ; 2185 overallAvgMshrUncacheableLatency = 2186 overallMshrUncacheableLatency / overallMshrUncacheable; 2187 for (int i = 0; i < system->maxMasters(); i++) { 2188 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i)); 2189 } 2190 2191 replacements 2192 .name(name() + ".replacements") 2193 .desc("number of replacements") 2194 ; 2195} 2196 2197void 2198BaseCache::regProbePoints() 2199{ 2200 ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit"); 2201 ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss"); 2202} 2203 2204/////////////// 2205// 2206// CpuSidePort 2207// 2208/////////////// 2209bool 2210BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) 2211{ 2212 // Snoops shouldn't happen when bypassing caches 2213 assert(!cache->system->bypassCaches()); 2214 2215 assert(pkt->isResponse()); 2216 2217 // Express snoop responses from master to slave, e.g., from L1 to L2 2218 cache->recvTimingSnoopResp(pkt); 2219 return true; 2220} 2221 2222 2223bool 2224BaseCache::CpuSidePort::tryTiming(PacketPtr pkt) 2225{ 2226 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) { 2227 // always let express snoop packets through even if blocked 2228 return true; 2229 } else if (blocked || mustSendRetry) { 2230 // either already committed to send a retry, or blocked 2231 mustSendRetry = true; 2232 return false; 2233 } 2234 mustSendRetry = false; 2235 return true; 2236} 2237 2238bool 2239BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt) 2240{ 2241 assert(pkt->isRequest()); 2242 2243 if (cache->system->bypassCaches()) { 2244 // Just forward the packet if caches are disabled. 2245 // @todo This should really enqueue the packet rather 2246 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt); 2247 assert(success); 2248 return true; 2249 } else if (tryTiming(pkt)) { 2250 cache->recvTimingReq(pkt); 2251 return true; 2252 } 2253 return false; 2254} 2255 2256Tick 2257BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt) 2258{ 2259 if (cache->system->bypassCaches()) { 2260 // Forward the request if the system is in cache bypass mode. 2261 return cache->memSidePort.sendAtomic(pkt); 2262 } else { 2263 return cache->recvAtomic(pkt); 2264 } 2265} 2266 2267void 2268BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt) 2269{ 2270 if (cache->system->bypassCaches()) { 2271 // The cache should be flushed if we are in cache bypass mode, 2272 // so we don't need to check if we need to update anything. 2273 cache->memSidePort.sendFunctional(pkt); 2274 return; 2275 } 2276 2277 // functional request 2278 cache->functionalAccess(pkt, true); 2279} 2280 2281AddrRangeList 2282BaseCache::CpuSidePort::getAddrRanges() const 2283{ 2284 return cache->getAddrRanges(); 2285} 2286 2287 2288BaseCache:: 2289CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache, 2290 const std::string &_label) 2291 : CacheSlavePort(_name, _cache, _label), cache(_cache) 2292{ 2293} 2294 2295/////////////// 2296// 2297// MemSidePort 2298// 2299/////////////// 2300bool 2301BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt) 2302{ 2303 cache->recvTimingResp(pkt); 2304 return true; 2305} 2306 2307// Express snooping requests to memside port 2308void 2309BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) 2310{ 2311 // Snoops shouldn't happen when bypassing caches 2312 assert(!cache->system->bypassCaches()); 2313 2314 // handle snooping requests 2315 cache->recvTimingSnoopReq(pkt); 2316} 2317 2318Tick 2319BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) 2320{ 2321 // Snoops shouldn't happen when bypassing caches 2322 assert(!cache->system->bypassCaches()); 2323 2324 return cache->recvAtomicSnoop(pkt); 2325} 2326 2327void 2328BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) 2329{ 2330 // Snoops shouldn't happen when bypassing caches 2331 assert(!cache->system->bypassCaches()); 2332 2333 // functional snoop (note that in contrast to atomic we don't have 2334 // a specific functionalSnoop method, as they have the same 2335 // behaviour regardless) 2336 cache->functionalAccess(pkt, false); 2337} 2338 2339void 2340BaseCache::CacheReqPacketQueue::sendDeferredPacket() 2341{ 2342 // sanity check 2343 assert(!waitingOnRetry); 2344 2345 // there should never be any deferred request packets in the 2346 // queue, instead we resly on the cache to provide the packets 2347 // from the MSHR queue or write queue 2348 assert(deferredPacketReadyTime() == MaxTick); 2349 2350 // check for request packets (requests & writebacks) 2351 QueueEntry* entry = cache.getNextQueueEntry(); 2352 2353 if (!entry) { 2354 // can happen if e.g. we attempt a writeback and fail, but 2355 // before the retry, the writeback is eliminated because 2356 // we snoop another cache's ReadEx. 2357 } else { 2358 // let our snoop responses go first if there are responses to 2359 // the same addresses 2360 if (checkConflictingSnoop(entry->blkAddr)) { 2361 return; 2362 } 2363 waitingOnRetry = entry->sendPacket(cache); 2364 } 2365 2366 // if we succeeded and are not waiting for a retry, schedule the 2367 // next send considering when the next queue is ready, note that 2368 // snoop responses have their own packet queue and thus schedule 2369 // their own events 2370 if (!waitingOnRetry) { 2371 schedSendEvent(cache.nextQueueReadyTime()); 2372 } 2373} 2374 2375BaseCache::MemSidePort::MemSidePort(const std::string &_name, 2376 BaseCache *_cache, 2377 const std::string &_label) 2378 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), 2379 _reqQueue(*_cache, *this, _snoopRespQueue, _label), 2380 _snoopRespQueue(*_cache, *this, _label), cache(_cache) 2381{ 2382} 2383 2384void 2385WriteAllocator::updateMode(Addr write_addr, unsigned write_size, 2386 Addr blk_addr) 2387{ 2388 // check if we are continuing where the last write ended 2389 if (nextAddr == write_addr) { 2390 delayCtr[blk_addr] = delayThreshold; 2391 // stop if we have already saturated 2392 if (mode != WriteMode::NO_ALLOCATE) { 2393 byteCount += write_size; 2394 // switch to streaming mode if we have passed the lower 2395 // threshold 2396 if (mode == WriteMode::ALLOCATE && 2397 byteCount > coalesceLimit) { 2398 mode = WriteMode::COALESCE; 2399 DPRINTF(Cache, "Switched to write coalescing\n"); 2400 } else if (mode == WriteMode::COALESCE && 2401 byteCount > noAllocateLimit) { 2402 // and continue and switch to non-allocating mode if we 2403 // pass the upper threshold 2404 mode = WriteMode::NO_ALLOCATE; 2405 DPRINTF(Cache, "Switched to write-no-allocate\n"); 2406 } 2407 } 2408 } else { 2409 // we did not see a write matching the previous one, start 2410 // over again 2411 byteCount = write_size; 2412 mode = WriteMode::ALLOCATE; 2413 resetDelay(blk_addr); 2414 } 2415 nextAddr = write_addr + write_size; 2416} 2417 2418WriteAllocator* 2419WriteAllocatorParams::create() 2420{ 2421 return new WriteAllocator(this); 2422} 2423