base.cc revision 13350
1/* 2 * Copyright (c) 2012-2013, 2018 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2003-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Erik Hallnor 41 * Nikos Nikoleris 42 */ 43 44/** 45 * @file 46 * Definition of BaseCache functions. 47 */ 48 49#include "mem/cache/base.hh" 50 51#include "base/compiler.hh" 52#include "base/logging.hh" 53#include "debug/Cache.hh" 54#include "debug/CachePort.hh" 55#include "debug/CacheRepl.hh" 56#include "debug/CacheVerbose.hh" 57#include "mem/cache/mshr.hh" 58#include "mem/cache/prefetch/base.hh" 59#include "mem/cache/queue_entry.hh" 60#include "params/BaseCache.hh" 61#include "sim/core.hh" 62 63class BaseMasterPort; 64class BaseSlavePort; 65 66using namespace std; 67 68BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name, 69 BaseCache *_cache, 70 const std::string &_label) 71 : QueuedSlavePort(_name, _cache, queue), queue(*_cache, *this, _label), 72 blocked(false), mustSendRetry(false), 73 sendRetryEvent([this]{ processSendRetry(); }, _name) 74{ 75} 76 77BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size) 78 : MemObject(p), 79 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"), 80 memSidePort(p->name + ".mem_side", this, "MemSidePort"), 81 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below 82 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below 83 tags(p->tags), 84 prefetcher(p->prefetcher), 85 prefetchOnAccess(p->prefetch_on_access), 86 writebackClean(p->writeback_clean), 87 tempBlockWriteback(nullptr), 88 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); }, 89 name(), false, 90 EventBase::Delayed_Writeback_Pri), 91 blkSize(blk_size), 92 lookupLatency(p->tag_latency), 93 dataLatency(p->data_latency), 94 forwardLatency(p->tag_latency), 95 fillLatency(p->data_latency), 96 responseLatency(p->response_latency), 97 numTarget(p->tgts_per_mshr), 98 forwardSnoops(true), 99 clusivity(p->clusivity), 100 isReadOnly(p->is_read_only), 101 blocked(0), 102 order(0), 103 noTargetMSHR(nullptr), 104 missCount(p->max_miss_count), 105 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()), 106 system(p->system) 107{ 108 // the MSHR queue has no reserve entries as we check the MSHR 109 // queue on every single allocation, whereas the write queue has 110 // as many reserve entries as we have MSHRs, since every MSHR may 111 // eventually require a writeback, and we do not check the write 112 // buffer before committing to an MSHR 113 114 // forward snoops is overridden in init() once we can query 115 // whether the connected master is actually snooping or not 116 117 tempBlock = new TempCacheBlk(blkSize); 118 119 tags->init(this); 120 if (prefetcher) 121 prefetcher->setCache(this); 122} 123 124BaseCache::~BaseCache() 125{ 126 delete tempBlock; 127} 128 129void 130BaseCache::CacheSlavePort::setBlocked() 131{ 132 assert(!blocked); 133 DPRINTF(CachePort, "Port is blocking new requests\n"); 134 blocked = true; 135 // if we already scheduled a retry in this cycle, but it has not yet 136 // happened, cancel it 137 if (sendRetryEvent.scheduled()) { 138 owner.deschedule(sendRetryEvent); 139 DPRINTF(CachePort, "Port descheduled retry\n"); 140 mustSendRetry = true; 141 } 142} 143 144void 145BaseCache::CacheSlavePort::clearBlocked() 146{ 147 assert(blocked); 148 DPRINTF(CachePort, "Port is accepting new requests\n"); 149 blocked = false; 150 if (mustSendRetry) { 151 // @TODO: need to find a better time (next cycle?) 152 owner.schedule(sendRetryEvent, curTick() + 1); 153 } 154} 155 156void 157BaseCache::CacheSlavePort::processSendRetry() 158{ 159 DPRINTF(CachePort, "Port is sending retry\n"); 160 161 // reset the flag and call retry 162 mustSendRetry = false; 163 sendRetryReq(); 164} 165 166Addr 167BaseCache::regenerateBlkAddr(CacheBlk* blk) 168{ 169 if (blk != tempBlock) { 170 return tags->regenerateBlkAddr(blk); 171 } else { 172 return tempBlock->getAddr(); 173 } 174} 175 176void 177BaseCache::init() 178{ 179 if (!cpuSidePort.isConnected() || !memSidePort.isConnected()) 180 fatal("Cache ports on %s are not connected\n", name()); 181 cpuSidePort.sendRangeChange(); 182 forwardSnoops = cpuSidePort.isSnooping(); 183} 184 185BaseMasterPort & 186BaseCache::getMasterPort(const std::string &if_name, PortID idx) 187{ 188 if (if_name == "mem_side") { 189 return memSidePort; 190 } else { 191 return MemObject::getMasterPort(if_name, idx); 192 } 193} 194 195BaseSlavePort & 196BaseCache::getSlavePort(const std::string &if_name, PortID idx) 197{ 198 if (if_name == "cpu_side") { 199 return cpuSidePort; 200 } else { 201 return MemObject::getSlavePort(if_name, idx); 202 } 203} 204 205bool 206BaseCache::inRange(Addr addr) const 207{ 208 for (const auto& r : addrRanges) { 209 if (r.contains(addr)) { 210 return true; 211 } 212 } 213 return false; 214} 215 216void 217BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time) 218{ 219 if (pkt->needsResponse()) { 220 pkt->makeTimingResponse(); 221 // @todo: Make someone pay for this 222 pkt->headerDelay = pkt->payloadDelay = 0; 223 224 // In this case we are considering request_time that takes 225 // into account the delay of the xbar, if any, and just 226 // lat, neglecting responseLatency, modelling hit latency 227 // just as lookupLatency or or the value of lat overriden 228 // by access(), that calls accessBlock() function. 229 cpuSidePort.schedTimingResp(pkt, request_time, true); 230 } else { 231 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__, 232 pkt->print()); 233 234 // queue the packet for deletion, as the sending cache is 235 // still relying on it; if the block is found in access(), 236 // CleanEvict and Writeback messages will be deleted 237 // here as well 238 pendingDelete.reset(pkt); 239 } 240} 241 242void 243BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk, 244 Tick forward_time, Tick request_time) 245{ 246 if (mshr) { 247 /// MSHR hit 248 /// @note writebacks will be checked in getNextMSHR() 249 /// for any conflicting requests to the same block 250 251 //@todo remove hw_pf here 252 253 // Coalesce unless it was a software prefetch (see above). 254 if (pkt) { 255 assert(!pkt->isWriteback()); 256 // CleanEvicts corresponding to blocks which have 257 // outstanding requests in MSHRs are simply sunk here 258 if (pkt->cmd == MemCmd::CleanEvict) { 259 pendingDelete.reset(pkt); 260 } else if (pkt->cmd == MemCmd::WriteClean) { 261 // A WriteClean should never coalesce with any 262 // outstanding cache maintenance requests. 263 264 // We use forward_time here because there is an 265 // uncached memory write, forwarded to WriteBuffer. 266 allocateWriteBuffer(pkt, forward_time); 267 } else { 268 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__, 269 pkt->print()); 270 271 assert(pkt->req->masterId() < system->maxMasters()); 272 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 273 274 // We use forward_time here because it is the same 275 // considering new targets. We have multiple 276 // requests for the same address here. It 277 // specifies the latency to allocate an internal 278 // buffer and to schedule an event to the queued 279 // port and also takes into account the additional 280 // delay of the xbar. 281 mshr->allocateTarget(pkt, forward_time, order++, 282 allocOnFill(pkt->cmd)); 283 if (mshr->getNumTargets() == numTarget) { 284 noTargetMSHR = mshr; 285 setBlocked(Blocked_NoTargets); 286 // need to be careful with this... if this mshr isn't 287 // ready yet (i.e. time > curTick()), we don't want to 288 // move it ahead of mshrs that are ready 289 // mshrQueue.moveToFront(mshr); 290 } 291 } 292 } 293 } else { 294 // no MSHR 295 assert(pkt->req->masterId() < system->maxMasters()); 296 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 297 298 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) { 299 // We use forward_time here because there is an 300 // writeback or writeclean, forwarded to WriteBuffer. 301 allocateWriteBuffer(pkt, forward_time); 302 } else { 303 if (blk && blk->isValid()) { 304 // If we have a write miss to a valid block, we 305 // need to mark the block non-readable. Otherwise 306 // if we allow reads while there's an outstanding 307 // write miss, the read could return stale data 308 // out of the cache block... a more aggressive 309 // system could detect the overlap (if any) and 310 // forward data out of the MSHRs, but we don't do 311 // that yet. Note that we do need to leave the 312 // block valid so that it stays in the cache, in 313 // case we get an upgrade response (and hence no 314 // new data) when the write miss completes. 315 // As long as CPUs do proper store/load forwarding 316 // internally, and have a sufficiently weak memory 317 // model, this is probably unnecessary, but at some 318 // point it must have seemed like we needed it... 319 assert((pkt->needsWritable() && !blk->isWritable()) || 320 pkt->req->isCacheMaintenance()); 321 blk->status &= ~BlkReadable; 322 } 323 // Here we are using forward_time, modelling the latency of 324 // a miss (outbound) just as forwardLatency, neglecting the 325 // lookupLatency component. 326 allocateMissBuffer(pkt, forward_time); 327 } 328 } 329} 330 331void 332BaseCache::recvTimingReq(PacketPtr pkt) 333{ 334 // anything that is merely forwarded pays for the forward latency and 335 // the delay provided by the crossbar 336 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 337 338 // We use lookupLatency here because it is used to specify the latency 339 // to access. 340 Cycles lat = lookupLatency; 341 CacheBlk *blk = nullptr; 342 bool satisfied = false; 343 { 344 PacketList writebacks; 345 // Note that lat is passed by reference here. The function 346 // access() calls accessBlock() which can modify lat value. 347 satisfied = access(pkt, blk, lat, writebacks); 348 349 // copy writebacks to write buffer here to ensure they logically 350 // precede anything happening below 351 doWritebacks(writebacks, forward_time); 352 } 353 354 // Here we charge the headerDelay that takes into account the latencies 355 // of the bus, if the packet comes from it. 356 // The latency charged it is just lat that is the value of lookupLatency 357 // modified by access() function, or if not just lookupLatency. 358 // In case of a hit we are neglecting response latency. 359 // In case of a miss we are neglecting forward latency. 360 Tick request_time = clockEdge(lat) + pkt->headerDelay; 361 // Here we reset the timing of the packet. 362 pkt->headerDelay = pkt->payloadDelay = 0; 363 // track time of availability of next prefetch, if any 364 Tick next_pf_time = MaxTick; 365 366 if (satisfied) { 367 // if need to notify the prefetcher we have to do it before 368 // anything else as later handleTimingReqHit might turn the 369 // packet in a response 370 if (prefetcher && 371 (prefetchOnAccess || (blk && blk->wasPrefetched()))) { 372 if (blk) 373 blk->status &= ~BlkHWPrefetched; 374 375 // Don't notify on SWPrefetch 376 if (!pkt->cmd.isSWPrefetch()) { 377 assert(!pkt->req->isCacheMaintenance()); 378 next_pf_time = prefetcher->notify(pkt); 379 } 380 } 381 382 handleTimingReqHit(pkt, blk, request_time); 383 } else { 384 handleTimingReqMiss(pkt, blk, forward_time, request_time); 385 386 // We should call the prefetcher reguardless if the request is 387 // satisfied or not, reguardless if the request is in the MSHR 388 // or not. The request could be a ReadReq hit, but still not 389 // satisfied (potentially because of a prior write to the same 390 // cache line. So, even when not satisfied, there is an MSHR 391 // already allocated for this, we need to let the prefetcher 392 // know about the request 393 394 // Don't notify prefetcher on SWPrefetch or cache maintenance 395 // operations 396 if (prefetcher && pkt && 397 !pkt->cmd.isSWPrefetch() && 398 !pkt->req->isCacheMaintenance()) { 399 next_pf_time = prefetcher->notify(pkt); 400 } 401 } 402 403 if (next_pf_time != MaxTick) { 404 schedMemSideSendEvent(next_pf_time); 405 } 406} 407 408void 409BaseCache::handleUncacheableWriteResp(PacketPtr pkt) 410{ 411 Tick completion_time = clockEdge(responseLatency) + 412 pkt->headerDelay + pkt->payloadDelay; 413 414 // Reset the bus additional time as it is now accounted for 415 pkt->headerDelay = pkt->payloadDelay = 0; 416 417 cpuSidePort.schedTimingResp(pkt, completion_time, true); 418} 419 420void 421BaseCache::recvTimingResp(PacketPtr pkt) 422{ 423 assert(pkt->isResponse()); 424 425 // all header delay should be paid for by the crossbar, unless 426 // this is a prefetch response from above 427 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp, 428 "%s saw a non-zero packet delay\n", name()); 429 430 const bool is_error = pkt->isError(); 431 432 if (is_error) { 433 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__, 434 pkt->print()); 435 } 436 437 DPRINTF(Cache, "%s: Handling response %s\n", __func__, 438 pkt->print()); 439 440 // if this is a write, we should be looking at an uncacheable 441 // write 442 if (pkt->isWrite()) { 443 assert(pkt->req->isUncacheable()); 444 handleUncacheableWriteResp(pkt); 445 return; 446 } 447 448 // we have dealt with any (uncacheable) writes above, from here on 449 // we know we are dealing with an MSHR due to a miss or a prefetch 450 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState()); 451 assert(mshr); 452 453 if (mshr == noTargetMSHR) { 454 // we always clear at least one target 455 clearBlocked(Blocked_NoTargets); 456 noTargetMSHR = nullptr; 457 } 458 459 // Initial target is used just for stats 460 MSHR::Target *initial_tgt = mshr->getTarget(); 461 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); 462 Tick miss_latency = curTick() - initial_tgt->recvTime; 463 464 if (pkt->req->isUncacheable()) { 465 assert(pkt->req->masterId() < system->maxMasters()); 466 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += 467 miss_latency; 468 } else { 469 assert(pkt->req->masterId() < system->maxMasters()); 470 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += 471 miss_latency; 472 } 473 474 PacketList writebacks; 475 476 bool is_fill = !mshr->isForward && 477 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp || 478 mshr->wasWholeLineWrite); 479 480 // make sure that if the mshr was due to a whole line write then 481 // the response is an invalidation 482 assert(!mshr->wasWholeLineWrite || pkt->isInvalidate()); 483 484 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 485 486 if (is_fill && !is_error) { 487 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", 488 pkt->getAddr()); 489 490 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill()); 491 assert(blk != nullptr); 492 } 493 494 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) { 495 // The block was marked not readable while there was a pending 496 // cache maintenance operation, restore its flag. 497 blk->status |= BlkReadable; 498 499 // This was a cache clean operation (without invalidate) 500 // and we have a copy of the block already. Since there 501 // is no invalidation, we can promote targets that don't 502 // require a writable copy 503 mshr->promoteReadable(); 504 } 505 506 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) { 507 // If at this point the referenced block is writable and the 508 // response is not a cache invalidate, we promote targets that 509 // were deferred as we couldn't guarrantee a writable copy 510 mshr->promoteWritable(); 511 } 512 513 serviceMSHRTargets(mshr, pkt, blk, writebacks); 514 515 if (mshr->promoteDeferredTargets()) { 516 // avoid later read getting stale data while write miss is 517 // outstanding.. see comment in timingAccess() 518 if (blk) { 519 blk->status &= ~BlkReadable; 520 } 521 mshrQueue.markPending(mshr); 522 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay); 523 } else { 524 // while we deallocate an mshr from the queue we still have to 525 // check the isFull condition before and after as we might 526 // have been using the reserved entries already 527 const bool was_full = mshrQueue.isFull(); 528 mshrQueue.deallocate(mshr); 529 if (was_full && !mshrQueue.isFull()) { 530 clearBlocked(Blocked_NoMSHRs); 531 } 532 533 // Request the bus for a prefetch if this deallocation freed enough 534 // MSHRs for a prefetch to take place 535 if (prefetcher && mshrQueue.canPrefetch()) { 536 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), 537 clockEdge()); 538 if (next_pf_time != MaxTick) 539 schedMemSideSendEvent(next_pf_time); 540 } 541 } 542 543 // if we used temp block, check to see if its valid and then clear it out 544 if (blk == tempBlock && tempBlock->isValid()) { 545 evictBlock(blk, writebacks); 546 } 547 548 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 549 // copy writebacks to write buffer 550 doWritebacks(writebacks, forward_time); 551 552 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print()); 553 delete pkt; 554} 555 556 557Tick 558BaseCache::recvAtomic(PacketPtr pkt) 559{ 560 // We are in atomic mode so we pay just for lookupLatency here. 561 Cycles lat = lookupLatency; 562 563 // follow the same flow as in recvTimingReq, and check if a cache 564 // above us is responding 565 if (pkt->cacheResponding() && !pkt->isClean()) { 566 assert(!pkt->req->isCacheInvalidate()); 567 DPRINTF(Cache, "Cache above responding to %s: not responding\n", 568 pkt->print()); 569 570 // if a cache is responding, and it had the line in Owned 571 // rather than Modified state, we need to invalidate any 572 // copies that are not on the same path to memory 573 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 574 lat += ticksToCycles(memSidePort.sendAtomic(pkt)); 575 576 return lat * clockPeriod(); 577 } 578 579 // should assert here that there are no outstanding MSHRs or 580 // writebacks... that would mean that someone used an atomic 581 // access in timing mode 582 583 CacheBlk *blk = nullptr; 584 PacketList writebacks; 585 bool satisfied = access(pkt, blk, lat, writebacks); 586 587 if (pkt->isClean() && blk && blk->isDirty()) { 588 // A cache clean opearation is looking for a dirty 589 // block. If a dirty block is encountered a WriteClean 590 // will update any copies to the path to the memory 591 // until the point of reference. 592 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 593 __func__, pkt->print(), blk->print()); 594 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id); 595 writebacks.push_back(wb_pkt); 596 pkt->setSatisfied(); 597 } 598 599 // handle writebacks resulting from the access here to ensure they 600 // logically precede anything happening below 601 doWritebacksAtomic(writebacks); 602 assert(writebacks.empty()); 603 604 if (!satisfied) { 605 lat += handleAtomicReqMiss(pkt, blk, writebacks); 606 } 607 608 // Note that we don't invoke the prefetcher at all in atomic mode. 609 // It's not clear how to do it properly, particularly for 610 // prefetchers that aggressively generate prefetch candidates and 611 // rely on bandwidth contention to throttle them; these will tend 612 // to pollute the cache in atomic mode since there is no bandwidth 613 // contention. If we ever do want to enable prefetching in atomic 614 // mode, though, this is the place to do it... see timingAccess() 615 // for an example (though we'd want to issue the prefetch(es) 616 // immediately rather than calling requestMemSideBus() as we do 617 // there). 618 619 // do any writebacks resulting from the response handling 620 doWritebacksAtomic(writebacks); 621 622 // if we used temp block, check to see if its valid and if so 623 // clear it out, but only do so after the call to recvAtomic is 624 // finished so that any downstream observers (such as a snoop 625 // filter), first see the fill, and only then see the eviction 626 if (blk == tempBlock && tempBlock->isValid()) { 627 // the atomic CPU calls recvAtomic for fetch and load/store 628 // sequentuially, and we may already have a tempBlock 629 // writeback from the fetch that we have not yet sent 630 if (tempBlockWriteback) { 631 // if that is the case, write the prevoius one back, and 632 // do not schedule any new event 633 writebackTempBlockAtomic(); 634 } else { 635 // the writeback/clean eviction happens after the call to 636 // recvAtomic has finished (but before any successive 637 // calls), so that the response handling from the fill is 638 // allowed to happen first 639 schedule(writebackTempBlockAtomicEvent, curTick()); 640 } 641 642 tempBlockWriteback = evictBlock(blk); 643 } 644 645 if (pkt->needsResponse()) { 646 pkt->makeAtomicResponse(); 647 } 648 649 return lat * clockPeriod(); 650} 651 652void 653BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side) 654{ 655 Addr blk_addr = pkt->getBlockAddr(blkSize); 656 bool is_secure = pkt->isSecure(); 657 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 658 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 659 660 pkt->pushLabel(name()); 661 662 CacheBlkPrintWrapper cbpw(blk); 663 664 // Note that just because an L2/L3 has valid data doesn't mean an 665 // L1 doesn't have a more up-to-date modified copy that still 666 // needs to be found. As a result we always update the request if 667 // we have it, but only declare it satisfied if we are the owner. 668 669 // see if we have data at all (owned or otherwise) 670 bool have_data = blk && blk->isValid() 671 && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize, 672 blk->data); 673 674 // data we have is dirty if marked as such or if we have an 675 // in-service MSHR that is pending a modified line 676 bool have_dirty = 677 have_data && (blk->isDirty() || 678 (mshr && mshr->inService && mshr->isPendingModified())); 679 680 bool done = have_dirty || 681 cpuSidePort.trySatisfyFunctional(pkt) || 682 mshrQueue.trySatisfyFunctional(pkt, blk_addr) || 683 writeBuffer.trySatisfyFunctional(pkt, blk_addr) || 684 memSidePort.trySatisfyFunctional(pkt); 685 686 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(), 687 (blk && blk->isValid()) ? "valid " : "", 688 have_data ? "data " : "", done ? "done " : ""); 689 690 // We're leaving the cache, so pop cache->name() label 691 pkt->popLabel(); 692 693 if (done) { 694 pkt->makeResponse(); 695 } else { 696 // if it came as a request from the CPU side then make sure it 697 // continues towards the memory side 698 if (from_cpu_side) { 699 memSidePort.sendFunctional(pkt); 700 } else if (cpuSidePort.isSnooping()) { 701 // if it came from the memory side, it must be a snoop request 702 // and we should only forward it if we are forwarding snoops 703 cpuSidePort.sendFunctionalSnoop(pkt); 704 } 705 } 706} 707 708 709void 710BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) 711{ 712 assert(pkt->isRequest()); 713 714 uint64_t overwrite_val; 715 bool overwrite_mem; 716 uint64_t condition_val64; 717 uint32_t condition_val32; 718 719 int offset = pkt->getOffset(blkSize); 720 uint8_t *blk_data = blk->data + offset; 721 722 assert(sizeof(uint64_t) >= pkt->getSize()); 723 724 overwrite_mem = true; 725 // keep a copy of our possible write value, and copy what is at the 726 // memory address into the packet 727 pkt->writeData((uint8_t *)&overwrite_val); 728 pkt->setData(blk_data); 729 730 if (pkt->req->isCondSwap()) { 731 if (pkt->getSize() == sizeof(uint64_t)) { 732 condition_val64 = pkt->req->getExtraData(); 733 overwrite_mem = !std::memcmp(&condition_val64, blk_data, 734 sizeof(uint64_t)); 735 } else if (pkt->getSize() == sizeof(uint32_t)) { 736 condition_val32 = (uint32_t)pkt->req->getExtraData(); 737 overwrite_mem = !std::memcmp(&condition_val32, blk_data, 738 sizeof(uint32_t)); 739 } else 740 panic("Invalid size for conditional read/write\n"); 741 } 742 743 if (overwrite_mem) { 744 std::memcpy(blk_data, &overwrite_val, pkt->getSize()); 745 blk->status |= BlkDirty; 746 } 747} 748 749QueueEntry* 750BaseCache::getNextQueueEntry() 751{ 752 // Check both MSHR queue and write buffer for potential requests, 753 // note that null does not mean there is no request, it could 754 // simply be that it is not ready 755 MSHR *miss_mshr = mshrQueue.getNext(); 756 WriteQueueEntry *wq_entry = writeBuffer.getNext(); 757 758 // If we got a write buffer request ready, first priority is a 759 // full write buffer, otherwise we favour the miss requests 760 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) { 761 // need to search MSHR queue for conflicting earlier miss. 762 MSHR *conflict_mshr = 763 mshrQueue.findPending(wq_entry->blkAddr, 764 wq_entry->isSecure); 765 766 if (conflict_mshr && conflict_mshr->order < wq_entry->order) { 767 // Service misses in order until conflict is cleared. 768 return conflict_mshr; 769 770 // @todo Note that we ignore the ready time of the conflict here 771 } 772 773 // No conflicts; issue write 774 return wq_entry; 775 } else if (miss_mshr) { 776 // need to check for conflicting earlier writeback 777 WriteQueueEntry *conflict_mshr = 778 writeBuffer.findPending(miss_mshr->blkAddr, 779 miss_mshr->isSecure); 780 if (conflict_mshr) { 781 // not sure why we don't check order here... it was in the 782 // original code but commented out. 783 784 // The only way this happens is if we are 785 // doing a write and we didn't have permissions 786 // then subsequently saw a writeback (owned got evicted) 787 // We need to make sure to perform the writeback first 788 // To preserve the dirty data, then we can issue the write 789 790 // should we return wq_entry here instead? I.e. do we 791 // have to flush writes in order? I don't think so... not 792 // for Alpha anyway. Maybe for x86? 793 return conflict_mshr; 794 795 // @todo Note that we ignore the ready time of the conflict here 796 } 797 798 // No conflicts; issue read 799 return miss_mshr; 800 } 801 802 // fall through... no pending requests. Try a prefetch. 803 assert(!miss_mshr && !wq_entry); 804 if (prefetcher && mshrQueue.canPrefetch()) { 805 // If we have a miss queue slot, we can try a prefetch 806 PacketPtr pkt = prefetcher->getPacket(); 807 if (pkt) { 808 Addr pf_addr = pkt->getBlockAddr(blkSize); 809 if (!tags->findBlock(pf_addr, pkt->isSecure()) && 810 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && 811 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { 812 // Update statistic on number of prefetches issued 813 // (hwpf_mshr_misses) 814 assert(pkt->req->masterId() < system->maxMasters()); 815 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 816 817 // allocate an MSHR and return it, note 818 // that we send the packet straight away, so do not 819 // schedule the send 820 return allocateMissBuffer(pkt, curTick(), false); 821 } else { 822 // free the request and packet 823 delete pkt; 824 } 825 } 826 } 827 828 return nullptr; 829} 830 831void 832BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool) 833{ 834 assert(pkt->isRequest()); 835 836 assert(blk && blk->isValid()); 837 // Occasionally this is not true... if we are a lower-level cache 838 // satisfying a string of Read and ReadEx requests from 839 // upper-level caches, a Read will mark the block as shared but we 840 // can satisfy a following ReadEx anyway since we can rely on the 841 // Read requester(s) to have buffered the ReadEx snoop and to 842 // invalidate their blocks after receiving them. 843 // assert(!pkt->needsWritable() || blk->isWritable()); 844 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); 845 846 // Check RMW operations first since both isRead() and 847 // isWrite() will be true for them 848 if (pkt->cmd == MemCmd::SwapReq) { 849 if (pkt->isAtomicOp()) { 850 // extract data from cache and save it into the data field in 851 // the packet as a return value from this atomic op 852 853 int offset = tags->extractBlkOffset(pkt->getAddr()); 854 uint8_t *blk_data = blk->data + offset; 855 std::memcpy(pkt->getPtr<uint8_t>(), blk_data, pkt->getSize()); 856 857 // execute AMO operation 858 (*(pkt->getAtomicOp()))(blk_data); 859 860 // set block status to dirty 861 blk->status |= BlkDirty; 862 } else { 863 cmpAndSwap(blk, pkt); 864 } 865 } else if (pkt->isWrite()) { 866 // we have the block in a writable state and can go ahead, 867 // note that the line may be also be considered writable in 868 // downstream caches along the path to memory, but always 869 // Exclusive, and never Modified 870 assert(blk->isWritable()); 871 // Write or WriteLine at the first cache with block in writable state 872 if (blk->checkWrite(pkt)) { 873 pkt->writeDataToBlock(blk->data, blkSize); 874 } 875 // Always mark the line as dirty (and thus transition to the 876 // Modified state) even if we are a failed StoreCond so we 877 // supply data to any snoops that have appended themselves to 878 // this cache before knowing the store will fail. 879 blk->status |= BlkDirty; 880 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print()); 881 } else if (pkt->isRead()) { 882 if (pkt->isLLSC()) { 883 blk->trackLoadLocked(pkt); 884 } 885 886 // all read responses have a data payload 887 assert(pkt->hasRespData()); 888 pkt->setDataFromBlock(blk->data, blkSize); 889 } else if (pkt->isUpgrade()) { 890 // sanity check 891 assert(!pkt->hasSharers()); 892 893 if (blk->isDirty()) { 894 // we were in the Owned state, and a cache above us that 895 // has the line in Shared state needs to be made aware 896 // that the data it already has is in fact dirty 897 pkt->setCacheResponding(); 898 blk->status &= ~BlkDirty; 899 } 900 } else if (pkt->isClean()) { 901 blk->status &= ~BlkDirty; 902 } else { 903 assert(pkt->isInvalidate()); 904 invalidateBlock(blk); 905 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__, 906 pkt->print()); 907 } 908} 909 910///////////////////////////////////////////////////// 911// 912// Access path: requests coming in from the CPU side 913// 914///////////////////////////////////////////////////// 915 916bool 917BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 918 PacketList &writebacks) 919{ 920 // sanity check 921 assert(pkt->isRequest()); 922 923 chatty_assert(!(isReadOnly && pkt->isWrite()), 924 "Should never see a write in a read-only cache %s\n", 925 name()); 926 927 // Here lat is the value passed as parameter to accessBlock() function 928 // that can modify its value. 929 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat); 930 931 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(), 932 blk ? "hit " + blk->print() : "miss"); 933 934 if (pkt->req->isCacheMaintenance()) { 935 // A cache maintenance operation is always forwarded to the 936 // memory below even if the block is found in dirty state. 937 938 // We defer any changes to the state of the block until we 939 // create and mark as in service the mshr for the downstream 940 // packet. 941 return false; 942 } 943 944 if (pkt->isEviction()) { 945 // We check for presence of block in above caches before issuing 946 // Writeback or CleanEvict to write buffer. Therefore the only 947 // possible cases can be of a CleanEvict packet coming from above 948 // encountering a Writeback generated in this cache peer cache and 949 // waiting in the write buffer. Cases of upper level peer caches 950 // generating CleanEvict and Writeback or simply CleanEvict and 951 // CleanEvict almost simultaneously will be caught by snoops sent out 952 // by crossbar. 953 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(), 954 pkt->isSecure()); 955 if (wb_entry) { 956 assert(wb_entry->getNumTargets() == 1); 957 PacketPtr wbPkt = wb_entry->getTarget()->pkt; 958 assert(wbPkt->isWriteback()); 959 960 if (pkt->isCleanEviction()) { 961 // The CleanEvict and WritebackClean snoops into other 962 // peer caches of the same level while traversing the 963 // crossbar. If a copy of the block is found, the 964 // packet is deleted in the crossbar. Hence, none of 965 // the other upper level caches connected to this 966 // cache have the block, so we can clear the 967 // BLOCK_CACHED flag in the Writeback if set and 968 // discard the CleanEvict by returning true. 969 wbPkt->clearBlockCached(); 970 return true; 971 } else { 972 assert(pkt->cmd == MemCmd::WritebackDirty); 973 // Dirty writeback from above trumps our clean 974 // writeback... discard here 975 // Note: markInService will remove entry from writeback buffer. 976 markInService(wb_entry); 977 delete wbPkt; 978 } 979 } 980 } 981 982 // Writeback handling is special case. We can write the block into 983 // the cache without having a writeable copy (or any copy at all). 984 if (pkt->isWriteback()) { 985 assert(blkSize == pkt->getSize()); 986 987 // we could get a clean writeback while we are having 988 // outstanding accesses to a block, do the simple thing for 989 // now and drop the clean writeback so that we do not upset 990 // any ordering/decisions about ownership already taken 991 if (pkt->cmd == MemCmd::WritebackClean && 992 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) { 993 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, " 994 "dropping\n", pkt->getAddr()); 995 return true; 996 } 997 998 if (!blk) { 999 // need to do a replacement 1000 blk = allocateBlock(pkt, writebacks); 1001 if (!blk) { 1002 // no replaceable block available: give up, fwd to next level. 1003 incMissCount(pkt); 1004 return false; 1005 } 1006 1007 blk->status |= (BlkValid | BlkReadable); 1008 } 1009 // only mark the block dirty if we got a writeback command, 1010 // and leave it as is for a clean writeback 1011 if (pkt->cmd == MemCmd::WritebackDirty) { 1012 // TODO: the coherent cache can assert(!blk->isDirty()); 1013 blk->status |= BlkDirty; 1014 } 1015 // if the packet does not have sharers, it is passing 1016 // writable, and we got the writeback in Modified or Exclusive 1017 // state, if not we are in the Owned or Shared state 1018 if (!pkt->hasSharers()) { 1019 blk->status |= BlkWritable; 1020 } 1021 // nothing else to do; writeback doesn't expect response 1022 assert(!pkt->needsResponse()); 1023 pkt->writeDataToBlock(blk->data, blkSize); 1024 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 1025 incHitCount(pkt); 1026 // populate the time when the block will be ready to access. 1027 blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay + 1028 pkt->payloadDelay; 1029 return true; 1030 } else if (pkt->cmd == MemCmd::CleanEvict) { 1031 if (blk) { 1032 // Found the block in the tags, need to stop CleanEvict from 1033 // propagating further down the hierarchy. Returning true will 1034 // treat the CleanEvict like a satisfied write request and delete 1035 // it. 1036 return true; 1037 } 1038 // We didn't find the block here, propagate the CleanEvict further 1039 // down the memory hierarchy. Returning false will treat the CleanEvict 1040 // like a Writeback which could not find a replaceable block so has to 1041 // go to next level. 1042 return false; 1043 } else if (pkt->cmd == MemCmd::WriteClean) { 1044 // WriteClean handling is a special case. We can allocate a 1045 // block directly if it doesn't exist and we can update the 1046 // block immediately. The WriteClean transfers the ownership 1047 // of the block as well. 1048 assert(blkSize == pkt->getSize()); 1049 1050 if (!blk) { 1051 if (pkt->writeThrough()) { 1052 // if this is a write through packet, we don't try to 1053 // allocate if the block is not present 1054 return false; 1055 } else { 1056 // a writeback that misses needs to allocate a new block 1057 blk = allocateBlock(pkt, writebacks); 1058 if (!blk) { 1059 // no replaceable block available: give up, fwd to 1060 // next level. 1061 incMissCount(pkt); 1062 return false; 1063 } 1064 1065 blk->status |= (BlkValid | BlkReadable); 1066 } 1067 } 1068 1069 // at this point either this is a writeback or a write-through 1070 // write clean operation and the block is already in this 1071 // cache, we need to update the data and the block flags 1072 assert(blk); 1073 // TODO: the coherent cache can assert(!blk->isDirty()); 1074 if (!pkt->writeThrough()) { 1075 blk->status |= BlkDirty; 1076 } 1077 // nothing else to do; writeback doesn't expect response 1078 assert(!pkt->needsResponse()); 1079 pkt->writeDataToBlock(blk->data, blkSize); 1080 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 1081 1082 incHitCount(pkt); 1083 // populate the time when the block will be ready to access. 1084 blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay + 1085 pkt->payloadDelay; 1086 // if this a write-through packet it will be sent to cache 1087 // below 1088 return !pkt->writeThrough(); 1089 } else if (blk && (pkt->needsWritable() ? blk->isWritable() : 1090 blk->isReadable())) { 1091 // OK to satisfy access 1092 incHitCount(pkt); 1093 satisfyRequest(pkt, blk); 1094 maintainClusivity(pkt->fromCache(), blk); 1095 1096 return true; 1097 } 1098 1099 // Can't satisfy access normally... either no block (blk == nullptr) 1100 // or have block but need writable 1101 1102 incMissCount(pkt); 1103 1104 if (!blk && pkt->isLLSC() && pkt->isWrite()) { 1105 // complete miss on store conditional... just give up now 1106 pkt->req->setExtraData(0); 1107 return true; 1108 } 1109 1110 return false; 1111} 1112 1113void 1114BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk) 1115{ 1116 if (from_cache && blk && blk->isValid() && !blk->isDirty() && 1117 clusivity == Enums::mostly_excl) { 1118 // if we have responded to a cache, and our block is still 1119 // valid, but not dirty, and this cache is mostly exclusive 1120 // with respect to the cache above, drop the block 1121 invalidateBlock(blk); 1122 } 1123} 1124 1125CacheBlk* 1126BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks, 1127 bool allocate) 1128{ 1129 assert(pkt->isResponse()); 1130 Addr addr = pkt->getAddr(); 1131 bool is_secure = pkt->isSecure(); 1132#if TRACING_ON 1133 CacheBlk::State old_state = blk ? blk->status : 0; 1134#endif 1135 1136 // When handling a fill, we should have no writes to this line. 1137 assert(addr == pkt->getBlockAddr(blkSize)); 1138 assert(!writeBuffer.findMatch(addr, is_secure)); 1139 1140 if (!blk) { 1141 // better have read new data... 1142 assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp); 1143 1144 // need to do a replacement if allocating, otherwise we stick 1145 // with the temporary storage 1146 blk = allocate ? allocateBlock(pkt, writebacks) : nullptr; 1147 1148 if (!blk) { 1149 // No replaceable block or a mostly exclusive 1150 // cache... just use temporary storage to complete the 1151 // current request and then get rid of it 1152 assert(!tempBlock->isValid()); 1153 blk = tempBlock; 1154 tempBlock->insert(addr, is_secure); 1155 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, 1156 is_secure ? "s" : "ns"); 1157 } 1158 1159 // we should never be overwriting a valid block 1160 assert(!blk->isValid()); 1161 } else { 1162 // existing block... probably an upgrade 1163 assert(regenerateBlkAddr(blk) == addr); 1164 assert(blk->isSecure() == is_secure); 1165 // either we're getting new data or the block should already be valid 1166 assert(pkt->hasData() || blk->isValid()); 1167 // don't clear block status... if block is already dirty we 1168 // don't want to lose that 1169 } 1170 1171 blk->status |= BlkValid | BlkReadable; 1172 1173 // sanity check for whole-line writes, which should always be 1174 // marked as writable as part of the fill, and then later marked 1175 // dirty as part of satisfyRequest 1176 if (pkt->cmd == MemCmd::InvalidateResp) { 1177 assert(!pkt->hasSharers()); 1178 } 1179 1180 // here we deal with setting the appropriate state of the line, 1181 // and we start by looking at the hasSharers flag, and ignore the 1182 // cacheResponding flag (normally signalling dirty data) if the 1183 // packet has sharers, thus the line is never allocated as Owned 1184 // (dirty but not writable), and always ends up being either 1185 // Shared, Exclusive or Modified, see Packet::setCacheResponding 1186 // for more details 1187 if (!pkt->hasSharers()) { 1188 // we could get a writable line from memory (rather than a 1189 // cache) even in a read-only cache, note that we set this bit 1190 // even for a read-only cache, possibly revisit this decision 1191 blk->status |= BlkWritable; 1192 1193 // check if we got this via cache-to-cache transfer (i.e., from a 1194 // cache that had the block in Modified or Owned state) 1195 if (pkt->cacheResponding()) { 1196 // we got the block in Modified state, and invalidated the 1197 // owners copy 1198 blk->status |= BlkDirty; 1199 1200 chatty_assert(!isReadOnly, "Should never see dirty snoop response " 1201 "in read-only cache %s\n", name()); 1202 } 1203 } 1204 1205 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", 1206 addr, is_secure ? "s" : "ns", old_state, blk->print()); 1207 1208 // if we got new data, copy it in (checking for a read response 1209 // and a response that has data is the same in the end) 1210 if (pkt->isRead()) { 1211 // sanity checks 1212 assert(pkt->hasData()); 1213 assert(pkt->getSize() == blkSize); 1214 1215 pkt->writeDataToBlock(blk->data, blkSize); 1216 } 1217 // We pay for fillLatency here. 1218 blk->whenReady = clockEdge() + fillLatency * clockPeriod() + 1219 pkt->payloadDelay; 1220 1221 return blk; 1222} 1223 1224CacheBlk* 1225BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks) 1226{ 1227 // Get address 1228 const Addr addr = pkt->getAddr(); 1229 1230 // Get secure bit 1231 const bool is_secure = pkt->isSecure(); 1232 1233 // Find replacement victim 1234 std::vector<CacheBlk*> evict_blks; 1235 CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks); 1236 1237 // It is valid to return nullptr if there is no victim 1238 if (!victim) 1239 return nullptr; 1240 1241 // Print victim block's information 1242 DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print()); 1243 1244 // Check for transient state allocations. If any of the entries listed 1245 // for eviction has a transient state, the allocation fails 1246 for (const auto& blk : evict_blks) { 1247 if (blk->isValid()) { 1248 Addr repl_addr = regenerateBlkAddr(blk); 1249 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); 1250 if (repl_mshr) { 1251 // must be an outstanding upgrade or clean request 1252 // on a block we're about to replace... 1253 assert((!blk->isWritable() && repl_mshr->needsWritable()) || 1254 repl_mshr->isCleaning()); 1255 1256 // too hard to replace block with transient state 1257 // allocation failed, block not inserted 1258 return nullptr; 1259 } 1260 } 1261 } 1262 1263 // The victim will be replaced by a new entry, so increase the replacement 1264 // counter if a valid block is being replaced 1265 if (victim->isValid()) { 1266 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx " 1267 "(%s): %s\n", regenerateBlkAddr(victim), 1268 victim->isSecure() ? "s" : "ns", 1269 addr, is_secure ? "s" : "ns", 1270 victim->isDirty() ? "writeback" : "clean"); 1271 1272 replacements++; 1273 } 1274 1275 // Evict valid blocks associated to this victim block 1276 for (const auto& blk : evict_blks) { 1277 if (blk->isValid()) { 1278 if (blk->wasPrefetched()) { 1279 unusedPrefetches++; 1280 } 1281 1282 evictBlock(blk, writebacks); 1283 } 1284 } 1285 1286 // Insert new block at victimized entry 1287 tags->insertBlock(addr, is_secure, pkt->req->masterId(), 1288 pkt->req->taskId(), victim); 1289 1290 return victim; 1291} 1292 1293void 1294BaseCache::invalidateBlock(CacheBlk *blk) 1295{ 1296 if (blk != tempBlock) 1297 tags->invalidate(blk); 1298 blk->invalidate(); 1299} 1300 1301PacketPtr 1302BaseCache::writebackBlk(CacheBlk *blk) 1303{ 1304 chatty_assert(!isReadOnly || writebackClean, 1305 "Writeback from read-only cache"); 1306 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean)); 1307 1308 writebacks[Request::wbMasterId]++; 1309 1310 RequestPtr req = std::make_shared<Request>( 1311 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId); 1312 1313 if (blk->isSecure()) 1314 req->setFlags(Request::SECURE); 1315 1316 req->taskId(blk->task_id); 1317 1318 PacketPtr pkt = 1319 new Packet(req, blk->isDirty() ? 1320 MemCmd::WritebackDirty : MemCmd::WritebackClean); 1321 1322 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n", 1323 pkt->print(), blk->isWritable(), blk->isDirty()); 1324 1325 if (blk->isWritable()) { 1326 // not asserting shared means we pass the block in modified 1327 // state, mark our own block non-writeable 1328 blk->status &= ~BlkWritable; 1329 } else { 1330 // we are in the Owned state, tell the receiver 1331 pkt->setHasSharers(); 1332 } 1333 1334 // make sure the block is not marked dirty 1335 blk->status &= ~BlkDirty; 1336 1337 pkt->allocate(); 1338 pkt->setDataFromBlock(blk->data, blkSize); 1339 1340 return pkt; 1341} 1342 1343PacketPtr 1344BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id) 1345{ 1346 RequestPtr req = std::make_shared<Request>( 1347 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId); 1348 1349 if (blk->isSecure()) { 1350 req->setFlags(Request::SECURE); 1351 } 1352 req->taskId(blk->task_id); 1353 1354 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id); 1355 1356 if (dest) { 1357 req->setFlags(dest); 1358 pkt->setWriteThrough(); 1359 } 1360 1361 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(), 1362 blk->isWritable(), blk->isDirty()); 1363 1364 if (blk->isWritable()) { 1365 // not asserting shared means we pass the block in modified 1366 // state, mark our own block non-writeable 1367 blk->status &= ~BlkWritable; 1368 } else { 1369 // we are in the Owned state, tell the receiver 1370 pkt->setHasSharers(); 1371 } 1372 1373 // make sure the block is not marked dirty 1374 blk->status &= ~BlkDirty; 1375 1376 pkt->allocate(); 1377 pkt->setDataFromBlock(blk->data, blkSize); 1378 1379 return pkt; 1380} 1381 1382 1383void 1384BaseCache::memWriteback() 1385{ 1386 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); }); 1387} 1388 1389void 1390BaseCache::memInvalidate() 1391{ 1392 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); }); 1393} 1394 1395bool 1396BaseCache::isDirty() const 1397{ 1398 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); }); 1399} 1400 1401void 1402BaseCache::writebackVisitor(CacheBlk &blk) 1403{ 1404 if (blk.isDirty()) { 1405 assert(blk.isValid()); 1406 1407 RequestPtr request = std::make_shared<Request>( 1408 regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId); 1409 1410 request->taskId(blk.task_id); 1411 if (blk.isSecure()) { 1412 request->setFlags(Request::SECURE); 1413 } 1414 1415 Packet packet(request, MemCmd::WriteReq); 1416 packet.dataStatic(blk.data); 1417 1418 memSidePort.sendFunctional(&packet); 1419 1420 blk.status &= ~BlkDirty; 1421 } 1422} 1423 1424void 1425BaseCache::invalidateVisitor(CacheBlk &blk) 1426{ 1427 if (blk.isDirty()) 1428 warn_once("Invalidating dirty cache lines. " \ 1429 "Expect things to break.\n"); 1430 1431 if (blk.isValid()) { 1432 assert(!blk.isDirty()); 1433 invalidateBlock(&blk); 1434 } 1435} 1436 1437Tick 1438BaseCache::nextQueueReadyTime() const 1439{ 1440 Tick nextReady = std::min(mshrQueue.nextReadyTime(), 1441 writeBuffer.nextReadyTime()); 1442 1443 // Don't signal prefetch ready time if no MSHRs available 1444 // Will signal once enoguh MSHRs are deallocated 1445 if (prefetcher && mshrQueue.canPrefetch()) { 1446 nextReady = std::min(nextReady, 1447 prefetcher->nextPrefetchReadyTime()); 1448 } 1449 1450 return nextReady; 1451} 1452 1453 1454bool 1455BaseCache::sendMSHRQueuePacket(MSHR* mshr) 1456{ 1457 assert(mshr); 1458 1459 // use request from 1st target 1460 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 1461 1462 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print()); 1463 1464 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); 1465 1466 // either a prefetch that is not present upstream, or a normal 1467 // MSHR request, proceed to get the packet to send downstream 1468 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(), 1469 mshr->isWholeLineWrite()); 1470 1471 mshr->isForward = (pkt == nullptr); 1472 1473 if (mshr->isForward) { 1474 // not a cache block request, but a response is expected 1475 // make copy of current packet to forward, keep current 1476 // copy for response handling 1477 pkt = new Packet(tgt_pkt, false, true); 1478 assert(!pkt->isWrite()); 1479 } 1480 1481 // play it safe and append (rather than set) the sender state, 1482 // as forwarded packets may already have existing state 1483 pkt->pushSenderState(mshr); 1484 1485 if (pkt->isClean() && blk && blk->isDirty()) { 1486 // A cache clean opearation is looking for a dirty block. Mark 1487 // the packet so that the destination xbar can determine that 1488 // there will be a follow-up write packet as well. 1489 pkt->setSatisfied(); 1490 } 1491 1492 if (!memSidePort.sendTimingReq(pkt)) { 1493 // we are awaiting a retry, but we 1494 // delete the packet and will be creating a new packet 1495 // when we get the opportunity 1496 delete pkt; 1497 1498 // note that we have now masked any requestBus and 1499 // schedSendEvent (we will wait for a retry before 1500 // doing anything), and this is so even if we do not 1501 // care about this packet and might override it before 1502 // it gets retried 1503 return true; 1504 } else { 1505 // As part of the call to sendTimingReq the packet is 1506 // forwarded to all neighbouring caches (and any caches 1507 // above them) as a snoop. Thus at this point we know if 1508 // any of the neighbouring caches are responding, and if 1509 // so, we know it is dirty, and we can determine if it is 1510 // being passed as Modified, making our MSHR the ordering 1511 // point 1512 bool pending_modified_resp = !pkt->hasSharers() && 1513 pkt->cacheResponding(); 1514 markInService(mshr, pending_modified_resp); 1515 1516 if (pkt->isClean() && blk && blk->isDirty()) { 1517 // A cache clean opearation is looking for a dirty 1518 // block. If a dirty block is encountered a WriteClean 1519 // will update any copies to the path to the memory 1520 // until the point of reference. 1521 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 1522 __func__, pkt->print(), blk->print()); 1523 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), 1524 pkt->id); 1525 PacketList writebacks; 1526 writebacks.push_back(wb_pkt); 1527 doWritebacks(writebacks, 0); 1528 } 1529 1530 return false; 1531 } 1532} 1533 1534bool 1535BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry) 1536{ 1537 assert(wq_entry); 1538 1539 // always a single target for write queue entries 1540 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt; 1541 1542 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print()); 1543 1544 // forward as is, both for evictions and uncacheable writes 1545 if (!memSidePort.sendTimingReq(tgt_pkt)) { 1546 // note that we have now masked any requestBus and 1547 // schedSendEvent (we will wait for a retry before 1548 // doing anything), and this is so even if we do not 1549 // care about this packet and might override it before 1550 // it gets retried 1551 return true; 1552 } else { 1553 markInService(wq_entry); 1554 return false; 1555 } 1556} 1557 1558void 1559BaseCache::serialize(CheckpointOut &cp) const 1560{ 1561 bool dirty(isDirty()); 1562 1563 if (dirty) { 1564 warn("*** The cache still contains dirty data. ***\n"); 1565 warn(" Make sure to drain the system using the correct flags.\n"); 1566 warn(" This checkpoint will not restore correctly " \ 1567 "and dirty data in the cache will be lost!\n"); 1568 } 1569 1570 // Since we don't checkpoint the data in the cache, any dirty data 1571 // will be lost when restoring from a checkpoint of a system that 1572 // wasn't drained properly. Flag the checkpoint as invalid if the 1573 // cache contains dirty data. 1574 bool bad_checkpoint(dirty); 1575 SERIALIZE_SCALAR(bad_checkpoint); 1576} 1577 1578void 1579BaseCache::unserialize(CheckpointIn &cp) 1580{ 1581 bool bad_checkpoint; 1582 UNSERIALIZE_SCALAR(bad_checkpoint); 1583 if (bad_checkpoint) { 1584 fatal("Restoring from checkpoints with dirty caches is not " 1585 "supported in the classic memory system. Please remove any " 1586 "caches or drain them properly before taking checkpoints.\n"); 1587 } 1588} 1589 1590void 1591BaseCache::regStats() 1592{ 1593 MemObject::regStats(); 1594 1595 using namespace Stats; 1596 1597 // Hit statistics 1598 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1599 MemCmd cmd(access_idx); 1600 const string &cstr = cmd.toString(); 1601 1602 hits[access_idx] 1603 .init(system->maxMasters()) 1604 .name(name() + "." + cstr + "_hits") 1605 .desc("number of " + cstr + " hits") 1606 .flags(total | nozero | nonan) 1607 ; 1608 for (int i = 0; i < system->maxMasters(); i++) { 1609 hits[access_idx].subname(i, system->getMasterName(i)); 1610 } 1611 } 1612 1613// These macros make it easier to sum the right subset of commands and 1614// to change the subset of commands that are considered "demand" vs 1615// "non-demand" 1616#define SUM_DEMAND(s) \ 1617 (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \ 1618 s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq]) 1619 1620// should writebacks be included here? prior code was inconsistent... 1621#define SUM_NON_DEMAND(s) \ 1622 (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq]) 1623 1624 demandHits 1625 .name(name() + ".demand_hits") 1626 .desc("number of demand (read+write) hits") 1627 .flags(total | nozero | nonan) 1628 ; 1629 demandHits = SUM_DEMAND(hits); 1630 for (int i = 0; i < system->maxMasters(); i++) { 1631 demandHits.subname(i, system->getMasterName(i)); 1632 } 1633 1634 overallHits 1635 .name(name() + ".overall_hits") 1636 .desc("number of overall hits") 1637 .flags(total | nozero | nonan) 1638 ; 1639 overallHits = demandHits + SUM_NON_DEMAND(hits); 1640 for (int i = 0; i < system->maxMasters(); i++) { 1641 overallHits.subname(i, system->getMasterName(i)); 1642 } 1643 1644 // Miss statistics 1645 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1646 MemCmd cmd(access_idx); 1647 const string &cstr = cmd.toString(); 1648 1649 misses[access_idx] 1650 .init(system->maxMasters()) 1651 .name(name() + "." + cstr + "_misses") 1652 .desc("number of " + cstr + " misses") 1653 .flags(total | nozero | nonan) 1654 ; 1655 for (int i = 0; i < system->maxMasters(); i++) { 1656 misses[access_idx].subname(i, system->getMasterName(i)); 1657 } 1658 } 1659 1660 demandMisses 1661 .name(name() + ".demand_misses") 1662 .desc("number of demand (read+write) misses") 1663 .flags(total | nozero | nonan) 1664 ; 1665 demandMisses = SUM_DEMAND(misses); 1666 for (int i = 0; i < system->maxMasters(); i++) { 1667 demandMisses.subname(i, system->getMasterName(i)); 1668 } 1669 1670 overallMisses 1671 .name(name() + ".overall_misses") 1672 .desc("number of overall misses") 1673 .flags(total | nozero | nonan) 1674 ; 1675 overallMisses = demandMisses + SUM_NON_DEMAND(misses); 1676 for (int i = 0; i < system->maxMasters(); i++) { 1677 overallMisses.subname(i, system->getMasterName(i)); 1678 } 1679 1680 // Miss latency statistics 1681 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1682 MemCmd cmd(access_idx); 1683 const string &cstr = cmd.toString(); 1684 1685 missLatency[access_idx] 1686 .init(system->maxMasters()) 1687 .name(name() + "." + cstr + "_miss_latency") 1688 .desc("number of " + cstr + " miss cycles") 1689 .flags(total | nozero | nonan) 1690 ; 1691 for (int i = 0; i < system->maxMasters(); i++) { 1692 missLatency[access_idx].subname(i, system->getMasterName(i)); 1693 } 1694 } 1695 1696 demandMissLatency 1697 .name(name() + ".demand_miss_latency") 1698 .desc("number of demand (read+write) miss cycles") 1699 .flags(total | nozero | nonan) 1700 ; 1701 demandMissLatency = SUM_DEMAND(missLatency); 1702 for (int i = 0; i < system->maxMasters(); i++) { 1703 demandMissLatency.subname(i, system->getMasterName(i)); 1704 } 1705 1706 overallMissLatency 1707 .name(name() + ".overall_miss_latency") 1708 .desc("number of overall miss cycles") 1709 .flags(total | nozero | nonan) 1710 ; 1711 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency); 1712 for (int i = 0; i < system->maxMasters(); i++) { 1713 overallMissLatency.subname(i, system->getMasterName(i)); 1714 } 1715 1716 // access formulas 1717 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1718 MemCmd cmd(access_idx); 1719 const string &cstr = cmd.toString(); 1720 1721 accesses[access_idx] 1722 .name(name() + "." + cstr + "_accesses") 1723 .desc("number of " + cstr + " accesses(hits+misses)") 1724 .flags(total | nozero | nonan) 1725 ; 1726 accesses[access_idx] = hits[access_idx] + misses[access_idx]; 1727 1728 for (int i = 0; i < system->maxMasters(); i++) { 1729 accesses[access_idx].subname(i, system->getMasterName(i)); 1730 } 1731 } 1732 1733 demandAccesses 1734 .name(name() + ".demand_accesses") 1735 .desc("number of demand (read+write) accesses") 1736 .flags(total | nozero | nonan) 1737 ; 1738 demandAccesses = demandHits + demandMisses; 1739 for (int i = 0; i < system->maxMasters(); i++) { 1740 demandAccesses.subname(i, system->getMasterName(i)); 1741 } 1742 1743 overallAccesses 1744 .name(name() + ".overall_accesses") 1745 .desc("number of overall (read+write) accesses") 1746 .flags(total | nozero | nonan) 1747 ; 1748 overallAccesses = overallHits + overallMisses; 1749 for (int i = 0; i < system->maxMasters(); i++) { 1750 overallAccesses.subname(i, system->getMasterName(i)); 1751 } 1752 1753 // miss rate formulas 1754 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1755 MemCmd cmd(access_idx); 1756 const string &cstr = cmd.toString(); 1757 1758 missRate[access_idx] 1759 .name(name() + "." + cstr + "_miss_rate") 1760 .desc("miss rate for " + cstr + " accesses") 1761 .flags(total | nozero | nonan) 1762 ; 1763 missRate[access_idx] = misses[access_idx] / accesses[access_idx]; 1764 1765 for (int i = 0; i < system->maxMasters(); i++) { 1766 missRate[access_idx].subname(i, system->getMasterName(i)); 1767 } 1768 } 1769 1770 demandMissRate 1771 .name(name() + ".demand_miss_rate") 1772 .desc("miss rate for demand accesses") 1773 .flags(total | nozero | nonan) 1774 ; 1775 demandMissRate = demandMisses / demandAccesses; 1776 for (int i = 0; i < system->maxMasters(); i++) { 1777 demandMissRate.subname(i, system->getMasterName(i)); 1778 } 1779 1780 overallMissRate 1781 .name(name() + ".overall_miss_rate") 1782 .desc("miss rate for overall accesses") 1783 .flags(total | nozero | nonan) 1784 ; 1785 overallMissRate = overallMisses / overallAccesses; 1786 for (int i = 0; i < system->maxMasters(); i++) { 1787 overallMissRate.subname(i, system->getMasterName(i)); 1788 } 1789 1790 // miss latency formulas 1791 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1792 MemCmd cmd(access_idx); 1793 const string &cstr = cmd.toString(); 1794 1795 avgMissLatency[access_idx] 1796 .name(name() + "." + cstr + "_avg_miss_latency") 1797 .desc("average " + cstr + " miss latency") 1798 .flags(total | nozero | nonan) 1799 ; 1800 avgMissLatency[access_idx] = 1801 missLatency[access_idx] / misses[access_idx]; 1802 1803 for (int i = 0; i < system->maxMasters(); i++) { 1804 avgMissLatency[access_idx].subname(i, system->getMasterName(i)); 1805 } 1806 } 1807 1808 demandAvgMissLatency 1809 .name(name() + ".demand_avg_miss_latency") 1810 .desc("average overall miss latency") 1811 .flags(total | nozero | nonan) 1812 ; 1813 demandAvgMissLatency = demandMissLatency / demandMisses; 1814 for (int i = 0; i < system->maxMasters(); i++) { 1815 demandAvgMissLatency.subname(i, system->getMasterName(i)); 1816 } 1817 1818 overallAvgMissLatency 1819 .name(name() + ".overall_avg_miss_latency") 1820 .desc("average overall miss latency") 1821 .flags(total | nozero | nonan) 1822 ; 1823 overallAvgMissLatency = overallMissLatency / overallMisses; 1824 for (int i = 0; i < system->maxMasters(); i++) { 1825 overallAvgMissLatency.subname(i, system->getMasterName(i)); 1826 } 1827 1828 blocked_cycles.init(NUM_BLOCKED_CAUSES); 1829 blocked_cycles 1830 .name(name() + ".blocked_cycles") 1831 .desc("number of cycles access was blocked") 1832 .subname(Blocked_NoMSHRs, "no_mshrs") 1833 .subname(Blocked_NoTargets, "no_targets") 1834 ; 1835 1836 1837 blocked_causes.init(NUM_BLOCKED_CAUSES); 1838 blocked_causes 1839 .name(name() + ".blocked") 1840 .desc("number of cycles access was blocked") 1841 .subname(Blocked_NoMSHRs, "no_mshrs") 1842 .subname(Blocked_NoTargets, "no_targets") 1843 ; 1844 1845 avg_blocked 1846 .name(name() + ".avg_blocked_cycles") 1847 .desc("average number of cycles each access was blocked") 1848 .subname(Blocked_NoMSHRs, "no_mshrs") 1849 .subname(Blocked_NoTargets, "no_targets") 1850 ; 1851 1852 avg_blocked = blocked_cycles / blocked_causes; 1853 1854 unusedPrefetches 1855 .name(name() + ".unused_prefetches") 1856 .desc("number of HardPF blocks evicted w/o reference") 1857 .flags(nozero) 1858 ; 1859 1860 writebacks 1861 .init(system->maxMasters()) 1862 .name(name() + ".writebacks") 1863 .desc("number of writebacks") 1864 .flags(total | nozero | nonan) 1865 ; 1866 for (int i = 0; i < system->maxMasters(); i++) { 1867 writebacks.subname(i, system->getMasterName(i)); 1868 } 1869 1870 // MSHR statistics 1871 // MSHR hit statistics 1872 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1873 MemCmd cmd(access_idx); 1874 const string &cstr = cmd.toString(); 1875 1876 mshr_hits[access_idx] 1877 .init(system->maxMasters()) 1878 .name(name() + "." + cstr + "_mshr_hits") 1879 .desc("number of " + cstr + " MSHR hits") 1880 .flags(total | nozero | nonan) 1881 ; 1882 for (int i = 0; i < system->maxMasters(); i++) { 1883 mshr_hits[access_idx].subname(i, system->getMasterName(i)); 1884 } 1885 } 1886 1887 demandMshrHits 1888 .name(name() + ".demand_mshr_hits") 1889 .desc("number of demand (read+write) MSHR hits") 1890 .flags(total | nozero | nonan) 1891 ; 1892 demandMshrHits = SUM_DEMAND(mshr_hits); 1893 for (int i = 0; i < system->maxMasters(); i++) { 1894 demandMshrHits.subname(i, system->getMasterName(i)); 1895 } 1896 1897 overallMshrHits 1898 .name(name() + ".overall_mshr_hits") 1899 .desc("number of overall MSHR hits") 1900 .flags(total | nozero | nonan) 1901 ; 1902 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits); 1903 for (int i = 0; i < system->maxMasters(); i++) { 1904 overallMshrHits.subname(i, system->getMasterName(i)); 1905 } 1906 1907 // MSHR miss statistics 1908 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1909 MemCmd cmd(access_idx); 1910 const string &cstr = cmd.toString(); 1911 1912 mshr_misses[access_idx] 1913 .init(system->maxMasters()) 1914 .name(name() + "." + cstr + "_mshr_misses") 1915 .desc("number of " + cstr + " MSHR misses") 1916 .flags(total | nozero | nonan) 1917 ; 1918 for (int i = 0; i < system->maxMasters(); i++) { 1919 mshr_misses[access_idx].subname(i, system->getMasterName(i)); 1920 } 1921 } 1922 1923 demandMshrMisses 1924 .name(name() + ".demand_mshr_misses") 1925 .desc("number of demand (read+write) MSHR misses") 1926 .flags(total | nozero | nonan) 1927 ; 1928 demandMshrMisses = SUM_DEMAND(mshr_misses); 1929 for (int i = 0; i < system->maxMasters(); i++) { 1930 demandMshrMisses.subname(i, system->getMasterName(i)); 1931 } 1932 1933 overallMshrMisses 1934 .name(name() + ".overall_mshr_misses") 1935 .desc("number of overall MSHR misses") 1936 .flags(total | nozero | nonan) 1937 ; 1938 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses); 1939 for (int i = 0; i < system->maxMasters(); i++) { 1940 overallMshrMisses.subname(i, system->getMasterName(i)); 1941 } 1942 1943 // MSHR miss latency statistics 1944 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1945 MemCmd cmd(access_idx); 1946 const string &cstr = cmd.toString(); 1947 1948 mshr_miss_latency[access_idx] 1949 .init(system->maxMasters()) 1950 .name(name() + "." + cstr + "_mshr_miss_latency") 1951 .desc("number of " + cstr + " MSHR miss cycles") 1952 .flags(total | nozero | nonan) 1953 ; 1954 for (int i = 0; i < system->maxMasters(); i++) { 1955 mshr_miss_latency[access_idx].subname(i, system->getMasterName(i)); 1956 } 1957 } 1958 1959 demandMshrMissLatency 1960 .name(name() + ".demand_mshr_miss_latency") 1961 .desc("number of demand (read+write) MSHR miss cycles") 1962 .flags(total | nozero | nonan) 1963 ; 1964 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency); 1965 for (int i = 0; i < system->maxMasters(); i++) { 1966 demandMshrMissLatency.subname(i, system->getMasterName(i)); 1967 } 1968 1969 overallMshrMissLatency 1970 .name(name() + ".overall_mshr_miss_latency") 1971 .desc("number of overall MSHR miss cycles") 1972 .flags(total | nozero | nonan) 1973 ; 1974 overallMshrMissLatency = 1975 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency); 1976 for (int i = 0; i < system->maxMasters(); i++) { 1977 overallMshrMissLatency.subname(i, system->getMasterName(i)); 1978 } 1979 1980 // MSHR uncacheable statistics 1981 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1982 MemCmd cmd(access_idx); 1983 const string &cstr = cmd.toString(); 1984 1985 mshr_uncacheable[access_idx] 1986 .init(system->maxMasters()) 1987 .name(name() + "." + cstr + "_mshr_uncacheable") 1988 .desc("number of " + cstr + " MSHR uncacheable") 1989 .flags(total | nozero | nonan) 1990 ; 1991 for (int i = 0; i < system->maxMasters(); i++) { 1992 mshr_uncacheable[access_idx].subname(i, system->getMasterName(i)); 1993 } 1994 } 1995 1996 overallMshrUncacheable 1997 .name(name() + ".overall_mshr_uncacheable_misses") 1998 .desc("number of overall MSHR uncacheable misses") 1999 .flags(total | nozero | nonan) 2000 ; 2001 overallMshrUncacheable = 2002 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable); 2003 for (int i = 0; i < system->maxMasters(); i++) { 2004 overallMshrUncacheable.subname(i, system->getMasterName(i)); 2005 } 2006 2007 // MSHR miss latency statistics 2008 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2009 MemCmd cmd(access_idx); 2010 const string &cstr = cmd.toString(); 2011 2012 mshr_uncacheable_lat[access_idx] 2013 .init(system->maxMasters()) 2014 .name(name() + "." + cstr + "_mshr_uncacheable_latency") 2015 .desc("number of " + cstr + " MSHR uncacheable cycles") 2016 .flags(total | nozero | nonan) 2017 ; 2018 for (int i = 0; i < system->maxMasters(); i++) { 2019 mshr_uncacheable_lat[access_idx].subname( 2020 i, system->getMasterName(i)); 2021 } 2022 } 2023 2024 overallMshrUncacheableLatency 2025 .name(name() + ".overall_mshr_uncacheable_latency") 2026 .desc("number of overall MSHR uncacheable cycles") 2027 .flags(total | nozero | nonan) 2028 ; 2029 overallMshrUncacheableLatency = 2030 SUM_DEMAND(mshr_uncacheable_lat) + 2031 SUM_NON_DEMAND(mshr_uncacheable_lat); 2032 for (int i = 0; i < system->maxMasters(); i++) { 2033 overallMshrUncacheableLatency.subname(i, system->getMasterName(i)); 2034 } 2035 2036#if 0 2037 // MSHR access formulas 2038 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2039 MemCmd cmd(access_idx); 2040 const string &cstr = cmd.toString(); 2041 2042 mshrAccesses[access_idx] 2043 .name(name() + "." + cstr + "_mshr_accesses") 2044 .desc("number of " + cstr + " mshr accesses(hits+misses)") 2045 .flags(total | nozero | nonan) 2046 ; 2047 mshrAccesses[access_idx] = 2048 mshr_hits[access_idx] + mshr_misses[access_idx] 2049 + mshr_uncacheable[access_idx]; 2050 } 2051 2052 demandMshrAccesses 2053 .name(name() + ".demand_mshr_accesses") 2054 .desc("number of demand (read+write) mshr accesses") 2055 .flags(total | nozero | nonan) 2056 ; 2057 demandMshrAccesses = demandMshrHits + demandMshrMisses; 2058 2059 overallMshrAccesses 2060 .name(name() + ".overall_mshr_accesses") 2061 .desc("number of overall (read+write) mshr accesses") 2062 .flags(total | nozero | nonan) 2063 ; 2064 overallMshrAccesses = overallMshrHits + overallMshrMisses 2065 + overallMshrUncacheable; 2066#endif 2067 2068 // MSHR miss rate formulas 2069 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2070 MemCmd cmd(access_idx); 2071 const string &cstr = cmd.toString(); 2072 2073 mshrMissRate[access_idx] 2074 .name(name() + "." + cstr + "_mshr_miss_rate") 2075 .desc("mshr miss rate for " + cstr + " accesses") 2076 .flags(total | nozero | nonan) 2077 ; 2078 mshrMissRate[access_idx] = 2079 mshr_misses[access_idx] / accesses[access_idx]; 2080 2081 for (int i = 0; i < system->maxMasters(); i++) { 2082 mshrMissRate[access_idx].subname(i, system->getMasterName(i)); 2083 } 2084 } 2085 2086 demandMshrMissRate 2087 .name(name() + ".demand_mshr_miss_rate") 2088 .desc("mshr miss rate for demand accesses") 2089 .flags(total | nozero | nonan) 2090 ; 2091 demandMshrMissRate = demandMshrMisses / demandAccesses; 2092 for (int i = 0; i < system->maxMasters(); i++) { 2093 demandMshrMissRate.subname(i, system->getMasterName(i)); 2094 } 2095 2096 overallMshrMissRate 2097 .name(name() + ".overall_mshr_miss_rate") 2098 .desc("mshr miss rate for overall accesses") 2099 .flags(total | nozero | nonan) 2100 ; 2101 overallMshrMissRate = overallMshrMisses / overallAccesses; 2102 for (int i = 0; i < system->maxMasters(); i++) { 2103 overallMshrMissRate.subname(i, system->getMasterName(i)); 2104 } 2105 2106 // mshrMiss latency formulas 2107 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2108 MemCmd cmd(access_idx); 2109 const string &cstr = cmd.toString(); 2110 2111 avgMshrMissLatency[access_idx] 2112 .name(name() + "." + cstr + "_avg_mshr_miss_latency") 2113 .desc("average " + cstr + " mshr miss latency") 2114 .flags(total | nozero | nonan) 2115 ; 2116 avgMshrMissLatency[access_idx] = 2117 mshr_miss_latency[access_idx] / mshr_misses[access_idx]; 2118 2119 for (int i = 0; i < system->maxMasters(); i++) { 2120 avgMshrMissLatency[access_idx].subname( 2121 i, system->getMasterName(i)); 2122 } 2123 } 2124 2125 demandAvgMshrMissLatency 2126 .name(name() + ".demand_avg_mshr_miss_latency") 2127 .desc("average overall mshr miss latency") 2128 .flags(total | nozero | nonan) 2129 ; 2130 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses; 2131 for (int i = 0; i < system->maxMasters(); i++) { 2132 demandAvgMshrMissLatency.subname(i, system->getMasterName(i)); 2133 } 2134 2135 overallAvgMshrMissLatency 2136 .name(name() + ".overall_avg_mshr_miss_latency") 2137 .desc("average overall mshr miss latency") 2138 .flags(total | nozero | nonan) 2139 ; 2140 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses; 2141 for (int i = 0; i < system->maxMasters(); i++) { 2142 overallAvgMshrMissLatency.subname(i, system->getMasterName(i)); 2143 } 2144 2145 // mshrUncacheable latency formulas 2146 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2147 MemCmd cmd(access_idx); 2148 const string &cstr = cmd.toString(); 2149 2150 avgMshrUncacheableLatency[access_idx] 2151 .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency") 2152 .desc("average " + cstr + " mshr uncacheable latency") 2153 .flags(total | nozero | nonan) 2154 ; 2155 avgMshrUncacheableLatency[access_idx] = 2156 mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx]; 2157 2158 for (int i = 0; i < system->maxMasters(); i++) { 2159 avgMshrUncacheableLatency[access_idx].subname( 2160 i, system->getMasterName(i)); 2161 } 2162 } 2163 2164 overallAvgMshrUncacheableLatency 2165 .name(name() + ".overall_avg_mshr_uncacheable_latency") 2166 .desc("average overall mshr uncacheable latency") 2167 .flags(total | nozero | nonan) 2168 ; 2169 overallAvgMshrUncacheableLatency = 2170 overallMshrUncacheableLatency / overallMshrUncacheable; 2171 for (int i = 0; i < system->maxMasters(); i++) { 2172 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i)); 2173 } 2174 2175 replacements 2176 .name(name() + ".replacements") 2177 .desc("number of replacements") 2178 ; 2179} 2180 2181/////////////// 2182// 2183// CpuSidePort 2184// 2185/////////////// 2186bool 2187BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) 2188{ 2189 // Snoops shouldn't happen when bypassing caches 2190 assert(!cache->system->bypassCaches()); 2191 2192 assert(pkt->isResponse()); 2193 2194 // Express snoop responses from master to slave, e.g., from L1 to L2 2195 cache->recvTimingSnoopResp(pkt); 2196 return true; 2197} 2198 2199 2200bool 2201BaseCache::CpuSidePort::tryTiming(PacketPtr pkt) 2202{ 2203 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) { 2204 // always let express snoop packets through even if blocked 2205 return true; 2206 } else if (blocked || mustSendRetry) { 2207 // either already committed to send a retry, or blocked 2208 mustSendRetry = true; 2209 return false; 2210 } 2211 mustSendRetry = false; 2212 return true; 2213} 2214 2215bool 2216BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt) 2217{ 2218 assert(pkt->isRequest()); 2219 2220 if (cache->system->bypassCaches()) { 2221 // Just forward the packet if caches are disabled. 2222 // @todo This should really enqueue the packet rather 2223 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt); 2224 assert(success); 2225 return true; 2226 } else if (tryTiming(pkt)) { 2227 cache->recvTimingReq(pkt); 2228 return true; 2229 } 2230 return false; 2231} 2232 2233Tick 2234BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt) 2235{ 2236 if (cache->system->bypassCaches()) { 2237 // Forward the request if the system is in cache bypass mode. 2238 return cache->memSidePort.sendAtomic(pkt); 2239 } else { 2240 return cache->recvAtomic(pkt); 2241 } 2242} 2243 2244void 2245BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt) 2246{ 2247 if (cache->system->bypassCaches()) { 2248 // The cache should be flushed if we are in cache bypass mode, 2249 // so we don't need to check if we need to update anything. 2250 cache->memSidePort.sendFunctional(pkt); 2251 return; 2252 } 2253 2254 // functional request 2255 cache->functionalAccess(pkt, true); 2256} 2257 2258AddrRangeList 2259BaseCache::CpuSidePort::getAddrRanges() const 2260{ 2261 return cache->getAddrRanges(); 2262} 2263 2264 2265BaseCache:: 2266CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache, 2267 const std::string &_label) 2268 : CacheSlavePort(_name, _cache, _label), cache(_cache) 2269{ 2270} 2271 2272/////////////// 2273// 2274// MemSidePort 2275// 2276/////////////// 2277bool 2278BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt) 2279{ 2280 cache->recvTimingResp(pkt); 2281 return true; 2282} 2283 2284// Express snooping requests to memside port 2285void 2286BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) 2287{ 2288 // Snoops shouldn't happen when bypassing caches 2289 assert(!cache->system->bypassCaches()); 2290 2291 // handle snooping requests 2292 cache->recvTimingSnoopReq(pkt); 2293} 2294 2295Tick 2296BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) 2297{ 2298 // Snoops shouldn't happen when bypassing caches 2299 assert(!cache->system->bypassCaches()); 2300 2301 return cache->recvAtomicSnoop(pkt); 2302} 2303 2304void 2305BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) 2306{ 2307 // Snoops shouldn't happen when bypassing caches 2308 assert(!cache->system->bypassCaches()); 2309 2310 // functional snoop (note that in contrast to atomic we don't have 2311 // a specific functionalSnoop method, as they have the same 2312 // behaviour regardless) 2313 cache->functionalAccess(pkt, false); 2314} 2315 2316void 2317BaseCache::CacheReqPacketQueue::sendDeferredPacket() 2318{ 2319 // sanity check 2320 assert(!waitingOnRetry); 2321 2322 // there should never be any deferred request packets in the 2323 // queue, instead we resly on the cache to provide the packets 2324 // from the MSHR queue or write queue 2325 assert(deferredPacketReadyTime() == MaxTick); 2326 2327 // check for request packets (requests & writebacks) 2328 QueueEntry* entry = cache.getNextQueueEntry(); 2329 2330 if (!entry) { 2331 // can happen if e.g. we attempt a writeback and fail, but 2332 // before the retry, the writeback is eliminated because 2333 // we snoop another cache's ReadEx. 2334 } else { 2335 // let our snoop responses go first if there are responses to 2336 // the same addresses 2337 if (checkConflictingSnoop(entry->blkAddr)) { 2338 return; 2339 } 2340 waitingOnRetry = entry->sendPacket(cache); 2341 } 2342 2343 // if we succeeded and are not waiting for a retry, schedule the 2344 // next send considering when the next queue is ready, note that 2345 // snoop responses have their own packet queue and thus schedule 2346 // their own events 2347 if (!waitingOnRetry) { 2348 schedSendEvent(cache.nextQueueReadyTime()); 2349 } 2350} 2351 2352BaseCache::MemSidePort::MemSidePort(const std::string &_name, 2353 BaseCache *_cache, 2354 const std::string &_label) 2355 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), 2356 _reqQueue(*_cache, *this, _snoopRespQueue, _label), 2357 _snoopRespQueue(*_cache, *this, _label), cache(_cache) 2358{ 2359} 2360